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Density-matrix renormalization-group study of the polaron problem in the Holstein model
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We propose a density-matrix renormalization-grd®RG) approach to study lattices including bosons.
The key to the approach is an exact mapping of a boson site contaiflimages toN pseudosites, each
with 2 states. The pseudosites can be viewed as the binary digits of a boson level. We apply the pseudosite
DMRG method to the polaron problem in the one- and two-dimensional Holstein models. Ground-state results
are presented for a wide range of electron-phonon coupling strengths and phonon frequencies on lattices
large enougtfup to 80 sites in one dimension and up tox22D sites in two dimensiofso eliminate finite-size
effects, with up to 128 phonon states per phonon mode. We find a smooth but quite abrupt crossover from
a quasi-free-electron ground state with a slightly renormalized mass at weak electron-phonon coupling to
a polaronic ground state with a large effective mass at strong coupling, in agreement with previous
studies[S0163-182(08)02112-3

[. INTRODUCTION mensionless electron-phonon coupling constafthen com-
paring results readers should be aware that notations for

The density-matrix renormalization-groupDMRG) : : :
method-? has proved to be a very successful numerical tech." odel parameters, especially differ in other papers.A

nique for studying spin and fermion lattice models with SUmMmation over” or (/,m) means a sum over all sites or
short-range interactions in low dimensions. Although the®Ver all bonds between nearest-neighbor sites in a chain of
DMRG algorithm can easily be generalized to treat systemingthL or a square lattice of sizex L. Only open systems
including bosons, calculations are often not practical. As fohave been considered because the DMRG method usually
exact diagonalizations, this is due to the difficulty in dealingperforms much better in this case than for periodic boundary
with the large(in principle, infiniteé dimension of the Hilbert conditions.

space for bosons. Although the problem is less severe in The polaron problem has been extensively studied using
DMRG than in exact diagonalizations, applications ofyariational method$,quantum Monte Carlo simulatiofs,
DMRG to boson systems have been restricted to problemgxact diagonalization¥;**and perturbation theor?:**°It

for which one needs to consider at most about a dozen stat@$ known that a rather sharp crossover occurs between a

-5 . . . .
for each bosori: quasi-free-electron ground state with a slightly renormalized

In this paper, we present an approach for dealing withy,,s5 at weak electron-phonon coupling, and a polaronic
large bosonic Hilbert spaces .W'th DMRG. Th_e_basc |dea_| round state with a narrow bandwidth at strong coupling.
to transform each boson site into several artificial interactin owever, despite these considerable theoretical efforts, the
e e e e e DY st oy Vs of 1 Seltaping tansiton i ot Tl nder
able to handle several two-state sites rather than one man?EOOd' Previous s_tud|es h?"e been limited either to small sys-

tems or to a particular regime of parametgrand w/t or by

state site. Although this procedure introduces some compli

cations in a DMRG program, the pseudosite approach & S€Verely truncated phononic Hilbert space or by uncon-
more efficient and allows us to keep many more states ifolléd approximations. With the DMRG method, we have
each bosonic Hilbert space than the approach used in earli@f€n able to study the one-electron ground state of the Hol-
works3-3 stein model for all regimes of parametest andg on large

To test our method, we have studied the polaron problerﬂﬁttices and with great accuracy. In this work we report an_d
the self-trapping of an electron by a localized lattice defor-discuss some ground state results that show the self-trapping
mation, in the Holstein mod&in one and two dimensions, CrOSSOVer, such as electron-lattice displacement correlation
We consider a single electron on a lattice with oscillators of Unctions, electronic kinetic energy, and effective mass.
frequencyw at each site representing dispersionless optical 1 1iS paper is organized as follows: in the next section, we
phonon modes and a coupling between the electron densiRf€S€nt our pseudosite method for bosons. In Sec. Il we
and oscillator displacemenq;:b%b/, whereb} andb,, escribe how we apply this method to the Holstein model.

are the usual boson creation and annihilation operators. TiMOSt re_sults for the polaron problem are presented and dis-
Hamiltonian is given by cussed in Sec. IV. In Sec. V we explain how we have com-

puted the effective mass of electrons and polarons and

+ + present these results. Finally, Sec. VI contains our conclu-

_ t t
t(/%q) (CmC/+C/Cum), (1.1 Il. DMRG FOR BOSON SYSTEMS

wherec! andc, are electron creation and annihilation op-  In the DMRG method, the lattice is broken up into blocks
erators,n,=c'c,, andt is the hopping integralg is a di-  made of one or several sites and Hilbert spaces representing
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blocks are truncatetfor more details, see Refs. 1 angd of a number in binary form. In this case the number is the
each block one keeps only tme most important states for boson state index starting at 0. Each binary digit is repre-
forming the ground statéor low-energy eigenstatesf the  sented by a pseudosite, which can be occuglgar empty
full system. A step of the DMRG algorithm is the process of(0). One can think of these pseudosites as being fermions,
forming a new block by adding a site to a block obtained inbut is is simpler to implement them as hard-core bosons, thus
a previous step. To find then optimal states of the new avoiding fermion anticommutation minus signs. Thus, for a
enlarged block, one has to find the ground state of an effed20son site withM =2" levels, the level with index O is rep-
tive Hamiltonian in a superblock made of two blocks andresented byN empty pseudosites, while the highest level,
two sites and then to diagonalize a density matrix on the new" — 1, is represented by hard-core bosons on th¢ pseu-
block. If n is the number of states on a site, the computerdosites.
memory storage needed to perform these tasks increases as!0 implement this idea, we first choose a truncated
n?m?2, while the number of operations goes roughlyndm3.  occupation-number basf$a),«=0,1,2 . ..,2'-1}, where
The difficulty in applying the DMRG to boson systems is b'b|e)=a|a), as the finite Hilbert space of a boson site.
the large number of states on a site. In principle, this numbeFhen, we introduce N pseudosites 1, ... N with a two-
is infinite and for numerical calculations one has to truncatglimensional Hilbert spacgr;),rj=0,1; and the operators
this space and keep a finite numibérof states per boson. In a] ,a; such thag;|1)=|0), a;|0)=0, anda/ is the Hermit-
a standard implementation of the DMRG method for bosorian conjugate ofa;. These pseudosite operators have the
systems, each boson forms one lattice site- M) and thus same properties as hard-core boson operamqraﬁﬂa;raj

