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Systematic numerical study of spin-charge separation in one dimension

M. G. Zacher, E. Arrigoni, and W. Hanke
Institut fir Theoretische Physik, Universtt&V/urzburg, D-97074 Wizburg, Germany

J. R. Schrieffer
NHMFL and Department of Physics, Florida State University, Tallahassee, Florida 32310
(Received 7 October 1997

The problem of spin-charge separation is analyzed numerically in the metallic phase of the one-band
Hubbard model in one dimension by studying the behavior of the single-particle Green'’s function and of the
spin and charge susceptibilities. We first analyze the quantum Monte Carlo data for the imaginary-time Green’s
function within the maximum-entropy method in order to obtain the spectral function at real frequencies. For
some values of the momentum sufficiently away from the Fermi surface two separate peaks are found, which
can be identified as charge and spin excitations. In order to improve our accuracy and to be able to extend our
study to a larger portion of the Brillouin zone, we also fit our data with the imaginary-time Green’s function
obtained from the Luttinger-model solution with two different velocities as fitting parameters. The excitation
energies associated with these velocities turn out to agree, in a broad range of momenta, with the ones
calculated from the charge and spin susceptibilities. This allows us to identify these single-particle excitations
as due to a separation of spin and charge. Remarkably, the range of momenta where spin-charge separation is
seen extends well beyond the region of linear dispersion about the Fermi surface. We finally discuss a possible
extension of our method to detect spin-charge separation numerically in two dimensions.
[S0163-182¢98)03511-5

[. INTRODUCTION systems and perturbative methods are necessarily limited.
Spin-charge separation is predicted exactly for the Luttinger
One-dimensiona(1D) interacting fermion systems show model: anideal exactly solvable model. It is thus important
a number of anomalous properties which cannot be undeto test numerically to what extent spin-charge separation can
stood in the framework of the Fermi-liquid theory of normal occur in a one-dimensionglhysical model Moreover, in
metals. In particular, their momentum distribution and den-order to prove the theories mentioned above, it would be
sity of states are in sharp contrast with Fermi-liquid theoryimportant to check whether some two-dimensional models
for energies and momenta close to the Fermi surface. In gemxist which display spin-charge separation. Recently, there
eral, 1D systems can be described by an effective low-energyave been several attempts to detect spin-charge separation
theory based on the exactly solvable Luttinger model within one- but also in two-dimensional models. In the=~ 1D
suitably renormalized parameters and are thus referred to atubbard modéf spin-charge separation occurs in a natural
Luttinger liquids(LL’s ).}~ One of the most striking features way atall energies(and not only at low energies like ex-
of the Luttinger model is the complete separation of spinpected in a LI due to the exact factorization of the wave
and charge degrees of freedom which manifests itself in théunction* In a numerical work, Jaglat al® have observed
splitting of the single-particle spectral function in two peaksthe propagation in real time of a single-electron wave packet
corresponding to spin and charge excitations propagatingreated at a timé=0 in a 1D Hubbard model. This wave
independently 52 Another important characteristic of the packet splits up into two excitations propagating with differ-
Luttinger model is the presence of power-law behavior withent velocities that can be associated with charge and spin. In
interaction-dependent exponents for various correlation funca work by Puttika and collaboratdfshe possibility of spin-
tions. charge separation in the 22 model has been signaled by
Beside its application to 1D systems, LL theory has re-the presence of two distinct characteristic wave vectors for
ceived particular attention in the past years in the frameworkhe spin and charge degrees of freedom. Exact diagonaliza-
of the theory of high¥, superconductors. The normal phasetion of the 1Dt-J model’ has evidenced the presence of two
of the highT.CuO, planes shows in fact a number of peaks in the single-particle spectral function whose posi-
anomalous properties which can be possibly understood, tions scale witht and J, respectively, and have thus been
one assumes that the CuQ@lanes are in a kind of two- identified with charge and spin excitations. In another
dimensional LL staté-'!In particular, it has been suggested study'® two peaks have been detected in the single-particle
that spin-charge separation could be present also in the CuG@pectral function of a 1X-J model with corresponding
planes and that it plays an essential role in the way particlepeaks in the charge and spin susceptibilities. These two
are allowed to tunnel between the planés. peaks can be seen, however, only for the momenta which are
Numerical methods have been proven to be crucial for themmediately next to the Fermi momentum and thus they can-
theoretical understanding of models describing the LuOnot be associated with a dispersive spinon and holon band.
planes, since electron correlation is rather strong in thesEinally, Kim and co-workers have detected two dispersive
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bands fork<<kg in a 1Dt-J model close to half filling. This 3p ' T1

