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Density-matrix renormalization-group study of the polaron problem in the Holstein model

Eric Jeckelmann and Steven R. White
Department of Physics and Astronomy, University of California, Irvine, California 92697

~Received 7 October 1997!

We propose a density-matrix renormalization-group~DMRG! approach to study lattices including bosons.
The key to the approach is an exact mapping of a boson site containing 2N states toN pseudosites, each
with 2 states. The pseudosites can be viewed as the binary digits of a boson level. We apply the pseudosite
DMRG method to the polaron problem in the one- and two-dimensional Holstein models. Ground-state results
are presented for a wide range of electron-phonon coupling strengths and phonon frequencies on lattices
large enough~up to 80 sites in one dimension and up to 20320 sites in two dimensions! to eliminate finite-size
effects, with up to 128 phonon states per phonon mode. We find a smooth but quite abrupt crossover from
a quasi-free-electron ground state with a slightly renormalized mass at weak electron-phonon coupling to
a polaronic ground state with a large effective mass at strong coupling, in agreement with previous
studies.@S0163-1829~98!02112-2#
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I. INTRODUCTION

The density-matrix renormalization-group~DMRG!
method1,2 has proved to be a very successful numerical te
nique for studying spin and fermion lattice models w
short-range interactions in low dimensions. Although t
DMRG algorithm can easily be generalized to treat syste
including bosons, calculations are often not practical. As
exact diagonalizations, this is due to the difficulty in deali
with the large~in principle, infinite! dimension of the Hilbert
space for bosons. Although the problem is less sever
DMRG than in exact diagonalizations, applications
DMRG to boson systems have been restricted to probl
for which one needs to consider at most about a dozen s
for each boson.3–5

In this paper, we present an approach for dealing w
large bosonic Hilbert spaces with DMRG. The basic idea
to transform each boson site into several artificial interact
two-state sites~pseudosites! and then to use DMRG tech
niques to treat this interacting system. DMRG is much be
able to handle several two-state sites rather than one m
state site. Although this procedure introduces some com
cations in a DMRG program, the pseudosite approach
more efficient and allows us to keep many more states
each bosonic Hilbert space than the approach used in ea
works.3–5

To test our method, we have studied the polaron probl
the self-trapping of an electron by a localized lattice def
mation, in the Holstein model6 in one and two dimensions
We consider a single electron on a lattice with oscillators
frequencyv at each site representing dispersionless opt
phonon modes and a coupling between the electron den
and oscillator displacementsql 5bl

† 1bl , wherebl
† andbl

are the usual boson creation and annihilation operators.
Hamiltonian is given by

H5v(
l

bl
† bl 2gv(

l
~bl

† 1bl !nl

2t (
^l ,m&

~cm
† cl 1cl

† cm!, ~1.1!

wherecl
† and cl are electron creation and annihilation o

erators,nl 5cl
† cl , and t is the hopping integral.g is a di-
570163-1829/98/57~11!/6376~10!/$15.00
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mensionless electron-phonon coupling constant.~When com-
paring results readers should be aware that notations
model parameters, especiallyg, differ in other papers.! A
summation overl or ^l ,m& means a sum over all sites o
over all bonds between nearest-neighbor sites in a chai
lengthL or a square lattice of sizeL3L. Only open systems
have been considered because the DMRG method usu
performs much better in this case than for periodic bound
conditions.

The polaron problem has been extensively studied us
variational methods,7 quantum Monte Carlo simulations,8,9

exact diagonalizations,10–14 and perturbation theory.12,14,15It
is known that a rather sharp crossover occurs betwee
quasi-free-electron ground state with a slightly renormaliz
mass at weak electron-phonon coupling, and a polaro
ground state with a narrow bandwidth at strong couplin
However, despite these considerable theoretical efforts,
physics of this self-trapping transition is not fully unde
stood. Previous studies have been limited either to small
tems or to a particular regime of parametersg andv/t or by
a severely truncated phononic Hilbert space or by unc
trolled approximations. With the DMRG method, we ha
been able to study the one-electron ground state of the H
stein model for all regimes of parametersv/t andg on large
lattices and with great accuracy. In this work we report a
discuss some ground state results that show the self-trap
crossover, such as electron-lattice displacement correla
functions, electronic kinetic energy, and effective mass.

This paper is organized as follows: in the next section,
present our pseudosite method for bosons. In Sec. III
describe how we apply this method to the Holstein mod
Most results for the polaron problem are presented and
cussed in Sec. IV. In Sec. V we explain how we have co
puted the effective mass of electrons and polarons
present these results. Finally, Sec. VI contains our con
sions.

II. DMRG FOR BOSON SYSTEMS

In the DMRG method, the lattice is broken up into bloc
made of one or several sites and Hilbert spaces represe
6376 © 1998 The American Physical Society
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57 6377DENSITY-MATRIX RENORMALIZATION-GROUP STUDY . . .
blocks are truncated~for more details, see Refs. 1 and 2!. In
each block one keeps only them most important states fo
forming the ground state~or low-energy eigenstates! of the
full system. A step of the DMRG algorithm is the process
forming a new block by adding a site to a block obtained
a previous step. To find them optimal states of the new
enlarged block, one has to find the ground state of an ef
tive Hamiltonian in a superblock made of two blocks a
two sites and then to diagonalize a density matrix on the n
block. If n is the number of states on a site, the compu
memory storage needed to perform these tasks increas
n2m2, while the number of operations goes roughly asn3m3.