memory and CPU time requirements increasdsandM?, =1 and operators on different pseudosites commute. The
respectively. For many interesting problems, such as thene-to-one mapping between a boson leje) and the
Holstein polaron discussed in this paper, one needs to keepNrpseudosite statg,,r, ... ,ry) is given by the relation
large number of states per boson sité~ 10— 100) to re-

. . . N
duce errors due to the truncation of bosonic Hilbert spaces. -1
Therefore, performing such calculations requires much more “:jzl 2. 2.
computer resources than DMRG computations for otherwise
similar Heisenberg or Hubbard systems, for which2—4. The next step is to write all boson operators in terms of

To understand the basis of our approach, it is important tgseudosite operators. It is obvious that the boson number
note that, in principle, the computer resources used by thgperator is given by

DMRG method increase linearly with the number of lattice
sites (everything else being eqyalTherefore, DMRG per- _
formances should be better when individual lattice sites are Np=b'b=2> 2i~'ala;. 2.2
defined so that the number of statess as small as possible )=

(i.e.,n=2) even if this implies an increase in the number of Unfortunately, other boson operators take a more compli-
sites in the lattice. For instance, in the Hubbard model forcated form in the pseudosite representation. Typically, they
fermions, we can either use the same site for both spin upre represented by a sum oveM terms. They can easily be
and spin down fermions or use different sites for fermions ofdetermined from the definition of the mappi(@ 1) and the
different spins. In the first case, the Hilbert space containproperties of boson and hard-core boson operators. As an
n=4 states [0),|1),]1),/11)) per site. In the second case, example, we show here how to calculate the representation
the lattice contains twice as many sites but the Hilbert spacef b'. First, we write b'=B"\/N,+1, where Bf|a)=|a

of each site contains only 2 stat§$0),|o), with =1 or +1). The pseudosite operator representation of the second
1). In practice, the second approach is faster by a factor of 2erm is

Also, in a boson-fermion model as the Holstein Hamiltonian M1

(1.1), a site can have both fermion and boson degrees of .

freedom, or one can separate the boson and fermions into ~ VNp+1= 20 Va+1Py(ry)Pay(ry)- - Py(ry), (2.3

two sites. We have found that the latter method is signifi- “

cantly more efficient than the former. However, it should bewhereP;(1)=a/a;, P;(0)=a;a], and ther; (j=1,... N)

kept in mind that DMRG performances depend essentiallyare given by the mappin.1). For BT we find

on the numbem of states that one needs to keep per block to

obtain a desired accuracy, the number of iterations needed by BT=aI+ a£a1+ a§a2a1+ et altlaNflaN72' c-ag.

the DMRG algorithm to converge, and the possible use of (2.4

system symmetries. All these parameters tend to be unfavoai-he representation df' for any number of pseudositésis

ably altered by the partition of sites in smaller units and agjyen by the product of these two operators. For instance, for
large increase ofm or of the number of iterations could _» pseudosites

offset any gain due to the reduction of the Hilbert space

dimensio_n. Nevgrtheless, experience indicates that it is_ usu- bT:aIJr \/§a£a1+(\/§— 1)a{a}az. (2.5

ally possible to improve DMRG performances by substitut-

ing several sites with a small Hilbert space for a site with aOther operators can be obtained in a similar way.

large Hilbert space. We can now substitutdl=log,(M) pseudosites for each
Therefore, we have developed a method to exactly trandoson site in the lattice and rewrite the system Hamiltonian

form a boson site into several smaller pseudosites. Our agnd other operators in terms of the pseudosite operators.

proach is motivated by a familiar concept: the representatiofonce this transformation has been done, DMRG algorithms

N
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; : transformation generates a very complicated Hamiltonian,
(a) ‘| m ® which includes many(typically M) long-range interaction
terms between pseudosites. Therefore, at each DMRG step
one must keep track of and transform many matrices repre-
senting different combinations of pseudosite operators used
to build up the Hamiltonian and other operators during fol-
lowing steps. However, one needs the many pseudosite op-
erators only during the intermediate steps of Fign)10nce
the full bosonic Hilbert space has been added to the block
[after the final step in Fig. (b)], one only needs regular
boson operators as in a standard DMRG method. Therefore,
FIG. 1. Symbolic representation of a DMRG step f=3  in an efficient implementation, matrix representations of bo-
(M =8). In the standard DMRG approach), a block(dashed rect- son operators should be computed from the pseudosite op-
angle is formed by adding a boson siteval) with its M =8 states  erator matrices, which can be discarded after that, whenever
to the initial block(solid rectanglg In the pseudosite approadh), it is possible. The cost of this operatior ! matrix addi-
a new block is made of the previous block and one pseudosite wittions) is small compared to the cost of keeping track of and

