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Order-N projection method for first-principles computations of electronic quantities
and Wannier functions

Uwe Stephan and David A. Drabold
Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701-2979

~Received 10 March 1997; revised manuscript received 7 October 1997!

We present a generalized projection-based order-N method which is applicable within nonorthogonal basis
sets of spatially localized orbitals. The projection to the occupied subspace of a Hamiltonian, performed by
means of a Chebyshev-polynomial representation of the density operator, allows the nonvariational computa-
tion of band-structure energies, density matrices, and forces for systems with nonvanishing gaps. Furthermore,
the explicit application of the density operator to local basis functions gives a powerful method for the
calculation of Wannier-like functions without using eigenstates. In this paper, we investigate such functions
within models of diamond and fourfold-coordinated amorphous carbon starting from bonding pairs of hybrid
orbitals. The resulting Wannier states are exponentially localized and show an ellipsoidal spatial dependence.
These results are used to maximize the efficiency of a linear-scaling orthonormalization scheme for truncated
Wannier functions.@S0163-1829~98!01611-7#
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I. INTRODUCTION

One of the most exciting developments in computatio
solid-state physics during this decade has been the cre
of effective quantum-mechanical order-N methods for the
revelation of the electronic structure as well as the energ
relaxation of large model systems. With these techniqu
both computational and memory efforts for computing ba
structure energies, total energies, forces, and related qu
ties scale onlylinearly with the numberN of atoms in the
system. As a consequence, this development has trem
dously increased the applicability range of electron
structure methods; in particular,ab initio procedures are now
applicable to systems which a few years ago could only
investigated by means of empirical or semiempirical me
ods. Examples considered to date include giant single-s
fullerenes, multishell fullerenes, tubular systems, and la
amorphous model structures1–3 currently containing up to a
few thousand atoms. On the other hand, the relative decr
in computational cost for medium-sized and large syste
enables the reduction of time steps in molecular-dynam
~MD! simulations and therefore the investigation of sho
time growth and relaxation processes.

The fundamental principle of all order-N total-energy–
force techniques is the utilization of the spatial locality
‘‘near-sightedness’’~Ref. 4! of electronic effects. One way
of treating this phenomenon has been known for many ye
and is expressed by the possibility of performing unita
transformations of the occupied canonical eigenstates to
tain spatially localized wave functions. More precisely, the
Wannier-like states are exponentially localized in insulat
and decay algebraically in metals.5,6 Based on this principle
methods have been devised which take only the local e
ronment around a reference atom into account. As a fur
consequence, these techniques are particularly well suite
systems which have not too small gaps between occu
and unoccupied eigenstates.

Since the 70s and 80s, linear-scaling methods for
computation of local quantities such as local electronic a
vibrational densities of states have widely been appli
570163-1829/98/57~11!/6391~17!/$15.00
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Above all, these are the recursion or Lanczos methods7 and
the maximum-entropy scheme.8 These procedures alread
employ the sparse forms which the Hamiltonian and,
present, overlap matrices attain within a tight-binding~TB!-
like description of the electronic states. To obtain a gene
O(N) scheme for total densities of states, one has, in co
spondence with the above principle, either to implemen
local procedure independent of the system size9 or to resort
to the application of random vectors.10–12 Though in prin-
ciple possible, the computation of forces is much more
pensive within these schemes and, when using random
tors, associated with the problem of slowly decreas
random noise.13 These techniques have therefore not y
gained practical relevance for MD simulations.

Apart from the methods just described, there are, perh
three principal approaches to achieve an order-N computa-
tional scheme for solving the electronic-structure problem
common feature of all these methods is that they are
based on the computation of eigenvalues and eigenstate
the Hamiltonian; instead, physical quantities are expresse
traces of certain matrix expressions. These traces have t
computed either directly within the occupied subspace of
Hamiltonian spanned by a set of Wannier-like functio
~WF’s!, or with use of the original basis orbitals and simu
taneous inclusion of the density operator of the system.

A first group of methods uses a differential14 or
variational15–17solution for the density matrix of the system
Because the density operator can be constructed by mea
localized, orthonormal WF’s, the density matrix with respe
to a spatially localized basis set is localized as well. Us
some additional effort to ensure the idempotency of this m
trix ~for zero temperature!, one obtains a linear-scaling pro
cedure by performing traces within the full Hamiltonia
space.

A second group of procedures is based on the variatio
computation of the WF’s themselves. Representing th
functions by local-orbital18–22 or plane-wave expansions23

and enforcing them to be localized in space, the final W
minimize an appropriate energy functional. With use of th
6391 © 1998 The American Physical Society
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6392 57UWE STEPHAN AND DAVID A. DRABOLD
Wannier basis, all traces are automatically performed wit
the occupied subspace.

Finally, a third, nonvariational scheme is based on a

rect, polynomial representation of the density operatorr̂.
This operator can be used with finite temperatures, bu

zero temperaturer̂ is a projection operator which projec
out the occupied fraction of any wave function it is appli

to. A polynomial expansion ofr̂ was employed in Ref. 24 to
derive a Lanczos method within the occupied subspa
whereas Goedecker and co-workers25 used it to develop a
projection method for the computation of total energies a
forces within orthonormal, local basis sets. Similar to t
first group of methods described above, traces are perfor
within the original basis of local orbitals. However, the num
ber of polynomial terms needed to representr̂ at zero tem-
perature increases with decreasing gap width between o
pied and unoccupied eigenstates. Furthermore, this appr
requires precomputed estimates for the Fermi energy and
band edges of the systems. These estimates, however, c
extracted in an effective order-N way from the aforemen-
tioned recursion or maximum-entropy schemes.

One advantage of the third method is that no initial-gu
functions and no initial density matrix are needed when co
puting electronic properties as traces. If such initial gues
are far from the final solutions, they may seriously restr
the effectiveness of variational schemes during the first M
cycles. The projection method is therefore a powerful te
nique particularly for systems with high degrees of disord
Special initial functions are only necessary when the met
is used for explicit computations of Wannier functions, b
cause then one has to ensure to obtain the correct numb
linearly independent projected functions which can be
thonormalized. But even in this case we could show by fi
investigations26 that the direct projection to the occupie
subspace is superior to the usual variational techniques a
beginning of a MD run. If this turns out to be generally tru
the method will be capable of providing quite ideal initia
guess density matricesand WF’s for variational MD
schemes, and this should apply even for systems with s
or vanishing gaps. This connection would allow very effe
tive MD simulations for wide classes of materials. As a
other important application, the knowledge of the WF
opens a very attractive way for real-space computation
the electric polarization and related dielectric constants.6,27,28

So far, the projection method has essentially been de
oped and applied within orthogonal TB-like Hamiltonia
only. One purpose of the present paper is to demonstra
very effective generalization of the method to nonorthogo
basis sets using an approximation of the ‘‘upper-lower
dexed’’ Hamiltonian matrix29 as proposed in Ref. 30. With
this generalization, the method can be used within local-b
ab initio Hamiltonians as well. Furthermore, we will exam
ine the use of this method for computations of Wannier-l
functions in crystalline and amorphous systems. In this
per, we will restrict these investigations to complete
fourfold-coordinated systems. In this case, physically reas
able initial functions for the performance of the projecti
are given by the (s-like! bonding combinations of adjacen
hybrid orbitals. In a forthcoming second paper, we will th
present a general method for the computation of hyb
n
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related WF’s in undercoordinated systems~with coordination
numbers< 4!.

The paper is organized as follows. In Sec. II we presen
short review of the projection method for orthogonal ba
systems as recently published.24,25 Section III is devoted to
our generalization of this method to nonorthogonal loc
orbital systems. We will give the basic expressions fo
direct application of the method within MD simulations. Th
section also contains a discussion of the main sources w
can lead to errors in the projection method. To illustrate o
results, we will present test calculations using a simple fi
principles non-self-consistent one-particle Hamiltonian31

which is based on the local-density approximation~LDA !. In
Sec. IV we then turn to the computation of WF’s and sho
results for models of crystalline and amorphous carbon
particular, we investigate the radial dependence of th
functions obtained with and without localization constrain
and explore the degree of orthogonality which truncated p
jected functions can achieve within a linear-scaling orthon
malization. Finally, we conclude in Sec. V.

II. PROJECTION METHOD FOR ORTHONORMAL
BASIS STATES

The projection method for the nonvariational computati
of electronic properties of model systems is based on a p
nomial representation of the density operator

r̂52F̂52F~Ĥ !, ~1!

where F(E)5@ eb(E2m)11#21 is the Fermi distribution
function at some temperatureT (b51/kT, and m is the
chemical potential!, andĤ is the Hamiltonian operator of the
system.24,25 The factor 2 accounts for spin degeneracy.
this paper, we use a direct Chebyshev approximation
F(E) to derive a numerically stable representation ofr̂. At
zero temperature,F(E) is a step function, but can be ap
proximated for systems with an energy gap between oc
pied and unoccupied eigenstates by using a sufficiently la
but finite value ofb. In this case, the Fermi operatorF̂ is an
idempotent projection operator having eigenvalues 1 an
only. An alternative approach has been proposed by Si
et al.32 These authors employ the kernel polynomial meth
to find the smoothest Chebyshev approximation of
Heaviside step function when using a finite number of e
pansion terms~moments!. This may prove to be a valuabl
scheme especially in the case of small energy gaps.