The difficulty in applying the DMRG to boson systems
the large number of states on a site. In principle, this num
is infinite and for numerical calculations one has to trunc
this space and keep a finite numberM of states per boson. In
a standard implementation of the DMRG method for bos
systems, each boson forms one lattice site (n;M ) and thus
memory and CPU time requirements increase asM2 andM3,
respectively. For many interesting problems, such as
Holstein polaron discussed in this paper, one needs to ke
large number of states per boson sites (M'102100) to re-
duce errors due to the truncation of bosonic Hilbert spac
Therefore, performing such calculations requires much m
computer resources than DMRG computations for otherw
similar Heisenberg or Hubbard systems, for whichn5224.

To understand the basis of our approach, it is importan
note that, in principle, the computer resources used by
DMRG method increase linearly with the number of latti
sites ~everything else being equal!. Therefore, DMRG per-
formances should be better when individual lattice sites
defined so that the number of statesn is as small as possibl
~i.e., n52) even if this implies an increase in the number
sites in the lattice. For instance, in the Hubbard model
fermions, we can either use the same site for both spin
and spin down fermions or use different sites for fermions
different spins. In the first case, the Hilbert space conta
n54 states (u0&,u↑&,u↓&,u↑↓&) per site. In the second cas
the lattice contains twice as many sites but the Hilbert sp
of each site contains only 2 states~(u0&,us&, with s5↑ or
↓). In practice, the second approach is faster by a factor o
Also, in a boson-fermion model as the Holstein Hamiltoni
~1.1!, a site can have both fermion and boson degrees
freedom, or one can separate the boson and fermions
two sites. We have found that the latter method is sign
cantly more efficient than the former. However, it should
kept in mind that DMRG performances depend essenti
on the numberm of states that one needs to keep per block
obtain a desired accuracy, the number of iterations neede
the DMRG algorithm to converge, and the possible use
system symmetries. All these parameters tend to be unfa
ably altered by the partition of sites in smaller units and
large increase ofm or of the number of iterations coul
offset any gain due to the reduction of the Hilbert spa
dimension. Nevertheless, experience indicates that it is
ally possible to improve DMRG performances by substit
ing several sites with a small Hilbert space for a site with
large Hilbert space.

Therefore, we have developed a method to exactly tra
form a boson site into several smaller pseudosites. Our
proach is motivated by a familiar concept: the representa
f
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of a number in binary form. In this case the number is t
boson state index starting at 0. Each binary digit is rep
sented by a pseudosite, which can be occupied~1! or empty
~0!. One can think of these pseudosites as being fermio
but is is simpler to implement them as hard-core bosons, t
avoiding fermion anticommutation minus signs. Thus, fo
boson site withM52N levels, the level with index 0 is rep
resented byN empty pseudosites, while the highest lev
2N21, is represented byN hard-core bosons on theN pseu-
dosites.

To implement this idea, we first choose a truncat
occupation-number basis$ua&,a50,1,2, . . . ,2N21%, where
b†bua&5aua&, as the finite Hilbert space of a boson sit
Then, we introduce N pseudositesj 51, . . . ,N with a two-
dimensional Hilbert space$ur j&,r j50,1% and the operators
aj

† ,aj such thataj u1&5u0&, aj u0&50, andaj
† is the Hermit-

ian conjugate ofaj . These pseudosite operators have
same properties as hard-core boson operators:ajaj

†1aj
†aj

51 and operators on different pseudosites commute.
one-to-one mapping between a boson levelua& and the
N-pseudosite stateur 1 ,r 2 , . . . ,r N& is given by the relation

a5(
j 51

N

2 j 21r j . ~2.1!

The next step is to write all boson operators in terms
pseudosite operators. It is obvious that the boson num
operator is given by

Nb5b†b5(
j 51

N

2 j 21aj
†aj . ~2.2!

Unfortunately, other boson operators take a more com
cated form in the pseudosite representation. Typically, t
are represented by a sum over;M terms. They can easily be
determined from the definition of the mapping~2.1! and the
properties of boson and hard-core boson operators. As
example, we show here how to calculate the representa
of b†. First, we write b†5B†ANb11, where B†ua&5ua
11&. The pseudosite operator representation of the sec
term is

ANb115 (
a50

M21

Aa11P1~r 1!P2~r 2!•••PN~r N!, ~2.3!

wherePj (1)5aj
†aj , Pj (0)5ajaj

† , and ther j ( j 51, . . . ,N)
are given by the mapping~2.1!. For B† we find

B†5a1
†1a2

†a11a3
†a2a11•••1aN

† aN21aN22•••a1 .
~2.4!

The representation ofb† for any number of pseudositesN is
given by the product of these two operators. For instance,
N52 pseudosites,

b†5a1
†1A2a2

†a11~A321!a1
†a2

†a2 . ~2.5!

Other operators can be obtained in a similar way.
We can now substituteN5 log2(M) pseudosites for each

boson site in the lattice and rewrite the system Hamilton
and other operators in terms of the pseudosite opera
Once this transformation has been done, DMRG algorith
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6378 57ERIC JECKELMANN AND STEVEN R. WHITE
can be used to calculate the system properties. For insta
if one would like to find the ground state of an oscillator in
linear potentialH5vb†b2g(b†1b) keepingM54 states,
we would transform this system into a two-site hard-co
boson system with the Hamiltonian

H5v(
j 51

2

2 j 21aj
†aj2g@a1

†1A2a2
†a11~A321!a1

†a2
†a21a1

1A2a1
†a21~A321!a2

†a2a1#. ~2.6!

One can easily check that both Hamiltonians share the s
matrix representation in the basis$ua&,a50,1,2,3% and
$ur 1 ,r 2&,r 150,1,r 250,1%, respectively.