2 states. It takebl=3 steps to make the final bloclargest dashed transforming the pseudosite operator matriced( matrix
rectangl¢ including the initial block and all pseudosites, which is multiplications.
equivalent to the new block ife).

can be used to calculate the system properties. For instance, Il APPLICATION TO THE HOLSTEIN MODEL
|f one would !lke to fm? the grqrund state Qf an oscillator in a We have applied the pseudosite DMRG method to the
linear potentialH=wb'b—y(b"+b) keepingM =4 states,

Id f hi 4 ite hard Holstein model in different situations: one electron in one
we would transform this system Into a two-site hard-core,; .y o dimensions, two electrons and half-filled band sys-
boson system with the Hamiltonian

tems in one dimension, sometimes with additional interac-
tions as an on-site impurity potential or a local electron-
electron repulsion(Hubbard term Although most of the
discussion in this section applies to all these different cases,
all quantitative results provided here regard the one-electron
+y2ala,+(y3-1)aja,a;]. (2.6)  system with parameters in the range of 9d/t<4, g<5.
Several tests have shown that the performance and stabil-
One can easily check that both Hamiltonians share the samg of the DMRG method applied to the Holstein model de-
matrix representation in the basi§a),«=0,1,2,3 and pend greatly on details of the algorithm used. Below we
{|r1,r2),r1=0,1r,=0,1}, respectively. describe the best approach we have found. We have used the
Figure 1 illustrates the differences between standard anfinite system DMRG algoriththto calculate properties of a
pseudosite DMRG approaches. In the standard approadystem of fixed size. However, during the warmup sweep we
[Fig. 1(@)], a new block is built up by adding a boson site have not used an infinite system algorithm. Instead, environ-
with M states to another block wittn states. Initially, the ment blocks are built up using several sites without trunca-
Hilbert space of the new block contaimsM states and is tion. With this procedure the accuracy of the results after the
truncated tam states according to the DMRG method. In the warmup sweep is very poor, but this is not a problem be-
pseudosite approadkig. 1(b)], we build up a new block by cause in the finite system algorithm the subsequent iterations
adding one pseudosite with 2 states to another block mith (sweeps back and forth across the lajticen usually make
states. The Hilbert space of this new block contains omy 2 up for a poor quality warmup sweep. The number of states
states and is also truncated to states according to the kept per blockm is gradually increased as one performs the
DMRG method. We have to repeat this stépimes until the iterations, and we keep track of the ground-state wave func-
M-state boson Hilbert space has been added to the origin&ibn from step to step to reduce the total calculation time.
block. However, at each step we have to manipulate only &/e have found that it is necessary to optimize the approxi-
fraction 2M of the bosonic Hilbert space. It should be notedmate ground state for each intermediate valuemofThis
that the transformation into pseudosites is an exact mappingptimization requires performing several iteratidop to 6
of truncated bosonic Hilbert spaces. Therefore, the finafor each intermediate value ah even if the energy gain
blocks of both approaches in Fig. 1 would be equivalent ifbrought by these sweeps seems negligible compared to the
we did not truncate the block Hilbert spacesnostates at energy gain, which could be made by increasimgmmedi-
each intermediate step. Actually, we have never found angtely. Otherwise, the DMRG algorithm does not truncate
significant differences between pseudosite and standatolock Hilbert spaces optimally and eventually fails to con-
DMRG results but it is possible that such differences appeaverge. We think that these additional iterations are needed to
when the DMRG truncation errdthe error due to the trun- optimize the delocalization energy of the electron or polaron,
cation of block Hilbert spaces tm stateg is large enough.  which can be a small fraction of the total energy. The total
Using the transformation into pseudosites we have implenumber of iterations needed by the DMRG algorithm to con-
mented and tested several DMRG algorithrisGenerally, ~ verge varies greatly and in the worst cases can grow up to
implementing a DMRG algorithm for pseudosites is more30. Although the Holstein Hamiltoniafl.1) is reflection
complicated than a standard DMRG method. This artificialsymmetric, this symmetry has not been used in our algo-

2

H= wjzl 21~ tala;— y[a]+ \2ala, +(\3-1)alaja,+a,
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rithm. We have found that using the reflection symmetry carthe one-dimensional Holstein model dre=80 sites forN
hinder and sometimes prevent the convergence to the grourd5 (M =<32) andL =30 sites for 5=XN<7 (32<M=<128).
state. In two dimensions, we have used square lattices with up to

With the pseudosite DMRG method, we have been able t@0x 20 sites forN<3 (M=8) and up to 1X 12 sites for
keep enough states per phonon m@aetoM =128) so that 4<N=<6 (16<M=64). In most cases we could easily study
the errors from truncation of the phonon basis are negligiblemuch larger lattices if we needed to. However, in the po-
To check thaN is large enough, we compute the pseudositdaronic regime, the largest system size for which we can
densitij=<ajTaj>, where() means the expectation value in compute the ground state accurately is limited by the finite
the ground state, and extrapolate to fiag, ;. N is chosen precision of the DMRG method. We will discuss this point
so thatAy 1 is comparable to the DMRG truncation error. further in Sec. V.