For a set of orthonormal electronic basis states$uwa&%,
Eq. ~1! can immediately be rewritten in terms of the usu
Hamiltonian matrixH with elementsHab5^wauĤuwb&,

r52F~H!,

wherer is the density matrix with elements

rab5^waur̂uwb&.
.

The band-structure energyEbs, for instance, can then b
computed as the trace
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Ebs5 Tr@ r̂Ĥ#5(
a

^waur̂Ĥuwa&52Tr @F~H!H#. ~2!

The force on atomj which originates from the band
structure energy is given by the derivative

F j52
]

]Rj
Tr@ r̂Ĥ#.

For insulators at zero temperature, this formula can be s
plified to25

F j52(
ab

rab

]Hba

]Rj
522 Tr FF~H!

]

]Rj
HG , ~3!

including the Pulay corrections with respect to the Ham
tonian operatorĤ. In Sec. III we will derive these equation
and similar expressions for other electronic properties for
general case of nonorthogonal basis states.

A linearly scaling behavior results from the fact thatH
becomes a sparse matrix when using spatially localized
like functions uwa&. In the same representation, the dens
matrix r for insulators can likewise be approximated by
sparse matrix setting all matrix elements to zero beyo
some critical localization~LOC! radius. This is possible be
cause orthonormal WF’s which diagonalizer̂ decay expo-
nentially in insulators.5,6 Thus, e.g., in Eq.~2! the computa-
tions r̂Ĥuwa& are independent of the system size, and
computational effort scales linearly with the number of
oms in the system.

Another generalization of these expressions is relate
systems with periodic boundary conditions where the loc
ized basis statesuwa& are used to construct Bloch function
uxak&. The spatially localized WF’s are then expanded
terms of these Bloch states. As a consequence, the mat
H and r with respect to these Bloch functions are nowk
dependent but nevertheless sparse. The complete metho
this case can therefore be derived in a straightforward m
ner. However, because linearly scaling procedures
mainly designed for applications to large systems wher
G-point approximation is often sufficiently accurate, it is cu
tomary to restrict these schemes tok50.

III. PROJECTION METHOD FOR NONORTHOGONAL
BASIS STATES

A. Method

One way of generalizing the projection method to non
thogonal basis orbitals was outlined by Goedecker,33 and
consists of representing the density operator by a con
integration in the complex energy plane over the Gree
operator. Within this approach, one has to invert the ma

^wauE2Ĥuwb& for every energy valueE used in the integra-
tion. In this paper, we will use a different scheme which
based on an approximation for the upper-lower indexed~or
‘‘contracovariant’’! Hamiltonian matrix

Ha
b5(

g
~S21!agHgb . ~4!
-

-
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Here (S21)ab is the inverse of the overlap matri
Sab5^wauwb&. In Eq. ~4! we use the very convenient ten
sorlike notation proposed by Ballentine and Kola´ř.29 In this
notation lower indices are related to the original basis fu
tions uwa& whereas upper indices refer to the so-called d
basis(b(S21)abuwb&. This convention greatly simplifies th
correct formulation of all equations in which the matrix el
ments of arbitrary quantities with respect to nonorthogo
basis states occur. However, to rewrite equations such as
~4! in a compact matrix form, we also introduce the sho
hand notation

H̄5S21H,

where the bar over the matrix symbol indicates the raise
the first index. HenceH̄ and H are the matrices with ele
mentsHa

b andHab , respectively.
The importance of the matrixH̄ has been known for many

years.7,34 It is the proper matrix representant of the opera
Ĥ in the sense that the action ofĤ on a basis functionuwb&
is represented byH̄:

Ĥuwb&5(
a

uwa&Ha
b . ~5!

This implies thatĤ and H̄ have the same eigenvalues. O
has to note, however, that the matrixH̄ in general is not
Hermitian, asĤ and the matricesH andS are.

The important point here as shown in Ref. 30 is that ev
thoughH̄ would extend beyond any tight-binding-like cuto
in H, the matrix elementsHa

b decay faster with increasing
distance between the centers of the localized basis funct
uwa& and uwb& than the corresponding elementsHab . It is
therefore justified to approximateH̄ in a tight-binding-like
picture by a similar sparse matrix form as used forH, i.e., to
set all elements ofH̄ to zero beyond some finite cutoff radiu
RH̄ . The matrix elementsHa

b can now be obtained by solv
ing NL (N is the number of atoms andL is the mean numbe
of orbitals per atom! linear systems of equations30

(
g

SagHg
b5Hab , ~6!

where b runs through allNL basis orbitals in the system
while a andg in Eq. ~6! only index the orbitals within the
environment arounduwb& defined byRH̄ . Note that due to
the restricted extent of the submatrices in Eq.~6! and the
positive definiteness of the overlap matrices, these equat
can, in general, easily be computed by a Cholesky proced
@cf. Sec. III B 3#.

Having computed the matrixH̄, it is now easy to evaluate
certain operator equations in matrix form. For instance, d
to Eq. ~5! any power ofĤ is given by

Ĥkuwb&5(
a

uwa&~Hk!a
b , ~7!

where (Hk)a
b are the matrix elements ofH̄k. Therefore, the

band-structure energy now reads
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Ebs5 Tr@ r̂Ĥ#5(
ab

~S21!ab^wbur̂Ĥuwa&52 Tr@F~H̄!H̄#.

~8!

Moreover, the moments of the total density of states~DOS!
r(E) which can be used to obtain the DOS by means of, e
maximum-entropy schemes, are expressed as

m~k!5E
2`

`

Ekr~E!dE5
1

N
Tr@Ĥk#5

1

N
Tr@H̄k#. ~9!

The normalization here is chosen in such a way that
integral*2`

` r(E)dE equals the mean number of basis orb
als per atom.

Analogously toH̄, one can define a ‘‘contra-covariant
density matrixr̄52F(H̄) with matrix elements

ra
b52F~H !a

b5(
g

~S21!agrgb , ~10!

and rab5^waur̂uwb& as in Sec. II. The trace of this matri
gives the total number of electrons:

Nel5 Tr@ r̂#5 Tr@ r̄#5(
a

ra
a.

Of course, this expression can also be used to define
Fermi energy in the system.

It is interesting to note that the density matrix used
Nunes and Vanderbilt16 is expressed in the present picture
an upper-indexed matrixrab with

ra
b5(

g
ragSgb . ~11!

If the eigenfunctions of the system are given
uc i&5(aci

auwa&, this matrix is simply related to the coeffi
cientsci

a by

rab5(
i

nici
aci

b*

5(
i

ni(
gd

~S21!ag^wguc i&^c i uwd&~S21!db, ~12!

whereni denote the occupation numbers of the eigensta
uc i&. As can be seen from Eq.~11!, the matrixrab can be
obtained from the matrixra

b by solving linear systems o
equations similar to those as used in Eq.~6!. We remark that
it may be convenient to introduce a compact notation
such upper-indexed matrices as well. In analogy to usinr̄

for the matrixra
b , we will also adopt the notationr̄̄ for rab,

thus indicating the raise of both indices.

As we will see, the density matrixr̄̄ is the important
quantity when calculating electronic charge densities
forces. The charge density is given in the usual way:

r~r!5^rur̂ur&5(
ab

^ruwa&rab^wbur&.
.,

e

he

s

r

d

We now generalize Eq.~3! for the force on atomj which
originates from the band-structure energy term. Again,
simplify the equations by restricting ourselves to the case
insulators at zero temperature. In this case the occupa
numbersni can be considered constant. Let us first recall
corresponding equation for this force in terms of eigenst
coefficientsci

a and eigenvaluesEi with respect to some spa
tially localized basis set ~such that (bHabci

b

5Ei(bSabci
b):35,36

F j52
]Ebs

]Rj
52(

i
ni

]

]Rj
(
ab

ci
aci

b* ^wbuĤuwa&

5(
i

ni(
ab

ci
aci

b* S 2
]Hba

]Rj
1Ei

]Sba

]Rj
D . ~13!

