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We present a generalized projection-based oktlenethod which is applicable within nonorthogonal basis
sets of spatially localized orbitals. The projection to the occupied subspace of a Hamiltonian, performed by
means of a Chebyshev-polynomial representation of the density operator, allows the nonvariational computa-
tion of band-structure energies, density matrices, and forces for systems with nonvanishing gaps. Furthermore,
the explicit application of the density operator to local basis functions gives a powerful method for the
calculation of Wannier-like functions without using eigenstates. In this paper, we investigate such functions
within models of diamond and fourfold-coordinated amorphous carbon starting from bonding pairs of hybrid
orbitals. The resulting Wannier states are exponentially localized and show an ellipsoidal spatial dependence.
These results are used to maximize the efficiency of a linear-scaling orthonormalization scheme for truncated
Wannier functions[S0163-182808)01611-7

I. INTRODUCTION Above all, these are the recursion or Lanczos methads
the maximum-entropy scherfieThese procedures already

One of the most exciting developments in computationakmploy the sparse forms which the Hamiltonian and, if
solid-state physics during this decade has been the creatigmesent, overlap matrices attain within a tight-bind{fi@)-
of effective quantum-mechanical orddr-methods for the like description of the electronic states. To obtain a general
revelation of the electronic structure as well as the energeti©(N) scheme for total densities of states, one has, in corre-
relaxation of large model systems. With these techniquespondence with the above principle, either to implement a
both computational and memory efforts for computing band4{ocal procedure independent of the system %izeto resort
structure energies, total energies, forces, and related quantd the application of random vectot&:2 Though in prin-
ties scale onlinearly with the numberN of atoms in the ciple possible, the computation of forces is much more ex-
system. As a consequence, this development has tremepensive within these schemes and, when using random vec-
dously increased the applicability range of electronic-tors, associated with the problem of slowly decreasing
structure methods; in particulaab initio procedures are now random noisé® These techniques have therefore not yet
applicable to systems which a few years ago could only bgained practical relevance for MD simulations.
investigated by means of empirical or semiempirical meth-  Apart from the methods just described, there are, perhaps,
ods. Examples considered to date include giant single-shejhree principal approaches to achieve an ofdezemputa-
fullerenes, multishell fullerenes, tubular systems, and larggonal scheme for solving the electronic-structure problem. A
amorphous model structures currently containing up t0 & common feature of all these methods is that they are not

traces of certain matrix expressions. These traces have to be
computed either directly within the occupied subspace of the
Hamiltonian spanned by a set of Wannier-like functions
(WF’s), or with use of the original basis orbitals and simul-

(MD) simulations and therefore the investigation of short-
time growth and relaxation processes.

The fundamental principle of all ordd\-total-energy—
force techniques is the utilization of the spatial locality or . . .
“near-sightedness'(Ref. 4 of electronic effects. One way taneou_s inclusion of the density operator of _the system.
of treating this phenomenon has been known for many years 2 first JJroup of methods uses a _d|fferen’c[’al or
and is expressed by the possibility of performing unitaryvanatlonaiL solu_tlon for the density matrix of the system.
transformations of the occupied canonical eigenstates to ol2€cause the density operator can be constructed by means of
tain spatially localized wave functions. More precisely, thesdocalized, orthonormal WF's, the density matrix with respect
Wannier-like states are exponentially localized in insulatord0 & spatially localized basis set is localized as well. Using
and decay algebraically in metal§ Based on this principle, some additional effort to ensure the idempotency of this ma-
methods have been devised which take only the local envitrix (for zero temperatuje one obtains a linear-scaling pro-
ronment around a reference atom into account. As a furthegedure by performing traces within the full Hamiltonian
consequence, these techniques are particularly well suited gpace.
systems which have not too small gaps between occupied A second group of procedures is based on the variational
and unoccupied eigenstates. computation of the WF’'s themselves. Representing these

Since the 70s and 80s, linear-scaling methods for théunctions by local-orbitdf=22 or plane-wave expansiotis
computation of local quantities such as local electronic anagnd enforcing them to be localized in space, the final WF’s
vibrational densities of states have widely been appliedminimize an appropriate energy functional. With use of this
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Wannier basis, all traces are automatically performed withimelated WF's in undercoordinated systetwéth coordination
the occupied subspace. numbers< 4).

Finally, a third, nonvariational scheme is based on a di- The paper is organized as follows. In Sec. Il we present a
rect, polynomial representation of the density opergtor short review of the projection method for orthogonal basis

. 5 . .
This operator can be used with finite temperatures, but atyStems as recently publish&tf® Section Ill is devoted to

~ L hich . our generalization of this method to nonorthogonal local-
zero temperature Is a projection operator which projects qia systems. We will give the basic expressions for a

out the occupied fraction of any wave function it is applied gjrect application of the method within MD simulations. This
to. A polynomial expansion g5 was employed in Ref. 24 to section also contains a discussion of the main sources which
derive a Lanczos method within the occupied subspacean lead to errors in the projection method. To illustrate our
whereas Goedecker and co-workérased it to develop a results, we will present test calculations using a simple first-
projection method for the computation of total energies andrinciples non-self-consistent one-particle Hamiltortan
forces within orthonormal, local basis sets. Similar to thewhich is based on the local-density approximatibBA). In

first group of methods described above, traces are performegec. IV we then turn to the computation of WF’s and show
within the original basis of local orbitals. However, the num-results for models of crystalline and amorphous carbon. In
ber of polynomial terms needed to represgrat zero tem- particular, we investigate the radial dependence of these

perature increases with decreasing gap width between occfEnctions obtained with and without localization constraints
pied and unoccupied eigenstates. Furthermore, this approa@ﬂd explore' the degree C.)f orthqunallyy which tr'uncated pro-
requires precomputed estimates for the Fermi energy and tH@Ct_Gd f_unctlo_ns can achieve W'th!n a linear-scaling orthonor-
band edges of the systems. These estimates, however, can'B@lization. Finally, we conclude in Sec. V.
extracted in an effective ordét-way from the aforemen-
tioned recursion or maximum-entropy schemes. Il. PROJECTION METHOD FOR ORTHONORMAL

One advantage of the third method is that no initial-guess BASIS STATES

functions and no initial density matrix are needed when com- Th L hod for th iational .
puting electronic properties as traces. If such initial guesses, '€ Projection method for the nonvariational computation

are far from the final solutions, they may seriously restrictOf electronic properties of model systems is based on a poly-

the effectiveness of variational schemes during the first MpoMial representation of the density operator

cycles. The projection method is therefore a powerful tech- L .

nique particularly for systems with high degrees of disorder. p=2F=2F(H), (1)
Special initial functions are only necessary when the method

is used for explicit computations of Wannier functions, be-where F(E)=[ e¥(®~#+1]"* is the Fermi distribution
cause then one has to ensure to obtain the correct number nction at some temperature (g=1kT, and u is the
linearly independent projected functions which can be orchemical potentia) andH is the Hamiltonian operator of the
thonormalized. But even in this case we could show by firssysten?*?® The factor 2 accounts for spin degeneracy. In
investigation&® that the direct projection to the occupied this paper, we use a direct Chebyshev approximation of

subspace is superior to the usual variational techniques at thg £) to derive a numerically stable representatiorpofAt
beginning of a MD run. If this turns out to be generally true, zerg temperatures (E) is a step function, but can be ap-
the method will be capable of providing quite ideal initial- proximated for systems with an energy gap between occu-
guess density matriceand WF's for variational MD  pied and unoccupied eigenstates by using a sufficiently large
schemes, and this should apply even for systems with Smaﬂ;ut finite value ofB. In this case, the Fermi operatbris an

g\r/ Va'\zgh'?r% Q:atFiJSh Tffns; 3voignecltlon Wou]ldmalltcwr\g \lleryAeﬁer?'idempotent projection operator having eigenvalues 1 and 0
tr? " imS rtu r?t ons ”0 i netﬁasiﬁsvﬁ d ate fafr; \SNIa: “only. An alternative approach has been proposed by Silver
othe portant appiication, the knowledge ol the Set al3 These authors employ the kernel polynomial method

ihe electi polarization and related dietecrc consiigie? | [0 find the smoothest. Chebyshev. approximation of the
P ' eaviside step function when using a finite number of ex-

So far, the projection method has essentially been deveE

. o . o ansion termgmoment$. This may prove to be a valuable
oped and applied within orthogonal TB-like Hamiltonians scheme especially in the case of small energy gaps.