Usually N<6 (M<64) was sufficient. The relatively small number of states needed for the po-
The polaron problem has an important computational adtaron problem allows us to carry out some calculations with
vantage as a test case: the number of statésat need to be both the standard and pseudosite approaches and to compare
kept per block is relatively small. In the noninteracting casetheir performances in terms of CPU time and memory stor-
(g=0), one can easily show that only two eigenstates of th&ge. In test calculations with all parameters equal, we have
density matrix have a nonzero weight. For finite coupling found that performances of both approaches are similar for

the DMRG truncation error often vanishésithin the ma- small M but the pseudosite approach becomes betteMfor
chine precision~10"19) if we keep a relatively small num- =8. The differences between these methods increase very
ber of states. Although we need to keep more states \ghen rapidly with M, as expected, and, more surprisingly, with
or the system size increases, we have found that a DMR&or M=32 and m=50, the pseudosite approach requires
truncation error smaller than 16* can be reached with at only 1/8 of the memory used by the standard approach and is
mostm= 150 states in all our calculations. This feature hasfaster by two orders of magnitude. In real applications, how-
also allowed us to obtain accurate results in quite large twoever, we expect the performance difference between both
dimensional systems. approaches to be smaller because of the greatest flexibility
With the DMRG method, the error on the ground-stateand simplicity of a standard approach. For instarMecan
energy is generally proportional to the DMRG truncationtake any integer value in the standard approach. Neverthe-
error. Therefore, we can calculate the ground-state enerdgss, when computations become challengify M=16
and the truncation error for several valuesmofand use a andm=50), the pseudosite approach clearly outperforms the
linear fit to extrapolate the result without truncation efror. standard approach.
This method gives reliable estimations of the error on the
ground state energy. In one dimension we have obtained
relative errors in the range of 18’101 depending on the
system size and parametggs w/t. In two dimensions we Using the numerical method presented in the previous
have contented ourself with larger errors, from %0to  sections, we have studied the ground-state properties of the
10719 to save CPU time but more accurate results can bélolstein Hamiltoniar(1.1) with a single electron in one and
obtained. two dimensions. In particular, we are interested in the evo-
In the polaronic regime, the density of states near thdution of the ground state as a function of the adiabaticity
ground state becomes very largeee the discussion in Sec. and of the electron-phonon coupligg For a weak coupling
V). Thus, a small energy error does not guarantee that wa standard perturbation calculation @ shows that the
have obtained an accurate ground-state wave function. Tground state is a quasi-free-electron dragging a phonon
estimate the precision of measurems(®s, whereO is any  cloud, which slightly renormalizes the electron effective
operator other than the Hamiltonidh, we have used exact mass. Note that the weak-coupling regime roughly corre-
relations between expectation values, such as symmetry cosponds tog<1 and 3%w<W, whereW=4t in one dimen-
ditions or self-consistence equations. For instance, the selsion andW=8t in two dimensions is the bare electronic

IV. RESULTS

consistence equation bandwidth. The standard strong-coupling theory of the Hol-
stein model® which is based on the Lang-Firsov transfor-
<b}+ b,/)=2g({(n,), (3.1) mation and treats the electron hopping term as a perturba-

tion, predicts a polaronic ground state with a narrow
which holds for all eigenvalues of the Holstein Hamiltonian bandwidth. The strong-coupling regime correspondsgto
(1.1), gives a local condition on both fermion and boson>1 and 2j?»>W. In this section, we present several results
degrees of freedom. For the results presented in this papef pseudosite DMRG calculations which show the evolution
we have typically obtained relative errors smaller thanl0 of the ground states from the weak to the strong electron-
in one dimension and smaller thanF0in two dimensions. phonon coupling regime and compare them to the predic-
Finally, we point out that the pseudosite DMRG method per+tions of perturbation calculations and the results of previous
fectly reproduces exact diagonalization results for the grounehumerical studies.
state and lowest excited states of small systems like the two-
site Holstein modet?

For each value of the parametgrandw/t we have stud-

ied systems of different sizes and checked that finite-size For periodic boundary conditions, it is known rigorously
effects are negligible or extrapolated results to an infinitethat the ground-state energy and wave function are analytic
system. The largest system sizes that we have used to stuflynctions of the electron-phonon coupligg’ In particular,

A. Electronic density
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FIG. 2. Ground-state density distribution fer=t, g=2.5 in a
30-site chain. The solid and dashed curves are given by(4#). FIG. 3. Ground-state density distribution fer=t, g=2.2 on a
with a = 1 and 0, respectively. 9Xx 9 lattice.

no phonon-induced localization transitidghreaking of the ~(ron Position and the oscillator displacemegyt=bj+ b .
translation symmetiyoccurs for finiteg; in the ground state 1nese correlations indicate the strendtor i=j) of the
the electron is always delocalized over the lattice. Corre€lectron-induced lattice deformation and its spatial extent. In
spondingly, for open chains our DMRG results show that théh€ noninteracting casey¢0) they are uniformly zero. Fig-

electronic densityn,) always has the shape ure 4 shows the normalized correlation fu_nctiomw
=(n19;)/(nyo) for several parameters/t andg in 20-site