This expression can easily be verified by taking the sec
equation and(abci

aci
b* Sba51 into account. Note that Eq

~13! is exactwithin the ~e.g., TB-like! approximation used
for the eigenstatesuc i&, i.e., it contains all Pulay correction
with respect to the ‘‘exact’’ Hamiltonian operatorĤ. To re-
write the second term in Eq.~13!, we need an equation simi
lar to Eq.~12!:

(
i

nici
aci

b* Ei

5(
i

ni(
gd

~S21!ag^wguc i&^c i uĤuc i&^c i uwd&~S21!db

5~Ĥ r̂ !ab. ~14!

Inserting Eqs.~12! and ~14! into Eq. ~13!, we obtain the
desired equation

F j5(
ab

S 2rab
]Hba

]Rj
1(

g
Ha

grgb
]Sba

]Rj
D . ~15!

This equation contains the matricesH̄ and r̄̄ from Eqs.~6!
and ~11! as well as the derivatives of the usual Hamiltoni
and overlap matricesH and S with respect to the atomic
coordinates. We now show that Eq.~15! leads directly to an
expression for the forces derived in a different way by O
dejón et al.20 To this end, let us introduce a set ofnonor-
thonormal but linearly independent Wannier-like function

$ufm&% which span the occupied subspace ofĤ ~at zero tem-
perature!. The density operator can now be written
r̂5(mnufm&rmn^fnu with rmn52(S21)mn and Smn

5^fmufn&. If we use the expansionufm&5(acm
a uwa&, we

find, in this representation,

rab5(
gd

~S21!ag^wgur̂uwd&~S21!db

52(
mn

cm
a~S21!mncn

b* ,

~Ĥ r̂ !ab5(
gd

~S21!ag^wguĤ r̂uwd&~S21!db
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52 (
klmn

ck
a~S21!kmHmn~S21!nlcl

b* ,

with Hmn5^fmuĤufn&. Inserting these formulas into Eq
~15!, we obtain an expression derived and already app
within MD simulations by Ordejo´n et al.20 @Eq. ~37! in their
paper#.

A detailed investigation of the forces obtained with E
~15! will be presented elsewhere. In particular, we will i
vestigate the numerical properties of this expression w
computed within the projection method. Furthermore, it m
be interesting to examine the results of Eq.~15! in the pres-
ence of localization constraints for the density matrix. T
influence of this spatial confinement on the forces should
related to a recent investigation by Voter, Kress, and Silve37

using a truncated-moment approach.
As in Sec. II, to achieve a linear-scaling behavior of t

entire method, we have to utilize the sparseness of the
sity matrix. This means that the matrix-vector multiplicatio
for performing the projections in Eqs.~8! and ~10! can be
accomplished within certain localization regions which c
be defined by some radiusRloc . To minimize the error in
these computations,Rloc should be, in general, somewh
larger than the radiusRH̄ used above for defining the spar
matrix H̄. We will present a detailed discussion of the
errors in Sec. III B. Here note that this localization argum
cannot be applied to Eq.~9!, which does not contain the
projection operator. The linear-scaling evaluation of t
traces for computing moments of the total DOS is theref
usually done by means of global random vectors.10–12

To illustrate now theO(N) scaling of the method, we
present in Fig. 1 the CPU time38 needed for computations o
the band-structure energy in three models for diamond
fourfold-coordinated amorphous carbon containing up
4096 atoms.39 For these calculations, we employed a simp
first-principle non-self-consistent one-particle Hamiltonian31

in which the localized wave functions and atomic potenti
are taken from modified self-consistent atomic LDA calcu
tions. The matrix elements in extended systems are obta

FIG. 1. Linear CPU time scaling~Ref. 38! obtained with the
projection method for computing band-structure energies usin
non-self-consistent two-center LDA Hamiltonian~Ref. 31! and ap-
plied to models for diamond~216 atoms! and tetrahedrally coordi-
nated amorphous carbon~Ref. 39! ~512 and 4096 atoms!. The re-
sults are given for two different localization radiiRloc as indicated
~solid lines!. For comparison, theO(N3) scaling of the CPU time
needed for direct diagonalizations of the corresponding sec
equations is also presented~dashed line!.
d
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by using a minimal set of valence orbitals, but the core c
rections are omitted together with the three-center integ
and part of the two-center integrals. To obtain compara
results, in all calculations we used the same values for
cutoff radii of the Hamiltonian@6.1 Bohr radii (a0) for H
and H̄ corresponding to three nearest-neighbor sphere
diamond#, the parameterb (550 with respect to the scale
Fermi distribution on@21,1#, this corresponds tob'50 har-
tree21) and the number of Chebyshev polynomials~80! for
the expansion ofF(E). The lower curve was obtained with
relatively small LOC radius for performing the projectio
~8.0 a0); the upper curve was computed to achieve m
accurate band-structure energies as compared to results
direct diagonalization~computed for the two smaller mod
els!. For these calculations we set the LOC radius to tw
the cutoff radius ofĤ.

The relative errors inEbs for the diamond model and th
amorphous model with 512 atoms (a-C512! are 1.131024

and 7.231024, respectively, for the lower curve and de
creased to 1.531025 and 2.231024 in the case of the uppe
curve. Note that the amorphous model has a relatively sm
HOMO-LUMO gap ~between highest occupied and lowe
unoccupied molecular orbitals! of 0.9 eV ~for the Hamil-
tonian used! due to some defect states in the band gap.
comparison, the CPU time necessary for computing all
genvalues has been included in Fig. 1. Of course, the cr
ing point of theO(N) and O(N3) curves moves to smalle
models if one can afford to use a somewhat lower accur
in the projection method. In Sec. III B we will discuss
more detail how this accuracy depends on the parame
inherent in the present method.

B. Error discussion

We now discuss the main sources which can lead to er
in the projection method. Again, we will consider these
rors with respect to the band-structure energy. It seems t
clear that inaccuracies inEbs will also affect more subtle
quantities like forces and the charge density. For the follo
ing discussion we will presume to have a given Hamilton
with a certain TB-like cutoff radiusRH in H. Furthermore,
we consider systems with a finite HOMO-LUMO gap.

1. Use of a finite value forb

Although the method described can be regarded a
finite-temperature scheme, the temperature used for getti
Fermi distribution which can be represented by a tracta
number of Chebyshev polynomials is often much higher th
the physical temperature one is interested in. Furthermor
one wants to use the projection property ofr̂, e.g., for com-
puting WF’s, one has to approximate the Fermi distributi
at T50. We therefore estimate the deviation ofEbs from its
value atT50 when using a finite value ofb and settingm
equal to the Fermi energyEF . This error, saye1, is given by
the sum

e152F (
Ei.EF

Ei

eb~Ei2EF!11
2 (

Ei,EF

Ei

eb~EF2Ei !11
G ,

~16!

a

ar
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whereEi are the eigenvalues ofĤ. For ourb values~usually
b550, . . . ,100 forE on @21,1#! the exponents in the de
nominators rapidly attain valuesbuEi2EFu@1. This means
that the weights of the eigenvalues in sum~16! decay expo-
nentially when going away from the Fermi energy in eith
direction. The order of magnitude ofe1 can therefore be
estimated by taking only the HOMO and LUMO states
Eq. ~16! into account, thus yielding

e1'2$F~ELUMO!ELUMO1@F~EHOMO!21#EHOMO%

52F~ELUMO!DE ~17!

with ELUMO5EF1 1
2 DE and EHOMO5EF2 1

2 DE. To con-
sider as an example thea-C512 model presented in Fig.
and the b value used there, this gives a relative err
e1 /uEbsu'1.631025. The exact error as computed from a
eigenvalues is 5.231025. For the calculation using the
smaller LOC sphere in Fig. 1, this error is more than o
order of magnitude smaller than the total deviation inEbs
given above. This means that even forDE'0.9 eV ('0.03
hartree! the value b550 hartree21 is sufficient. For the
larger LOC radius,e1 may still not be the decisive error
However, if more accurate computations are desired,
value ofb should also be increased in this case.

2. Expanding the Fermi distribution into a finite sum
of Chebyshev polynomials

The error related to this expansion, saye2, can be esti-
mated by replacing the density of states with its mean va
r̄ between some band edgesEmin and Emax and performing
explicitly the integrations in the following expression:

e2'2Nr̄F E
Emin

Emax
Fb

Ch~E!E dE2E
Emin

Emax
Fb~E!E dEG .

~18!

Here,Fb
Ch(E) is the Chebyshev approximation of the Fer

distributionFb(E) for some given valueb. The second term
within the square brackets in Eq.~18! can be evaluated in a
similar way as used for the degenerate electron gas in st
tical physics:

E
Emin

Emax E dE

eb~E2EF!11

5E
Emin

EF
E dE2E

Emin

EF E dE

eb~EF2E!11

1E
EF

Emax E dE

eb~E2EF!11

5
1

2
~EF

22Emin
2 !1E

0

EF2Emin~y2EF!dy

eby11

1E
0

Emax2EF~y1EF!dy

eby11
. ~19!