only. One purpose of the present paper is to demonstrate a For a set of orthonormal electronic basis statks,)},

very effective _general|zat|on_of the methad to nonorthogona g. (1) can immediately be rewritten in terms of the usual
basis sets using an approximation of the “upper-lower in-

dexed” Hamiltonian matri@® as proposed in Ref. 30. With Hamiltonian matrixH with elementsH ;= (@4[H| ¢p),
this generalization, the method can be used within local-basis

ab initio Hamiltonians as well. Furthermore, we will exam- p=2F(H),

ine the use of this method for computations of Wannier-like ) ) o

functions in crystalline and amorphous systems. In this paW/herep is the density matrix with elements

per, we will restrict these investigations to completely .

fourfold-coordinated systems. In this case, physically reason- paﬁ=<<pa|p|<pﬁ>.

able initial functions for the performance of the projection

are given by the ¢-like) bonding combinations of adjacent

hybrid orbitals. In a forthcoming second paper, we will thenThe band-structure energy,s, for instance, can then be
present a general method for the computation of hybridcomputed as the trace
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. o Here (S 1)*f is the inverse of the overlap matrix
Eps= TpH]=2 (@ulpHle)=2Tr[F(H)H]. (2) Sup={¢al@p). In Eq. (4) we use the very convenient ten-
“ sorlike notation proposed by Ballentine and KdialIn this
The force on atomj which originates from the band- Notation lower indices are related to the original basis func-
structure energy is given by the derivative t|on§|<pa> whereas upper indices refer to the so-called dual
basis= 4(S™ 1) *#| ¢ ). This convention greatly simplifies the
p . correct formulation of all equations in which the matrix ele-
Fi=- ﬁTI’[pH]. ments of arbitrary quantities with respect to nonorthogonal
] basis states occur. However, to rewrite equations such as Eg.

For insulators at zero temperature, this formula can be simﬁgn'g r?of;t?;ﬁad matrix form, we also introduce the short-

plified to?®
H=S'H,

Fi=—2>, Mea_ 1| E(H) 2 H

)

where the bar over the matrix symbol indicates the raise of

_ _ _ _ _the first index. Hencedd and H are the matrices with ele-
including the Pulay corrections with respect to the Ham”'mentsH“B andH,,, respectively.

tonian operatoH. In Sec. Ill we will derive these equations The importance of the matrid has been known for many
and similar expressions for other electronic properties for th‘?/ears7.'34 It is the proper matrix representant of the operator

general case of nonorthogonal basis states. N R . .
A linearly scaling behavior results from the fact that H in the sense that the action df on a basis functlorhcpﬁ)

becomes a sparse matrix when using spatially localized TBIS represented bii:

like functions|¢,). In the same representation, the density

matrix p for _insulat_ors can Iike_vvise be approximated by a |:||90ﬁ>=2 leayHY . (5)
sparse matrix setting all matrix elements to zero beyond a

some critical localizatiofLOC) radius. This is possible be- N _
cause orthonormal WFE'’s which diagonaliiedecay expo- This implies thatH andH have the same eigenvalues. One

nentially in insulators:® Thus, e.g., in Eq(2) the computa- has to note, however, that the mattik in general is not

tions pH|¢,) are independent of the system size, and théiermitian, asH and the matrices! andS are.

computational effort scales linearly with the number of at- The important point here as shown in Ref. 30 is that even

oms in the system. thoughH would extend beyond any tight-binding-like cutoff
Another generalization of these expressions is related t H, the matrix elementsi®; decay faster with increasing

systems with periodic boundary conditions where the localdistance between the centers of the localized basis functions

ized basis statelp,) are used to construct Bloch functions |¢,) and|eg) than the corresponding elemertts,z. It is

|Xak)- The spatially localized WF's are then expanded intherefore justified to approximate in a tight-binding-like
terms of these Bloch states. As a consequence, the matricggture by a similar sparse matrix form as usedHor.e., to
H and p with respect to these Bloch functions are néw et all elements dff to zero beyond some finite cutoff radius
dependent but nevertheless sparse. The complete method tgr-

. . ) : - The matrix elementbl“; can now be obtained by solv-
this case can therefore be derived in a straightforward mar]hg NL (N is the number of atoms aridis the mean number

ner. Howeyer, because_ Iin_early scaling procedures args orpitals per atorlinear systems of equatiots
mainly designed for applications to large systems where a

I"-point approximation is often sufficiently accurate, it is cus-

tomary to restrict these schemeskte 0. > SeyH73=H g5, (6)
Y
Ill. PROJECTION METHOD FOR NONORTHOGONAL where B runs through allNL basis orbitals in the system
BASIS STATES while « and y in Eq. (6) only index the orbitals within the

environment aroundle) defined byRyy. Note that due to

the restricted extent of the submatrices in E§). and the
One way of generalizing the projection method to nonor-positive definiteness of the overlap matrices, these equations

thogonal basis orbitals was outlined by GoedecReand can, in general, easily be computed by a Cholesky procedure

consists of representing the density operator by a contoJcf. Sec. Il B 3.

integration in the complex energy plane over the Green's Haying computed the matri, it is now easy to evaluate

operator. Within this approach, one has to invert the matrixertain operator equations in matrix form. For instance, due

(¢o|E—H|pp) for every energy valu& used in the integra- g Eq. (5) any power ofH is given by

tion. In this paper, we will use a different scheme which is

based on an approximation for the upper-lower indefad

A. Method

“contracovariant’) Hamiltonian matrix H¥eg =2 [0u)(HN)%, (7)
ky a H £ £K
Haﬂzz (SY)e"H " (4) wher(_a H*)*g are the matrix elements &f*. Therefore, the
Y band-structure energy now reads
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Eps— Tr[ﬁﬂ]:% (S H*(glpHle,)=2 THF(H)H].
®)

Moreover, the moments of the total density of stadle®9)

UWE STEPHAN AND DAVID A. DRABOLD

57

We now generalize E(q3) for the force on atonj which
originates from the band-structure energy term. Again, we
simplify the equations by restricting ourselves to the case of

insulators at zero temperature. In this case the occupation
numbers; can be considered constant. Let us first recall the

p(E) which can be used to obtain the DOS by means of, e.ggorresponding equation for this force in terms of eigenstate

maximum-entropy schemes, are expressed as

[ 1 ~ l -
= f_mEkp(E)dE: NTr[H"]= NTF[H"]- 9

The normalization here is chosen in such a way that the Fi=

integral [~ .p(E)dE equals the mean number of basis orbit-
als per atom.

Analogously toH, one can define a “contra-covariant”
density matrixp=2F(H) with matrix elements

P p=2F(H)"5=2 (ST)py,

(10

and pa5=<<pa|;)|<pﬁ> as in Sec. Il. The trace of this matrix
gives the total number of electrons:

Ne= Trp]= Tr[:71=§ P

coefficientsc;” and eigenvalueg; with respect to some spa-
tially localized basis set (such that EBHchiﬁ
=E;34S,4¢f) 3%

IEps d .
_ - _ U anpx
&Rj EI n; 19Rjuzzﬁ Ci Ci <‘PB|H|SDa>
oH )
- . acpx| _ _Bx | g “UBa
2 el -Gt tEGR @

ap

This expression can easily be verified by taking the secular
equation andZchi“c{’* Sg.=1 into account. Note that Eq.
(13) is exactwithin the (e.g., TB-like approximation used
for the eigenstatels;), i.e., it contains all Pulay corrections
with respect to the “exact” Hamiltonian operaté’r. To re-
write the second term in E@13), we need an equation simi-
lar to Eq.(12):

> nicfc*E;
1

Of course, this expression can also be used to define the

Fermi energy in the system.

It is interesting to note that the density matrix used by
Nunes and Vanderbift is expressed in the present picture as

an upper-indexed matrig®? with

Paﬁ: E Pwsyﬁ- (11)
Y

If the eigenfunctions of the system are given by
|4i) == .cf|¢,), this matrix is simply related to the coeffi-
cientsci” by

p“P=2 nicich*
|

=2 ni2 (STH eyl (wiles)(STHY, (12

:Z ni% (S™H* @, )il Al )il @ 5)(ST1) %

=(Fp)“. (14
Inserting Eqgs.(12) and (14) into Eq. (13), we obtain the
desired equation

QBM+

4S
z a yBZ B
IR H%p

> R |’

(15

F=>|-»
of

This equation contains the matricelsand p from Egs.(6)
and(11) as well as the derivatives of the usual Hamiltonian
and overlap matricesl and S with respect to the atomic
coordinates. We now show that Ed.5) leads directly to an
expression for the forces derived in a different way by Or-
dejon et al?° To this end, let us introduce a set nbnor-
thonormal but linearly independent Wannier-like functions

wheren; denote the occupation numbers of the eigenstates ¢,)} which span the occupied subspacébfat zero tem-

|4). As can be seen from Eql1), the matrixp®# can be
obtained from the matrip“; by solving linear systems of
equations similar to those as used in E). We remark that

it may be convenient to introduce a compact notation fo

such upper-indexed matrices as well. In analogy to uging

for the matrixp®,, we will also adopt the notatiop for p©#,
thus indicating the raise of both indices.