chains. For parameters close to the weak-coupling regime
(4. [Figs. 4a) and 4c)] the amplitude ofyo; is smaller than the
quantum lattice fluctuations, which are given by the zero-
for 1+a</<L-a andn(/)=0 otherwise, whera is an  point fluctuations of each phonon modg~1. Therefore,
integer number. This density corresponds to a free particle ithese correlations do not show a lattice deformation that
a one-dimensional box made of the sites with indi¢es1  could trap an electron because the sign of the effective lattice
+a to /=L —a. Therefore, the electron is delocalized over potential seen by the electron fluctuates. They are merely the
the whole lattice, except for some chain edge effects, irsignature of a phonon cloud following the electron. For pa-
qualitative agreement with the exact result for periodicrameters close to the strong-coupling regifRegs. 4b) and
boundary conditions. For small coupling we have found 4(d)], the amplitude ofy,,; is larger than these quantum
that we obtain the best fit wita=0 as for a free electron. lattice fluctuations. In these cases, we really observe a lattice
For stronger couplings better fits can be obtained with largedeformation generating a local attractive potential that is
values ofa. For instance, Fig. 2 shows a density obtainedlikely to trap the electron.
with the DMRG method and the functiqd.1) for a= 0 and We observe similar features in two-dimensional lattices.
1. Even when the best fit is obtained wiah-0, the density ~Figure 5 shows a normalized correlation functig(x,y)
(n,) close to the chain edges is actually finite but very small.=(Ng gllx,y)/{Ng g in the weak-coupling regime. The ampli-
On two-dimensional square lattices the electron is alséude of x(x,y) is much smaller than quantum lattice fluctua-
delocalized over the lattice for all values of the paramegers tions oq~1. In Fig. 6 we show a similar correlation func-
andw/t that we have investigated. For instance, in Fig. 3, wetion,  x(X,y)=(nsx,)/(Nss, in the strong-coupling
show the densityn, ) for a lattice in the strong-coupling regime. In this case the amplitude of the lattice deformation
regime. In the weak-coupling regime, the electronic densitygenerated by the electron is clearly larger than the zero-point
distribution has the same shape lattice fluctuations.
In the weak-coupling limit we observe an exponential de-
4 Ty cay of correlations between electron position and lattice de-
n(x,y)= Ssin? Sinz( R 1) (4.2 formation. We find good agreement between our DMRG re-
(L+1) sults and weak-coupling perturbation results for all phonon

as the density of a free particle in a two-dimensional box. Adréquenciesw/t, even in the nonadiabatic regime/ft>1)
in one dimension, for stronger coupling the density become¥here the correlat|ons_ deqre_ase very_fast. In the _adlabatlc
larger in the middle of the lattice and decreases near the®/t<<1) weak-coupling limit, the lattice deformation ex-

edges, but in this case we cannot fit the dengity,) with tends over many sitg$ig. 4a)]. Wheng or w/t increases,
Eq. (4.2 and a renormalized system size. ’ the spatial extent of the lattice deformation decreases. In the

strong-coupling limit, the ground state becomes “superlocal-
ized” in the sense that any operator measuring a correlation
between the electron and a phonon vanishes unless the cor-
Some ground-state properties can easily be studied irelation is measured on the same §ite particular, one
terms of static correlation functio®;q;) between the elec- finds(n;q;)~ &; [see Fig. 4d) and Fig. 6. The variation of

w(/—a)
L+1-2a

N =125

TX

L+1

B. Electron-lattice correlations
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FIG. 4. Correlationsy,o; between electron density and lattice displacements on 20-site chains for various vahf¢saotig.

the lattice deformation extent as a functionat can easily  distribution within a polaron. To obtain this information we
be understood as a retardation effect. For sm#l| phonons  should comput&P;n;), whereP; projects the phonon states
are much slower than the electron and thus phonon modemto a particular lattice configuration representing a polaron
that are excited by the passage of the electron take a longentered on sité. Unfortunately, we do not know the opera-
time to relax. Therefore, we can observe a lattice deformator P; .

tion far away from the current position of the electron. In the

antiadiabatic limit @/t>1), lattice fluctuations are fast and C. Self-trapping crossover

a lattice deformation relaxes quickly following the slow elec-

tronic motion. Thus, we can observe a lattice deformation _tI_Drelvml:s nufrrlﬁncall s;cudleshhave ShOV\I'.n thag thereh!sha
only in the vicinity of the electron. critical value of the electron-phonon coupling above whic

It should be kept in mind that these correlations Or]lyself—trappmg of the electron by a local lattice distortion does

8,10,13,14 H H H :
show expectation values of the lattice displacemegntsvith fctuhr. , r%net SthOl\JAIId Vkeefp rl1n timrl1ndi th;’::}vncljvlc()jcailr;zatlci?
respect to an instantaneous electron position. They do n € ground-state wave lunction 1S olve Sell-

show the electron density distribution for a specific frozen r;p‘t)'gg' Tgere:jforte,t: tzmootglgrgsiove; frr]?jm tatgugjgfreneo't
lattice configuration. Therefore, these results alone are not cotron ground sta a poiaronic ground state does m
ontradict rigorous results on the absence of localization in

evidence for the formation of a self-trapped electronic stat his kind of model” M Ii-t ing d timol
and they give no information regarding the electron densit IS KInd of moget.” Moreover, Ssell-trapping does not Imply
any change in the electronic density distribution. If the elec-
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- 2.0

0.010 - 15
0.005 10
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0 0.0

FIG. 5. Correlationg(x,y) (see text between electron position FIG. 6. Correlationg¢(x,y) (see textbetween electron position
and lattice deformation on a ¥515 lattice with w=0.2 and g and lattice deformation on 299 lattice withw=t andg=2.2. The
=0.1. The electron position is on the center of the lattice. electron position is on the center of the lattice.
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FIG. 8. Electronic kinetic energy as a function of the electron-
electron-phonon coupling for w/t= 0.1 (circle), 0.2 (squarg, 1 phonon coupling in one-dimensional systems in the adiabatic re-
(diamond, and 4(up trianglé in one dimension and fow/t= 1 gime. Symbols are DMRG results. Solid curves show the second-
(down triangl@ in two dimensions. Open symbols are DMRG re- order weak-coupling perturbation results. Dashed curves are the
sults. Filled symbols show first-order weak-coupling perturbationPredictions of the second-order strong-coupling expansion.

results.