Figure 1 illustrates the differences between standard
pseudosite DMRG approaches. In the standard appro
@Fig. 1~a!#, a new block is built up by adding a boson si
with M states to another block withm states. Initially, the
Hilbert space of the new block containsmM states and is
truncated tom states according to the DMRG method. In t
pseudosite approach@Fig. 1~b!#, we build up a new block by
adding one pseudosite with 2 states to another block witm
states. The Hilbert space of this new block contains onlym
states and is also truncated tom states according to th
DMRG method. We have to repeat this stepN times until the
M -state boson Hilbert space has been added to the orig
block. However, at each step we have to manipulate on
fraction 2/M of the bosonic Hilbert space. It should be not
that the transformation into pseudosites is an exact map
of truncated bosonic Hilbert spaces. Therefore, the fi
blocks of both approaches in Fig. 1 would be equivalen
we did not truncate the block Hilbert spaces tom states at
each intermediate step. Actually, we have never found
significant differences between pseudosite and stan
DMRG results but it is possible that such differences app
when the DMRG truncation error~the error due to the trun
cation of block Hilbert spaces tom states! is large enough.

Using the transformation into pseudosites we have imp
mented and tested several DMRG algorithms.1,2 Generally,
implementing a DMRG algorithm for pseudosites is mo
complicated than a standard DMRG method. This artific

FIG. 1. Symbolic representation of a DMRG step forN53
(M58!. In the standard DMRG approach~a!, a block~dashed rect-
angle! is formed by adding a boson site~oval! with its M58 states
to the initial block~solid rectangle!. In the pseudosite approach~b!,
a new block is made of the previous block and one pseudosite
2 states. It takesN53 steps to make the final block~largest dashed
rectangle! including the initial block and all pseudosites, which
equivalent to the new block in~a!.
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transformation generates a very complicated Hamiltoni
which includes many~typically M ) long-range interaction
terms between pseudosites. Therefore, at each DMRG
one must keep track of and transform many matrices re
senting different combinations of pseudosite operators u
to build up the Hamiltonian and other operators during f
lowing steps. However, one needs the many pseudosite
erators only during the intermediate steps of Fig. 1~b!. Once
the full bosonic Hilbert space has been added to the bl
@after the final step in Fig. 1~b!#, one only needs regula
boson operators as in a standard DMRG method. Theref
in an efficient implementation, matrix representations of b
son operators should be computed from the pseudosite
erator matrices, which can be discarded after that, when
it is possible. The cost of this operation (}M matrix addi-
tions! is small compared to the cost of keeping track of a
transforming the pseudosite operator matrices (}M matrix
multiplications!.

III. APPLICATION TO THE HOLSTEIN MODEL

We have applied the pseudosite DMRG method to
Holstein model in different situations: one electron in o
and two dimensions, two electrons and half-filled band s
tems in one dimension, sometimes with additional inter
tions as an on-site impurity potential or a local electro
electron repulsion~Hubbard term!. Although most of the
discussion in this section applies to all these different ca
all quantitative results provided here regard the one-elec
system with parameters in the range of 0.1<v/t<4, g,5.

Several tests have shown that the performance and st
ity of the DMRG method applied to the Holstein model d
pend greatly on details of the algorithm used. Below
describe the best approach we have found. We have use
finite system DMRG algorithm1 to calculate properties of a
system of fixed size. However, during the warmup sweep
have not used an infinite system algorithm. Instead, envir
ment blocks are built up using several sites without trun
tion. With this procedure the accuracy of the results after
warmup sweep is very poor, but this is not a problem b
cause in the finite system algorithm the subsequent iterat
~sweeps back and forth across the lattice! can usually make
up for a poor quality warmup sweep. The number of sta
kept per blockm is gradually increased as one performs t
iterations, and we keep track of the ground-state wave fu
tion from step to step to reduce the total calculation tim2

We have found that it is necessary to optimize the appro
mate ground state for each intermediate value ofm. This
optimization requires performing several iterations~up to 6!
for each intermediate value ofm even if the energy gain
brought by these sweeps seems negligible compared to
energy gain, which could be made by increasingm immedi-
ately. Otherwise, the DMRG algorithm does not trunca
block Hilbert spaces optimally and eventually fails to co
verge. We think that these additional iterations are neede
optimize the delocalization energy of the electron or polar
which can be a small fraction of the total energy. The to
number of iterations needed by the DMRG algorithm to co
verge varies greatly and in the worst cases can grow u
30. Although the Holstein Hamiltonian~1.1! is reflection
symmetric, this symmetry has not been used in our al

th
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57 6379DENSITY-MATRIX RENORMALIZATION-GROUP STUDY . . .
rithm. We have found that using the reflection symmetry c
hinder and sometimes prevent the convergence to the gro
state.

With the pseudosite DMRG method, we have been abl
keep enough states per phonon mode~up toM5128) so that
the errors from truncation of the phonon basis are negligi
To check thatN is large enough, we compute the pseudos
densityAj5^aj

†aj&, where^& means the expectation value
the ground state, and extrapolate to findAN11. N is chosen
so thatAN11 is comparable to the DMRG truncation erro
Usually N<6 (M<64) was sufficient.

The polaron problem has an important computational
vantage as a test case: the number of statesm that need to be
kept per block is relatively small. In the noninteracting ca
(g50), one can easily show that only two eigenstates of
density matrix have a nonzero weight. For finite couplingg,
the DMRG truncation error often vanishes~within the ma-
chine precision'10216) if we keep a relatively small num
ber of states. Although we need to keep more states wheg
or the system size increases, we have found that a DM
truncation error smaller than 10214 can be reached with a
mostm5150 states in all our calculations. This feature h
also allowed us to obtain accurate results in quite large t
dimensional systems.

