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Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study
of temperature-composition phase diagrams and structures

V. Ozoliņš, C. Wolverton, and Alex Zunger
National Renewable Energy Laboratory, Golden, Colorado 80401

~Received 19 September 1997!

The classic metallurgical systems—noble-metal alloys—that have formed the benchmark for various alloy
theories are revisited. First-principles fully relaxed general-potential linearized augmented plane-wave
~LAPW! total energies of a few ordered structures are used as input to a mixed-space cluster expansion
calculation to study the phase stability, thermodynamic properties, and bond lengths in Cu-Au, Ag-Au, Cu-Ag,
and Ni-Au alloys.~i! Our theoretical calculations correctly reproduce the tendencies of Ag-Au and Cu-Au to
form compounds and Ni-Au and Cu-Ag to phase separate atT50 K. ~ii ! Of all possible structures, Cu3Au
(L12) and CuAu (L10) are found to be the most stable low-temperature phases of Cu12xAu x with transition
temperatures of 530 K and 660 K, respectively, compared to the experimental values 663 K and'670 K. The
significant improvement over previous first-principles studies is attributed to the more accurate treatment of
atomic relaxations in the present work.~iii ! LAPW formation enthalpies demonstrate thatL12, the commonly
assumed stable phase of CuAu3, is not the ground state for Au-rich alloys, but rather that ordered~100!
superlattices are stabilized.~iv! We extract the nonconfigurational~e.g., vibrational! entropies of formation and
obtain large values for the size-mismatched systems: 0.48kB/atom in Ni0.5Au0.5 (T51100 K!, 0.37kB/atom in
Cu0.141Ag0.859 (T51052 K!, and 0.16kB/atom in Cu0.5Au0.5 (T5800 K!. ~v! Using 8 atom/cell special
quasirandom structures we study the bond lengths in disordered Cu-Au and Ni-Au alloys and obtain good
qualitative agreement with recent extended x-ray-absorption fine-structure measurements.
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I. INTRODUCTION: CHEMICAL TRENDS
IN NOBLE-METAL ALLOYS

Noble-metal alloys are, experimentally, among the m
studied intermetallic systems.1–24 In addition, the Cu-Au sys-
tem has been considered the classic paradigm system
applying different theoretical techniques of phase diagr
and phase stability calculations.25–63 Most notably, this sys-
tem has been considered as the basic test case for the c
Ising-Hamiltonian statistical-mechanics treatment
alloys.25–32 More recently, noble-metal binary alloys hav
been treated theoretically via empirical fitting of th
constants in Ising Hamiltonians,25–34 semiempirical inter-
atomic potentials,35–47 and via first-principles cluste
expansions.48–55 The essential difference in philosophy b
tween the classical application of Ising models to Cu
~Refs. 25–30 and 33! and more modern approaches based
the density functional formalism64 is that in the former ap-
proach the range and magnitudes of the interactions are
tulated at the outset~e.g., first or second neighbor pair inte
actions!, while the latter approaches make an effort
determine the interactions from an electronic struct
theory. However, despite recent attempts,48–54 it is still not
clear whether the noble-metal alloys can be essentially c
acterized as systems with short-range pair interactions or

Now that first-principles cluster expansion approaches65,66

have advanced to the stage where bothT50 ground state
structures and finite-temperature thermodynamic quant
can be predicted without any empirical information, it is i
teresting to take aglobal lookat the noble-metal alloy fam
ily. Table I summarizes some of the salie
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features1–4,14,15,18,67–69of the four binary systems Cu-Au
Ag-Au, Cu-Ag, and Ni-Au. We included the relative lattic
constant mismatchDa/ā52uaA2aBu/uaA1aBu between the
constituents,67 the electronegativity differenceDx5xA2xB
on the Pauling scale,68 the mixing enthalpy of the equiatomi
alloy,2,18 the sign of the calculated nearest-neighbor pair
teractionJ2 ~present study!, the structural identity of the low-
temperature phases,1–4,67and the order-disorder transition~or
miscibility gap! temperatures2,69 Tc . Some interesting obser
vations and trends, which we will attempt to reproduce th
retically, are apparent from this general survey.

~i! Despite a large~12%! size mismatch in Cu-Au and a
small ('0%! size mismatch in Ag-Au,both systems form
ordered compounds at low temperatures and have neg
mixing enthalpies, suggesting attractive~‘‘antiferromag-
netic’’! A-B interactions. Thus, when the difference in th
electronegativity,Dx, of the constituent atoms is sufficientl
large, as it is in CuAu and AgAu, size mismatch apparen
does not determine ordering vs phase separation tenden

~ii ! Despite a similar size mismatch~12%! in Cu-Au and
Cu-Ag, the former orders while the latter phase separa
Thus, the existence of a large electronegativity difference
Cu-Au ~as opposed to the small difference in Cu-Ag! seems
to induce ordering tendencies.

~iii ! Cu-Ag and Ni-Au both phase separate~and have
positive DHmix) as they have large size mismatches. Y
Ni-Au, having a large electronegativity difference, shows
ordering-type nearest-neighbor pair interaction (J2.0), just
like the compound forming Cu-Au and Ag-Au, while Cu-A
has a clustering-type nearest-neighbor interaction (J2,0).
Thus, the sign ofJ2 does not reflect the low-temperatu
ordering vs phase separation.
6427 © 1998 The American Physical Society
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TABLE I. Major physical properties of Ag-Au, Cu-Ag, Cu-Au, and Ni-Au alloys. We give constitu

size mismatchesDa/ā52(aA2aB)/(aA1aB), electronegativity differences on the Pauling scale~Ref. 68!
Dx, mixing enthalpies of the disordered alloys at the equiatomic composition,DHmix(x5

1
2 ), signs of the

nearest-neighbor Ising interaction,J2, order-disorder transition temperatures~or miscibility gap temperatures
for Cu-Ag and Ni-Au! Tc(x5

1
2 ), and excess entropies of solid solutions,DStot

form2DSideal. All phases are fcc
based.

System Da/ā a Dx b DHmix(x51/2) J2 Low-T phasesg Tc(x5
1
2 ) DStot

form2DSideal
g

~meV/atom! ~K! (kB/atom!

Cu-Au 12% 0.64 291 c .0 L12, L10, L12~?! 683g 10.04
Ag-Au 0% 0.61 248 d .0 L12, L10, L12 115-168h 20.17
Cu-Ag 12% 0.03 1104e ,0 Phase sep. .Tm 10.36
Ni-Au 15% 0.63 176 f .0 Phase sep. 1083d 10.35

aRef. 67.
bRef. 68.
cRefs. 15, 14, and 2.
dRef. 2.
eTheoretically calculated value from this work.
fRefs. 2 and 18.
gRefs. 2 and 4.
hRef. 69.
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~iv! The amountDSXS5DStot
expt2DSideal by which the

measured entropy2 DStot
expt deviates from the ideal configura

tional entropy DSideal5kB@x lnx1(12x)ln(12x)# is unex-
pectedly large in Cu-Ag and Ni-Au, indicating a large no
configurational entropy of formation.

Other interesting facts about the noble-metal binary in
metallics include the following.

~v! Despite numerous studies,1–4,7,8,10–12the structure of
the ordered phases in Au-rich Cu-Au is not well establish
yet. It is often assumed1–4 that the stable Au-rich low-
temperature phase is CuAu3 in the L12 structure, but direct
experiments7,8,10 below the order-disorder transition tem
peratureTc(x5 3

4 )'500 K are difficult because the diffusio
rates are very low and even the best ordered samples co
significant disorder. Possible further thermodynamic tra
formations at lower temperatures may be kinetically inh
ited.

~vi! The trends in bond lengths vs composition are n
trivial. Traditionally, all coherent-potential-approximation
based theories70–72 of intermetallic alloys have assumed th
the nearest-neighbor bond lengths are equal,RAA5RAB
5RBB , and proportional to the average lattice constant.
cent theories73–75 suggested, however, that bond lengths
lax in the alloy to new values, and this has a significant eff
on the electronic structure.53,76,77 Recent extended x-ray
absorption fine-structure~EXAFS! experiments on NiAu
~Ref. 23! and CuAu ~Ref. 24! show distinct RAAÞRAB
ÞRBB bond lengths, which need to be explained.

In this work we will analyze the above-mentioned tren
in terms of a first-principles mixed-space clust
expansion,65,66based on modern local density approximati
~LDA ! total energy calculations. We reproduce the obser
trends ~i!–~vi! in ordering preferences, mixing enthalpie
DHmix , transition temperaturesTc , and interatomic bond
lengths. In addition, we predict new, and to our knowled
hitherto unsuspected, ordered phases in Au-rich Cu-Au
loys.
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II. BASIC IDEOLOGY AND METHODOLOGY

There are many problems in solid state physics that
quire knowledge of the total energyE(s) of a lattice withN
sites as a function of the occupation patterns of these sites
by atoms of typesA andB. This information is needed, fo
example, in the ground state search problem,72 where one
seeks the configuration with the lowest energy atT50 K.
$E(s)% is also needed for calculating the temperature- a
composition-dependent thermodynamic functions and ph
diagrams of anA12xBx alloy.