At the band edgesy5EF2Emin andy5Emax2EF, we obvi-
ously haveeby@1, one can therefore replace the upper
tegration boundaries in Eq.~19! with `. This results in
r

r

e

e

e

i

is-

-

E
Emin

Emax
Fb~E!E dE' 1

2 ~EF
22Emin

2 !1
2

b2E0

` x dx

ex11

5 1
2 ~EF

22Emin
2 !1

p2

6b2
. ~20!

The first term here corresponds to the Fermi distribution
T50, hence the second term again describes the devia
which was discussed in Sec. III B 1.44 Turning now to the
first term in Eq.~18!, the integration can easily be performe
with use of the Chebyshev coefficients ofFb

Ch. This can be
seen by employing the formulas

E Tn~x!dx5
1

2 FTn11

n11
2

Tn21

n21G ~n>2!,

E xTn~x!dx5
1

4 FTn12

n12
2

Tn22

n22G ~n>3!,

which can be derived by differentiating45 the defining equa-
tions for the Chebyshev polynomialsTn(x)5cos(narccosx).
By means of the expansion

Fb
ChS Emax2Emin

2
x1

Emax1Emin

2 D
5 (

n51

NCh

cnTn21~x!, ~21<x<1!

we then obtain

E
Emin

Emax
Fb

Ch~E!E dE

5 1
2 ~Emax2Emin!3F ~Emax1Emin!

3S c1

2
2 (

k51

c2k11

~2k21!~2k11! D
2~Emax2Emin!(

k51

c2k

~2k23!~2k11!G .
Introducing the shorthand notationI b/2 for this integral and
settingr̄5Nel /@2N(EF2Emin)# whereNel is the number of
electrons in the system, we arrive at the final expression
the errore2:

e2'
1

2
NelF I b2p2/~3b2!

EF2Emin
2EF2EminG . ~21!

Let us again consider as an example thea-C512 model with
b'50 hartree21 and 80 Chebyshev polynomials as used
Fig. 1. In this case, the relative errore2 /uEbsu obtained from
Eq. ~21! turns out to be21.631025, compared to its exac
value of21.931025 as computed from all eigenvalues. Th
is again more than one order of magnitude less than the
errors, showing that~at least for the band-structure energ!
the Chebyshev expansion used is sufficiently accurate for
Fermi distribution function applied. One should also no
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that the errore2 can be positive or negative dependent on
special oscillating behavior of the Chebyshev approximat
chosen.

Let us finally remark here that in the case of larger ga
one should estimate the errore2 by explicitly taking the gap
width into account setting the DOS to zero betweenEHOMO
andELUMO . The formulas for this case can be derived in
similar manner to those presented above.

3. Use of a confinement radius for the matrixH̄

This problem was already addressed in Ref. 30. As th
authors showed, when using the same confinement radi
H and H̄ the maximum matrix element of the productSH̄
@cf. Eq. ~6!# beyond this radius is at most of the same ord
of magnitude as the matrix elements ofH at the cutoff ra-
dius. This means that the error in computed eigenvalue
band-structure energies due to the confinement ofH̄ is also
of this order of magnitude~or smaller!.30 For our
Hamiltonian,31 the matrix elements at the cutoff radius of 6
a0 are'131023 hartree. This gives a relative error of abo
,1023 for our band-structure energies which is appro
mately of the same order of magnitude than the total er
for the a-C512 model considered above.@For diamond, this
error is about one order of magnitude smaller because
next ~fourth! nearest-neighbor shell is placed at 6.74a0.#

To check the influence of the cutoff radiusRH̄ on the
band-structure energy, we computed the relative errorDEbs
for the radiusRH̄56.1a0 used above as well as for the radi
RH̄57.0a0 at which all our matrix elements inH naturally
vanish. ~Actually, we keptRH5RH̄ in these computations
because the increase inRH as shown by direct diagonaliza
tion only leads to a relative change in the total band-struc
energy of 231025, and can therefore be neglected her!
The results for three different LOC radiiRloc are presented in
Table I. As can be seen, the use of the smaller radiusRH̄
results in an error of about 231024. This error is compara-
tively small for small LOC radii but becomes essential f
larger ones. In that case, the increase ofRH̄ relative toRH or
the increase of both cutoff radii may be useful. The rea
may also notice from Table I that the computational cost

TABLE I. Relative errorsDEbs in the band-structure energy fo
the a-C512 model computed with the projection method in dep
dence on the cutoff radiiRloc for performing the matrix multiplica-

tions @Eq. ~8!#, andRH̄ for computing the matrixH̄ @Eq. ~6!#. Nloc

andNH̄ are the maximum number of atoms within the spheres w
radii Rloc andRH̄ , respectively. The last column contains the CP

time ~Ref. 38! needed for computing the matricesH̄ and performing
the projections@Eqs.~6! and ~8!#.

Rloc RH̄ CPU
(a0) Nloc (a0) NH̄ DEbs ~min!

8.00 62 6.1 30 7.2•1024 7
7.0 45 5.9•1024 11

10.37 133 6.1 30 5.2•1024 18
7.0 45 3.5•1024 28

12.20 210 6.1 30 2.2•1024 33
7.0 45 4.9•1025 50
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the present implementation scales approximately linea
with the number of atomsNH̄ within RH̄ and Nloc within
Rloc . The numerical effort for computing the matrixH̄ which
scales quadratically withNH̄ is in general small compared t
the effort for performing all the projections@cf. Eq. ~8!#. The
total numerical effort of the present method, therefore, sca
approximately asNNH̄NlocNCh, whereNCh is the number of
Chebyshev polynomials used as discussed above.

Finally in this paragraph, we should consider the nume
cal accuracy in the solution of the linear system of equati
~6! for computing the matrixH̄. This accuracy is controlled
by the condition numberz of the overlap matrices occurrin
in Eq. ~6!. The numerical uncertainty in the solution forH̄ is
of the order ofz units of the last figure in the absolutel
largest matrix element ofH. The condition number is given
as the ratio of the absolutely largest to the absolutely sm
est eigenvalue of a matrix. Since the overlap matrices
positive definite, these eigenvalues are in fact the extre
ones and can easily be computed by a Lanczos~recursion!
procedure.

To estimate this influence, we computed the condit
numbers for the orbitals used in the simpler Hamiltonian
Ref. 31 as well as for the Sankey orbitals used in Ref. 35
the latter case, the relatively large extent and overlap of
pseudoatomic orbitals in the case of carbon resulted in
largest condition numbers we found which turned out to
'36 ~from extreme eigenvalues 0.093 and 3.37 in t
a-C512 model mentioned above!. For comparison, the num
berz for the more localized orbitals of Ref. 31 was only 4.
Keeping the other influences discussed in this section
mind, these results imply that an 8-byte-precision arithme
as used by us in solving Eq.~6! allows overlap matrices
which have by several orders of magnitude larger condit
numbers before any significant influence of this proble
may be expected.

4. Use of a finite localization radius within the projection

According to the discussion carried out so far, the LO
radiusRloc applied within the matrix multiplications for per
forming the projection@cf. Eq. ~8!# appears to be the mos
crucial parameter in the present scheme. For reasonable
ues ofb andNCh, the choice of the LOC radius determine
the accuracy of the projection method for LOC spheres c
taining up to about 100 atoms. This result can already
inferred from Table I. In Fig. 2 we investigated in mo
detail the influence ofRloc on the band-structure energyEbs.
We present the result for diamond and amorphous carbon
reduce the effect of the finite cell size, we considered mod
with 512 atoms in both cases. To eliminate the influence
the confinement ofH̄, the valueRH̄57.0a0 was used for
both models. Furthermore, we applied the valuesb550 har-
tree21 andNCh5100 in these computations.

Figure 2 demonstrates the global decrease in the e
DEbs with increasingRloc . But it shows another importan
and unexpected result. The decrease inDEbs is not always
monotonic, as it would be in an analogous variational pro
dure. IncreasingRloc in diamond from 7.4a0 ~including five
nearest-neighbor spheres! to 8.8a0 ~seven nearest-neighbo
spheres! results in anincreasein DEbs by about one order of
magnitude. Outside this region there is still no significa
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6398 57UWE STEPHAN AND DAVID A. DRABOLD
reduction in DEbs up to Rloc510.7a0. In the amorphous
model this behavior is to a large extent smeared out, lead
to an almost monotonic decrease. This fact suggests tha
stated effect is related to the symmetry of the crystal str
ture and consequently to the symmetry of the Wannier-
functions obtained within the projection. However, with
the medium-range environment seen by the WF’s, the am
phous structure is not as different from the crystal as nee
to entirely blur the special radial dependence found inDEbs.