With the DMRG method, the error on the ground-sta
energy is generally proportional to the DMRG truncati
error. Therefore, we can calculate the ground-state en
and the truncation error for several values ofm and use a
linear fit to extrapolate the result without truncation erro1

This method gives reliable estimations of the error on
ground state energy. In one dimension we have obtai
relative errors in the range of 10210–10216 depending on the
system size and parametersg, v/t. In two dimensions we
have contented ourself with larger errors, from 1026 to
10210, to save CPU time but more accurate results can
obtained.

In the polaronic regime, the density of states near
ground state becomes very large~see the discussion in Se
V!. Thus, a small energy error does not guarantee that
have obtained an accurate ground-state wave function
estimate the precision of measurements^O&, whereO is any
operator other than the HamiltonianH, we have used exac
relations between expectation values, such as symmetry
ditions or self-consistence equations. For instance, the
consistence equation

^bl
† 1bl &52g^nl &, ~3.1!

which holds for all eigenvalues of the Holstein Hamiltoni
~1.1!, gives a local condition on both fermion and bos
degrees of freedom. For the results presented in this p
we have typically obtained relative errors smaller than 1024

in one dimension and smaller than 1022 in two dimensions.
Finally, we point out that the pseudosite DMRG method p
fectly reproduces exact diagonalization results for the gro
state and lowest excited states of small systems like the
site Holstein model.10

For each value of the parametersg andw/t we have stud-
ied systems of different sizes and checked that finite-s
effects are negligible or extrapolated results to an infin
system. The largest system sizes that we have used to s
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the one-dimensional Holstein model areL580 sites forN
<5 (M<32) andL530 sites for 5,N<7 (32,M<128).
In two dimensions, we have used square lattices with up
20320 sites forN<3 (M<8) and up to 12312 sites for
4,N<6 (16,M<64). In most cases we could easily stud
much larger lattices if we needed to. However, in the p
laronic regime, the largest system size for which we c
compute the ground state accurately is limited by the fin
precision of the DMRG method. We will discuss this poi
further in Sec. V.

The relatively small number of states needed for the
laron problem allows us to carry out some calculations w
both the standard and pseudosite approaches and to com
their performances in terms of CPU time and memory st
age. In test calculations with all parameters equal, we h
found that performances of both approaches are similar
small M but the pseudosite approach becomes better foM
>8. The differences between these methods increase
rapidly with M , as expected, and, more surprisingly, withm.
For M532 and m550, the pseudosite approach requir
only 1/8 of the memory used by the standard approach an
faster by two orders of magnitude. In real applications, ho
ever, we expect the performance difference between b
approaches to be smaller because of the greatest flexib
and simplicity of a standard approach. For instance,M can
take any integer value in the standard approach. Never
less, when computations become challenging~for M>16
andm>50), the pseudosite approach clearly outperforms
standard approach.

IV. RESULTS

Using the numerical method presented in the previo
sections, we have studied the ground-state properties o
Holstein Hamiltonian~1.1! with a single electron in one an
two dimensions. In particular, we are interested in the e
lution of the ground state as a function of the adiabaticityv/t
and of the electron-phonon couplingg. For a weak coupling
a standard perturbation calculation ing shows that the
ground state is a quasi-free-electron dragging a pho
cloud, which slightly renormalizes the electron effecti
mass. Note that the weak-coupling regime roughly cor
sponds tog,1 and 2g2v,W, whereW54t in one dimen-
sion andW58t in two dimensions is the bare electron
bandwidth. The standard strong-coupling theory of the H
stein model,16 which is based on the Lang-Firsov transfo
mation and treats the electron hopping term as a pertu
tion, predicts a polaronic ground state with a narro
bandwidth. The strong-coupling regime corresponds tog
.1 and 2g2v.W. In this section, we present several resu
of pseudosite DMRG calculations which show the evoluti
of the ground states from the weak to the strong electr
phonon coupling regime and compare them to the pre
tions of perturbation calculations and the results of previo
numerical studies.

A. Electronic density

For periodic boundary conditions, it is known rigorous
that the ground-state energy and wave function are ana
functions of the electron-phonon couplingg.17 In particular,
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6380 57ERIC JECKELMANN AND STEVEN R. WHITE
no phonon-induced localization transition~breaking of the
translation symmetry! occurs for finiteg; in the ground state
the electron is always delocalized over the lattice. Cor
spondingly, for open chains our DMRG results show that
electronic densitŷnl & always has the shape

n~ l !5
2

L1122a
sin2S p~ l 2a!

L1122aD ~4.1!

for 11a<l <L2a andn(l )50 otherwise, wherea is an
integer number. This density corresponds to a free particl
a one-dimensional box made of the sites with indicesl 51
1a to l 5L2a. Therefore, the electron is delocalized ov
the whole lattice, except for some chain edge effects
qualitative agreement with the exact result for perio
boundary conditions. For small couplingg, we have found
that we obtain the best fit witha50 as for a free electron
For stronger couplings better fits can be obtained with lar
values ofa. For instance, Fig. 2 shows a density obtain
with the DMRG method and the function~4.1! for a5 0 and
1. Even when the best fit is obtained witha.0, the density
^nl & close to the chain edges is actually finite but very sm

On two-dimensional square lattices the electron is a
delocalized over the lattice for all values of the parameterg
andv/t that we have investigated. For instance, in Fig. 3,
show the densitŷ nx,y& for a lattice in the strong-coupling
regime. In the weak-coupling regime, the electronic den
distribution has the same shape

n~x,y!5
4

~L11!2
sin2S px

L11D sin2S py

L11D ~4.2!

as the density of a free particle in a two-dimensional box.
in one dimension, for stronger coupling the density becom
larger in the middle of the lattice and decreases near
edges, but in this case we cannot fit the density^nx,y& with
Eq. ~4.2! and a renormalized system size.