A direct, quantum-mechanical calculation of the total e
ergy Edirect(s)5^CuĤuC&/^CuC& ~where C is the elec-
tronic ground state wave function andĤ is the many-electron
Hamiltonian! is possible only for a limited set of configura
tions s. This is so because~i! the computational effort to
solve the Schro¨dinger equation for a single configuratio
scales as the cube of the number of atoms per unit cell
that only small unit cells can be considered,~ii ! there are 2N

configurations, and~iii ! for each configuration, one has t
find the atomic relaxationsdumin(s) which minimize the to-
tal energy. Consequently, one searches for a ‘‘cluster exp
sion’’ ~CE! that accurately reproduces the results of a dire
quantum-mechanical~e.g., LDA! calculation,

ECE~s!>Edirect~s!, ~1!

without the unfavorable scaling of the computational c
with the size of the unit cell.

In designing a cluster expansion, there are few choice
independent parameters. For example, one could choos
obtain a cluster expansion for the volume- (V-) dependent
equation of stateEdirect(s,V) @see, e.g., Refs. 52, 78, and 7#
or to find a cluster expansion for the energy at the volu
Vmin(s) that minimizesEdirect(s,V). We choose the latte
possibility. Furthermore, for each configurations, we wish
to reproduce the total energy corresponding to the fully
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laxed cell shape and atomic positions$dumin(s)%. In other
words, we choose to represent

ECE~s!>Edirect@s;dumin~s!;Vmin~s!#[Edirect~s!. ~2!

Note that by focusing on the equilibrium energy of ea
configuration, we give up the possibility of studying no
equilibrium geometries~e.g., bond lengths! and equations of
state. Instead, for each occupation patterns, we can find the
total energyE(s) of the atomically relaxed and volume
optimized geometry.

The best-known cluster expansion is the generalized Is
model in which the equilibrium total energy of anarbitrary
configurations is expanded in a series of basis functio
defined as pseudospin products on the crystal sites:

E~s!5J01(
i

JiSi1
1

2(iÞ j
Ji j SiSj

1
1

3! (
iÞ j Þk

Ji jkSiSjSk1•••, ~3!

where in binaryA12xBx alloysSi511 or 21, depending on
whether the sitei is occupied by an atom of typeA or B.
Equation~3! is valid whether the lattice is relaxed or not,
long as a one-to-one correspondence exists between th
tual positions of atoms and the ideal fcc sites. The pract
usefulness of the cluster expansion, Eq.~3!, rests on the as
sumption that the effective cluster interactions~ECI’s!,
Ji j ,Ji jk , . . . , arerapidly decreasing functions of the numb
of sites and intersite separation, so that only a finite num
of terms has to be kept in Eq.~3! for the desired accuracy. In
this case, we can write the formation enthalpy of structures,

DHdirect~s!5E~s!2xEA2~12x!EB , ~4!

whereEA andEB are total energies of the pure constituen
A andB, as the following CE:

DHCE~s!5J01(
f

Nf

D f Jf P̄f ~s!. ~5!

HereNf is the number of nonzero effective interactions,D f
is the number of clusters of typef per lattice site, and
P̄ f (s) are lattice averages of the spin products in confi
ration s.

Sanchez, Ducastelle, and Gratias80 have shown that there
is a set of composition-independent interactions for Eq.~3!
which can exactly reproduce the directly calculated total
ergies ofall configurationss. This statement is strictly true
if all possible clusters are included in Eq.~3!, and should
hold for the truncated series, Eq.~3!, if the cluster expansion
is well converged. Several methods81,82 yield concentration-
dependent effective interactions, providing in princip
equally valid schemes for representingDHdirect(s) in terms
of a cluster expansion. In the present work, we se
composition-independent interactions, since these can b
rectly compared to previous Ising model treatments25–34,48–55

of the noble-metal alloy phase diagrams.
A number of issues arise in trying to construct a clus

expansion that satisfies Eq.~2!.
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~i! The number of interactions and their types~pair, multi-
body! cannot be decided arbitrarily, but must be constrain
by a microscopic electronic-structure theory according
Eqs.~1! and ~2!.

~ii ! In most configurationss, atoms move away from the
ideal lattice sites, which not only lowers the total energ
Edirect(s), but also slows down the convergence85 of the ex-
pansion, Eq.~3!. The solution is to have a cluster expansi
with many interaction termsNJ that can represent such situ
ations. We accomplish this by using a reciprocal-space
mulation, formally equivalent to an infinite number of rea
space pair interactions.

~iii ! Some cluster expansions78 require that the number o
interactions,NJ , must equal the number of configuration
Ns , whose total energies need to be evaluated via the di
electronic-structure method. The number of such calculati
may be excessive in view of~ii !. We thus introduce a metho
in which Ns!NJ . Furthermore, interactions that are n
needed to satisfy Eq.~2! are automatically discarded.

~iv! One has to deal with the macroscopic elastic str
leading to ak→0 singularity in the Fourier transform of th
pair interactions,

Jpair~k!5(
j

Jpair~Ri2Rj !e
2 ik–Rj . ~6!

As shown by Lakset al.65 ~see also the discussion below!, in
size-mismatched systems the correctJpair(k) depends on di-
rection k̂ in the long-wavelength limitk→0. To solve this,
we expressJpair(k) as a sum of two parts,

Jpair~k!5JSR~k!1JCS~ k̂!, ~7!

where JSR(k) is an analytic function ofk and can be ob-
tained from short-ranged real-space pair interactions, w
JCS( k̂) contains the nonanalytic behavior aroundk50 and
depends only on the directionk̂. To explain this singularity,
we consider the energy of a coherentAnBn superlattice,
formed by a periodic stacking ofn layers ofA andn layers
of B in directionĜ. By introducing the structure factor

S~k,s!5(
j

Sje
2 ik–Rj , ~8!

the total pair interaction energy in Eq.~3! can be expressed
as a reciprocal-space sum:

Epair~s!5(
k

Jpair~k! uS~k,s!u2. ~9!

The AnBn superlattice has a nonzero structure factor ak
5 (1/2n)Ĝ, and therefore its energy is determined
Jpair @(1/2n)Ĝ#. As n→` its formation energy is given by a
sum of the epitaxial deformation energies of pure const
ents needed to bring them to a common lattice constant in
plane perpendicular toĜ. Since the epitaxial deformation
energy of pure constituents is direction dependent~e.g., it is
easier to stretch Cu in@100# planes than in@111# planes; see
Sec. III B!, the formation energyDH(A`B`) is also direc-
tion dependent. Therefore, limk→0Jpair(k) must depend on
the direction of approach to the origin, proving thatJpair(k)
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is singular. Physically, the nonanaliticity ofJpair(k) is caused
by long-range interactions via macroscopic elastic strain
cannot be reproduced using finite-ranged real-space pai
teractions, but must be accounted for explicitly in recipro
space. If the singularity is neglected, then as explained
Ref. 65, the cluster expansion fails not only for long-peri
(n→`) superlatticesAnBn , but also for those short-perio
(n.2) superlattices which have not been explicitly includ
in the constraint, Eq.~2!. We emphasize that although th
contribution of JCS(k) to the formation energy is nonzer
only in size-mismatched systems, it is not related to
atomic relaxation energy for a particular structures in any
simple way~except ifs itself is a long-period superlattice!.

The singularity inJpair(k) is similar to the singularity in
the dynamical matrixDab(kk8uk) of polar crystals in the
long-wavelength limit,83 caused by long-range electrosta
interactions via macroscopic electric field. In lattice dyna
ics, Dab(kk8uk) is expressed as a sum of regular and sin
lar parts,Dab(kk8uk)5Dab

sing(kk8uk)1Dab
reg(kk8uk), where

Dab
reg(kk8uk) ~analytic ask→0) is due to short-range forc

constants. The singular partDab
sing(kk8uk) gives rise to

LO/TO splitting of the zone-center optical frequenciesvG in
polar crystals, and also leads to a directional dependenc
vG( k̂) in uniaxial crystals~e.g., CuPt-type GaInP2). These
phenomena cannot be reproduced by any set of finite-ran
microscopic force constants, but have to be calculated
plicitly using the macroscopic Maxwell equations.84

In summary, we seek to find a functionECE(s) which
accurately reproduces the LDA total energi
ELDA@s,dumin(s);Vmin(s)#[ELDA(s) at the atomically re-
laxed geometry and equilibrium volume of configurations.
The functionECE(s) we consider includes composition- an
volume-independent interactions, so as to maintain m
mum similarity with the classical Ising model. The numb
and type of interactions are not decided arbitrarily, but
constrained by the electronic-structure theory used~here, the
LDA !. Relaxation is treated accurately by including lon
range pair interactions in the reciprocal-space representa
The k→0 singularity, affecting both short- and long-perio
superlattices, is dealt with explicitly.

The above requirements are satisfied by the mixed-sp
cluster expansion~MSCE!