As we will see, the density matri; is the important

guantity when calculating electronic charge densities and

forces. The charge density is given in the usual way:

p(r)=<r|ﬁ|r>=azﬁ (rlea)p P (@glr).

I

peraturg¢. The density operator can now be written as
p=3,ld)p"b| with pr'=2(SH*" and S,
=(¢,l¢,). If we use the expansiofyp,)=3 c,le,), we
find, in this representation,

peP= % (S H ¢, |ples)(S 1%

=22 (S hmreh,
uv

<H,3>“B=% (STH ¢, |Hples) (S
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260 4 by using a minimal set of valence orbitals, but the core cor-
rections are omitted together with the three-center integrals
and part of the two-center integrals. To obtain comparable

CPU results, in all calculations we used the same values for the
time %122% cutoff radii of the Hamiltoniar(6.1 Bohr radii @g) for H
(min) Rioe: and H corresponding to three nearest-neighbor spheres in
8.0ag > 60 diamond, the parameteB (=50 with respect to the scaled
31 — | 7.4 Fermi distribution orf —1,1], this corresponds t@~50 har-
216 512 model sine 10058 tree 1) and the number of Chebyshev polynomig®) for
(atoms) the expansion ofF (E). The lower curve was obtained with a

relatively small LOC radius for performing the projection
FIG. 1. Linear CPU time scalingRef. 39 obtained with the (8.0 a); the upper curve was computed to achieve more
projection method for computing band-structure energies using &ccurate band-structure energies as compared to results from
non-self-consistent two-center LDA HamiltonigRef. 31 and ap-  direct diagonalizatior(computed for the two smaller mod-
plied to models for diamon¢216 atomy and tetrahedrally coordi- els). For these calculations we set the LOC radius to twice
nated amorphous carbdRef. 39 (512 and 4096 atomsThe re-  the cutoff radius oH.
sults are given for two different localization radRj,. as indicated The relative errors itE, for the diamond model and the
(solid lines. For comparison, th@©(N?) scaling of the CPU time amorphous model with 512 atoma-C512 are 1.1x10™*
neede_d fo_r direct diagonalization§ of the corresponding seculaénd 7 x 1074, respectively, for the lower curve and de-
equations is also presentédashed ling creased to 1.810 ° and 2.2 10" “ in the case of the upper
curve. Note that the amorphous model has a relatively small
HOMO-LUMO gap (between highest occupied and lowest
unoccupied molecular orbitalof 0.9 eV (for the Hamil-
tonian usey due to some defect states in the band gap. For
comparison, the CPU time necessary for computing all ei-
envalues has been included in Fig. 1. Of course, the cross-

=22 cl(STH™HH,(S ) efr

KN v

with HW:<¢M||:||¢V>- Inserting these formulas into Eq.
(15), we obtain an expression derived and already applie : 3

! . . . 20 ; ' g point of theO(N) and O(N~) curves moves to smaller
within MD simulations by Ordejo et al™ [Eq. (37) in their models if one can afford to use a somewhat lower accuracy

papei. in the projection method. In Sec. IlI B we will discuss in

15A d.e"t%"ed mvesttlgdatlclm ththe f:)rces tpbtlamed W'th" '.Eq'more detail how this accuracy depends on the parameters
(15 will be presented elsewhere. In particular, we will in- ;]nherent in the present method.

vestigate the numerical properties of this expression whe
computed within the projection method. Furthermore, it may
be interesting to examine the results of ELp) in the pres- B. Error discussion

ence of localization constraints for the density matrix. The \y/a how discuss the main sources which can lead to errors
influence of this spatial confinement on the forces should b, o projection method. Again, we will consider these er-
related to a recegt investigation by \r/]oter, Kress, and Siiver ¢ \yith respect to the band-structure energy. It seems to be
using a truncated-moment approach. clear that inaccuracies ik, will also affect more subtle

tAS n Stﬁc'd”' to r?cme;/e a;lll_me?rr]-scallng behaw?rtk?f t(?equantities like forces and the charge density. For the follow-
e_rt1 Ire T? '(Ij'h', we avethotl:hl 1€ t'e spartsenesi OI' '? el 1g discussion we will presume to have a given Hamiltonian
sity matrix. This means that the matrix-vector muiliplications, i, 5 certain TB-like cutoff radiu®R,, in H. Furthermore,

for perfo_rming the_projecti_ons in _Eq§8) and_(lO) can be we consider systems with a finite HOMO-LUMO gap.
accomplished within certain localization regions which can

be defined by some radiuR,.. To minimize the error in
these computationR,. should be, in general, somewhat
larger than the radiuRj; used above for defining the sparse  Although the method described can be regarded as a
matrix H. We will present a detailed discussion of thesefinite-temperature scheme, the temperature used for getting a
errors in Sec. Il B. Here note that this localization argument=€rmi distribution which can be represented by a tractable
cannot be applied to Eq9), which does not contain the number c_>f Chebyshev polynomle}ls is often much hlghertharj
projection operator. The linear-scaling evaluation of thethe physical temperature one is mteresteAd in. Furthermore, if
traces for computing moments of the total DOS is thereforedne wants to use the projection propertypofe.g., for com-
usually done by means of global random vect§ré? puting WF'’s, one has to approximate the Fermi distribution
To illustrate now theO(N) scaling of the method, we atT=0. We therefore estimate the deviationEy; from its
present in Fig. 1 the CPU tim&needed for computations of value atT=0 when using a finite value g8 and settingu
the band-structure energy in three models for diamond andqual to the Fermi enerdyr . This error, say,, is given by
fourfold-coordinated amorphous carbon containing up tdhe sum
4096 atoms? For these calculations, we employed a simple
first-principle non-self-consistent one-particle Hamiltoritan £ E
in which the localized wave functions and atomic potentials . —» ! _ !
are taken from modified self-consistent atomic LDA calcula- e ePEEr 41 E<E P Bl
tions. The matrix elements in extended systems are obtained (16)

1. Use of a finite value for8
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whereE; are the eigenvalues &f. For ourg values(usually Emax 2 (ex dx

B=50, ...,100 forE on[—1,1]) the exponents in the de- f F(E)E dE~ 5 (EZ—Eq,) + —Zf -

nominators rapidly attain valugd|E; — Eg|>1. This means Emin ploe+1

that the weights of the eigenvalues in siib®) decay expo- 2

nentially when going away from the Fermi energy in either =3 (E2-E%)+—. (20)
6 2

direction. The order of magnitude af; can therefore be
estimated by taking only the HOMO and LUMO states in

Eq. (16) into account, thus yielding The first term here corresponds to the Fermi distribution at

T=0, hence the second term again describes the deviation

€1~ 2{F(ELumo) ELumo + [F(Eromo) —~ 11Enomo} which was discussed in Sec. Il B*.Turning now to the
first term in Eq.(18), the integration can easily be performed
=2F(ELumo)AE (17 with use of the Chebyshev coefficients Bf". This can be

W|th ELUMO:EF+%AE and EHOMO: EF_%AE To con- seen by employlng the formUIaS

sider as an example theeC512 model presented in Fig. 1 Too: Toog

and the B value used there, this gives a relative error f T,(x)dx= = - (n=2),
€,/|Epd=1.6X107°. The exact error as computed from all 2[n+1 n-1
eigenvalues is 5:210 °. For the calculation using the 10T T

smaller LOC sphere in Fig. 1, this error is more than one f XT(X)dx= = nt2_ n-2 (n=3),
order of magnitude smaller than the total deviationEig 4[n+2 n-2

given above. This means that even E~0.9 eV (~0.03 \ hich can be derived by differentiatiffythe defining equa-

= 1 -
hartreg the vall_Je,B—SO hart_ree is sufflc:lent_. For the  tions for the Chebyshev polynomidls,(x) = cosfiarccos).
larger LOC radius,e; may still not be the decisive error. By means of the expansion

However, if more accurate computations are desired, the

value of 8 should also be increased in this case. Ch( Emax— Emmx+ Emaxt Emm)
2. Expanding the Fermi distribution into a finite sum b 2 2
of Chebyshev polynomials Nen
The error related to this expansion, say can be esti- => ¢ Tho1(X), (—1<x<1)
n=1

Tated by replacing the density of states with its mean value

p between some band edggs,,, and E,.x and performing e then obtain
explicitly the integrations in the following expression:

Emax
Ermax Ermax FSE)E dE
eZwZN;[f FS(E)E dE—f F4(E)E dE}. me 5(E)
Emin Emin
(18)
1
Here,th(E) is the Chebyshev approximation of the Fermi =2 (Emax™ Emin) X | (Emaxt Emin)
distributionF 4(E) for some given valugs. The second term
within the square brackets in EGL8) can be evaluated in a C1 E Cokt1
similar way as used for the degenerate electron gas in statis- 2~ k=1 (2k—=1)(2k+1)
tical physics:
Cak
J’Emax E dE —(Emax— Emin)gl (2k=3)(2k+D)|"
Emin €2 EF +1

Introducing the shorthand notatidp/2 for this integral and
Er Er  E dE settingp=Ng /[ 2N(Er— E,in) ] WwhereNg, is the number of
_f E dE- fE CAE B electrons in the system, we arrive at the final expression for
min the errore,:

Emin

Emax E dE 2 2
e PEEITL e I e mIEE) L 21
E 2 2 el EF_ Emin F min| -
_1 E2_E2 ) Er—Emin(y — Ep)dy Let us again consider as an example /€512 model with
= 5 (BF~Emin A1 B~50 hartree ! and 80 Chebyshev polynomials as used in
Fig. 1. In this case, the relative errey/|E,J obtained from
Emax Er(y+ Eg)dy Eq. (21) turns out to be—1.6x 10>, compared to its exact
+ . a1 (19 value of—1.9x 10" as computed from all eigenvalues. This

is again more than one order of magnitude less than the total
At the band edgeg=E;— E,, andy=E,.,— Er, we obvi-  errors, showing thatat least for the band-structure energy
ously havee®>1, one can therefore replace the upper in-the Chebyshev expansion used is sufficiently accurate for the
tegration boundaries in E@19) with . This results in Fermi distribution function applied. One should also note
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TABLE I. Relative errorsAE, in the band-structure energy for the present implementation scales approximately linearly
the a-C512 model computed with the projection method in depen-with the number of atom®Ng within Ry and N, within

dence on the cutoff radR,,. for performing the nlatrix multiplica- Riee. The numerical effort for computing the matiikwhich
tions[Eq. (8)], andRyy for computing the matriH [Eq. (6)]. Nioc  scales quadratically with5 is in general small compared to
and“N,_T are the maX|mum.number of atoms within the §pheres Withyhe effort for performing all the projectiorisf. Eq. (8)]. The

radil R andRyy, respectively. The last column contains the CPU 0| numerical effort of the present method, therefore, scales
time(Rt_ef. 3_8 needed for computing the matricelsand performing approximately as\N;N,,.-Ncp, WhereNgy, is the number of

the projectiongEgs. (6) and (8)]. Chebyshev polynomials used as discussed above.

Finally in this paragraph, we should consider the numeri-

Rioc Ru 7 CF_>U cal accuracy in the solution of the linear system of equations
(@) Nioe (@) Ni ABos (min) (6) for computing the matrixd. This accuracy is controlled
8.00 62 6.1 30 7.210°4 7 by the condition numbez of the overlap matrices occurring
7.0 45 5.910°* 11 in Eq. (6). The numerical uncertainty in the solution fidris
10.37 133 6.1 30 5.20°* 18 of the order ofz units of the last figure in the absolutely
7.0 45 3.510°* 28 largest matrix element dfl. The condition number is given
12.20 210 6.1 30 22074 33 as the ratio of the absolutely largest to the absolutely small-
7.0 45 4910°° 50 est eigenvalue of a matrix. Since the overlap matrices are

positive definite, these eigenvalues are in fact the extreme
ones and can easily be computed by a Landzesursion

that the errore, can be positive or negative dependent on theProcedure. o N
special oscillating behavior of the Chebyshev approximation 10 estimate this influence, we computed the condition
chosen. numbers for the orbitals used in the simpler Hamiltonian of
Let us finally remark here that in the case of larger gapdXef. 31 as well as for th(_e Sankey orbitals used in Ref. 35. In
one should estimate the erres by explicitly taking the gap the latter case, thg rela_tlvely large extent and overlap pf the
width into account setting the DOS to zero betwdgp,, PSeudoatomic orbitals in the case of carbon resulted in the

andE_yuo . The formulas for this case can be derived in alargest condition numbers we found which turned out to be

a-C512 model mentioned abové-or comparison, the num-
berz for the more localized orbitals of Ref. 31 was only 4.7.
Keeping the other influences discussed in this section in
This problem was already addressed in Ref. 30. As thesmind, these results imply that an 8-byte-precision arithmetic
authors showed, when using the same confinement radii fas used by us in solving Ed6) allows overlap matrices
H andH the maximum matrix element of the produsH  Which have by several orders of magnitude larger condition
[Cf. Eq (6)] beyond this radius is at most of the same ordernumbers before any Significant influence of this prOblem
of magnitude as the matrix elements lfat the cutoff ra- May be expected.
dius. This means that the error in computed eigenvalues or
band-structure energies due to the confinemeri a$ also
of this order of magnitude(or smalley.*® For our According to the discussion carried out so far, the LOC
Hamiltonian®! the matrix elements at the cutoff radius of 6.1 radiusR,,; applied within the matrix multiplications for per-
ap are~1x 102 hartree. This gives a relative error of about forming the projectior{cf. Eqg. (8)] appears to be the most
<1072 for our band-structure energies which is approxi-crucial parameter in the present scheme. For reasonable val-
mately of the same order of magnitude than the total error§ies of 3 andNcy, the choice of the LOC radius determines
for the a-C512 model considered aboV&or diamond, this the accuracy of the projection method for LOC spheres con-
error is about one order of magnitude smaller because th@ining up to about 100 atoms. This result can already be
next (fourth) nearest-neighbor shell is placed at &34 inferred from Table I. In Fig. 2 we investigated in more
To check the influence of the cutoff radil&; on the detail the influence oR,,. on the band-structure eneréy,.

band-structure energy, we computed the relative ek, ~ \We present the result for diamond and amorphous carbon; to
for the radiusR;= 6.1a, used above as well as for the radius reduce the effect of the finite cell size, we considered models

Ri=7.0a, at which all our matrix elements ikl naturally ~ With 512 atoms in both cases. To eliminate the influence of

vanish. (Actually, we keptRy=Rg in these computations the confinement oH, the valueR;=7.0ay was used for
because the increase Ry, as shown by direct diagonaliza- both models. Furthermore, we applied the valBes50 har-
tion only leads to a relative change in the total band-structuréree™* andNg,=100 in these computations.

energy of 2107°, and can therefore be neglected here. Figure 2 demonstrates the global decrease in the error
The results for three different LOC radRj,. are presented in  AEg with increasingR,,.. But it shows another important
Table I. As can be seen, the use of the smaller raBigs and unexpected result. The decreaseé\ly is not always
results in an error of about>210™ 4. This error is compara- monotonic, as it would be in an analogous variational proce-
tively small for small LOC radii but becomes essential fordure. Increasind?,,. in diamond from 7.4, (including five
larger ones. In that case, the increas&pgfrelative toR,, or  nearest-neighbor spheje® 8.8, (seven nearest-neighbor
the increase of both cutoff radii may be useful. The readespheresresults in arincreasein AE,s by about one order of
may also notice from Table | that the computational cost ofmagnitude. Outside this region there is still no significant

3. Use of a confinement radius for the matrikl

4. Use of a finite localization radius within the projection
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ized by an increase ihg at the central atom and a corre-
sponding increase in the norm of these functions by about
103, This is just the magnitude of the effect found in Fig. 2.
Apart from this fact, the radial dependence of the gross
populations shows the expected exponential behavior but is
again nonmonotonic with respect to the radius of the LOC
r region. We will investigate this radial dependence more thor-
oughly in Sec. IV, where we will start from more appropriate
initial functions constructed from hybrid orbitals.