To check this behavior, we recalculated the radial dep
dence ofDEbs using the more elaborate Hamiltonian by Sa
key and Niklewski,35 which is based on the Harri
functional46 and the evaluation of all three-center integra
~more detailed results and further applications of these inv
tigations will be presented in a subsequent paper!. With these
computations, we could exactly reproduce the qualitat
shape of the curves in Fig. 2 showing the deep minimum
47 atoms and the second flat minimum at 123 atoms.
error DEbs at the first minimum even reached negative v
ues. This again indicates that the effect seems to be the r
of the superposition of two errors of opposite sign, one r
resenting the general increase inDEbs with decreasingRloc ,
which, however, is modified by the way the projected fun
tions spread through the crystalline environment during
matrix multiplications.

For comparison, we also investigated LOC regions wh
are determined by the number of bonds steps necessa
reach an atom. In this way we found that the region with
largest drop in energy~negativeDEbs for both Hamiltonians
applied! is composed of all atoms within three bond ste
starting from one central atom. This structure contains
atoms and is obtained from the minimum structure in Fig
by breaking off eight-membered rings emanating from
central atom. Any further reduction in the number of ato
leads to an abrupt rise in the band-structure energy, whe
the enlargement of the LOC region after an increase inDEbs
results in a convergence to the exact energy from high
energy values within numerical accuracy.

The observed behavior inDEbs can be traced back to th
amount of ‘‘charge’’ maintained at the initial basis orbita
when performing the projections. We estimated this cha
by computing Mulliken’s atomic gross populationsNg for
the Wannier-like functions resulting from the projection. T
minimal-energy LOC regions discussed above are chara

FIG. 2. Relative deviation of the band-structure energy co
puted with the projection method from the value obtained by dir
diagonalization of the secular equation, plotted in dependence
the localization radiusRloc for two models of diamond and fourfold
coordinated amorphous carbon containing 512 atoms.
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ized by an increase inNg at the central atom and a corre
sponding increase in the norm of these functions by ab
1023. This is just the magnitude of the effect found in Fig.
Apart from this fact, the radial dependence of the gro
populations shows the expected exponential behavior bu
again nonmonotonic with respect to the radius of the LO
region. We will investigate this radial dependence more th
oughly in Sec. IV, where we will start from more appropria
initial functions constructed from hybrid orbitals.

IV. COMPUTATION OF GENERALIZED
WANNIER FUNCTIONS

The projection method as described so far works with
explicitly calculating Wannier-like functions. In this sectio
however, we want to show how the method can effectiv
be used to compute such functions which are linearly in
pendent and span the occupied subspace of the Hamilton
Furthermore, as has been known for a long time,22,40 or-
thogonal WF’s in general have worse localization propert
compared with nonorthogonal ones. We therefore investig
the localization behavior of our functions before and af
orthonormalization. Furthermore, we will investigate ho
well approximate WF’s which are truncated to certain LO
regions can be orthonormalized by a linear-scaling pro
dure. We want to emphasize here that it is not immediat
clear how well an order-N orthonormalization should work
at all. The reason is that in every orthonormalization~ON!
step, localized functions will acquire some weight outsi
their previous LOC regions, but one has to truncate th
functions to ensure the linear scaling of the method. Suc
scheme, therefore, must not significantly increase the num
of atoms in these regions.

The technique of applying~band! projection operators for
computations of WF’s within ordinary and one-dimension
perturbed crystals was already used several years ag
Refs. 41–43. The projection method presented here is es
tially similar in spirit to these former computations. How
ever, the main differences, as described above, consist o
actual construction of our projection operators by a Che
shev representation of the Fermi-Dirac operator instead
using any eigenfunctions, and in the formulation of t
method as a real-space approach, thus allowing an effec
linear-scaling implementation of this technique.

To obtain linearly independent WF’s, a generally app
cable procedure consists in selecting the correct numbe
initial functions at random. In systems with four valence o
bitals per atom and as many electrons as the total numbe
valence orbitals, one could use two atom-centered functi
per atom formed by random combinations of the atomic
bitals at one atom. However, such functions result in re
tively large overlap values between the projected functio
which in turn make their orthonormalization more difficu
~especially in the presence of localization constraints!. This
also leads to inferior localization properties of the appro
mately orthonormalized Wannier-like functions. For loca
well-relaxed structures we therefore prefer an appro
which takes local physics in terms of bonding informati
into account. Such functions are especially easy to obtai
completely fourfold-coordinated covalent materials whi
are the systems of interest in this section. In these system
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57 6399ORDER-N PROJECTION METHOD FOR FIRST- . . .
natural choice for the initial functions needed to comp
WF’s is provided by the bonding combinations of (s-like!
hybrid orbitals which point in the direction of the bond b
tween two neighboring atoms.2,20,21 As shown by Des
Cloizeaux47 and Kohn,48 orthonormal occupied WF’s in the
diamond lattice can be chosen to belong to the identity r
resentation of the point group associated with the bond c
ter between the neighboring atoms. Bonding pairs of hyb
orbitals already have all these symmetry elements, but t
excess symmetry is broken during the multiplications w
the Hamiltonian matrix. The suitability of hybrid orbitals a
initial guesses for WF’s can also be seen by considering
change of these functions after projection onto the occup
subspace ofĤ. Table II contains the norms of the bondin
and antibonding combinations ofsp3 hybrid orbitals in dia-
mond before and after projection. The bonding hybrid p
changes only slightly and is to a large extent situated in
occupied subspace. Correspondingly, the antibonding
disappears almost entirely during the projection. For co
parison, we also included in Table II the norms for the fun
tions generated by orbitals at one atom. These orbitals
sess large contributions in both subspaces.

In fourfold-coordinated amorphous systems, bon
directed hybrid orbitals can be used in a similar manner
initial orbitals for WF’s. They immediately lead to the co
rect number of Wannier states and again reflect the lo
symmetry of the structure. However, in amorphous syste
these bond-directed orbitals are, in general, nonorthog
also to the orbitals attached at the same atom.

In the following, we first investigate in more detail th
properties of orthonormalized WF’s in diamond as obtain
by the projection method. Let us then discuss the genera
tions needed and the results obtained for a model of fourf
coordinated amorphous carbon. To reduce the influenc
the unit cell size, we use in all cases models containing
atoms.

A. Diamond

Let us first discuss the properties of our WF’s obtain
without any localization restrictions. In Fig. 3 we prese
Mulliken’s atomic gross populationsNg for the normalized
functions immediately after projection~dots! and those func-
tions obtained by a subsequent Lo¨wdin orthonormalization
~circles!. One advantage of using hybrid orbitals as init

TABLE II. Norms for various atomic states before and aft
their projection onto the occupied subspace. The first three r
contain orbitals at one atom, whereas the last two rows contain
bonding and antibonding combinations ofsp3 hybrid orbitals at
neighboring atoms pointing in the direction of the bond betwe
these atoms.

norm
initial state initially after proj

us& 1.0 0.778
up& 1.0 0.654
usp3& 1.0 0.685
usp3&A1usp3&B 2.737 2.718
usp3&A2usp3&B 1.263 0.023
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functions is that the functions resulting from the projecti
already have relatively small overlap values~0.031 in our
case31 for functions centered at neighboring bonds!. This
means that during a subsequent orthonormalization, th
functions will not change very much. In fact, as can be se
the largest changes occur at atoms within about 3 Å or two
bond steps around the initial bond. The atoms forming
central bond and their nearest-neighbor atoms lose s
weight, whereas the ‘‘charge’’ at the atoms one bond s
farther away increases by about or less than one orde
magnitude. The change in the weight at most of all oth
atoms is very small. In particular, the exponential decay d
not noticeably change during orthonormalization when st
ing from hybrid orbitals. However, as we will show below
one must not infer from these results that an easy ortho
malization of these functions would be possible by simp
truncating the tails of the projected functions when LO
constraints are used.