DHCE~s!5(
k

Jpair~k! uS~k,s!u2

1(
f

MB

D f Jf P̄f ~s!1DECS~s!. ~10!

We have separated out the so-called equilibrium constitu
strain energy termDECS(s), which accounts for thek→0
singularity.65 In Eq. ~10! we do not need to calculat
DECS(s) for each configurations, but only for thedirec-
tions k̂of the wave vectors with nonzeroS(k,s). In fact, it is
constructed to coincide with the elastic strain energy of
herent superlattices in the long-period limit:65

DECS~s!5(
k

JCS~x,k̂!uS~k,s!u2, ~11!

JCS~x,k̂!5
DECS

eq~x,k̂!

4x~12x!
, ~12!
d
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whereS(k,s) is the structure factor from Eq.~8!. The quan-
tity DECS

eq(x,k̂) depends only on the directionk̂, and will be
given in Sec. III B. Equation~11! is exact for long-period
superlattices, but represents achoicefor short-period super-
lattices and nonsuperlattice~e.g.,L12) structures. It has been
found65 that the choice, Eq.~11!, improves the cluster expan
sion predictions also for short-period superlattices.

Equation~10! is a generalized Ising model description
the formation energy ofany relaxed configurations, even if
a direct LDA calculation for thiss is impractical. The cluster
interaction energies$Jpair(k)% and $Jf% are obtained by fit-
ting Eq. ~10! to the LDA formation energies. An additiona
smoothness requirement is imposed onJpair(k), which en-
sures that the pair interactions are optimally short range
real space. Namely, we minimize the sum,

D rms
2 5

1

Ns
(
s

ws@DHCE~s!2DHLDA~s!#2

1
t

a(
k

Jpair~k!@2¹k
2#l/2Jpair~k!, ~13!

wherel and t are free parameters anda is a normalization
constant.65 Typically we choosel54 andt51, but the fit is
not sensitive to this choice.

This approach solves the four problems indicated ab
in the sense that~i! the fitting process itself automati
cally selects the pair interactions that are essential to
tain a good fit~process still does not select multibody fig
ures!, ~ii ! the pair interactions can be of arbitrary lon
range, facilitating treatment of systems with large elas
relaxations,~iii ! the number of pairs can be much larg
than the number of ordered structures in the fit, and~iv!
the directly calculated constituent strain energyDECS
contains thek→0 singularity. Unlike all coherent-potential
approximation-~CPA-! based methods,70,71 the present ap-
proach includes a full account of atomic relaxation and lo
environment effects. Unlike the classical Ising d
scriptions,25,27–33the interaction energies are determined
the electronic structure rather than being guessed. Fin
unlike the computational alchemy linear respon
approach,85 multibody terms are included here.

Having written the expression for the total energy of a
bitrary configuration, Eq.~10!, we can evaluate its constan
from a limited number of LDA calculations on small un
cell (Natoms,10) ordered structures with fully relaxe
atomic positions. Equation~10! can then be employed in
simulated annealing and Monte Carlo calculations86,87 yield-
ing T50 ground states andT.0 statistical and thermody
namic properties. Further details of the method are given
Sec. III.

III. DETAILS OF THE METHOD

A. T50 energetics

The calculations ofT50 total energies employ the full
potential linearized augmented plane wave~FLAPW!
method88. The basis set consists of plane waves in the in
stitial region, augmented in a continuous and differentia
way with the solutions of the radial Schro¨dinger equation
inside the nonoverlapping muffin-tin spheres. Nonspher
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57 6431Cu-Au, Ag-Au, Cu-Ag, AND Ni-Au . . .
potential and electronic charge density terms are calcul
in all space and included in the Hamiltonian matrix. Co
states are treated fully relativistically and recalculated
each self-consistency iteration. The wave equation for
valence states includes all relativistic effects except the s
orbit interaction; i.e., they are treated scalar relativistica
The FLAPW method is the most accurate all-electr
method, superior to the methods employing overlapp
atomic spheres@atomic-sphere approximation~ASA!# and/or
shape approximations to the potential.

We use the Wigner exchange-correlation functional.89 As
a check, we have performed several calculations using
Perdew-Zunger90 parametrization of the Ceperley-Alder91

functional and the generalized gradient approximation
Perdew and Wang.92 We find ~see Sec. IV A 1! that the vari-
ous exchange-correlation functionals change the entha
of formation of ordered Cu-Au compounds by a negligib
amount~less than 2 meV/atom!.

The total energies of the ordered structures and end-p
constituents are obtained keeping all computational par
eters exactly equal. Specifically, we always use the sa
basis sets (RKmax59), charge density cutoffs (RKmax519),
muffin-tin radii RAu52.4a0, RAg5RCu5RNi52.2a0, maxi-
mum difference in the angular momenta in the nonspher
Hamiltonian terms (l max54), maximum angular momenta i
the nonspherical charge densities and potentials inside
muffin-tin spheres (l max58), and equivalentk point sets93 in
the evaluation of Brillouin zone integrals. When the unit c
vectors of the ordered compound permit, we choosek
mesh equivalent to the 60 special points 83838 fcc mesh.
Several structures~e.g., those ofA2B or AB2 stoichiometry!
have reciprocal unit cell vectors which are incommensur
with the 83838 mesh. In these cases we calculate the to
energies of the compoundsand fcc constituents with a fine
k point grid. This procedure ensures that, due to system
cancellation of errors, the formation enthalpiesDH(s), Eq.
~4!, converge much faster than the total energies. Indeed
tests for Cu-Au described in Sec. IV A 1 show that with o
choice of parametersDH(s) are converged to within 2 meV
atom.

The atomic positions are relaxed using quantu
mechanical forces94 obtained at the end of the sel
consistency iterations. Minimization of the total energy w
respect to the cell-external degrees of freedom is done
distorting the shape of the unit cell and tracing the decre
in the total energy. We estimate that the formation enthalp
are converged to at least 5 meV/atom with respect to
relaxational degrees of freedom.

Table II and its caption defines our small-unit-cell order
structures. Many are actually superlattices along~100!,
~110!, ~111!, ~201!, and~311! directions. Table III gives the
calculated LDA formation energies@Eq. ~4!# for these
Au-Ag, Cu-Au, Cu-Ag, and Ni-Au compounds.

B. Constituent strain energy

It is well known66 that real-space cluster expansions w
finite-ranged interactions incorrectly predict zero formati
enthalpies per atom for coherent long-periodApBq superlat-
tices, while the correct answers are nonzero and depen
the superlattice directionĜ. The constituent strain energ
ed
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term DECS(s) in Eq. ~10! is specifically designed to repro
duce these superlattice energies, which are calculated
rectly from the LDA as follows.

In the long-period limitpq→` the interfacial energy be
comes negligibly small@O(1/p)# in comparison with the
elastic strain energy needed to deform the constituents
common in-plane lattice constantas .55,96 Therefore, the for-
mation energy per atom ofA`B` superlattice alongĜ with
composition x is given by the constituent strain energ
DECS(x,Ĝ), defined as the equilibrium~eq! value of the
composition-weighted sum of the energies required to
form bulk A and B to the epitaxial geometry with a plana
lattice constantas :

DECS
eq~x,Ĝ!5min

as

@xDEA
epi~as ,Ĝ!1~12x!DEB

epi~as ,Ĝ!#.

~14!

Here DEepi(as ,Ĝ) is the strain energy of the material ep
taxially stretched to the lattice constantas in the direction
orthogonal to Ĝ, and then allowed to relax alongĜ.
DEepi(as ,Ĝ) is related to the bulk equation of sta
DEbulk(as) via the epitaxial softening functionq(as ,Ĝ):

q~as ,Ĝ![
DEepi~as ,Ĝ!

DEbulk~as!
, ~15!

where DEA
bulk(as) is the energy required to hydrostatical

deform a bulk solid to the lattice constantas . Figure 1 illus-
trates the concept of epitaxial softening:97 When the bulk
solid is deformed hydrostatically fromaeq to asÞaeq, its
energy rises. The energy can then be lowered if we k
ax5ay5as but relax the third lattice vector to its equilib
rium value.q(as ,Ĝ) measures the relative energy lowerin

Figure 2 shows the calculated LDAq’s for Cu, obtained
by minimizing the total energy with respect to the latti
constantc parallel toĜ for each value of the substrate lattic
parameteras . As explained in Ref. 96, this treatment n
glects the so-called shear strain terms, but is exact for
high-symmetry directions~100!, ~111!, and ~110!. The cal-
culatedqCu(as ,Ĝ) is seen to be a nontrivial function of th
substrate lattice parameteras and directionĜ. In contrast,
the harmonic elasticity theory,97–102routinely used for semi-
conductor systems,97,100,101givesq’s which do not depend on
as ,

qharm~Ĝ!512
B

C111Dgharm~Ĝ!
, ~16!

where gharm(Ĝ) is a geometric function of the spherica
angles formed byĜ:

gharm~f,u!5sin2~2u!1sin4~u!sin2~2f!