A-Ebs

Ry (aO)

) o IV. COMPUTATION OF GENERALIZED
FIG. 2. Relative deviation of the band-structure energy com- WANNIER FUNCTIONS

puted with the projection method from the value obtained by direct
diagonalization of the secular equation, plotted in dependence on The projection method as described so far works without
the localization radiuR, for two models of diamond and fourfold-  explicitly calculating Wannier-like functions. In this section,
coordinated amorphous carbon containing 512 atoms. however, we want to show how the method can effectively
be used to compute such functions which are linearly inde-
reduction in AEps up to R,.=10.7ap. In the amorphous pendent and span the occupied subspace of the Hamiltonian.
model this behavior is to a large extent smeared out, leadingurthermore, as has been known for a long & or-
to an almost monotonic decrease. This fact suggests that thiRogonal WF's in general have worse localization properties
stated effect is related to the symmetry of the crystal struceompared with nonorthogonal ones. We therefore investigate
ture and consequently to the symmetry of the Wannier-likehe localization behavior of our functions before and after
functions obtained within the projection. However, within orthonormalization. Furthermore, we will investigate how
the medium-range environment seen by the WF'’s, the amomvell approximate WF’s which are truncated to certain LOC
phous structure is not as different from the crystal as needeskgions can be orthonormalized by a linear-scaling proce-
to entirely blur the special radial dependence found ;. dure. We want to emphasize here that it is not immediately
To check this behavior, we recalculated the radial depenelear how well an ordeN orthonormalization should work
dence ofAE,4 using the more elaborate Hamiltonian by San-at all. The reason is that in every orthonormalizat{@N)
key and Niklewsk® which is based on the Harris step, localized functions will acquire some weight outside
functionaf® and the evaluation of all three-center integralstheir previous LOC regions, but one has to truncate these
(more detailed results and further applications of these invedunctions to ensure the linear scaling of the method. Such a
tigations will be presented in a subsequent pap#fith these  scheme, therefore, must not significantly increase the number
computations, we could exactly reproduce the qualitativeof atoms in these regions.
shape of the curves in Fig. 2 showing the deep minimum at The technique of applyin¢pand projection operators for
47 atoms and the second flat minimum at 123 atoms. Theomputations of WF's within ordinary and one-dimensional
error AE at the first minimum even reached negative val-perturbed crystals was already used several years ago in
ues. This again indicates that the effect seems to be the res®efs. 41-43. The projection method presented here is essen-
of the superposition of two errors of opposite sign, one reptially similar in spirit to these former computations. How-
resenting the general increaseAik,; with decreasindR|,, ever, the main differences, as described above, consist of the
which, however, is modified by the way the projected func-actual construction of our projection operators by a Cheby-
tions spread through the crystalline environment during theshev representation of the Fermi-Dirac operator instead of
matrix multiplications. using any eigenfunctions, and in the formulation of the
For comparison, we also investigated LOC regions whichmethod as a real-space approach, thus allowing an effective
are determined by the number of bonds steps necessary linear-scaling implementation of this technique.
reach an atom. In this way we found that the region with the To obtain linearly independent WF'’s, a generally appli-
largest drop in energgnegativeAE, for both Hamiltonians  cable procedure consists in selecting the correct number of
applied is composed of all atoms within three bond stepsinitial functions at random. In systems with four valence or-
starting from one central atom. This structure contains 4bitals per atom and as many electrons as the total number of
atoms and is obtained from the minimum structure in Fig. 2valence orbitals, one could use two atom-centered functions
by breaking off eight-membered rings emanating from theper atom formed by random combinations of the atomic or-
central atom. Any further reduction in the number of atomsbitals at one atom. However, such functions result in rela-
leads to an abrupt rise in the band-structure energy, wheredisely large overlap values between the projected functions
the enlargement of the LOC region after an increas&bip;  which in turn make their orthonormalization more difficult
results in a convergence to the exact energy from highertespecially in the presence of localization constraintfis
energy values within numerical accuracy. also leads to inferior localization properties of the approxi-
The observed behavior NEs can be traced back to the mately orthonormalized Wannier-like functions. For locally
amount of “charge” maintained at the initial basis orbitals well-relaxed structures we therefore prefer an approach
when performing the projections. We estimated this chargevhich takes local physics in terms of bonding information
by computing Mulliken’s atomic gross populatiolg, for  into account. Such functions are especially easy to obtain in
the Wannier-like functions resulting from the projection. Thecompletely fourfold-coordinated covalent materials which
minimal-energy LOC regions discussed above are characteare the systems of interest in this section. In these systems, a
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TABLE Il. Norms for various atomic states before and after 10° =
their projection onto the occupied subspace. The first three rows - before ON
contain orbitals at one atom, whereas the last two rows contain the 10~21 o after ON
bonding and antibonding combinations sp® hybrid orbitals at o
neighboring atoms pointing in the direction of the bond between 10-41 o °
these atoms. Ne ’ e o
1091 ° ¥ ? )

norm ° o g8 o°
initial state initially after proj 10-81 ° eéé L
|s) 1.0 0.778 0o 1 2 3 4 5 6 7
|p) 1.0 0.654 r (A)
|sp®) 1.0 0.685
Isp*)a+|spP)s 2.737 2.718 FIG. 3. Mulliken’s atomic gross populatipmg_ for orthpnor-
Isp*)a—|sPP)s 1.263 0.023 malized bond-centered Wannier functions in diamond in depen-

dence on the distance from the bond center; dots, functions obtained
after projection; circles, Lwdin-orthonormalized functions. No lo-
e(:alization constraints were applied.

natural choice for the initial functions needed to comput
WF's is provided by the bonding combinations af-{ike)
hybrid orbitals which point in the direction of the bond be- functions is that the functions resulting from the projection
tween two neighboring atonf€%?* As shown by Des already have relatively small overlap valué@&031 in our
Cloizeaus” and Kohn*® orthonormal occupied WF’s in the casé! for functions centered at neighboring bond3his
diamond lattice can be chosen to belong to the identity repmeans that during a subsequent orthonormalization, these
resentation of the point group associated with the bond cerfunctions will not change very much. In fact, as can be seen,
ter between the neighboring atoms. Bonding pairs of hybridhe largest changes occur at atoms within ak®é or two
orbitals already have all these symmetry elements, but thelond steps around the initial bond. The atoms forming the
excess symmetry is broken during the multiplications withcentral bond and their nearest-neighbor atoms lose some
the Hamiltonian matrix. The suitability of hybrid orbitals as weight, whereas the “charge” at the atoms one bond step
initial guesses for WF’s can also be seen by considering th&arther away increases by about or less than one order of
change of these functions after projection onto the occupiethagnitude. The change in the weight at most of all other
subspace ofl. Table Il contains the norms of the bonding atoms is very small. In particular, the exponential decay does
and antibonding combinations ep? hybrid orbitals in dia- Not noticeably change during orthonormalization when start-
mond before and after projection. The bonding hybrid pairind from hybrid orbitals. However, as we will show below,
changes only slightly and is to a large extent situated in th&n€ must not infer from these results that an easy orthonor-
occupied subspace. Correspondingly, the antibonding palf@lization of these functions would be possible by simply
disappears almost entirely during the projection. For comiruncating the tails of the projected functions when LOC
parison, we also included in Table Il the norms for the func-constraints are used. o _
tions generated by orbitals at one atom. These orbitals pos- 1€ global exponential decay of our WF’s in diamond is
sess large contributions in both subspaces. clearly visible in Fig. 3. This fact suggests that these bond-
In fourfold-coordinated amorphous systems, bond-élated functions are close to the optimally localized ortho-
directed hybrid orbitals can be used in a similar manner a§ormal occupied Wannier functions in this system. Note that
initial orbitals for WF’s. They immediately lead to the cor- for overlapping energy bands exponentially localized Wan-
rect number of Wannier states and again reflect the locdpier functions are not uniquely determln‘égt:inst(_aad differ-
symmetry of the structure. However, in amorphous system§nt sets of such functions can be transformed into each other

these bond-directed orbitals are, in general, nonorthogon®y unitary transformations. Apart from the exponential de-
also to the orbitals attached at the same atom. cay, however, the radial dependence of these functions is by

In the following, we first investigate in more detail the N0 Means monotonic in theeal-spacg distance from the
properties of orthonormalized WF's in diamond as obtained?ond center(We had already referred to this fact in Sec.
by the projection method. Let us then discuss the generalizdll B-) One immediate suggestion is that the weight of a WF
tions needed and the results obtained for a model of fourfold@t @ certain atom should also significantly depend on the
coordinated amorphous carbon. To reduce the influence d¢iUmber of bond steps needed to reach this atom when start-

the unit cell size, we use in all cases models containing 5149 from the central bond. This dependence is demonstrated
atoms. in Fig. 4. In this figure, different symbols at the same real-

space distance describe different distances from the central
bond in terms of bond steps. This “bond-step” distance is
indicated in the lower panel of Fig. 4. At the same distance
Let us first discuss the properties of our WF's obtainedatoms marked with diamonds are separated by more bond
without any localization restrictions. In Fig. 3 we presentsteps from the bond center than atoms marked with circles.
Mulliken’s atomic gross populationd, for the normalized The expected result here is that the diamonds in general also
functions immediately after projectididots and those func- have lower gross populations than the cirdlese the upper
tions obtained by a subsequentvidin orthonormalization panel in Fig. 4. However, both distancdthe real-space dis-
(circles. One advantage of using hybrid orbitals as initial tancer and the bond-step distancare not yet sufficient to