The global exponential decay of our WF’s in diamond
clearly visible in Fig. 3. This fact suggests that these bo
related functions are close to the optimally localized orth
normal occupied Wannier functions in this system. Note t
for overlapping energy bands exponentially localized Wa
nier functions are not uniquely determined;48 instead differ-
ent sets of such functions can be transformed into each o
by unitary transformations. Apart from the exponential d
cay, however, the radial dependence of these functions i
no means monotonic in the~real-space! distance from the
bond center.~We had already referred to this fact in Se
III B. ! One immediate suggestion is that the weight of a W
at a certain atom should also significantly depend on
number of bond steps needed to reach this atom when s
ing from the central bond. This dependence is demonstra
in Fig. 4. In this figure, different symbols at the same re
space distancer describe different distances from the cent
bond in terms of bond steps. This ‘‘bond-step’’ distance
indicated in the lower panel of Fig. 4. At the same distancer ,
atoms marked with diamonds are separated by more b
steps from the bond center than atoms marked with circ
The expected result here is that the diamonds in general
have lower gross populations than the circles~see the upper
panel in Fig. 4!. However, both distances~the real-space dis
tancer and the bond-step distance! are not yet sufficient to

s
he

n

FIG. 3. Mulliken’s atomic gross populationsNg for orthonor-
malized bond-centered Wannier functions in diamond in dep
dence on the distance from the bond center; dots, functions obta
after projection; circles, Lo¨wdin-orthonormalized functions. No lo
calization constraints were applied.
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6400 57UWE STEPHAN AND DAVID A. DRABOLD
describe the spatial dependence of the WF’s. In particu
there are frequent cases~compare the atom groups connect
by dashed lines in Fig. 4! in which of two atoms with the
same bond-step distance the more distant atom in termsr
acquires thelarger weight within the WF. Note that thes
differences inNg can reach about one order of magnitude

To gain a better understanding of this effect, we rep
Fig. 4 ~see Fig. 5!, but now different symbols at the sam
‘‘spherical’’ distancer indicate different distances of thes
atoms from an axis along the direction of the central bo
This figure therefore describes the nonspherical spatial
havior of the WF’s beyond the bond-step picture used abo
Indeed, in all the cases just described~which again have been
marked with dashed lines!, the more distant atoms with th
larger gross populations are situated closer to the bond d
tion than the corresponding atoms at smallerr . Furthermore,
the diamonds which now describe larger distances or an
from the bond direction, are again mostly situated at sma
gross populations in the upper panel of Fig. 5. This beha
is only weakened for atoms far away from the originati
bond. We therefore conclude that the WF’s in diamond
more ellipsoidal than one would expect from a picture wh
the decay of the WF’s is determined by the spherical a
bond-step distances alone.

To illustrate these quantitative results, in Figs. 6 and 7
present the charge densities of the orthonormalized unt
cated Wannier function in diamond as obtained with o
Hamiltonian.31 Figure 6 shows the charge density within
~110! plane which contains the nearest-neighbor bonds.
plane in Fig. 7, on the other hand, is tilted around the cen
bond in the former plot to include the ‘‘perpendicularly lo
cated’’ second-nearest-neighbor atoms of the bond@~211!
plane#. Note that the second-nearest neighbors in Fig. 6
the second-nearest neighbors in Fig. 7 are just the at

FIG. 4. Mulliken’s atomic gross populationsNg for orthonor-
malized bond-centered Wannier functions in diamond as give
Fig. 3. For each distancer from the bond center, the symbols use
describe the number of bond steps needed to reach a certain
starting from the central bond. This number of bond steps is in
cated at the same distance in the lower panel. The dashed line
letter symbols are explained in the text.
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connected by the dashed line near 3 Å in Figs. 4 and 5.
Furthermore, the corresponding fourth-nearest-neighbor
oms in both charge-density plots are connected by the da
line at 5.5 Å in the former figures. In accord with the
examples, Fig. 6 shows a preferred ‘‘flow of charge’’ in th
bond directions in the~110! plane. As we found, this spatia
direction leads to larger weights of the WF’s compared to
corresponding neighbors at the same bond-step distance
located perpendicular to the central bond in Fig. 7. Indep
dent of this discussion, both figures clearly show the ac
mulation of bond charge in the central region of the bon
the minor accumulation of charge at neighboring atoms,
the ‘‘impressive’’ nodal structure of the WF’s created by t
superposition of the 2s and 2p atomic valence orbitals.

The nonspherical spatial behavior of the WF’s has imp
tant consequences for the optimal shape of the LOC reg
when one has to truncate these functions to obtain an or
N computational scheme. Unfortunately, we have not fou
a simple parametrization of such a LOC region, say, in fo
of an ellipsoid, where one could have fixed one parame
and vary the other one with respect to the accuracy desi
During the projection, when starting with hybrid orbitals, w
therefore employ LOC regions determined by a critical nu
ber of bond steps, as was done in previous work using va
tional methods.2,20 After every ON step, however, we rede
fine each LOC region in such a way that it contains tho
atoms which have accumulated the largest weights withi
WF. This dynamical reshaping of the LOC region takes
observed directional dependence of the WF’s into acco
and simultaneously allows these functions to expand to th
atoms which have acquired significant weight during the O
process. As we found, this method results in a decrease in
remaining overlap values during an order-N orthonormaliza-
tion by about one order of magnitude. Also note, as we w
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FIG. 5. Mulliken’s atomic gross populationsNg for orthonor-
malized bond-centered Wannier functions in diamond as given
Fig. 3. For each distancer from the bond center, the symbols use
describe the distancedbd of a certain atom from the axis specifyin
the direction of the central bond. This distance is indicated at
samer value in the lower panel. The dashed lines connect the s
atoms as in Fig. 4.
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FIG. 6. ~Color! charge-density plot of the untruncated and orthonormalized projected Wannier function within the~110! plane in
diamond. The colors have been mapped to the logarithms of the charge density between its maximum value 7.8~red! and minimum value
6.4310221 ~blue, values in electrons/a0

3) found for the resolution of the figure.

FIG. 7. ~Color! charge-density plot of the untruncated and orthonormalized projected Wannier function within the~211! plane in
diamond. The mapping of the colors is the same as in Fig. 6.
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6402 57UWE STEPHAN AND DAVID A. DRABOLD
show in Sec. IV B, that this flexible scheme of defining LO
regions is not only useful in crystalline systems, but i
proves the computation of WF’s in amorphous solids as w

We have also compared different versions of the gen
Löwdin-related orthonormalization scheme with respect
using full or truncated overlap matrices. These results
reviewed in the Appendix. In general one has to dec
whether to use one given overlap matrix for multiple O
steps, or to recompute this matrix for each new set of itera
functions. In our implementation the CPU time needed
computing the overlap matrix is small~of the order of one-
tenth! compared to the time for performing the projection
The most effective scheme, therefore, is to use repeated
order Löwdin iterations in conjunction with the dynamica
determination of the LOC regions as described above.

When the atoms within a LOC region can change, one
to decide how thenumberof atoms may change there durin
an ON run. We do not allow the LOC regions to shrink;
prevent a distortion of the symmetry of the WF’s in crysta
however, one then has to permit at least a slight increas
the number of atoms in these regions. One can minimize
growth of the LOC regions by, e.g., introducing a certa
critical weight difference for additional atoms at the LO
boundaries. This leads primarily to an exchange of ato
altering the LOC region into a more ellipsoidal shape.
avoid such an additional parameter, one would have to le
all atoms within a LOC region which once have been the
Such an approach increases the accuracy of the orthonor
ization, but is only reasonable as long as these regions do
expand up to the complete next ‘‘bond shell’’ of atoms. Th
does not happen in diamond, for which we will show t
results of this latter version. Results with an almost cons
number of atoms in the LOC regions will be presented
amorphous carbon in Sec. IV B.

The three columns of Fig. 8 demonstrate the results
the order-N orthonormalization of WF’s in diamond startin
from different LOC conditions.49 In the first two columns,
the initial LOC regions for performing the projection conta
all the atoms within three bond steps starting from the or
nating bond. This number is 4 in the last column. Anoth
distinction is the number of overlap values taken into
count during the ON process. As it turns out, it is not nec
sary to compute the overlap between all overlapping WF
The first and last column in Fig. 8 are characterized by us
only the overlap values between functions for which t
originating bond of one function is attached at an at
within the LOC region of the other Wannier state. In t
middle column, we use the overlaps to functions which
centered up to two bonds apart from the atoms in one L
region. According to the figure, let us refer to these th
situations as~a!, ~b!, and~c!, respectively.

In the top panels of Fig. 8, the full circles indicate th
maximum of the~absolute! overlap values which are take
into account during an ON run. To check the maximum ov
lap between all WF’s, the open circles in the same pan
show the maximum of the~absolute! overlap values which
are not included in an ON run. As another measure of
efficiency of an ON procedure, we have also computed
quantity
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D25
1

MF(
i j

M

~d i j 2Si j !
2G ~22!

used in Ref. 50~and, in a similar form, in Ref. 28! where
hereSi j are the overlap matrix elements between the W
nier states, andM is the total number of WF’s. In our case
we normalize all WF’s after every ON step; henceD2 is just
the square of the euclidic norm of the off-diagonal Wann
overlap matrix, divided byM to make this quantity indepen
dent of the system size. To reduce CPU time in an ac
computation, of course, one would not want to calcul
overlap values which are not used in the ON run. In t
respect, the question arises, how well the efficiency of
ON procedure can be inferred from the included overlap v
ues only.

Considering Fig. 8, we first recognize that, when start
with hybrid orbitals, a small number of ON steps is sufficie
to maximally reduce the largest overlap values. In our ca
we reached a minimum of about 1.631023 in cases~a! and
~b! and about 531024 in case~c!. However, in cases~a! and
~c! the ON process becomes inefficient when the over
values included in an ON run reach the magnitude of
omitted values. In case~b!, the LOC regions are much
smaller than the regions where the overlap values are ca
lated. Therefore, the omitted overlap values are now ne
gible, but the WF’s cannot form the tails necessary to red
all the overlaps within the overlap regions. The process
minates ‘‘by itself’’ and is therefore a purely linear-scalin
scheme with inclusion of an efficiency criterion.