5
4

5
A4pFK0~f,u!2

2

A21
K4~f,u!G , ~17!

and Kl are the Kubic harmonics of angular momentuml .
Figure 2 shows that the harmonic approximation manifes
breaks down for large epitaxial strains in metals since th
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TABLE II. Definition of the small-unit-cell ordered structures used in the LDA total energy calculatio

Simple superlattices

Composition Orientation
~001! ~011! ~111! ~311! ~201!

AB L10 ~CuAu! L10 ~CuAu! L11 ~CuPt! L11 ~CuPt! L10 ~CuAu!

A2B ‘‘ b1’’ ~MoSi2) ‘‘ g1’’ ~MoPt2) ‘‘ a1’’ ~CdI2) ‘‘ g1’’ ~MoPt2) ‘‘ g1’’ ~MoPt2)
AB2 ‘‘ b2’’ ~MoSi2) ‘‘ g2’’ ~MoPt2) ‘‘ a2’’ ~CdI2) ‘‘ g2’’ ~MoPt2) ‘‘ g2’’ ~MoPt2)
A3B ‘ ‘ Z1’’ ‘ ‘ Y1’’ ‘ ‘ V1’’ ‘ ‘ W1’’ D022 ~TiAl 3)
AB3 ‘ ‘ Z3’’ ‘ ‘ Y3’’ ‘ ‘ V3’’ ‘ ‘ W3’’ D022 ~TiAl 3)
A2B2 ‘ ‘ Z2’’ ‘ ‘ Y2’’ ‘ ‘ V2’’ ‘ ‘ W2’’ ‘‘40’’ ~CuFeS2)

Other structures

Composition Name Prototype Superlattice Period Reference
direction

A3B1 L12 Cu3Au none 52
A1B 3 L12 Cu3Au none 52
A7B D7a none 52
A4B4 D4 none 52
AB7 D7b none 52
A8B Ni 8Nb none 95
AB8 Ni 8Nb none 95
A6B2 D023 Al 3Zr ~401! ~5,1,1,1! 95
A6B2 LPS-3 ~601! ~5,1,1,1! 87
A4B4 SQS8a ~311! ~2,3,2,1! 76
A4B4 SQS8b ~311! ~3,2,1,2! 76
A6B2 SQS14a ~201! ~6,2! 73
A2B6 SQS14b ~201! ~2,6! 73
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are several importantqualitativedifferences between the be
havior in Fig. 2 and that predicted by the harmonic elastic

First, q(as ,Ĝ) strongly depends on the substrate lattice c

stant, while the harmonicqharm(Ĝ) does not. Second, th

harmonic expression gives a definite order ofq(Ĝ) as a
function of the direction; i.e., either~100! is the softest and
then~111! mustbe the hardest, or vice versa. This order do
not hold for large deformations. For instance,~201! becomes
the softest direction foras!a0 and ~110! is the hardest for
as@a0 in Cu. Finally, q(100) exhibits a particularly dra
matic softening foras@a0, which has important conse
quences for the constituent strain energy and stability of
perlattices along this direction.96

The above-mentioned properties ofqCu can be described
by generalizing Eq.~17! for g to higher Kubic harmonics
and strain-dependent expansion coefficients:

g~as ,Ĝ!5(
l 50

l max

bl~as! Kl~Ĝ!, ~18!

which has the property that in the harmonic limit (as→a0)
all expansion coefficients with angular momenta higher th
4 tend to zero, reproducinggharm from Eq. ~17!. Due to the
cubic symmetry, only terms withl 50,4,6,8,10,12, . . . enter
in this expansion. A detailed discussion of the nonlinear
itaxial strain properties of elemental metals will be given in
separate publication.96
.

-

s

u-

n

-

The constituent strain energyDECS
eq(x,Ĝ) is calculated

numerically from Eq.~14! using the direct LDA values of

DEepi(as ,Ĝ) for six principle directions. The obtainedDECS
eq

for these directions are shown in Fig. 3, illustrating seve
properties of the constituent strain which cannot be rep
duced by the harmonic theory.65 First, the curves in Fig. 3
are skewed to different sides, while the harmonicDECS

eq must
be all skewed to the same side. Second, the calculatedDECS

eq

cross for different directions, a property not allowed by t
harmonic functional form. These crossings lead to~201! as
the softest direction belowx'0.2 and~110! as the hardes
for Au-rich superlattices, while the harmonic theory giv
DECS

eq(111) as the highest andDECS
eq(100) as the lowest con

stituent strain for all compositions of the studied noble-me
alloys. The behavior ofDECS

eq for ~100! is particularly inter-
esting, since the curves in Fig. 3 abruptly change slo
aroundx'0.15 and have very low values forx. 1

4. As we
show in Ref. 96, this is a manifestation of the low ener
cost of deforming fcc Cu into the body-centered tetrago
structure along the epitaxial Baines path. A small constitu
strain of ~100! superlattices has a profound influence on t
predicted ground states of Cu-Au~see Sec. IV A 1!.

The constituent strain energy for arbitrary directionĜ is
then obtained by interpolating between the principle dir
tions using the following expansion in Kubic harmonics:

DECS~x,Ĝ!5(
l 50

l max

cl~x! Kl~Ĝ!. ~19!
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TABLE III. LDA calculated formation@Eq. ~4!# enthalpies for fcc superstructures~defined in Table II! of Ag-Au, Cu-Ag, Cu-Au, and
Ni-Au. The numbers in parentheses represent errors of the cluster expansion fit. All energies in meV/atom.

Structure Ag-Au Cu-Ag Cu-Au Ni-Au

Superlattice Name DHunrel
LDA DHunrel

LDA DH rel
LDA DHunrel

LDA DH rel
LDA DHunrel

LDA DH rel
LDA

A fcc 0.0(20.4) 0.0 0.0(20.1) 0.0 0.0(10.2) 0.0 0.0(10.4)

B fcc 0.0(20.5) 0.0 0.0(10.3) 0.0 0.0(20.4) 0.0 0.0(20.2)

(001) Structures

AB L10 259.7(20.8) 1107.6 1100.5(10.4) 236.1 248.2(10.1) 198.1 176.1(11.4)

A2B ‘‘ b1’’ 240.8(20.1) 1130.2 190.8(20.7) 151.0 23.8(22.6) 1207.8 1105.7(20.1)

AB2 ‘‘ b2’’ 240.0(10.1) 1112.0 175.0(11.0) 140.1 240.8(10.6) 1151.7 138.3(10.1)

A3B ‘ ‘ Z1’’ 229.2(20.1) 1126.4 179.8(11.8) 176.5 110.6(10.3) 1221.7 189.9(24.2)

AB3 ‘ ‘ Z3’’ 227.9(10.7) 196.8 156.9(20.2) 150.0 228.2(11.8) 1142.0 132.4(14.0)

A2B2 ‘ ‘ Z2’’ 228.8(20.3) 1164.7 177.8(10.4) 1136.4 26.7(21.0) 1286.7 170.2(10.1)

A2B3 ‘ ‘ Z5’’ 1273.3 157.1(20.8)

A3B3 ‘ ‘ Z6’’ 1355.5 163.2(10.7)

A`B` 0.0(0.0) 120.4(0.0) 120.3(20.1) 1576.2 130.8(0.0)

(111) Structures

AB L11 243.0(20.4) 1134.8 1129.8(21.1) 160.3 132.5(20.1) 1192.3 1166.8(11.4)

A2B ‘‘ a1’’ 230.2(0.0) 1152.4 1120.4(22.9) 1123.0 161.4(27.7) 1288.5 1202.2(26.4)

AB2 ‘‘ a2’’ 230.8(0.0) 1124.9 195.0(12.9) 186.4 12.1(17.7) 1200.9 1100.9(16.4)

A3B ‘ ‘ V1’’ 221.3(10.3) 1145.9 1108.4(10.4) 1136.1 178.6(14.1) 1290.8 1193.7(14.1)

AB3 ‘ ‘ V3’’ 221.4(10.6) 1106.8 173.6(11.5) 179.5 15.1(10.8) 1172.8 183.0(14.0)

A2B2 ‘ ‘ V2’’ 222.9(20.4) 1177.1 1109.1(21.0) 1170.6 152.2(22.5) 1335.8 1162.4(24.1)

A`B` 0.0(0.0) 186.3(21.0) 195.8(10.3) 1576.2 1173.8(11.3)

(011) Structures

A2B g1 249.7(20.4) 1106.4 1100.3(20.6) 214.2 218.4(13.3) 1123.3 198.9(23.8)

AB2 g2 246.9(10.4) 197.2 192.5(10.8) 11.7 26.7(25.2) 1126.3 1102.6(13.8)

A3B ‘ ‘ Y1’’ 237.0(0.0) 1105.1 185.4(13.5) 121.8 21.3(13.8) 1148.5 199.2(17.8)

AB3 ‘ ‘ Y3’’ 235.4(10.6) 185.5 175.2(21.3) 119.4 21.0(10.1) 1104.1 178.7(11.1)

A2B2 ‘ ‘ Y2’’ 244.1(20.3) 1136.0 1105.7(21.1) 159.5 24.2(22.0) 1192.3 196.6(24.5)