B. Electron-lattice correlations

Some ground-state properties can easily be studied
terms of static correlation functions^niqj& between the elec

FIG. 2. Ground-state density distribution forv5t, g52.5 in a
30-site chain. The solid and dashed curves are given by Eq.~4.1!
with a 5 1 and 0, respectively.
-
e

in

n
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e
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e
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tron position and the oscillator displacementqj5bj
†1bj .

These correlations indicate the strength~for i 5 j ) of the
electron-induced lattice deformation and its spatial extent
the noninteracting case (g50) they are uniformly zero. Fig-
ure 4 shows the normalized correlation functionsx10,j
5^n10qj&/^n10& for several parametersv/t andg in 20-site
chains. For parameters close to the weak-coupling reg
@Figs. 4~a! and 4~c!# the amplitude ofx10,j is smaller than the
quantum lattice fluctuations, which are given by the ze
point fluctuations of each phonon modesq'1. Therefore,
these correlations do not show a lattice deformation t
could trap an electron because the sign of the effective lat
potential seen by the electron fluctuates. They are merely
signature of a phonon cloud following the electron. For p
rameters close to the strong-coupling regime@Figs. 4~b! and
4~d!#, the amplitude ofx10,j is larger than these quantum
lattice fluctuations. In these cases, we really observe a la
deformation generating a local attractive potential that
likely to trap the electron.

We observe similar features in two-dimensional lattic
Figure 5 shows a normalized correlation functionx(x,y)
5^n8,8qx,y&/^n8,8& in the weak-coupling regime. The ampl
tude ofx(x,y) is much smaller than quantum lattice fluctu
tions sq'1. In Fig. 6 we show a similar correlation func
tion, x(x,y)5^n5,5qx,y&/^n5,5&, in the strong-coupling
regime. In this case the amplitude of the lattice deformat
generated by the electron is clearly larger than the zero-p
lattice fluctuations.

In the weak-coupling limit we observe an exponential d
cay of correlations between electron position and lattice
formation. We find good agreement between our DMRG
sults and weak-coupling perturbation results for all phon
frequenciesv/t, even in the nonadiabatic regime (v/t.1)
where the correlations decrease very fast. In the adiab
(v/t,,1) weak-coupling limit, the lattice deformation ex
tends over many sites@Fig. 4~a!#. Wheng or v/t increases,
the spatial extent of the lattice deformation decreases. In
strong-coupling limit, the ground state becomes ‘‘superloc
ized’’ in the sense that any operator measuring a correla
between the electron and a phonon vanishes unless the
relation is measured on the same site.8 In particular, one
finds ^niqj&;d i j @see Fig. 4~d! and Fig. 6#. The variation of

FIG. 3. Ground-state density distribution forv5t, g52.2 on a
939 lattice.
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FIG. 4. Correlationsx10,j between electron density and lattice displacements on 20-site chains for various values ofv/t andg.
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the lattice deformation extent as a function ofv/t can easily
be understood as a retardation effect. For smallv/t, phonons
are much slower than the electron and thus phonon mo
that are excited by the passage of the electron take a
time to relax. Therefore, we can observe a lattice deform
tion far away from the current position of the electron. In t
antiadiabatic limit (v/t@1), lattice fluctuations are fast an
a lattice deformation relaxes quickly following the slow ele
tronic motion. Thus, we can observe a lattice deformat
only in the vicinity of the electron.

It should be kept in mind that these correlations on
show expectation values of the lattice displacementsql with
respect to an instantaneous electron position. They do
show the electron density distribution for a specific froz
lattice configuration. Therefore, these results alone are
evidence for the formation of a self-trapped electronic st
and they give no information regarding the electron den

FIG. 5. Correlationsx(x,y) ~see text! between electron position
and lattice deformation on a 15315 lattice with v50.2t and g
50.1. The electron position is on the center of the lattice.
es
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distribution within a polaron. To obtain this information w
should computêPinj&, wherePi projects the phonon state
onto a particular lattice configuration representing a pola
centered on sitei . Unfortunately, we do not know the opera
tor Pi .

C. Self-trapping crossover

Previous numerical studies have shown that there i
critical value of the electron-phonon coupling above whi
self-trapping of the electron by a local lattice distortion do
occur.8,10,13,14One should keep in mind that no localizatio
of the ground-state wave function is involved in se
trapping. Therefore, a smooth crossover from a quasi-fr
electron ground state to a polaronic ground state does
contradict rigorous results on the absence of localization
this kind of model.17 Moreover, self-trapping does not impl
any change in the electronic density distribution. If the ele

FIG. 6. Correlationsx(x,y) ~see text! between electron position
and lattice deformation on a 939 lattice withv5t andg52.2. The
electron position is on the center of the lattice.
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6382 57ERIC JECKELMANN AND STEVEN R. WHITE
tron is self-trapped by a local lattice deformation, the res
ing polaron is delocalized over the lattice and the pola
appears only in correlations between electron and lattice

A measure of the polaronic character of the electron is
correlation function

x i5
^niqi&
2g^ni&

, ~4.3!

where the indexi is either a site indexl on a chain or (x,y)
on a square lattice. Using Eq.~3.1!, one can also writex i
5^niqi&/^qi&. Therefore, it is clear thatux i u<1. In practice,
we have found thatx i takes only a positive value between
and 1. For periodic boundary conditions, this function is co
stant and differs from the functionx i ,0 described in Ref. 14
only by a factor ofL/2g (L2/2g in two dimensions!. In open
systems, the term̂ni& in the denominator is needed to com
pensate for the inhomogeneous density distribution. We h
found that this function is almost constant, except close
the lattice edges. Here we report and discuss only value
x i obtained in the central region of a lattice.