FIG. 7. Local electron-lattice correlatigp as a function of the

laronic regimes. Unlike Caporet al,'* we have found that

tron is self-trapped by a local lattice deformation, the resultthe crossover is always marked by a sharp increage iofa
ing polaron is delocalized over the lattice and the polarorsmall region of the planeg(w/t), even for largew/t. The
appears only in correlations between electron and lattice. problem is that these authors have not normalized their func-

A measure of the polaronic character of the electron is théion x; o by a factorg as we do in Eq(4.3). Therefore, they

correlation function observe a quasilinear dependence as a function of the
electron-phonon coupling, which hides the sharp but small
(nig;) increase that we observe in Fig. 7 at large phonon frequen-
Xi— Zg<ni> ’ (4.3 cies.

In two dimensiongy; is smaller than in one dimension for
where the index is either a site index” on achain orX,y)  the same parametery and w/t. The crossover occurs at
on a square lattice. Using E¢B.1), one can also writg;  stronger coupling because the bandwidth is larger in
=(md;)/{a;). Therefore, it is clear thdj;|<1. In practice, higher dimension and thus the conditiog?>W is ful-

we have found thag; takes only a positive value between O filled for largerg. However, differences betwegn for one-
and 1. For periOdiC bOUndary Conditions, this function is CON-gnd two-dimensional Systems diminish when the Coup"ng
stant and differs from the fUnCtiO}aiyo described in Ref. 14 increaseisee results fow=t in F|g 7)

only by a factor ofL/2g (L2/2g in two dimensions In open

systems, the terrtn;) in the denominator is needed to com- D. Electronic kinetic energy

pensate for the inhomogeneous density distribution. We have _ o
found that this function is almost constant, except close to One can obtain some insight about the electron state by

the lattice edges. Here we report and discuss only values @@lculating its kinetic energfin units of the kinetic energy at

Xi Obtained in the central region of a lattice. g=0)

In Fig. 7 we show our DMRG results fof; as a function
of the electron-phonon coupling for different values of K:E E <cTc tcte ) (4.4
w/t. For small couplingg our results tend to the value pre- i £TRsm ’

dicted by the weak-coupling perturbation theory. For larger

coupling, x; tends to 1 as predicted by strong-coupling Figures 8 and 9 show the evolution of the kinetic energy
theory. At intermediate coupling, one observes a ratheK as a function of the electron-phonon coupliggin the
sharp, though continuous, transition from the weak-couplingdiabatic and nonadiabatic regime, respectively. These re-
to the strong-coupling value of; asg increases. We think sults are qualitatively similar to recent exact diagonalization
that this transition marks the crossover from a quasi-freeresults on small lattice§ For weak couplingK is very close
electron ground state to a polaronic ground state. The cros$s 1. This means that the electron is barely affected by the
over roughly occurs when both conditiogs>1 and g°w interaction with the phonons and remains essentially in the
=W/2 are fulfilled, in agreement with previous works'®14  same state as a free electron. Further evidence for a quasi-
However, since the formation of polaron does not break anyree-electron ground state is the good agreement between our
symmetry and all ground-state properties are analytic funcBMRG results and the second-order perturbation calculation
tions of the parameters, it is impossible to define criticalin g, at least as long ag?w<W/2 or g<1. Therefore, we
values g, and w. separating quasi-free-electron and po-think that the electron is not trapped by any lattice deforma-
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T ' ' width exceeds perturbations of its formation energy by ex-
1.0 o o=t,1D - ternal forces. Therefore, it is interesting to compute param-
O w=t, 2D eters that describe its dynamics, such as its effective mass
A =41, 1D m*.
08 The electronic density distribution shows that the electron
or polaron is delocalized over the lattice as a free particle.
06 | We know that the band structure of a free particle in an open
X chain of lengthL would be given byE (k) = — 2t*cosk) with
k=zw/(L+1), wherez=1,2,3 ... numbers the eigenstates.
0.4 The effective hopping terrtt is related to the effective mass
by m*/m=t/t*, wherem is the bare electron mass. However,
oo | the polaron band structure is known to deviate from this
form because of the importance of effective long-range hop-
_____ ping termst>1°Nevertheless, for large chains$ 1) we ex-
0.0 0 ] 5 P 4 pect the electronic excitation spectrum at low energy to be
Electron—-phonon coupling g given by
2
FIG. 9. Electronic kinetic energy as a function of the electron- E(z,L)=E,+t* Tina , (5.9

phonon couplingg in one-dimensiona(1D) and two-dimensional
(2D) systems in the nonadiabatic regime. Symbols are DMRG rewhereE., is the ground state energy of an infinite chain and
sults. Solid curves show the second-order weak-coupling perturbag js a parameter that accounts for the reduction of the effec-
tion results. Dashed curves are the predictions of the second-ordgye system length due to the repulsive effect of the chain
strong-coupling expansion. edge. We can determine the parameters t*, anda by

tion in this regime but simply drags a phonon cloud. We alsg-@lculating different eigenenergi€gz,L) with the DMRG
note that forw/t=t and g=0.5, static correlationg¢n;q;) and then f|tt|ng th_ese res_ults to EG.1). In principle, we
decay over a few sitefsee Fig. 4c)] while we find K should varyz in this equation and thus calculate the ground
~0.977, which is not compatible with an electron localizedstate and several excited states. However, calculating accu-
on a few sites. This confirms that the spatial extent of latticdate excitation energies with the DMRG is much more diffi-
deformation obtained fronfn;q;) can be different from the cult than computing ground-state energies. Moreover, the
localization length of the electron around a lattice distortion.task of computing electronic excited states is complicated by