A`B` 0.0(0.0) 175.3(21.2) 166.1(10.3) 1576.2 1117.7(11.6)

(113) Structures

A3B ‘ ‘ W1’’ 235.9(10.5) 1104.7 194.2(20.2) 122.0 17.0(11.5) 1125.7 1120.8(15.2)

AB3 ‘ ‘ W3’’ 234.4(20.2) 198.6 191.4(19.0) 121.1 17.8(10.6) 188.4(15.3)

A2B2 ‘ ‘ W2’’ 250.6(20.1) 1121.9 1104.7(24.4) 115.7 220.9(21.0) 1144.2 193.6(25.3)

A`B` 0.0(0.0) 165.9(21.4) 169.5(10.4) 1576.2 1119.8(11.9)

(201) Structures

A3B D022 242.3(20.2) 185.2 185.1(11.3) 232.7 232.8(10.3) 175.0 175.0(15.6)

AB3 D022 241.0(20.3) 176.8 176.4(20.5) 210.6 211.8(21.8) 168.7 168.6(11.5)

A2B2 CH or ‘‘40’’ 255.3(10.3) 1109.6 1107.5(20.4) 219.0 223.0(20.6) 193.5 184.8(23.6)

A`B` 0.0(0.0) 167.3(11.6) 153.4(20.4) 1576.2 184.8(22.0)

(401) Structure

A5BAB D023 233.3 233.6(0.0)

(601) Structure

A5BAB LPS-3 234.1
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TABLE III. ~Continued.!

Structure Ag-Au Cu-Ag Cu-Au Ni-Au

Superlattice Name DHunrel
LDA DHunrel

LDA DH rel
LDA DHunrel

LDA DH rel
LDA DHunrel

LDA DH rel
LDA

Other Structures
A3B L12 243.4(10.4) 184.8 184.8(21.4) 237.3 237.3(20.1) 177.5 177.5(22.7)
AB3 L12 244.0(10.3) 176.0 176.0(11.8) 217.3 217.3(20.8) 178.9 178.9(20.2)
A7B D7 220.8(10.6) 161.9 161.9(23.1) 16.8 16.8(28.3) 182.9 182.9(215.8)
A4B4 D4 242.9(11.1)
AB7 D7b 220.0(20.1) 147.1 147.1(23.3) 112.9 112.9(11.9) 156.8 156.8(20.7)
A8B Ni 8Nb-type 163.7 147.7(10.4) 19.3 29.1(24.5)
AB8 Ni 8Nb-type 142.7 136.4(21.7) 130.9 118.2(113.3)

Random
A4B4 SQS8a 242.5(10.2) 112.9(15.7) 1122.6(11.2)
A4B4 SQS8b 243.6(20.2) 215.2(25.7) 197.5(29.7)
A3B SQS14a 1116.2 177.3(17.0) 156.5 15.5(17.7) 1183.2 196.8(115.3)
AB3 SQS14b 192.2 169.7(27.0) 137.8 25.2(27.7) 1118.2 159.8(215.3)
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We have takenl max510, which gives five composition
dependent fitting coefficients determined from a fit to t
directly calculated values@Eq. ~14!# for six principal direc-
tions. The characteristic errors of this fit at the equiatom
composition are 1 – 2 meV/atom. Equation~19! is then used
in Eqs.~11! and ~12!.

C. Constructing the cluster expansion

Once we have a closed-form expression for the equi
rium constituent strain energyDECS(s) and a set
$DHLDA(s)% of T50 formation enthalpies, we determin
the unknown cluster interactions of Eq.~10! in the following
two-step process.

First, the total energies of all structures from Table III a
used in the fit to investigate the behavior of the root-me
square~rms! error D rms of the fit, Eq.~13!, as a function of
the number of real-space pair and multibody interactio
Reciprocal-space CE allows one to add pair interactions
tematically in the order of increasing intersite separation,

FIG. 1. A schematic illustration of the concept of the epitax

softening functionq(Ĝ), given by the ratio of the bulk~upper
curve! and epitaxial~lower curve! deformation energies. In the ha

monic approximationq(Ĝ) is the ratio of the curvatures of thes
curves at the equilibrium point.
c

-

-

s.
s-
p

to any number of near-neighbor shells. Thek-space smooth-
ness criterion in Eq.~13! automatically selects optimally
short-ranged interactions and chooses physically impor
pair interactions which are essential to produce a good fi
the directly calculated LDA energies. The dependence of
rms error on the number of pair and multibody interactions
shown in Fig. 4. Figure 4~a! is obtained by fixing the numbe
of multibody interactions and varying the number of pa
interactions. It shows that in all systems the cluster exp
sion is well converged using 10–20 pair interactions. T
convergence rate is fastest for Ag-Au and slowest for Ni-A
which we attribute to increasing size mismatch going fro
Ag-Au to Ni-Au, with Cu-Ag and Cu-Au exhibiting interme
diate convergence rates.

The selection of important multibody interactions is mo
delicate. The number of pair interactions is fixed to a co
verged value~20 or more!, and a large set of three to four
body figures is tested as to whether it improves the rms e

l

FIG. 2. q(Ĝ) of fcc Cu for principle directions as functions o
the substrate lattice parameteras . Directly calculated LDA values
are represented by open symbols, and lines show the fit using

expansion ofg(Ĝ) in Kubic harmonics.
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of the overall fit. It is retained in the CE only ifD rms de-
creases considerably. During the fitting process, we a
monitor the overall stability of the CE, as measured by
change in other multibody interactions upon the addition o
particular figure. Unstable behavior usually signals the pr
ence of linear dependences in the chosen set of clusters
an ill-conditioned inverse problem, necessitating a differ
choice of$Jf%. Figure 4~b! shows the convergence of the C
with respect to the number of multibody interactions, kee
ing Npairsequal to their converged values. An important thi

FIG. 3. Equilibrium constituent strain energies for Cu-Au, N
Au, and Cu-Ag. The constituent strain energy of Ag-Au is negli
bly small and therefore not shown.
o
a
a
s-
nd
t

-

to notice is that the multibody interactions produce a d
crease in the rms error which is of the same magnitude
that due to the pair interactions. Furthermore, the effec
multibody interactions is largest in Ni-Au, and decreases
order of decreasing size mismatch, becoming negligible
Ag-Au.

In the second stepwe test the stability of the fit and its
predictive power. Using the trial set of figures obtained in t
previous step, we exclude several structures which are
rather well~e.g.,Z2, b2, andL12 in Ni-Au!, and repeat the
fit, obtaining new values of the effective cluster interactio
These values are used to predict the total energies of
structures excluded from the fit. If the change inDHCE(s) is
not acceptable~more than few meV/atom!, we return to the
first step to search for a better set of interactions. The m
severe test is to exclude structures with the poorest fit to t
formation enthalpies, e.g., SQS14a and SQS14b in Ni-Au. If
the predicted formation energy does not change significan
the chosen set of figures is considered to be stable and
dictive. The final cluster expansion is produced by using t
set of figures and all structures from Table III.

Figure 5 shows the calculated pair interactions as func
of the near-neighbor fcc shell. There are several notewo
trends in the four alloy systems.

~i! Only in Ag-Au and Cu-Au are the nearest-neighb
pair interactions dominant: in Cu-Ag the first and thi
neighbor pair interactions are of similar magnitude, while t
third neighbor interaction dominates in Ni-Au.

~ii ! The dominant interactions have signs consistent w
the observed phase diagrams: Ag-Au and Cu-Au have p
tive ~‘‘antiferromagnetic’’! nearest-neighbor pair interaction
J2, corresponding to the tendency towards complete mi
bility and ordering at low temperatures. The behavior
Ni-Au, in spite of positive first and second neighbor pa
interactions, is dominated by the ‘‘ferromagnetic’’ thir
neighbor interactionL2 ~which causes phase separation
low temperatures!. Both dominant first and third neighbo
pair interactions in Cu-Ag are negative, implying a miscib
ity gap. The constituent strain energyDECS

eq is always posi-
tive and therefore increases the propensity for incohe
phase separation.

~iii ! Although the nearest-neighbor pair interaction
clearly dominant in Cu-Au, other pair interactions show
long-ranged oscillatory behavior extending over appro
mately 15 shells. As found in other systems,65,85 this is a
direct consequence of the atomic relaxation caused by

FIG. 4. Root-mean-square errorsD rms of the cluster expansions
for Ag-Au, Cu-Ag, Cu-Au, and Ni-Au as functions of the numbe
of pair and multibody interactions.
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6436 57V. OZOLIŅŠ, C. WOLVERTON, AND ALEX ZUNGER
constituent size mismatch between Cu and Au. The pair
teractions are slowly decaying in Cu-Ag and Ni-Au, too.

The calculated multibody interaction energies are sho
in Fig. 6. J1 is the point interaction,J3, K3, N3, . . . are
triplets andJ4, K4, andL4 are four-point clusters in increas
ing order of interatomic separation~see Luet al.54 for a full
description of the clusters!. Figure 6 illustrates the impor
tance of the multibody terms in our Hamiltonian.