In Fig. 7 we show our DMRG results forx i as a function
of the electron-phonon couplingg for different values of
v/t. For small couplingg our results tend to the value pre
dicted by the weak-coupling perturbation theory. For larg
coupling, x i tends to 1 as predicted by strong-coupli
theory. At intermediate coupling, one observes a rat
sharp, though continuous, transition from the weak-coup
to the strong-coupling value ofx i asg increases. We think
that this transition marks the crossover from a quasi-fr
electron ground state to a polaronic ground state. The cr
over roughly occurs when both conditionsg.1 and g2v
>W/2 are fulfilled, in agreement with previous works.10,13,14

However, since the formation of polaron does not break
symmetry and all ground-state properties are analytic fu
tions of the parameters, it is impossible to define criti
values gc and vc separating quasi-free-electron and p

FIG. 7. Local electron-lattice correlationx i as a function of the
electron-phonon couplingg for v/t5 0.1 ~circle!, 0.2 ~square!, 1
~diamond!, and 4~up triangle! in one dimension and forv/t5 1
~down triangle! in two dimensions. Open symbols are DMRG r
sults. Filled symbols show first-order weak-coupling perturbat
results.
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laronic regimes. Unlike Caponeet al.,14 we have found that
the crossover is always marked by a sharp increase ofx i in a
small region of the plane (g,v/t), even for largev/t. The
problem is that these authors have not normalized their fu
tion x i ,0 by a factorg as we do in Eq.~4.3!. Therefore, they
observe a quasilinear dependence as a function of
electron-phonon couplingg, which hides the sharp but sma
increase that we observe in Fig. 7 at large phonon frequ
cies.

In two dimensionsx i is smaller than in one dimension fo
the same parametersg and v/t. The crossover occurs a
stronger coupling because the bandwidthW is larger in
higher dimension and thus the condition 2g2v.W is ful-
filled for largerg. However, differences betweenx i for one-
and two-dimensional systems diminish when the coupl
increases~see results forv5t in Fig. 7!.

D. Electronic kinetic energy

One can obtain some insight about the electron state
calculating its kinetic energy~in units of the kinetic energy a
g50)

K5
2t

W (
^l ,m&

^cm
† cl 1cl

† cm&. ~4.4!

Figures 8 and 9 show the evolution of the kinetic ener
K as a function of the electron-phonon couplingg in the
adiabatic and nonadiabatic regime, respectively. These
sults are qualitatively similar to recent exact diagonalizat
results on small lattices.13 For weak coupling,K is very close
to 1. This means that the electron is barely affected by
interaction with the phonons and remains essentially in
same state as a free electron. Further evidence for a qu
free-electron ground state is the good agreement between
DMRG results and the second-order perturbation calcula
in g, at least as long asg2v,W/2 or g,1. Therefore, we
think that the electron is not trapped by any lattice deform

n

FIG. 8. Electronic kinetic energy as a function of the electro
phonon couplingg in one-dimensional systems in the adiabatic
gime. Symbols are DMRG results. Solid curves show the seco
order weak-coupling perturbation results. Dashed curves are
predictions of the second-order strong-coupling expansion.
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tion in this regime but simply drags a phonon cloud. We a
note that forv/t5t and g50.5, static correlationŝniqj&
decay over a few sites@see Fig. 4~c!# while we find K
'0.977, which is not compatible with an electron localiz
on a few sites. This confirms that the spatial extent of latt
deformation obtained from̂niqj& can be different from the
localization length of the electron around a lattice distortio

In the crossover region the kinetic energy decreases
idly with increasing coupling. For large enoughg our
DMRG results tend to the values predicted by the seco
order strong-coupling theory. The agreement between th
results is better for larger values ofv/t because the strong
coupling theory is a perturbative expansion int/(g2v) and
thus much more accurate in the antiadiabatic limit. Also,
results confirm that the first-order strong-coupling meth
which predictsK;exp(2g2), is a very poor approximation
for all values ofv/t. It is necessary to include at least th
second-order term int in the perturbative expansion to obta
reliable results.

In Fig. 9 we can see that initiallyK decreases faster in on
dimension than in two dimensions for similar paramete
Nevertheless, for large couplingg, our numerical results and
the strong-coupling theory show thatK converges to the
same values;t/(g2v) in both dimensions.

Finally, we note that forv54t ~see Fig. 9!, the combina-
tion of second-order weak- and strong-coupling theory
reproduce our numerical results for all values ofg very ac-
curately. Therefore, these methods seem sufficiently accu
to study the polaron problem in the antiadiabatic limit a
could be very useful in cases where numerical methods
not practical, for instance, in higher dimensions. Howev
one should keep in mind that the strong-coupling the
gives poor results in the crossover regime for smaller val
of v/t.

V. EFFECTIVE MASS

A polaron or a quasi-free electron with its phonon clo
can be seen as an itinerant quasi-particle if its effective ba

FIG. 9. Electronic kinetic energy as a function of the electro
phonon couplingg in one-dimensional~1D! and two-dimensional
~2D! systems in the nonadiabatic regime. Symbols are DMRG
sults. Solid curves show the second-order weak-coupling pertu
tion results. Dashed curves are the predictions of the second-o
strong-coupling expansion.
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width exceeds perturbations of its formation energy by
ternal forces. Therefore, it is interesting to compute para
eters that describe its dynamics, such as its effective m
m!.