However, the increase in the number of overlap values
be calculated when going from column~a! to column ~b!
does not significantly improve the accuracy of the O
scheme. Cases~a! and ~c! are therefore more efficient ap
proaches. Furthermore, when consideringD2, we found that
the procedure in general terminates after about four ON s
~when using hybrid orbitals as initial functions!. Using this,
it may be sufficient to extend the LOC regions by one bo
to define an appropriate overlap region thereby greatly
ducing the number of overlap values to be computed. N
that the final values attained forD2 after four ON steps are
about 1.731025 in cases~a! and~b!, and about 3.731026 in
case~c!.

The full circles in the bottom panels of Fig. 8 show th
increase in the number of atoms in the LOC regions. R
member that we did not remove any atoms from this regi
In diamond, an increase occurs only during the first ON r
this extends the LOC regions from 56 to 80 atoms wh
starting with three bond steps, and from 110 to 130 ato
when starting with four bond steps. In the first case, the n
atoms are exclusively four bond steps away from the cen
bond and marked~in the order of decreasing weight! with a,
b, c, andd in Fig. 4. In the second case, all new atoms a
separated by five bonds from the original bond and mar
with e, f , andg in the same figure.

As an example, in Fig. 9 we present the approximat
orthonormalized and truncated WF’s corresponding to c
umn ~a! in Fig. 8. For comparison, we again indicated t
gross populations for the unconstrained functions. We fou
that the truncation of the tail of the WF raises the weights
all atoms except the two atoms at the originating bond.
can be seen in Fig. 9, the largest relative differences occu
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57 6403ORDER-N PROJECTION METHOD FOR FIRST- . . .
the boundary of the LOC region. It is just the WF’s center
beyond the boundaries of the LOC regions which prod
the maximum remaining overlap values presented in the
panels of Fig. 8. The truncation prevents a proper adjustm
of the WF’s to reduce these overlap values. On the ot
hand, the truncation reduces the weights at the two cen
atoms of a WF~by about 1023, not visible in Fig. 9! which
in general raises the mean energy of this WF.

B. Fourfold-coordinated amorphous carbon

As already mentioned, the technique of using bond
combinations of neighboring hybrid orbitals as the init
functions for computing Wannier states can be applied
completely fourfold-coordinated amorphous systems as w
However, there is the following difficulty related to this a
proach.

When using a minimal valence orbital set (s1p3), it is in
general not possible to compute orthogonal hybrid orbital
fourfold-coordinated atoms, which point in the bond dire
tions. One could solve a minimum problem to find tho
orthonormal hybrids which deviate least from these bo
directions. It is, however, much easier to keep the hyb
orbitals in the directions of the bonds and to allow fin
overlap values even for orbitals at one atom. As an easy
to find physically reasonable hybrids in this case, we co
pute the uniquely determined hybrid orbitals for all possib
ties of selecting three of the four neighboring atoms, a
then average over the resultings and p characters. For the
majority of atoms in a locally relaxed structure, the resulti
overlap values are still very small. But even at locally d
torted atoms, the initial overlap values are still significan
smaller compared, e.g., with the case of using random at
centered functions.

FIG. 8. Efficiency of an order-N orthonormalization of trun-
cated Wannier functions in diamond. Columns:~a! localization of
WF’s within 3/overlap computation within four bond steps fro
central bond of a WF;~b! 3/5; ~c! 4/5. Rows:Smax

in , maximum
overlap between WF’s within region of overlap computation;Smax

out ,
maximum of remaining overlaps not used in orthonormalizati
D2, orthonormality measure~22!; LOC, number of atoms within
localization regions of WF’s; ON run 0 means after projection.
d
e
p
nt
er
al

g
l
n
ll.

at
-

d
d

ay
-

d

-

-

We have computed the WF’s in a model of fourfol
coordinated amorphous carbon containing 512 atoms in
unit cell. This model is a relaxed version of the origin
system generated by Djordjevic, Thorpe, and Wooten39

which we used in Sec. III. This original model, howeve
contains a few atoms which are only threefold-coordina
within any reasonable nearest-neighbor distance. The su
quent relaxation51 of this model based on the Harrisab initio
Hamiltonian35 improved the fourfold coordination of this
system and, as a consequence, produced a structure w
large HOMO-LUMO gap of width~4.3 eV! slightly smaller
than that computed for diamond~5.9 eV!.

In Fig. 10, we present the radial dependence of the gr
populations for orthonormalized WF’s without using loca
ization constraints. Given are the averaged and maxim
populations within distance intervals of 0.25 Å. For compa
son, the dots indicate the corresponding WF’s found in d
mond. Figure 10 shows the clear exponential decay of
WF’s even in the amorphous structure. This result is in
cord with theoretical investigations52 which verify the exis-
tence of exponentially localized WF’s in nonperiodic sy
tems obtained in some way from periodic ones. However,
amorphous structure shows a much greater variation of
populations within a certain distance interval compared w
diamond. This is obviously the result of the local distortio
of the atomic environments. Unlike diamond, the minimu
gross populations even become negative in the amorph
structure. Although this is considered a deficiency of Mulli
en’s population concept, it again emphasizes the gre
variations in the WF’s in amorphous systems.

Considering the mean populations, it is remarkable t
the exponential decay of the WF’s has not significan
changed compared to the crystalline structure. It has b
known for a long time5,6 that the exponential decay of th
WF’s stemming from nondegenerate bands depends on
position of the branch points which connect these band
the complexk plane. The Wannier functions decay fast
with increasing distance of these points from the realk axis.
To estimate this decay, one usually relates this distanc
the width of the smallest gap between the two connec
bands. In our case of covalently bonded insulators, the fal
of the WF’s would be determined by the gap between
valence and conduction bands.

;

FIG. 9. Mulliken’s atomic gross populationsNg for approxi-
mately orthonormalized truncated WF’s in diamond correspond
to column ~a! in Fig. 8 ~circles! in comparison with orthonormal-
ized unconstrained WF’s~dots!.
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6404 57UWE STEPHAN AND DAVID A. DRABOLD
However, the LDA-based TB-like Hamiltonian31 used in
Fig. 10 shifts the conduction bands higher in energy wh
gives rise to an overestimation of the HOMO-LUMO ga
by a factor of about 1.5, and a slight increase in the ratio
the gaps in diamond and the amorphous system to 1.7.
displacement is, in a sense, similar to that created by a s
sors operator, which leaves the valence bands and, c
spondingly, the occupied Wannier functions unchanged.

Interestingly, our results agree with an early estimat
given by Kohn5 for the exponential decay of the WF’s i
one-dimensional TB-like systems. He found that a bran
point between two bands in such systems may be situ
close to the lower one of these bands, and that the deca
the WF’s increases with the binding energy of these sta
Indeed, the HOMO states responsible for the smallest fal
are reproduced with quite similar energies in our models
diamond~28.1 eV! and amorphous carbon~28.6 eV!. This
could therefore be the reason for the similar decay leng
found in Fig. 10.

Finally, let us again investigate the properties of trunca
WF’s within an order-N orthonormalization. Unlike dia-
mond, we kept the number of atoms in the LOC regio
nearly constant.~This was done by choosing a relative cri
cal weight difference for additional atoms at the boundary
the LOC regions of 0.1.! In the amorphous system, whe
allowing the LOC regions to expand, we found that th
grow during several ON steps up to a saturated state w
comprises approximately all atoms within the next bo
shell of atoms. It is then better, however, to start immediat
with larger LOC regions and to allow essentially only
exchange of atoms in these regions. This is done in Fig.

First note that the maximum initial overlap values b
tween WF’s are about one order of magnitude larger tha
the case of diamond. This is a consequence of using no
thogonal hybrids, especially at locally distorted atoms. Ho
ever, as asserted above, the majority of the overlap value
still relatively small. This can be seen at the initial values
D2 which are only slightly larger than the corresponding v
ues in diamond. Furthermore, the fact that we prohibite
significant enlargement of the LOC regions leads in any c
to a saturation of the maximum overlap values included

FIG. 10. Mulliken’s atomic gross populationsNg for orthonor-
malized bond-centered Wannier functions in a model of fourfo
coordinated amorphous carbon in dependence on the distance
the bond center; solid line, population averaged over all ato
within a distance interval of 0.25 Å; dashes line, maximum po
lation in the same interval; dots, results for diamond as given in
3. No localization constraints were applied.
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the orthonormalization. This saturation value is close to
magnitude of the neglected overlap values in cases~a! and
~c! in Fig. 11. Nonetheless, the maximum number of ato
included in one LOC region was 20 in cases~a! and~b! and
30 in case~c!. As in diamond, this reordering of atoms wa
now primarily performed during the first ON run. Bearin
these facts in mind, it is very encouraging that the final v
ues achieved forD2 are comparable to or even slightly bett
than those found in diamond@about 1.031025 in cases~a!
and ~b! and 1.531026 in case~c! after five ON steps#. This
seems to be an effect of the amorphous structure itself
will be the subject of further investigations. However, w
again found the expected result that the use of expand
LOC regions even more reduces the final deviations fr
orthonormality—but this is associated here with almos
doubling of the number of atoms in the LOC regions and
corresponding enlargement of the localization range of th
functions.