In the crossover region the kinetic energy decreases raghe intrusion of phononic excitations in the spectrum. There-
idly with increasing coupling. For large enough our fore, we have obtained effective masses by fitting ground-
DMRG results tend to the values predicted by the secondstate energies for several chain lengthso Eq. (5.1) with
order strong-coupling theory. The agreement between these=1. This method only yields the effective mass at the bot-
results is better for larger values eft because the strong- tom of the electronic or polaronic band but in this particular
coupling theory is a perturbative expansiontifig’») and  case gives results similar to those obtained by fitting excited-
thus much more accuratelin the antiadiabatic Iimit. Also, oUrstate energies. We generally obtain excellent fit with this
res.ults conflrm that the lerst_-order strong-coupllng mgthodmethod as soon ds+ 1—2a>10. We estimate that the error
which predictsk ~exp(-g°), is a very poor approximation o our values fom* is a few percent or smaller. The value
for all values ofw/'g. .It is necessary to mclude. at least the of a that gives the best fit of the energy to EG.1) is
seg:ond—order term ihin the perturbative expansion to obtain generally close to the value afthat reproduces the density
relllabllzg re;ults. hat initialk d f . distribution in Eq. (4.1). Therefore, the behavior of the

n Fig. 9 we can see that initiallt decreases faster in one ground-state energy as a function of the system size confirms

(lillg/eerr]tsrlglnestza;]or”;a'rtwg C%'Ln?ins'%zsr :]?erse::irgzrrg;;ﬁ;n:;%rsthat the electron or polaron behaves like a free particle on a
, foriarg piirg chain of effective length. —2a for all values of the param-
the strong-coupling theory show th#t converges to the etersg and w/t

2 . . .
same values-1/(g°w) in both dimensions. In two dimensions we use a similar procedure. The

i Fm;ally, we dnottcaj that forll()=4t d(s?e Fig. 9 thl_e cotrr?bma— rground-state energy for several square lattices of Isizd.
lon of second-order weak- and strong-coupling theory Cary g0 1o Eq.(5.1) with z=1 and 2* substituted fot*. The

reproduce our numerical results for all valuesgofery ac- E

e inear dimension& used in these calculations were generally
curately. Therefore, these methods seem su_ff|C|e_ntI)_/ accuraialler than the chain lengths used in one-dimensional sys-
::%jlt(;lj(z)):a t\t]:r p%':‘er?tn 51 rc::tggéns Ivr\]/htgriz ?\T:ﬁg'&g?ﬂri;'twg dzn:rtems. Thus, the mass obtained for two-dimensional systems

Very Use o . ) IS less accurate and we estimate that the relative error is
not practical, for instance, in higher dimensions. However,<200/0

one should keep n mind that the s'grong—couplmg theory The structurg5.1) of the electronic excitation spectrum
gives poor results in the crossover regime for smaller Valuegllows us to understand the main difficulty in applying the
of w/t. DMRG method to the polaron problem. To determine the
V. EEFECTIVE MASS ground state accurately, we need an absolute prepision that is
better than the energy difference between the first excited
A polaron or a quasi-free electron with its phonon cloudstate ¢=2) and the ground stateg{ 1). Therefore, the rela-
can be seen as an itinerant quasi-particle if its effective bandive error on the ground-state energy must be smaller than
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FIG. 10. Effective hopping integral* as a function of the FIG. 11. Effective hopping integral* as a function of the
electron-phonon coupling for w/t=4 in one dimension. Symbols electron-phonon coupling for w/t=1 in one dimension. Dia-
are DMRG results. The solid curve is the second-order weakmonds are DMRG results. The solid curve is the second order
coupling perturbation result. The dashed curve shows the seconeveak-coupling perturbation result. The dashed curve shows the
order strong-coupling expansion prediction. second-order strong-coupling expansion prediction. Circles with er-

ror bars are QMC results.
~t*/(E..L?). As the precision of our numerical method is
limited by roundoff errors, this condition imposes a con-

straint on the parametegs /t, andL for which we canfind  4¢ giways larger than those obtained by QMC calculations.
the ground state. Using the strong-coupling tzheory reé*ﬁlts, We can see that the DMRG method is more accurate than the
one can easily show that f@—o, E.——g°w, andt QMC method at weak coupling. We also note that QMC

2 . . . .
—texp(-9). Thegeforze,zthe minimal precision that we need regits are systematically lower than the strong-coupling pre-
goes as-texp(—g)/(L°g°w) and becomes exceedingly small gictions. On the other hand, we have found that DMRG re-

very rapidly withg. In practice, we have been able to obtaingjts are always larger than these strong-coupling predic-
the ground state of chaTS with up to=16 sites for very ions. It is known that the second-order strong-coupling
heavy polaronst(/t~10""). Calculating the effective hop- perturbation theory underestimates the effective bandwidth
ping accurately with Eq(5.1) requires a higher precision and for |arge coupling® Therefore, we think that this new QMC
thus is limited to a smaller set of parameters. We can megnethod underestimates the effective hopping in the ground
sure the effective hopping with a good accuracy for siate of the Holstein model.