is not surprising, since spin-charge separation is in fact quite 95| vp = 2050+ 0.093 } H |
natural to expect when one hole is added beyond half filling. ’ %

The added hole decomposes indeed in a spinless hole and a 9L i
spin  misalignment which propagate with different H

velocities® Nevertheless, the interesting result of that work — w/t 1.5 ] -
is that the photoemission spectrum of SrGu@lso showing
two dispersive bands, is remarkably well reproduced by the Ir 1
numerical results. % %

In this work, we present a systematic quantum Monte
Carlo study of spin-charge separatiawayfrom half filling, 0 . J
where Luttinger-liquid theory is expected to hold, in the 0 /4 /2 3m/4
whole Brillouin zone (BZ). The nontrivial prediction of q
Luttinger-liquid theory is, in fact, that spin-charge separation
occurs in themetallic phase, where the band dispersion is
linear. Spin-charge separatiat half filling, as studied in the
model of Ref. 19, is, in our opinion, of a different nature

since I the InSL_JIatlng phase the_ holon dispersiomus- . regions correspond to larger values)gf(g,»)] and the dots with
dratic instead oflinear. O_f c_ourse, _|n the _case of Ref._19 It error bars show the peak positions with their uncertainty. The linear
was necessary to remain in the insulating phase, since thg (straight line for smallq yields the charge velocity , as indi-
physical system in study was half filled. cated in the upper left comner.

For somevalues of the momenturk we are able to see
two peaks in the single-particle spectral function whichyherec(") are annihilation(creation operators for an elec-

correspond to the spin and charge excitations. However, dugon at sitei with spino andn,,=c! ¢, ,. The energy scale

to the limited resolution of the maximum-entropy method, it; ot the model will be set to unity;’irn the rest of the paper.

is not possible to resolve the two peaks in most of theZ%Z. The simulations were carried out with the grand-canonical
For this reason, in the rest of the BZ we work with the quantum Monte Carlo meth& on a 64-site lattice with
imaginary-time Green’s functiog(k,) which is obtained ;v erse temperature K4T=B=20, Hubbard repulsiorlJ
directly from 'quan'tum M(_)nte Carlo data without the need of:4, and an electron density ¢h)~0.75. The simulations
analytic continuation. This has the advantage that one dogge|q the one- and two-particle Green’s functions at discrete
not need to introduce a further source of error produced meaginary timesr with 0< 7< 8. We used a discretization of
the analytic continuation to real frequencies. Specifically, Weie imaginary-time axisA r=0.0625. The spectrgone-
perform a nonlineag ﬁtLﬁf G(k,) by using the solution of particle photoemission spectrum, and charge and spin sus-
the Luttinger model ggl,v)z,Kp(k’T) (Ref. 1) with two ve-  ceptibilities were then obtained by analytically continuing
locities vy, wv,, and a normalization constantas fitting  the imaginary-time results to real frequencies by means of
parameteré! Our fit yields a finite value of the difference the maximum-entropy methdd:?>%°

v,—uv, larger than the statistical error in a large portion of Figures 1 and 2 show a density plot of the charge and spin
the Brillouin zone. Moreover, the fitted values of the corre-susceptibilitiesy, andy,,, respectively. The gray scale gives
sponding excitation energieg(k—kg) andv,(k—kg) coin-  a measure for the value af,,(q,») as a function of mo-
cide, within the statistical error, with the spin and chargementum transfeq and excitation energw. The dispersion
excitations, respectively, calculated independently via the agelation for spin and charge excitations is defined by the
sociated susceptibilities. It is remarkable that this behaviomaxima ofx,,, which are indicated by dots with error bars
extends well beyond the region of linear dispersion aroundn the figure. A linear fit of these maxima neq#=0 yields

ke where Luttinger-liquid behavior is expected.