V. CONCLUSIONS

In this paper, we presented a generalized version of
order-N projection method developed by Goedecker a
co-workers,25 in which electronic properties of an insulatin
system are computed by explicitly performing a projection
the occupied subspace of the Hamiltonian. The method
now be used with nonorthogonal sets of basis orbitals t
allowing an effective application of this approach with
local-basisab initio Hamiltonians. The overlap between th
basis states is taken into account by solving linear system
equationsSH̄5H within the cutoff radii ofH as proposed by
Gibson, Haydock, and LaFemina.30 However, to increase the
accuracy of the method it may be necessary to use some
larger cutoff radii for the computation of the matrixH̄.

We explored the projection method within two differe
computations using a simple non-self-consistent LDA-ba

-
om
s
-
.

FIG. 11. Efficiency of an order-N orthonormalization of trun-
cated Wannier functions in a model of fourfold-coordinated am
phous carbon. The meaning of the symbols is the same as in Fi
except that LOC is the mean number of atoms within LOC regio
The number of atoms in the LOC regions was kept nearly const
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57 6405ORDER-N PROJECTION METHOD FOR FIRST- . . .
Hamiltonian.31 First, we investigated the accuracy of th
scheme as a means of performing traces within the occu
subspace. This was done by computing the band-struc
energy for models of crystalline and amorphous carbon c
taining up to 4096 atoms. A detailed discussion of the p
sible errors in the method showed how the relative devia
from corresponding results based on eigenvalue calculat
can be reduced below 1025. The most crucial parameter i
the scheme is the extent of the localization regions for p
forming the traces. We found the interesting effect that,
pecially in crystals, the error in the band-structure ene
upon increasing the localization radius decreases in a n
monotonic way in the projection method.

Additionally to the band-structure energy, we give
necessary formulas for computing other electronic quanti
including density matrices, the moments of the density
states, forces, and the electron density. In principle,
method can therefore be applied directly within molecul
dynamics simulations as well as within self-consistent co
putational schemes.

As a second main application of the projection meth
we investigated its use for computing first-principl
Wannier-like functions in covalent insulators at zero te
perature. In this paper, we restricted ourselves to comple
fourfold-coordinated systems in which very efficient initi
functions needed for performing the projections are provid
by the bonding combinations of neighboring (s-like! hybrid
orbitals which point in the bond directions. This choice r
sults in the correct number of exponentially localized p
jected functions which span the occupied subspace of
Hamiltonian. Furthermore, the use of hybrid orbitals resu
in relatively small overlap values between the projec
functions. A subsequent orthonormalization can therefore
done with a small number of iterations~about 3–5!.

We computed orthonormal Wannier functions without
calization constraints as well as approximately orthonorm
ized functions with localization restrictions for models
diamond and fourfold-coordinated amorphous carbon c
taining 512 atoms. The radial dependence of the unc
strained functions was investigated in detail. At least with
the first four ‘‘bond shells’’ which are determined by a co
stant number of bonds starting from the original bond, th
functions turned out to be more ellipsoidal than the cor
sponding bond shells of atoms. Based on this result,
implemented an approximate linear-scaling orthonormal
tion scheme for truncated Wannier functions which emplo
a dynamical reshaping of the localization regions during
orthonormalization runs. With this technique, we could
duce the quantityD2 @used for estimating the deviation from
orthonormality, cf. Eq.~22!# to about 1025 or 1026 for lo-
calization regions determined by three or four bond st
from the original bond, respectively. This was achieved w
almost no or only moderate increase in the number of ato
in these regions.

In order to use the projection method for the computat
of Wannier functions in general systems with coordinat
numbers less than 4, we need a scheme for the selectio
the correct number of linearly independent initial functio
in these systems. According to our experience with fourfo
coordinated systems, it would also be highly desirable
retain the use of hybrid orbitals in such structures. This
ed
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proach can still straightforwardly be applied if the underc
ordinated atoms form conjugatedp bonds as in a number o
molecules and fullerene systems.2,3 In more general struc-
tures, however, this pairwise selection of hybrid orbitals c
no longer be used exclusively. In a subsequent paper, we
therefore present a quite general method, based on the e
ation of local Gram determinants, which nevertheless allo
a selection of linearly independent hybrid functions.

Finally, we are currently exploring the use of our Wann
functions in computations of the electric polarization and
dielectric function as proposed recently.27,28 These ideas
seem to open a field of very important applications of Wa
nier functions in the theoretical investigation of materia
We will present our results related to this approach in a
ture paper.
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APPENDIX: ORTHONORMALIZATION SCHEMES

In this appendix, we will compare two different schem
for the orthonormalization of an extended set of linearly
dependent nonorthogonal functions$uw i&%. In particular,
these functions may be confined to certain LOC region
the orthonormalization is to be linearly scaling. The first a
proach consists in applying repeated first-order Lo¨wdin
iterations20,42,53

uw j8&5uw j&2 1
2 (

i ~Þ j !
uw i&Si j ~A1!

(Si j 5^w i uw j&), where the functions after every ON cyc
have to be renormalized. This scheme has the following f
tures.

~1! In the sense of a perturbation theory,42 the iterations
~A1! reduce the overlap between the functions$uw i&% in ev-
ery step according to a power law. In fact, we found s
convergence even in cases where the largest off-diag
matrix elements reached values close to 1.0~as observed for
Wannier functions created by random atom-centered or
als!. However, the price to be paid is that one has to rec
culate the overlap matrix for every new set$uw i8&%. This may
be an essential point in cases where the computation of
overlap matrix determines the CPU time of the procedur

~2! It is obvious from the previous point that due to th
repeated updates of theSi j matrix only relatively few itera-
tions are necessary to achieve a desired accuracy in the
thonormalization. A maybe important technical conseque
for large systems is that the same memory space can be
for storing the overlap matrix and the new WF’s resulti
from the ON steps.

~3! When using truncated functions$uw i&%, the new func-
tions $uw i8&% extend beyond these localization boundari
This means that in each ON step, in principle, one has
calculate an increasing number of overlap values. Of cou
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6406 57UWE STEPHAN AND DAVID A. DRABOLD
if one keeps the LOC regions fixed, the number of over
values will remain invariant as well. However, as we point
out in Sec. IV, the accuracy of such a linear-scaling
thonormalization scheme can be significantly increased
redefining the LOC regions. This in general increases
number of overlap values to be computed.

In order to avoid the recomputation of the overlap matr
we have also examined an orthonormalization scheme w
is based on an extension of series~A1!:

uw j8&5uw j&2 1
2 (

i ~Þ j !
uw i&Si j 1

3
8 (

i ~Þ j !
k~Þ i , j !

uw i&SikSk j1•••.

~A2!

Of course, series~A2!, using a fixed overlap matrix, ha
worse convergence properties than the previous scheme.
can, however, improve the convergence behavior of Eq.~A2!
by a technique which is similar to the overrelaxation meth
used for solving linear systems of equations.12 For the origi-
nal Löwdin equationx5S21/2v, this method leads to the it
erative process~given here forSii 51)
v.

.

.

ch

-

de

,

p

-
y
e

,
ch

ne

d

x~k11!52 f k~ tSoff1t21!x~k!1Atv, ~A3!

wheref k5(I 2k11/2)/(I 2k11), I denotes a prechosen to
tal number of iterations (0<k<I ), Soff is the matrixSi j with
the diagonal entries replaced with zeros, andt is an over-
relaxation~or underrelaxation! factor ~here oftent' 0.75–
0.95!. The advantage of Eq.~A3! is that one~full or trun-
cated! overlap matrix can be used for multiple ON steps.
fact, we found remarkable convergence improvements
cases with not too large euclidic norms ofSoff @cf. Eq. ~22!#.
Unfortunately, the convergence of Eq.~A3! can still happen
to fail or becomes rather slow for larger initial deviation
from orthogonality~as observed for random atom-center
WF’s!. Moreover, as already pointed out, the CPU tim
needed for computing the overlap matrix turned out to
small compared to the time for performing the projection
The best results have therefore been found with use of
first-order Löwdin iterations~A1! in conjunction with the
dynamical determination of the LOC regions described
Sec. IV.
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