The electronic density distribution shows that the elect
or polaron is delocalized over the lattice as a free partic
We know that the band structure of a free particle in an op
chain of lengthL would be given byE(k)522t!cos(k) with
k5zp/(L11), wherez51,2,3, . . . numbers the eigenstate
The effective hopping termt! is related to the effective mas
by m!/m5t/t!, wherem is the bare electron mass. Howeve
the polaron band structure is known to deviate from t
form because of the importance of effective long-range h
ping terms.13,15Nevertheless, for large chains (L@1) we ex-
pect the electronic excitation spectrum at low energy to
given by

E~z,L !5E`1t!S zp

L1122aD 2

, ~5.1!

whereE` is the ground state energy of an infinite chain a
a is a parameter that accounts for the reduction of the ef
tive system length due to the repulsive effect of the ch
edge. We can determine the parametersE` , t!, and a by
calculating different eigenenergiesE(z,L) with the DMRG
and then fitting these results to Eq.~5.1!. In principle, we
should varyz in this equation and thus calculate the grou
state and several excited states. However, calculating a
rate excitation energies with the DMRG is much more dif
cult than computing ground-state energies. Moreover,
task of computing electronic excited states is complicated
the intrusion of phononic excitations in the spectrum. The
fore, we have obtained effective masses by fitting grou
state energies for several chain lengthsL to Eq. ~5.1! with
z51. This method only yields the effective mass at the b
tom of the electronic or polaronic band but in this particu
case gives results similar to those obtained by fitting excit
state energies. We generally obtain excellent fit with t
method as soon asL1122a.10. We estimate that the erro
on our values form! is a few percent or smaller. The valu
of a that gives the best fit of the energy to Eq.~5.1! is
generally close to the value ofa that reproduces the densit
distribution in Eq. ~4.1!. Therefore, the behavior of th
ground-state energy as a function of the system size confi
that the electron or polaron behaves like a free particle o
chain of effective lengthL22a for all values of the param-
etersg andv/t.

In two dimensions we use a similar procedure. T
ground-state energy for several square lattices of sizeL3L
is fitted to Eq.~5.1! with z51 and 2t! substituted fort!. The
linear dimensionsL used in these calculations were genera
smaller than the chain lengths used in one-dimensional
tems. Thus, the mass obtained for two-dimensional syst
is less accurate and we estimate that the relative erro
<20%.

The structure~5.1! of the electronic excitation spectrum
allows us to understand the main difficulty in applying t
DMRG method to the polaron problem. To determine t
ground state accurately, we need an absolute precision th
better than the energy difference between the first exc
state (z52) and the ground state (z51). Therefore, the rela-
tive error on the ground-state energy must be smaller t

-

-
a-
er



is
n

s,

ed
ll
in

-
d
e

-
r

e
e

ak

h
m
u

re

ee
e

f
in

g
in

m
-

ns.
the
C
re-

re-
dic-
ng
idth

und

g
ger

ak
on

der
the
er-

ion
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;t!/(E`L2). As the precision of our numerical method
limited by roundoff errors, this condition imposes a co
straint on the parametersg, v/t, andL for which we can find
the ground state. Using the strong-coupling theory result16

one can easily show that forg→`, E`→2g2v, and t!

→texp(2g2). Therefore, the minimal precision that we ne
goes as;texp(2g2)/(L2g2v) and becomes exceedingly sma
very rapidly withg. In practice, we have been able to obta
the ground state of chains with up toL516 sites for very
heavy polarons (t!/t'1024). Calculating the effective hop
ping accurately with Eq.~5.1! requires a higher precision an
thus is limited to a smaller set of parameters. We can m
sure the effective hopping with a good accuracy fort!

>1023t using chains with up toL530 sites or square lat
tices with up to 10310 sites at least. In this paper we repo
results for the effective mass~or hopping! in this range only.
Of course, in the quasi-free-electron and crossover regim
wheret!;t andE`<2t this problem is less serious and w
can study much larger systems.

In Fig. 10 we show the effective hoppingt! calculated
with our DMRG method as well as the second-order we
and strong-coupling results forv/t54 in one dimension.
The good agreement between these results confirms bot
accuracy of perturbative methods in the antiadiabatic li
and the validity of our method. We have found that o
DMRG results also agree well with the weak-coupling
sults in the quasi-free-electron regime for all values ofv/t.
However, asv/t decreases, we observe differences betw
our results and the strong-coupling theory, which becom
more and more important. The ratio between the values ot!

obtained with the DMRG and the strong-coupling theory
creases rapidly and can reach 105 for v/t50.1. We think
that this discrepancy is due to the limitation of the stron
coupling theory, which is a perturbative expansion
t/(g2v) and thus becomes inaccurate for smallv/t.

In Fig. 11 we show the same results forv/t51 together
with the effective hopping obtained by a new quantu
Monte Carlo~QMC! calculation.9 There is qualitative agree

FIG. 10. Effective hopping integralt* as a function of the
electron-phonon couplingg for v/t54 in one dimension. Symbols
are DMRG results. The solid curve is the second-order we
coupling perturbation result. The dashed curve shows the sec
order strong-coupling expansion prediction.
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ment between DMRG and QMC results but our values oft!

are always larger than those obtained by QMC calculatio
We can see that the DMRG method is more accurate than
QMC method at weak coupling. We also note that QM
results are systematically lower than the strong-coupling p
dictions. On the other hand, we have found that DMRG
sults are always larger than these strong-coupling pre
tions. It is known that the second-order strong-coupli
perturbation theory underestimates the effective bandw
for large coupling.15 Therefore, we think that this new QMC
method underestimates the effective hopping in the gro
state of the Holstein model.

Finally, we show the effective massm! as a function of
the electron-phonon coupling in Fig. 12. At finite couplin
the quasi-free-electron or polaron effective mass is lar

-
d-

FIG. 11. Effective hopping integralt* as a function of the
electron-phonon couplingg for v/t51 in one dimension. Dia-
monds are DMRG results. The solid curve is the second or
weak-coupling perturbation result. The dashed curve shows
second-order strong-coupling expansion prediction. Circles with
ror bars are QMC results.