0.5

3

FIG. 1. Density plot of the charge susceptibiligy,(g,) as
obtained by the analytic continuation of the quantum Monte Carlo
charge-charge correlation function with the maximum-entropy
’ method. The gray scale corresponds to the valye, (d, ») [darker

Our paper is organized as follows. In Sec. Il, we introduce 3 .
the model, and we show the results of the quantum Monte vy = 1.170 £ 0.074
Carlo simulation and analytic continuation to real frequen- 25¢ k
cies by means of the maximum-entropy method. In Sec. lll, ol R
we discuss and show the results of our fit of the imaginary-
time Green’s function with the result from the Luttinger Wt 15 ¢ HH | Sl | H
model. Finally, we draw our conclusions in Sec. IV. H
| i !
IIl. QUANTUM MONTE CARLO SIMULATION 0.5 { H# ] 1 % .
We consider the 1D Hubbard model with periodic bound- 0 : : . ‘
ary conditions described by the following Hamiltonian: 0 m/4 /2 3 /4 4

FIG. 2. Density plot of the spin susceptibiligy, (g, ») with the
H= _tz (ciTHﬁci’(,Jr H.c.)+U2 NNy, (1) ~ same conventions as Fig. 1. The linear($raight ling yields the
i i spin velocityv,; .



6372 ZACHER, ARRIGONI, HANKE, AND SCHRIEFFER 57

3 T T T T 3.5 T T T I I |

| e T
1111 3 T
111111111 }
1} 28 - 25 -
ﬂzx
w/t -._—.-‘. 3\ 21 -
a2 =
1 jgE3iag . < 15 —t— -
1F .
oL : . : A 0.5}¢ .
3() /4 /2 3r/4 T
k 0 1 1 1 1 1 1 1

2 -18 -16 -14 -12 -1 -08 -06 -04 -02 0
FIG. 3. Density plot of the single-particle photoemission spec- wft
trum A(k, w) with the same conventions as Fig. 1. It is seen that the
dispersion around the Fermi ener@yotted ling is linear over a
broad momentum range, thus justifying dwrttinger-liquid ansatz
for the single-particle Green’s function.

FIG. 4. Single-particle photoemission spectrék,w) (in ar-
bitrary unit9 for k—kg=—4.57/32. The dots with horizontal error
bars indicate the position of spin and charge excitations calculated
by @,/,=(k—kg)v s With v, oObtained from Figs. 1 and 2. For
the spin and charge velocities,=1.170+0.074 andv, this k point close to the Fermi momentum the maximum-entropy
=2.050+0.093 which agree very wellvithin the statistical method is able to resolve two separate peaks in the spectral function
erron with Bethe-ansatz resufsfor the infinite lattice and  Which can be identified as the spinon and holon excitation, respec-
zero temperature. tively.

However, it is not sufficient to have two different veloci- , ,
ties (or, equivalently, energy dispersiorfer the two-particle ~ Maximum-entropy method becomes less reliable as ex-
spin and charge modes in order to conclude that the systeRiained above. In both these cases the two peaks merge into
shows spin-charge separation. In fact, in a Fermi liquid ther& Single broader peak and spin-charge separation is not de-
are spin and charge excitations that originate from collectivd€ctable. There are, however, some favorable intermefiate
modes and do not destroy the quasipartiél&he quasipar- points where s_pm-charge separation is d_lrectly detectable in
ticles thus remain well defined and do not split into a chargdh® Single-particle spectral function. In Fig. 4, we show the
and a spin excitation as occurs in a Luttinger liquid. On theSPectral function for one of these favorable points. Here
other hand, in a Luttinger liquior in spin-charge-separated nelther too close nor too far_ from thg Fermi Sl_Jrface and the
system in generala particle injected at a certain poixt ~Maximum-entropy methodwithout using anyprior knowl-
decays into a spinon and a holon propagating with differend9 Yields two well-separated peaks. Their positions are
velocities. The separation of the two excitations could therfonsistent with the spin and charge excitation energies-
be detected by means of a “diagnostic operator” measuring@t€d by two dots with horizontal error basalculated in-
the time dependence of spin and charge at a given gt~ dependently from the spin and charge velocities,/(
away fromx. In the case of spin-charge separation, this di-= 2K vy/o). Previously, it was not possible to resolve spin-
agnostic operator would then measure two different passinﬁharge separation in the one-particle specf_ﬂJmamly be-
times for the charge and spin perturbations of the injecte¢@use they were carried out in a low-doping reginde) (-
particle. True spin-charge separation in the sense of the Lufl0Se to 1 where tge difference of spin and charge velocities
tinger model should be thus identified with different energy!S refatively smalf
dispersions in the spin and charge susceptibildiesociated