A. Diamond
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FIG. 4. Mulliken’s atomic gross populatior$, for orthonor- FIG. 5. Mulliken’s atomic gross populatiori$, for orthonor-

malized bond-centered Wannier functions in diamond as given imrmalized bond-centered Wannier functions in diamond as given in
Fig. 3. For each distanaefrom the bond center, the symbols used Fig. 3. For each distanaefrom the bond center, the symbols used
describe the number of bond steps needed to reach a certain atafascribe the distanad,q of a certain atom from the axis specifying
starting from the central bond. This number of bond steps is indithe direction of the central bond. This distance is indicated at the
cated at the same distance in the lower panel. The dashed lines asdmer value in the lower panel. The dashed lines connect the same
letter symbols are explained in the text. atoms as in Fig. 4.

describe the spatial dependence of the WF’s. In particulagonnected by the dashed line ne& A in Figs. 4 and 5.
there are frequent casé@mpare the atom groups connectedFurthermore, the corresponding fourth-nearest-neighbor at-
by dashed lines in Fig.)4in which of two atoms with the oms in both charge-density plots are connected by the dashed
same bond-step distance the more distant atom in terms ofline at 5.5 A in the former figures. In accord with these
acquires thdarger weight within the WF. Note that these examples, Fig. 6 shows a preferred “flow of charge” in the
differences inNg can reach about one order of magnitude. bond directions in th¢110 plane. As we found, this spatial
To gain a better understanding of this effect, we replotdirection leads to larger weights of the WF’s compared to the
Fig. 4 (see Fig. 5, but now different symbols at the same corresponding neighbors at the same bond-step distances but
“spherical” distancer indicate different distances of these located perpendicular to the central bond in Fig. 7. Indepen-
atoms from an axis along the direction of the central bonddent of this discussion, both figures clearly show the accu-
This figure therefore describes the nonspherical spatial bemulation of bond charge in the central region of the bond,
havior of the WF’s beyond the bond-step picture used abovéhe minor accumulation of charge at neighboring atoms, and
Indeed, in all the cases just descrilfadhich again have been the “impressive” nodal structure of the WF’s created by the
marked with dashed lingsthe more distant atoms with the superposition of the 2and 2 atomic valence orbitals.
larger gross populations are situated closer to the bond direc- The nonspherical spatial behavior of the WF’s has impor-
tion than the corresponding atoms at smalleFurthermore, tant consequences for the optimal shape of the LOC regions
the diamonds which now describe larger distances or angleshen one has to truncate these functions to obtain an order-
from the bond direction, are again mostly situated at smalleN computational scheme. Unfortunately, we have not found
gross populations in the upper panel of Fig. 5. This behavioa simple parametrization of such a LOC region, say, in form
is only weakened for atoms far away from the originatingof an ellipsoid, where one could have fixed one parameter
bond. We therefore conclude that the WF’s in diamond areand vary the other one with respect to the accuracy desired.
more ellipsoidal than one would expect from a picture whereDuring the projection, when starting with hybrid orbitals, we
the decay of the WF's is determined by the spherical andherefore employ LOC regions determined by a critical num-
bond-step distances alone. ber of bond steps, as was done in previous work using varia-
To illustrate these quantitative results, in Figs. 6 and 7 wdional method$:?° After every ON step, however, we rede-
present the charge densities of the orthonormalized untrurfine each LOC region in such a way that it contains those
cated Wannier function in diamond as obtained with ouratoms which have accumulated the largest weights within a
Hamiltonian®! Figure 6 shows the charge density within a WF. This dynamical reshaping of the LOC region takes the
(110 plane which contains the nearest-neighbor bonds. Thebserved directional dependence of the WF's into account,
plane in Fig. 7, on the other hand, is tilted around the centrahnd simultaneously allows these functions to expand to those
bond in the former plot to include the “perpendicularly lo- atoms which have acquired significant weight during the ON
cated” second-nearest-neighbor atoms of the bfi2d1) process. As we found, this method results in a decrease in the
plang. Note that the second-nearest neighbors in Fig. 6 ancemaining overlap values during an ordémrthonormaliza-
the second-nearest neighbors in Fig. 7 are just the atomi#n by about one order of magnitude. Also note, as we will
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FIG. 6. (Colorn charge-density plot of the untruncated and orthonormalized projected Wannier function withibhltheplane in
diamond. The colors have been mapped to the logarithms of the charge density between its maximum yadean® minimum value
6.4x 10 % (blue, values in electrore) found for the resolution of the figure.

FIG. 7. (Colorn charge-density plot of the untruncated and orthonormalized projected Wannier function withialtheplane in
diamond. The mapping of the colors is the same as in Fig. 6.
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show in Sec. IV B, that this flexible scheme of defining LOC

regions is not only useful in crystalline systems, but im- A2=—
. e . M

proves the computation of WF’s in amorphous solids as well.

We have also compared different versions of the generalsed in Ref. 50and, in a similar form, in Ref. 28where
Lowdin-related orthonormalization scheme with respect tchereS;; are the overlap matrix elements between the Wan-
using full or truncated overlap matrices. These results araeier states, antl is the total number of WF’s. In our case,
reviewed in the Appendix. In general one has to decideve normalize all WF’s after every ON step; henk®is just
whether to use one given overlap matrix for multiple ON the square of the euclidic norm of the off-diagonal Wannier
steps, or to recompute this matrix for each new set of iterate@verlap matrix, divided by to make this quantity indepen-
functions. In our implementation the CPU time needed fordent of the system size. To reduce CPU time in an actual
computing the overlap matrix is smabbf the order of one- Computation, of course, one would not want to calculate
tenthh compared to the time for performing the projections.overlap values which are not used in the ON run. In this

The most effective scheme, therefore, is to use repeated firdi€SPect, the question arises, how well the efficiency of the
order Lawdin iterations in conjunction with the dynamical ON procedure can be inferred from the included overlap val-

determination of the LOC regions as described above, ~ Uesonly. _ _ _
When the atoms within a LOC region can change, one has . Consm_iermg_ Fig. 8, we first recognize that, when starting

to decide how th@umberof atoms may change there during with hyprld orbitals, a small number of ON steps is sufficient

an ON run. We do not allow the LOC regions to shrink; to to maximally reduce the largest overlap values. In our case,

. . e we reached a minimum of about X@0 2 in caseqa) and
prevent a distortion of the symmetry of the WF's in crystals,_§) and about 5 104 in case(c). However, in case&) and

1]

M
> <5i,-—s,->2} (22)

however, one then ha; to permit _at least a slight ingre;ase ' ) the ON process becomes inefficient when the overlap
the number of atoms in these regions. One can minimize th alues included in an ON run reach the magnitude of the

grp_wth of _the L,OC regions by, €.g., introducing a Certainomitted values. In caséb), the LOC regions are much
critical weight difference for additional atoms at the LOC gnajier than the regions where the overlap values are calcu-
boundaries. This leads primarily to an exchange of atomgyted. Therefore, the omitted overlap values are now negli-
altering the LOC region into a more ellipsoidal shape. Togiple, but the WF's cannot form the tails necessary to reduce
avoid such an additional parameter, one would have to |eaV§|| the Over|ap5 within the Over|ap regions_ The process ter-
all atoms within a LOC region which once have been thereminates “by itself” and is therefore a purely linear-scaling
Such an approach increases the accuracy of the orthonormaeheme with inclusion of an efficiency criterion.
ization, but is only reasonable as long as these regions do not However, the increase in the number of overlap values to
expand up to the complete next “bond shell” of atoms. Thisbe calculated when going from colun{a) to column (b)
does not happen in diamond, for which we will show thedoes not significantly improve the accuracy of the ON
results of this latter version. Results with an almost constanscheme. Case&) and (c) are therefore more efficient ap-
number of atoms in the LOC regions will be presented forproaches. Furthermore, when considerixig we found that
amorphous carbon in Sec. IV B. the procedure in general terminates after about four ON steps
The three columns of Fig. 8 demonstrate the results fofwhen using hybrid orbitals as initial functiondJsing this,
the orderN orthonormalization of WF's in diamond starting it may be sufficient to extend the LOC regions by one bond
from different LOC conditiong? In the first two columns, [0 define an appropriate overlap region thereby greatly re-
the initial LOC regions for performing the projection contain ducing the number of overlap vglues to be computed. Note
all the atoms within three bond steps starting from the origi-Nat the final values attained fdr” after four ON steps are

75 . 76 .
nating bond. This number is 4 in the last column. AnotherabOUt 13107 in caseda) and(b), and about 3. 10" in
distinction is the number of overlap values taken into ac-Caieég)'fu” circles in the bottom panels of Fia. 8 show the
count during the ON process. As it turns out, it is not neces- . pa 9-65

. ,_increase in the number of atoms in the LOC regions. Re-
sary to compute the overlap between all overlapping WF Siember that we did not remove any atoms from this region
The first and last column in Fig. 8 are characterized by usin y gon.