D. Finding the T50 ground states andT>0 properties

Having parametrized the configurational energies in te
of the mixed-space cluster expansion, Eq.~10!, we can use it

FIG. 5. Real-space pair interactions for the studied noble-m
alloy systems.
-

n

s

with established statistical methods to predict various str
tural properties:T50 ground states, order-disorder transitio
temperatures, configurational entropies, free energies, p
stabilities, and atomic short-range order parameters. Du
the presence of both reciprocal- and real-space terms in
Hamiltonian ~10!, traditional techniques, e.g., the clust
variation method, are not readily applicable. Monte Ca
simulations must be used instead to calculate statistical p
erties at finite temperatures. The basic computational a
rithm is as follows. We adopt the Metropolis algorithm in th
canonical ensemble~fixed composition!. For each attempted
spin flip, the change in the multiplet interaction energy
evaluated in the real space. To obtain the reciprocal-sp
energy~constituent strain and pair interaction energies!, the
Fourier transform of the spin functionS(Ri ,s) is needed. It

al

FIG. 6. Multibody interactions for the studied noble-metal all
systems.
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can be calculated either with the help of the fast Fou
transform ~FFT! or evaluated directly taking advantage
the special method described in Ref. 87. The latter is m
more economical: If the total number of sites in the simu
tion box is N, a full FFT has to be done only once aft
approximately everyAN accepted spin flips, which make
the whole computational effort for this special method sc
asN1.5.

A simulation box of N54096 atoms (16316316) is
used to calculate all thermodynamic properties presente
this paper. The transition temperatures are computed
cooling the system from high temperatures and monitor
the discontinuities in the average energy and peaks in
capacity. To eliminate possible hysteresis effects, the res
ing low-temperature configurations are gradually heated
past the transition point. The former process provides
lower bound on the transition temperatureT1, while the latter
gives the upper boundT2. The heating and cooling rates a
such thatT1 andT2 differ by no more than 20 K, an insig
nificant uncertainty compared to the inaccuracies of the L
calculations and the fit errors of the cluster expansion. H
1000 flips/site and a temperature decrease of 2% for e
Monte Carlo step are usually sufficient, although in a f
cases the results are checked using 2000 flips/site and 0
temperature change.

Zero-temperature ground states are found by cooling
system toT50 and checking whether the energy of the fin
configuration lies on the convex hull. This process is
peated for several random number seeds and starting
peratures, always yielding configurations with similar~usu-

FIG. 7. T50 K ground state lines for Cu-Au and Ag-Au ob
tained from simulated annealing calculations.L12 CuAu3 is not
only above the ground state line, but also has a higher forma
enthalpy than other structures at the same composition; e.g., L
calculations place the formation enthalpy ofZ3 below that ofL12.
Plots for Cu-Ag and Ni-Au are not shown since these systems p
separate atT50 K.
r
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ally identical! energies. We explore many equally spac
compositions with an intervalDx50.05. The number
of possible configurations for eachx is Nconf5N!/
(xN)! @N(12x)#!.

The configurational entropy of the disordered alloys
finite T is computed from the energy vs temperature cur
obtained by cooling the system from very high~‘‘ T5` ’’ !
temperatures. The following thermodynamic formula giv
the configurational entropy at temperatureT:

DSconf~T!5DSideal1E~T!/T2kBE
0

b

E~b8! db8, ~20!

where b51/kBT and DSideal5kB@x lnx1(12x)ln(12x)# is
the configurational entropy of an ideal solid solution.

IV. RESULTS

A. T50 ground states

1. Ground states of Cu-Au

Figure 7 shows the calculatedT50 ground state lines o
Cu-Au and Ag-Au which were obtained from simulated a
nealing quenches of a 16316316 system. In Cu-Au, we find
the L12 ~Cu3Au! and L10 ~CuAu! structures as the stabl
ground states of Cu-rich alloys, in agreement with the ex
ing phase diagram data.1–4 These data also listL12 as the
stable low-temperature phase of CuAu3. However, we
find new, previously unsuspected ground states of Au-r
compounds, all belonging to the family of~001! superlat-
tices. At x5 2

3 we find a stableb2 ~CuAu2) phase~proto-
type MoSi2), which is a CuAu2 superlattice along~001!. At
x5 3

4, our cluster expansion predicts that a compl
CuAu4CuAu4CuAu2CuAu2 ~001! superlattice falls on the
convex hull, although its energy is less than 2 meV bel
the tie line connectingb2 ~CuAu2) and Au. Furthermore,
even the directly calculated LDA enthalpy of formation
Z3 @which is a CuAu3 ~001! superlattice# is considerably
lower than that ofL12 CuAu3.

We carefully checked whether the predicted new LD
ground states for Au-rich Cu-Au alloys are artifacts of som
approximation in our LDA calculations or the fit error of th
cluster expansion. The latter possibility was quickly d
missed, since the directly calculated LDA enthalpies of f
mation for L10, b2, L12, and Z3 agreed with the values
derived from the cluster expansion to better than 2 me
atom~see Table III!, while the new~100! SL ground state is
14 meV/atom belowL12. To address the former possibility
we performed careful convergence tests forL10, b2, L12,
andZ3 with respect to the plane wave cutoff and number
k points in the first Brillouin zone. The cutoff was increas
from RKmax59 to RKmax511 and the density of the Bril-
louin zone mesh was doubled from 83838 to 16316
316, an eightfold increase in the total number ofk points.
These tests showed that the formation enthalpies ofL10, b2,
andL12 were converged to within 1 meV/atom with respe
to the size of the basis set and the number ofk points. Fur-
ther, we checked how the choice of muffin-tin radii affect
DH. Varying RMT(Au) between 2.3a0 and 2.5a0 changed
the formation enthalpies by at most 2 meV/atom and did
shift the relative stabilities of phases.102 Finally, we repeated
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these calculations using the Perdew-Zunger90 parametriza-
tion of the Ceperley-Alder91 LDA functional, as well as the
generalized gradient approximation~GGA! of Perdew and
Wang,92 and found insignificant ~about 2 meV/atom!
changes in the formation enthalpies. Inclusion of the sp
orbit interaction in the second variation procedure104

changed the formation enthalpy ofL10 ~CuAu! by only 3.7
meV/atom~from 248.2 to251.9), indicating that it is not
important for the energetics of Cu-Au. This conclusion is
line with the findings of Ref. 105 that the spin-orbit intera
tion influences the band structure but has little effect on eq
librium lattice properties. Therefore, we conclude thatstate-
of-the-art first-principles density functional calculations d
not predict L12 to be a stable T50 ground state of CuAu3.
It is possible that van der Waals interactions, omitted by
LDA and important for large, polarizable atoms such as A
can affect the formation energies and hence the ground s
of Cu-Au.

We next analyze the possibility that the correctT50
ground state aroundx5 3

4 is not L12 as has been assumed
the literature before. Although most compilations1–4 of bi-
nary alloy phase diagrams giveL12 as the stable structure o
CuAu3, the experimental evidence7,8,10 seems inconclusive
because of the difficulties in obtaining equilibrated lon
range ordered samples. X-ray studies8 have found superlat
tice peaks consistent with the cubicL12 structure, but only
very broad low-order reflections have been observed. Th
superlattice lines could not be sharpened by any h
treatment.8 It is not clear to us if the x-ray reflections can b
reindexed according to some other non-L12 phase. It is also
possible that at elevated (T'500 K! temperaturesL12 is
stabilized by the entropy~configurationaland vibrational!,
while another transformation to the low-energy structu
should occur but is kinetically inhibited below 500 K. Th
biggest experimental obstacles to verifying our predictio
seem to be low diffusion rates below the ordering tempe
ture of CuAu3, Tc'500 K.

Next we discuss the experimental signatures of the n
LDA ground state structures. MoSi2-type b2 CuAu2 has a

superlattice reflection at (2
3 00), but the CuAu3 ~100! super-

lattice has reflections at~100! and (1
3 00). These reflections

also manifest themselves in the predicted atomic short-ra
order of the disordered alloys~for details see Ref. 103!.

2. Ground states of Ag-Au, Cu-Ag, and Ni-Au

The ground state line of Ag-Au is shown in Fig. 7~b!,
exhibiting L12 ~Ag 3Au!, L10 ~AgAu!, and L12 ~AgAu 3)
stable low-temperature phases. Experimentally, these a
are known to be completely miscible,2–4 and there are sev
eral indications69 that they would order below 200 K if no
for the very low diffusion rates. Theoretical transition tem
peratures and short-range order patterns, as well as a
plete discussion, are given by Lu, Klein, and Zunger.54

The calculated ground states of Cu-Ag and Ni-Au a
found to be phase separation, in agreement with the exp
mental enthalpy data.2 Neither alloy has a single ordered o
disordered structure with negative enthalpy of formation a
therefore there are no stableT50 ground states except th
phase-separated alloy.
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B. Mixing enthalpies

It is interesting to compare the calculated mixing enth
pies of disordered Cu-Au alloys with the available theore
cal and experimental data. Table IV summarizes the val
of DHmix(x,T) for the completely random (T5`), short-
range ordered (T5800 K!, and completely ordered (T50 K!
Cu-Au alloys at compositionsx5 1

4,
1
2, and 3

4. Several impor-
tant points are apparent from this table.

~i! Studies50,48,62which have completely neglected atom
relaxations predict a substantially positive enthalpy of form
tion for the completely random alloy. In our calculation
relaxations in the random alloy reduceDHmix(T5`) by a
large amount, bringing it down to essentially zero.