=10t using chains with up td. =30 sites or square lat-  Finally, we show the effective mass* as a function of
tices with up to 1(x 10 sites at least. In this paper we report the electron-phonon coupling in Fig. 12. At finite coupling

results for the effective mager hopping in this range only.  the quasi-free-electron or polaron effective mass is larger
Of course, in the quasi-free-electron and crossover regimes,

wheret*~t andE,,<2t this problem is less serious and we

ment between DMRG and QMC results but our values*of

can study much larger systems. 600 ' ' ' '

In Fig. 10 we show the effective hoppirt§ calculated T
with our DMRG method as well as the second-order weak- 500 I 01D, w=0.1t T I
and strong-coupling results fan/t=4 in one dimension. o 1D, 0=0.2t
The good agreement between these results confirms both the ~ 400 | ¢ 1D, o=t 1
accuracy of perturbative methods in the antiadiabatic limit A 1D, w=4t
and the validity of our method. We have found that our & 300 * 2D, o=t . -
DMRG results also agree well with the weak-coupling re- =
sults in the quasi-free-electron regime for all valuesodf. 200 i

However, asw/t decreases, we observe differences between
our results and the strong-coupling theory, which becomes
more and more important. The ratio between the value$ of
obtained with the DMRG and the strong-coupling theory in-
creases rapidly and can reach®or w/t=0.1. We think
that this discrepancy is due to the limitation of the strong- 0 , > 3 4 5
coupling theory, which is a perturbative expansion in
t/(g°w) and thus becomes inaccurate for smat.

In Fig. 11 we show the same results foft=1 together FIG. 12. Effective mass of the electron or polaron as a function
with the effective hopping obtained by a new quantumof the electron-phonon coupling for different values ofw/t in
Monte Carlo(QMC) calculation? There is qualitative agree- one-dimensional1D) and two-dimensional2D) systems.

100

Electron—phonon coupling g
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than the bare electron mass because of the phonon cloud tr@asite approach is likely to be more efficient than the stan-
must be dragged by the electron. The sudden onset of selftard approach even in this case.
trapping is marked by an abrupt increase of the effective The pseudosite DMRG is just a method that efficiently
mass. However, the effective mass that we calculate is handles the large number of states of a boson site. A better
ground-state property and its dependence on coupling corapproach would be to reduce the number of states one needs
stants is smooth, in agreement with exact theorems on th® represent a boson site using the key idea of DMRG. In
ground state of the Holstein mod€lIn the polaronic re- such an approach the reduced density matrix for a single site
gime, the effective mass increases exponentially with thés diagonalized to obtain a small set of optimized states rep-
coupling, but in the adiabatic regime<t the mass enhance- resenting the boson site. It has been shown that 3 optimized
ment is significantly smaller than the prediction of the first-states per site give results as accurate as with 10—-100 states
order strong-coupling theorym*/m=exp(—g?), as noted in exact diagonalizations of the one-dimensional Holstein
previously'®5The evolution ofm* is similar in one and two model at half-filling'® Coupling this approach to the DMRG
dimensions. The only difference is the shift of the crossovewill further improve our capability to perform numerical
regime to a larger value @f due to the variation of the bare studies of systems including bosonic degrees of freedom.
electronic bandwidtiW as discussed in the previous section.  Using the pseudosite DMRG method, we have studied the
As all ground-state results are smooth at the self-trappinground state of the one- and two-dimensional Holstein model
transition we cannot determine precisely when a quasi-freewith a single electron. We have been able to study all re-
electron becomes a polaron. It is necessary to study excitegimes of parameterg and w/t in systems large enough to
states or dynamical properties to find qualitative differencesliminate finite-size effects. Our results are in good agree-
between both regimé$:*® Nevertheless, our results show ment with exact theorems, perturbation theory predictions,
that for some parameters, for instaneest andg~2—2.2, and the results of previous numerical works. We have not
the ground state is clearly a polaron and the effective mass feund any qualitative differences between the one- and two-
relatively small,m*/m~ 10— 100. Therefore, in the Holstein dimensional systems after taking into account the doubling
model there are polarons with an effective mass that is muchf the bandwidth in two dimensions compared to one
smaller than the prediction of the standard small polarordimensiont® In particular, in the weak-coupling regime self-
theory® trapping does not occur and the ground state is a quasi-free-
electron in both one and two dimensidhSeveral ground-
VI. CONCLUSION state properties show a smooth but quite abrupt crossover
from a quasi-free-electron to a polaronic ground state as the
In this paper we have presented a DMRG approach telectron-phonon coupling increases. In particular, the cross-
study lattice systems including bosonic degrees of freedomyyer is signaled by a sharp increase of the effective mass,
The pseudosite DMRG method is much more efficient than @|though the mass enhancement can be much smaller than

standard approach using regular boson sites and allows us f@edicted by the standard small polaron theory.
study large systems while keeping up to 128 states in each

bosonic Hilbert space. We have successfully applied this

method to the HoIstei_n mod_el and we bellieve that it can_be ACKNOWLEDGMENTS

applied to any model including boson, which can be studied
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