. _ 9 diamond, an increase occurs only during the first ON run;
only the overlap values between functions for which thethis extends the LOC regions from 56 to 80 atoms when
originating bond of one function is attached at an atomgaing with three bond steps, and from 110 to 130 atoms
within the LOC region of the other Wannier state. In the\yhen starting with four bond steps. In the first case, the new
middle column, we use the overlaps to functions which arétoms are exclusively four bond steps away from the central
centered up to two bonds apart from the atoms in one LOGyond and markedin the order of decreasing weightith a,
region. According to the figure, let us refer to these thregy ¢, andd in Fig. 4. In the second case, all new atoms are
situations aga), (b), and(c), respectively. separated by five bonds from the original bond and marked
In the top panels of Fig. 8, the full circles indicate the with e, f, andg in the same figure.

maximum of the(absolute overlap values which are taken As an example, in Fig. 9 we present the approximately
into account during an ON run. To check the maximum over-orthonormalized and truncated WF’s corresponding to col-
lap between all WF's, the open circles in the same panelamn (a) in Fig. 8. For comparison, we again indicated the
show the maximum of théabsolute¢ overlap values which gross populations for the unconstrained functions. We found
are not included in an ON run. As another measure of théhat the truncation of the tail of the WF raises the weights at
efficiency of an ON procedure, we have also computed thell atoms except the two atoms at the originating bond. As
guantity can be seen in Fig. 9, the largest relative differences occur at
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orthonormalization runs We have computed the WF’s in a model of fourfold-
coordinated amorphous carbon containing 512 atoms in the

cated Wannier functions in diamond. Columita). localization of unit cell. This model is '?1 re,lax,ed version of the original
WF’s within 3/overlap computation within four bond steps from sysftem generatgd by DJordleY'C' Thorpe, and Wodten,
central bond of a WF{b) 3/5; () 4/5. Rows:S",,, maximum  Which we used in Sec. lll. This original model, however,
overlap between WF’s within region of overlap computatisff,, ~ contains a few atoms which are only threefold-coordinated
maximum of remaining overlaps not used in orthonormalization;within any reasonable nearest-neighbor distance. The subse-
AZ?, orthonormality measuré22); LOC, number of atoms within quent relaxatio?t of this model based on the Hara initio
localization regions of WF's; ON run 0 means after projection.  Hamiltoniarf® improved the fourfold coordination of this
system and, as a consequence, produced a structure with a
the boundary of the LOC region. It is just the WF's centerediarge HOMO-LUMO gap of width(4.3 eV} slightly smaller
beyond the boundaries of the LOC regions which producgnhan that computed for diamor(8.9 e\).
the maximum remaining overlap values presented in the top | Fig. 10, we present the radial dependence of the gross
panels of Fig. 8. The truncation prevents a proper adjustmen,njations for orthonormalized WF’s without using local-
of the WF's to reduce these overlap values. On the othef4iion constraints. Given are the averaged and maximum

atoms of a WHby about 103, not visible in Fig. 9 which
in general raises the mean energy of this WF.

FIG. 8. Efficiency of an ordeN orthonormalization of trun-

son, the dots indicate the corresponding WF’s found in dia-

mond. Figure 10 shows the clear exponential decay of our

. WF’s even in the amorphous structure. This result is in ac-
B. Fourfold-coordinated amorphous carbon cord with theoretical investigatioPfswhich verify the exis-

As already mentioned, the technique of using bondingence of exponentially localized WF’s in nonperiodic sys-
combinations of neighboring hybrid orbitals as the initial tems obtained in some way from periodic ones. However, the
functions for computing Wannier states can be applied irmmorphous structure shows a much greater variation of the
completely fourfold-coordinated amorphous systems as wellpopulations within a certain distance interval compared with
However, there is the following difficulty related to this ap- diamond. This is obviously the result of the local distortions
proach. of the atomic environments. Unlike diamond, the minimum

When using a minimal valence orbital set®), itisin  gross populations even become negative in the amorphous
general not possible to compute orthogonal hybrid orbitals astructure. Although this is considered a deficiency of Mullik-
fourfold-coordinated atoms, which point in the bond direc-en’s population concept, it again emphasizes the greater
tions. One could solve a minimum problem to find thosevariations in the WF’s in amorphous systems.
orthonormal hybrids which deviate least from these bond Considering the mean populations, it is remarkable that
directions. It is, however, much easier to keep the hybridhe exponential decay of the WF's has not significantly
orbitals in the directions of the bonds and to allow finite changed compared to the crystalline structure. It has been
overlap values even for orbitals at one atom. As an easy waknown for a long timé® that the exponential decay of the
to find physically reasonable hybrids in this case, we comWF’s stemming from nondegenerate bands depends on the
pute the uniquely determined hybrid orbitals for all possibili- position of the branch points which connect these bands in
ties of selecting three of the four neighboring atoms, andhe complexk plane. The Wannier functions decay faster
then average over the resultisgand p characters. For the with increasing distance of these points from the teakis.
majority of atoms in a locally relaxed structure, the resultingTo estimate this decay, one usually relates this distance to
overlap values are still very small. But even at locally dis-the width of the smallest gap between the two connected
torted atoms, the initial overlap values are still significantlybands. In our case of covalently bonded insulators, the falloff
smaller compared, e.g., with the case of using random atonof the WF’s would be determined by the gap between the
centered functions. valence and conduction bands.
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FIG. 10. Mulliken’s atomic gross populatioms, for orthonor- 1001 _ AR
malized bond-centered Wannier functions in a model of fourfold- LoC
coordinated amorphous carbon in dependence on the distance from 50 * * e
the bond center; solid line, population averaged over all atoms
within a distance interval of 0.25 A; dashes line, maximum popu- 0

lation in the same interval; dots, results for diamond as given in Fig. 12345012 3 4.5 012345
. . . . orthonormalization runs
3. No localization constraints were applied.

FIG. 11. Efficiency of an ordeN orthonormalization of trun-

However. the LDA-based TB-like Hamiltoni&hused in cated Wannier functions in a model of fourfold-coordinated amor-
Fig. 10 shift,s the conduction bands higher in energy WhiCHohous carbon. The meaning of the symbols is the same as in Fig. 8,
ivés fise to an overestimation of the HOMO-LUMO gal Sexcept that LOC is the mean number of atoms within LOC regions.
gy a factor of about 1.5, and a slight increase in the ra?[iopo%rhe number of atoms in the LOC regions was kept nearly constant.

the 9aps in dlgm_ond and the (_amorphous system to 1.7. Th'[ﬁe orthonormalization. This saturation value is close to the
displacement is, in a sense, similar to that created by a scis-

. magnitude of the neglected overlap values in cdsgsnd
sors operator, which leaves the valence bands and, corr?é) in Fig. 11. Nonetheless, the maximum number of atoms
spondingly, the occupied Wannier functions unchanged. included in ohe LOC regior,1 was 20 in cagesand (b) and

Interestingly, our results agree with an early estimation30 in case(c). As in diamond, this reordering of atoms was
given by Kohn for the exponential decay of the WF'’s in ' ' g

one-dimensional TB-like systems. He found that a branc jow prlmarllly P‘?rfor.m?d during the f|r_st ON run. Beanng
. . . hese facts in mind, it is very encouraging that the final val-

point between two bands in such systems may be situated : 2 .
s achieved foA“ are comparable to or even slightly better

close to the lower one of these bands, and that the decay F S T
the WF’s increases with the binding energy of these states. a:jn(g?os% fflg:(iolgetyamor[(?l))ou]}t 1‘?.< 1OON|ntca]§eTsE1§)
Indeed, the HOMO states responsible for the smallest falloff" ?nb ' f Itn ﬁie ©a erhlve i step it Islf d
are reproduced with quite similar energies in our models fopcSMs 10 be an efiect of e amorpnous structure ISeft an
diamond(—8.1 eV) and amorphous carbdir8.6 V). This will be the subject of further investigations. However, we

could therefore be the reason for the similar decay IengthggaIn foqnd the expected result that the use c_>f faxpandmg
found in Fig. 10. OC regions even more reduces the final deviations from