FIG. 12. Effective mass of the electron or polaron as a funct
of the electron-phonon couplingg for different values ofv/t in
one-dimensional~1D! and two-dimensional~2D! systems.
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57 6385DENSITY-MATRIX RENORMALIZATION-GROUP STUDY . . .
than the bare electron mass because of the phonon cloud
must be dragged by the electron. The sudden onset of
trapping is marked by an abrupt increase of the effec
mass. However, the effective mass that we calculate
ground-state property and its dependence on coupling
stants is smooth, in agreement with exact theorems on
ground state of the Holstein model.17 In the polaronic re-
gime, the effective mass increases exponentially with
coupling, but in the adiabatic regimev<t the mass enhance
ment is significantly smaller than the prediction of the fir
order strong-coupling theory,m!/m5exp(2g2), as noted
previously.13,15The evolution ofm! is similar in one and two
dimensions. The only difference is the shift of the crosso
regime to a larger value ofg due to the variation of the bar
electronic bandwidthW as discussed in the previous sectio

As all ground-state results are smooth at the self-trapp
transition we cannot determine precisely when a quasi-f
electron becomes a polaron. It is necessary to study exc
states or dynamical properties to find qualitative differen
between both regimes.10,13 Nevertheless, our results sho
that for some parameters, for instance,v5t andg'222.2,
the ground state is clearly a polaron and the effective mas
relatively small,m!/m'102100. Therefore, in the Holstein
model there are polarons with an effective mass that is m
smaller than the prediction of the standard small pola
theory.6

VI. CONCLUSION

In this paper we have presented a DMRG approach
study lattice systems including bosonic degrees of freed
The pseudosite DMRG method is much more efficient tha
standard approach using regular boson sites and allows
study large systems while keeping up to 128 states in e
bosonic Hilbert space. We have successfully applied
method to the Holstein model and we believe that it can
applied to any model including boson, which can be stud
with a standard DMRG method. A specific feature of t
Holstein model is the absence of direct interaction terms
tween bosons on different sites. In models including su
terms,3,5 one expects a decrease of the pseudosite DM
performances because of the introduction of additional lo
range interactions between pseudosites. Nevertheless, a
h
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dosite approach is likely to be more efficient than the st
dard approach even in this case.

The pseudosite DMRG is just a method that efficien
handles the large number of states of a boson site. A be
approach would be to reduce the number of states one n
to represent a boson site using the key idea of DMRG.
such an approach the reduced density matrix for a single
is diagonalized to obtain a small set of optimized states r
resenting the boson site. It has been shown that 3 optim
states per site give results as accurate as with 10–100 s
in exact diagonalizations of the one-dimensional Holst
model at half-filling.18 Coupling this approach to the DMRG
will further improve our capability to perform numerica
studies of systems including bosonic degrees of freedom

Using the pseudosite DMRG method, we have studied
ground state of the one- and two-dimensional Holstein mo
with a single electron. We have been able to study all
gimes of parametersg and v/t in systems large enough t
eliminate finite-size effects. Our results are in good agr
ment with exact theorems, perturbation theory predictio
and the results of previous numerical works. We have
found any qualitative differences between the one- and t
dimensional systems after taking into account the doub
of the bandwidth in two dimensions compared to o
dimension.15 In particular, in the weak-coupling regime sel
trapping does not occur and the ground state is a quasi-f
electron in both one and two dimensions.8 Several ground-
state properties show a smooth but quite abrupt cross
from a quasi-free-electron to a polaronic ground state as
electron-phonon coupling increases. In particular, the cro
over is signaled by a sharp increase of the effective m
although the mass enhancement can be much smaller
predicted by the standard small polaron theory.

ACKNOWLEDGMENTS

We wish to acknowledge the support of the Camp
Laboratory Collaborations Program of the University
California. We acknowledge support from the NSF und
Grant No. DMR-9509945, and from the San Diego Sup
computer Center. E.J. thanks the Swiss National Scie
Foundation for financial support.
nt

int
1S. R. White, Phys. Rev. Lett.69, 2863~1992!; Phys. Rev. B48,
10 345~1993!.

2S.R. White, Phys. Rev. Lett.77, 3633~1996!.
3R.V. Pai, R. Pandit, H.R. Krishnamurthy, and S. Ramases

Phys. Rev. Lett.76, 2937~1996!.
4L.G. Caron and S. Moukouri, Phys. Rev. Lett.76, 4050~1996!.
5L.G. Caron and S. Moukouri, Phys. Rev. B56, 8471~1997!.
6T. Holstein, Ann. Phys.~N.Y.! 8, 325 ~1959!; 8, 343 ~1959!.
7H.B. Shore and L.M. Sander, Phys. Rev. B7, 4537 ~1973!; A.

LaMagna and R. Pucci,ibid. 53, 8449~1996!; D. W. Brown, K.
Lindenberg, and Y. Zhao, J. Chem. Phys.107, 3179~1997!.

8H. De Raedt and A. Lagendijk, Phys. Rev. B27, 6097~1983!; 30,
1671 ~1984!.

9P.E. Kornilovitch and E.R. Pike, Phys. Rev. B55, 8634~1997!.
10J. Ranninger and U. Thibblin, Phys. Rev. B45, 7730 ~1992!;
a,

E.V.L. de Mello and J. Ranninger,ibid. 55, 14 872~1997!.
11A.S. Alexandrov, V.V. Kabanov, and D.K. Ray, Phys. Rev. B49,

9915 ~1994!.
12F. Marsiglio, Physica C244, 21 ~1995!.
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