~ii ! Comparison of the present results for theT5` ran-
dom alloys with those of Weiet al.51 shows the influence o
the number of structures included in the cluster expans
Since Weiet al. used the same FLAPW method,88 but in-
cluded a set of only five high-symmetry ordered structu
@A1 ~Cu!, L12 ~Cu3Au!, L10 ~CuAu!, L12 ~CuAu3), and
A1 ~Au!#, the atomic relaxation effects were included incom
pletely. Indeed, their treatment gives much larger mixing
thalpies of the random Cu-Au alloys than the present wo
employing approximately 30 low-symmetry structures w
large relaxations. Therefore we conclude that the Conno
Williams set of five ordered structures cannot correctly c
ture the large decrease of the mixing enthalpy of rand
Cu-Au alloys caused by the atomic relaxations.

~iii ! The good agreement between the relaxed~this study!
and ‘‘unrelaxed’’~Wei et al.51! values ofDHmix at T5800 K
suggests that the short-range order in Cu-Au tends to
crease the role of the atomic relaxations. This effect can
qualitatively explained on the basis of the ordering tende
towards high-symmetry structures which have little or
relaxation energy (L12 andL10 in Cu-rich alloys!.

~iv! The mixing enthalpies of the random alloy calculat
by Weinbergeret al.58 using the CPA differ strongly no
only from those obtained using the cluster expans
methods,51,50,48but also from the numbers given in the CP
work of Ruban, Abrikosov, and Skriver.62 Since the CPA of
Weinbergeret al.58 neglects the~a! atomic relaxation,~b!
charge transfer, and~c! short-range order, which all lowe
the formation energies, the negative values obtained
Weinbergeret al.58 are very puzzling.

~v! There are significant discrepancies between the b
calculated and experimentally measured15,14,2 values of
DHmix at bothT50 K andT5800 K. At present these dis
crepancies are hard to explain since the available gen
potential LDA calculations51,52,57of DH(L12) andDH(L10)
agree with each other reasonably well. On the other hand
formation energies in Cu-Au are numerically very small a
present a severe test for any first-principles model of e
tronic exchange correlation. It is noteworthy that several l
accurate first-principles calculations, using the ASA, ha
achieved better agreement with the experimental enthal
of formation than the state-of-the-art general potential te
niques. We consider this to be fortuitous. In all cases, LD
calculations correctly predict the relative magnitudes ofDH
for L12 andL10, as well as reproduce measured asymme
in formation enthalpies towards more negative values
DHmix for Cu-rich alloys.
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TABLE IV. Calculated mixing enthalpies of disordered Cu12xAu x alloys compared with the values obtained by other studies
experimental measurements~in meV/atom!. FLAPW is the full-potential linearized augmented plane wave method; LMTO, linear
muffin-tin-orbital method; KKR, Korringa-Kohn-Rostoker multiple scattering method; ASA, atomic-sphere approximation; CPA, co
potential approximation; CWM, Connolly-Williams cluster expansion; MSCE, mixed-space cluster expansion used in this study;
incorporating atomic relaxations; and ‘‘Unrel.,’’ neglecting atomic relaxations.

Composition Expt.f This Wei Amador Terakura Ruban Weinberger
study et al.a and Bozzolob et al.c et al.d et al.e

FLAPW FLAPW LMTO-ASA ASW LMTO-ASA KKR-ASA
MSCE CWM CWM CWM CPA CPA
~Rel.! ~Rel.! ~Unrel.! ~Unrel.! ~Unrel.! ~Unrel.!

DHmix(T5`)
Cu0.75Au0.25 12.6 146.3 159 126.9 154.6 227
Cu0.50Au0.50 11.6 138.0 161 130.4 144.3 257
Cu0.25Au0.75 15.4 118.6 139 120.4 119.8 231

DHmix(T5800 K)
Cu0.75Au0.25 246 g 217.3 26
Cu0.50Au0.50 253 g 219.3 216.9 25
Cu0.25Au0.75 231 g 21.2 22.6 18

DHmix(T50 K)
L12 Cu3Au 274 237.3 236.0 265.0 260.7 254
L10 CuAu 291 248.2 262.9 269.7 283.4 276
L12 CuAu3 259 217.3 226.4 234.0 256.1 247

aRef. 51 using the Connolly-Williams structures~relaxation ofL10 only!.
bRef. 50.
cRef. 48.
dRef. 62.
eRef. 58.
fRef. 2.
gValues obtained atT5720 K.
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C. Order-disorder transition temperatures

Order-disorder transitions have been investigated at c
positions (x5 1

4,
1
2,

2
3, and 3

4! using the Monte Carlo simula
tion technique described in Sec. III D. The resulting tran
tion temperaturesTc are given in Table V. All transitions are
found to be first order, involving discontinuities in the e
ergy and correlation functions. Atx5 1

4 we find a transition
from the disordered state to long-range orderedL12 Cu3Au
at Tc5530 K, which is only 130 K lower than the exper
mentally observed transition temperature. For the equiato
alloy atx5 1

2 the calculated and experimental transition te
peratures agree to a few degrees kelvin. However, we do
find the CuAu II phase which exists in a narrow temperat
range between 658 K and 683 K. This phase is stabilized
the free energy differences betweenL10 and long-period su-
perstructures ofL10 which are as small as 1 meV/atom~Ref.
56! and therefore beyond the accuracy of self-consis
LDA calculations.

For x5 3
4 we obtain a sequence of transformations,

first one occurring atT5750 K from the disorderedA1
phase to a coherent two-phase mixture ofb2 andA1. Then
a subsequent transition atT5635 K takes CuAu3 into the
long-range ordered~100! superlattice which is predicted t
be the stableT50 ground state at that composition~see Sec.
IV A 1 !. The calculated transition atx5 2

3 goes straight into
the b2 phase atT5735 K. Therefore, a two-phaseb2
-

-

ic
-
ot
e
y

nt

e

1A1 field is predicted to exist at temperatures somewh
between 635 K and 730 K and aroundx5 3

4. These predic-
tions reflect the LDA. As stated in Sec. IV A 1, correction
to the LDA might be significant.

D. Nonconfigurational entropy

The effect of the nonconfigurational entropy~electronic,
vibrational, etc.! on the alloy phase stability has recent
attracted considerable interest.106–116 For instance, it has

TABLE V. Calculated order-disorder transition temperatures~in
K! for Cu-Au. A1 denotes the configurationally disordered f
phase, and n/a means that the transition has not been obs
~either experimentally or in the Monte Carlo simulation!.

Composition Transition Expt. This study

x5
1
4 A1→L12 663 530

x5
1
2 A1→L10 683/658a 660

x5
2
3 A1→b2 n/a 735

x5
3
4 A1→L12 '500 n/a

A1→b21A1 n/a 750
b21A1→(100)SL n/a 680

aCuAu undergoes a transition to CuAu-II at 683 K, subsequen
transforming intoL10 CuAu I at 658 K.
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TABLE VI. The experimentally measured~Ref. 2! entropy of formationDStot
form(T), the calculated con-

figurational entropyDSconf
calc , and the derived nonconfigurational entropy of formationDSnonconf

form (T). All values
are given in units ofkB/atom.

System x T ~K! DStot
form(T) DSideal DSconf

calc(T) DSnonconf
form (T)5

DStot
form(T)2DSconf

calc(T)

Cu-Au 0.5 800 0.73 0.69 0.57 0.16
Ag-Au 0.5 800 0.52 0.69 0.62 20.10
Cu-Ag 0.141 1052 0.77 0.41 0.40a 0.37
Ni-Au 0.5 1100 1.04 0.69 0.56 0.48

aThis value was obtained atT51136 K, since a coherent phase separation starts at lower temperature
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been suggested108–115 that there are large differences in th
vibrational entropies of ordering Sordered

vib 2Sdisord
vib , which

should manifest themselves in shifts of the order-disor
transition temperatures. There is another important clas
thermodynamic properties where the vibrational entropy m
play a role and which has often been overlooked. Namely
is theentropy of formationwith respect to the pure constitu
ents, defined in analogy withDH in Eq. ~4!:

DStot
form~A12xBx ,T!5S~A12xBx ,T!2~12x!S~A,T!

2xS~B,T!, ~21!

whereS(A,T) is the total entropy of the pure constituentA
at temperatureT. It is often assumed that the configuration
entropy is the dominant contribution toDStot

form(A12xBx ,T)
because all other contributions cancel out in Eq.~21!. The
nonconfigurational entropy of formation,

DSnonconf
form ~A12xBx ,T!5DStot

form~A12xBx ,T!