Finally, let us again investigate the properties of truncateé)rthor.lorma"ty_bm this is assoc_|ated here W'th almost a
WF's within an ordemM orthonormalization. Unlike dia- doubling of the number of atoms in the LOC regions and a

mond, we kept the number of atoms in the LOC regionscorrespondlng enlargement of the localization range of these

nearly constant(This was done by choosing a relative criti- functions.

cal weight difference for additional atoms at the boundary of

the LOC regions of 0.1.In the amorphous system, when V. CONCLUSIONS
allowing the LOC regions to expand, we found that they
grow during several ON steps up to a saturated state whic

h In this paper, we presented a generalized version of the
comprises approximately all atoms within the next bondorderNk p:g!-,e.cuo?]. r;r:etlho? d(.avelopedt'by (f;oed.eck(lart.and
shell of atoms. It is then better, however, to start immediatelyfo'Wor €rs,” In which €electronic properties otan insuiating

with larger LOC regions and to allow essentially only an system are computed by explicitly performing a projection to

exchange of atoms in these regions. This is done in Fig. 11’[he occupied su_bspace of the Hamiltonian. T_he methOd can
First note that the maximum initial overlap values be.Now be used with nonorthogonal sets of basis orbitals thus

tween WF's are about one order of magnitude larger than iﬁllowing an gffgptive appliqation of this approach within
the case of diamond. This is a consequence of using nonohgca}l-bassab_ Initio Hgmlltonlans. The ovgrlap between the
thogonal hybrids, especially at locally distorted atoms. How-"aSiS States is taken into account by solving linear systems of
ever, as asserted above, the majority of the overlap values gfluationsSH=H within the cutoff radii ofH as proposed by

still relatively small. This can be seen at the initial values forGibson, Haydock, and LaFemirfi@However, to increase the

A2 which are only slightly larger than the corresponding val-accuracy of the method it may be necessary to use somewhat
ues in diamond. Furthermore, the fact that we prohibited darger cutoff radii for the computation of the matitk
significant enlargement of the LOC regions leads in any case We explored the projection method within two different
to a saturation of the maximum overlap values included incomputations using a simple non-self-consistent LDA-based
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Hamiltonian®! First, we investigated the accuracy of the proach can still straightforwardly be applied if the underco-
scheme as a means of performing traces within the occupieardinated atoms form conjugatetbonds as in a number of
subspace. This was done by computing the band-structumgolecules and fullerene systeftsIn more general struc-
energy for models of crystalline and amorphous carbon contures, however, this pairwise selection of hybrid orbitals can
taining up to 4096 atoms. A detailed discussion of the posho longer be used exclusively. In a subsequent paper, we will
sible errors in the method showed how the relative deviatiortherefore present a quite general method, based on the evalu-
from corresponding results based on eigenvalue calculatiorgfion of local Gram determinants, which nevertheless allows
can be reduced below IB. The most crucial parameter in @ Selection of linearly independent hybrid functions. _
the scheme is the extent of the localization regions for per. Finally, we are currently exploring the use of our Wannier
forming the traces. We found the interesting effect that, esfunctions in computations of the electn;:ﬁ%:)yoéanzatmn_and the
pecially in crystals, the error in the band-structure energyi€lectric function as proposed rece ¥’ These ideas
upon increasing the localization radius decreases in a norr€€™ 0 open a field of very important applications of Wan-
monotonic way in the projection method. nier fgncUons in the theoretical investigation of ma.terlals.
Additionally to the band-structure energy, we give all We will present our results related to this approach in a fu-

necessary formulas for computing other electronic quantitief!"® Paper.
including density matrices, the moments of the density of
states, forces, and the electron density. In principle, the ACKNOWLEDGMENTS
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perature. In this paper, we restricted ourselves to completely

fourfold-coordinated systems in which very efficient initial .
functions needed for performing the projections are provided APPENDIX: ORTHONORMALIZATION SCHEMES

by the bonding combinations of neighboring-{ike) hybrid In this appendix, we will compare two different schemes
orbitals which point in the bond directions. This choice re-for the orthonormalization of an extended set of linearly in-
sults in the correct number of exponentially localized Pro-gependent nonorthogonal functiod$e;)}. In particular,

jected functions which span the occupied subspace of thghese functions may be confined to certain LOC regions if
Hamiltonian. Furthermore, the use of hybr|d orbitals result&he orthonormalization is to be |inear|y Sca"ng_ The first ap-

in re_latively small overlap values b_etV\_/een the projecteobroach consists in applying repeated first-ordeéiwtim
functions. A subsequent orthonormalization can therefore bgerationg042:53

done with a small number of iteratiofiabout 3-5.

We computed orthonormal Wannier functions without lo- , .
calization constraints as well as approximately orthonormal- le))=lep)~ fi;) |@i)S; (A1)
ized functions with localization restrictions for models of ]
diamond and fourfold-coordinated amorphous carbon contS;j={¢il¢;)), where the functions after every ON cycle
taining 512 atoms. The radial dependence of the uncorave to be renormalized. This scheme has the following fea-
strained functions was investigated in detail. At least withintures.
the first four “bond shells” which are determined by a con- (1) In the sense of a perturbation thedfythe iterations
stant number of bonds starting from the original bond, theséA1) reduce the overlap between the functighg;)} in ev-
functions turned out to be more ellipsoidal than the corre£ry step according to a power law. In fact, we found safe
sponding bond shells of atoms. Based on this result, w&onvergence even in cases where the largest off-diagonal
implemented an approximate linear-scaling orthonormalizamatrix elements reached values close to(a9observed for
tion scheme for truncated Wannier functions which employs/Vannier functions created by random atom-centered orbit-
a dynamical reshaping of the localization regions during thedls). However, the price to be paid is that one has to recal-
orthonormalization runs. With this technique, we could re-culate the overlap matrix for every new $gp; )}. This may
duce the quantity\? [used for estimating the deviation from be an essential point in cases where the computation of the
orthonormality, cf. Eq(22)] to about 10° or 10 ° for lo-  overlap matrix determines the CPU time of the procedure.
calization regions determined by three or four bond steps (2) It is obvious from the previous point that due to the
from the original bond, respectively. This was achieved withrepeated updates of ti& matrix only relatively few itera-
almost no or only moderate increase in the number of atomtons are necessary to achieve a desired accuracy in the or-
in these regions. thonormalization. A maybe important technical consequence

In order to use the projection method for the computatiorfor large systems is that the same memory space can be used
of Wannier functions in general systems with coordinationfor storing the overlap matrix and the new WF's resulting
numbers less than 4, we need a scheme for the selection &ibm the ON steps.
the correct number of linearly independent initial functions  (3) When using truncated functiode;)}, the new func-
in these systems. According to our experience with fourfold4ions {|¢;)} extend beyond these localization boundaries.
coordinated systems, it would also be highly desirable tdrhis means that in each ON step, in principle, one has to
retain the use of hybrid orbitals in such structures. This apealculate an increasing number of overlap values. Of course,
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if one keeps the LOC regions fixed, the number of overlap XKD = —f, (1S +t—1)xW + v, (A3)
values will remain invariant as well. However, as we pointed
out in Sec. IV, the accuracy of such a linear-scaling or-
thonormalization scheme can be significantly increased byheref,= (1 —k+1/2)/(I—k+1), | denotes a prechosen to-
redefining the LOC regions. This in general increases théal number of iterations (8k=I), S is the matrixS;; with
number of overlap values to be computed. the diagonal entries replaced with zeros, and an over-
In order to avoid the recomputation of the overlap matrix,relaxation(or underrelaxationfactor (here oftent~ 0.75-
we have also examined an orthonormalization scheme whic0.95. The advantage of EqA3) is that one(full or trun-
is based on an extension of seri@dl): cated overlap matrix can be used for multiple ON steps. In
fact, we found remarkable convergence improvements in
"_ 1 3 cases with not too large euclidic norms&; [cf. Eq. (22)].
le)=lep- Zi;j) S+ ig‘j) |0 SicS+ - Unfortunately, the convergence of E@3) can still happen
k(#1.)) to fail or becomes rather slow for larger initial deviations
(A2) from orthogonality(as observed for random atom-centered
Of course, seriegA2), using a fixed overlap matrix, has WF’s). Moreover, as already pointed out, the CPU time
worse convergence properties than the previous scheme. Oneeded for computing the overlap matrix turned out to be
can, however, improve the convergence behavior of([Eg) small compared to the time for performing the projections.
by a technique which is similar to the overrelaxation methodThe best results have therefore been found with use of the
used for solving linear systems of equatidhsor the origi-  first-order Lavdin iterations(A1) in conjunction with the
nal Lowdin equationx=S""?y, this method leads to the it- dynamical determination of the LOC regions described in

erative procesggiven here forS; =1) Sec. IV.
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