2DSconf~A12xBx ,T!, ~22!

contributes to such important quantities as mutual solub
limits and miscibility gap temperatures.

Noble-metal alloys are excellent cases to test the value
DSnonconf

form since accurate experimental data on the entrop
of formation,DStot

form , are available, and the configuration
entropyDSconf can be calculated accurately using the th
modynamic integration technique described in Sec. III
Table VI gives the measured entropies of formation for d
ordered solid solutionsA12xBx , DStot

form(x,T), the maximum
attainable configurational entropyDSideal, as well as the
theoretically calculated configurational entropyDSconf

calc and
the derived value for the nonconfigurational entropy of f
mation,DSnonconf

form . It shows that the size-mismatched nob
metal systems have large amounts ofDSnonconf

form in the disor-
dered solid solution. Since it is unlikely that these values
DSnonconf

form are of electronic or magnetic origin, we sugge
that the excess entropy in the disordered solid solution
Ni-Au, Cu-Ag, and Cu-Au is vibrational. It is possible tha
the atomic relaxations lead to a softening of lattice vib
tions, although the physical mechanism of this softening
unclear at present.

Sanchezet al.49 in their study of the Cu-Ag system note
that even a very crude model of the vibrational entro
markedly improved the agreement with the experimen
solubility data. In the case of Ni-Au, which exhibits the lar
est DSnonconf

form , it is possible to reconcile the experimental
r
of
y
it

l

y

of
s

-
.
-

-
-

f
t
of

-
is

y
l

measured and theoretically calculated miscibility gap te
peratures only by taking into account the nonconfiguratio
entropy of formation.117

The fact that Cu-Au also has a positiveDSnonconf
form has little

qualitative effect on the phase diagram since Cu and Au
completely miscible from total energy and configuration
entropy considerations alone. Ag-Au is calculated to hav
negativeDSnonconf

form , but its value is close to the experiment
uncertainty in the measurement ofDS.

E. Bond lengths in random alloys

Since recent experimental measurements of the comp
tion dependence of interatomic bond lengths in Cu-Au~Ref
24! and Ni-Au~Ref. 23! have found several unusual feature
it is interesting to address these trends from first-princip
LDA calculations. In the present work we model the atom
positions in the random alloys using special quasirand
structures118 ~SQS’s!. These periodic structures are design
to reproduced the pair and multibody correlation functions
the perfectly disordered configuration as closely as possi
It has been shown118 that even small unit cell SQS’s can giv
rather accurate representation of the properties of rand
alloys. We have performed LDA calculations for 8 atom/c
SQS’s atx5 1

4 (SQS14a), x5 1
2 (SQS8a ,SQS8b), and x5 3

4

(SQS14b). The atomic positions and cell coordinates ha
been fully relaxed to minimize the total energy. The resu
for Cu-Au and Ni-Au interatomic bond lengths are shown
Fig. 8. The main features are the following.

~i! In spite of the different phase diagram properti
~Ni-Au phase separates and Cu-Au orders atT50 K!, the
calculated behavior of bond lengths is very similar, whi
we attribute to the similar size mismatch in both syste
~12% in Cu-Au and 15% in Ni-Au!.

~ii ! Our calculations give three distinct bond lengths at
compositions, which is also observed experimentally.23,24

Probably the most interesting feature in Fig. 8 is the cross
of RBB(x) andRAB(x) curves atx5 3

4 in both systems. The
measurements for Cu-Au~Ref. 24! and Ni-Au ~Ref. 23! in-
dicate that this may indeed be correct, since the dedu
values around this composition are very close and have la
error bars.

~iii ! Another important feature, observed experimenta
and reproduced by our SQS results, is thatA-A bonds
change much more asx varies from 0 to 1 thanB-B bonds
when x varies from 1 to 0, suggesting that the compress
bonds become increasingly stiff and the expanded bo
weaken. This behavior can be explained by the asymmetr
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the interatomic potential curves, which are rapidly harden
upon compression and softening upon expansion. Howe
our results forRAA at x5 3

4 and RBB at x5 1
4 are obtained

from an average of only four minority bonds in the SQS
structures, and perhaps are not representative of a wider
tistical sample.

~iv! It is interesting to note that the predicted bond leng
between unlike atomsRAB do not follow the linear relation
RAB5RAA1x(RBB2RAA).

V. SUMMARY

We have showed that accurate first-principles studies
alloys with large size mismatches are now feasible using
mixed-space cluster expansion method. This method
been applied to noble-metal alloys where vast amounts
experimental data and many theoretical studies are availa

FIG. 8. SQS bond lengths for Cu-Au and Ni-Au.
-
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~i! The mixed-space cluster expansion has been gen
ized to include the effects of nonlinear strain on the form
tion energies of long-period superlattices. We find that
elastic energy, required to lattice match Cu and Ni to~100!
surfaces of Au and Ag, is anomalously low, leading to a ve
low constituent strain energy of~100! superlattices. This ef-
fect is partly responsible for the stabilization of addition
LDA ground states of Au-rich Cu-Au alloys.

~ii ! In Au-rich Cu-Au, we predict newT50 K ground
states. Our LDA results placeL12 ~CuAu3), previously
thought of as the stableT50 state of CuAu3, higher in en-
ergy than a family of superlattices along~100! direction. In
particular, MoPt2-type CuAu2 @Cu1Au 2 superlattice along
~100!# and a complicated CuAu4CuAu4CuAu2CuAu2 ~100!
superlattice are found to be the LDA ground states.

~iii ! There are significant discrepancies~up to 50%! be-
tween the experimentally measured and calculated L
mixing enthalpies for Cu-Au alloys. This is surprising sin
the experimental mixing enthalpies of Ni-Au and Ag-Au a
reproduced very well.54,117

~iv! The calculated order-disorder transition temperatu
are in an excellent agreement with experiment. For instan
Tc

calc(x5 1
4 )5530 K andTc

calc(x5 1
2 )5660 K, compared with

Tc
expt(x5 1

4 )5663 K andTc
expt(x5 1

2 )5683/658 K.
~v! From the experimentally measured entropies of form

tion DStot
form and the calculated configurational entropi

DSconf
calc , we obtain large nonconfigurational~probably vibra-

tional! entropies of formation in the size-mismatched sy
tems,DSnonconf

form 5DStot
form2DSconf

calc . These entropies allow on
to reconcile the experimental miscibility gap temperature a
formation enthalpies of Ni-Au with the theoretical LDA
values.117

~vi! Bond length distributions in Ni-Au and Cu-Au hav
been studied via supercell calculations employing the spe
quasirandom structure technique. The important qualita
features of recent EXAFS measurements23,24 are correctly
reproduced: existence of distinctA-A, B-B, andA-B bond
lengths at all compositions, possible crossing ofRAA(x) and
RAB(x) around x5 3

4 ~where x is the composition of the
larger constituent!, softening of the shorter bond asx→1,
and deviations of the bond lengthRAB(x) between unlike
atoms from the linear Vergard’s law.
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103C. Wolverton, V. Ozolin¸š, and A. Zunger, Phys. Rev. B57, 4332

~1998!.
104A. H. MacDonald, W. E. Pickett, and D. D. Koelling, J. Phys.

13, 2675~1980!; W. E. Pickett, A. J. Freeman, and D. D. Koe
ling, Phys. Rev. B23, 1266~1981!.

105S.-H. Wei and A. Zunger, Phys. Rev. B37, 8958~1988!.
106C. Wolverton and A. Zunger, Phys. Rev. B52, 8813~1995!.
107R. E. Watson and M. Weinert, Phys. Rev. B30, 1641~1984!.
108L. J. Nagel, L. Anthony, and B. Fultz, Philos. Mag. Lett.72, 421

~1995!.
109L. Anthony, J. K. Okamoto, and B. Fultz, Phys. Rev. Lett.70,

1128 ~1993!.
110B. Fultz, L. Anthony, L. J. Nagel, R. M. Nicklow, and S

Spooner, Phys. Rev. B52, 3315~1995!.
111L. Anthony, L. J. Nagel, J. K. Okamoto, and B. Fultz, Phys. Re

Lett. 73, 3034~1994!.
112B. Fultz, L. Anthony, J. L. Robertson, R. M. Nicklow, S

Spooner, and M. Mostoller, Phys. Rev. B52, 3280~1995!.
113L. J. Nagel, B. Fultz, J. L. Robertson, and S. Spooner, Phys. R

B 55, 2903~1997!.
114G. D. Garbulsky and G. Ceder, Phys. Rev. B49, 6327 ~1994!;

53, 8993~1996!.
115J. D. Althoff, D. Morgan, D. de Fontaine, M. Asta, S. M. Foile

and D. D. Johnson, Phys. Rev. B56, R5705~1997!.
116J. Desplat, F. Bley, and F. Livet, Acta Mater.44, 4961~1996!.
117C. Wolverton and A. Zunger, Comput. Mater. Sci.8, 107~1997!.
118A. Zunger, S.-H. Wei, L. G. Ferreira, and J. E. Bernard, Ph

Rev. Lett.65, 353 ~1990!.