with corresponding low-lying excitations in the single- lll. FIT OF THE IMAGINARY-TIME GREEN'S
particle spectrum® FUNCTION
In Fig. 3, we plot this single-particle spectruA(k,w)
(Ref. 20 in the whole Brillouin zone. Close to the Fermi In order to carry out ssystematicstudy of spin-charge

momentum the band dispersion is approximately linearseparation it is important to detect spin and charge excita-
which justifies the mapping to the Luttinger model. How- tions over the whole BZ, or at least in an extended region
ever, the spectrum becomes broader when going away fromround the Fermi surface. However, due to the additional
the Fermi surface. This phenomenon has two reasons: Firgiather large error introduced by the maximum-entropy ana-
the resolution of the maximum-entropy method gets worse ditic continuation method to the quantum Monte Carlo data,
higher energies, due to the exponential kernel in the spectrahis turns out to be very difficult for manly points, as we
theorem, and second, according to Luttinger-liquid theoryhave discussed above. For this reason, we work directly with
the single peak starts to split into two peaks representing théhe data for themaginary-timeGreen’s functionG(k, 7). In
spin and charge excitations propagating with different vethe asymptotic limit ¢=1) and close to the Fermi surface
locities. However, fork very close tokg these two peaks, (+kg) this function should approach the Green'’s function of
which should be separated by an energy<{v,)(k—kg), the Luttinger model for right-moving fermions, i.e.,
are still too close together for the maximum-entropy method
to distinguish them. On the other hand, at larger values of g™ (k T)Ef
p

(k—kg) the excitation energies are too high and the V1V U1

dx e kGItM) kX7 (2
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FIG. 5. Logarithmic plot of the imaginary-time Green’s function FIG. 6. Spin and charge dispersions and &, vs q=k— kg
G(k,7) vs 7 with k=ke+ 79/64, as obtained from quantum Monte (gror bars without and with a central dot, respectively obtained
Carlo data. from the y? fit of the quantum Monte Carlo data for the imaginary-

) time Green’s function with the Luttinger-liquid Green’s function
with [Eqg. (2) with Eq. (3)]. The Luttinger-liquid Green’s function is
taken at zero temperature and with correlation expokgrt1. The
KP(X,T) fit is carried out for the data in the imaginary-time interval<$0
_ =<10.0. For comparison, we also show the dispersions obtained
e'kre from the peak position@vith corresponding uncertaintgf the spin
(dark gray and of the chargélight gray dispersiong(cf. Figs. 2
and J.

=(LM)
G-,

\/017+ iX\/vzr-i— iX(X2+vgrz)f(Kerl/Kp’z)/s’

© velocities are slightly] dependent as expected from a curved
wherec is a normalization constefitandkg the Fermi mo-  band. To check that these modes correspond to spin and
mentum. Therefore, in order to identify the spin and chargecharge degrees of freedom, we plot in the same figure the
excitationsdirectly in the Green’s function, we carry out a dispersions calculated from the peaks of the corresponding
nonlineary? fit of our data forG(k, 7) to gngMLKP(k,T). The  susceptibilities. The width of the gray regions indicates the

%

fit parameters are the two velocities andv,, and the nor- P&ak positions within their uncertainty. As one can see, the
malization constant.?! Due to the statistical error in the diSpersions obtained in the two ways coincide within the
quantum Monte Carlo data, we get statistical errorsStatistical error. We f!nd it remar.kable _thgt, everkgioints
Av;, Av,, andAc for the parameters,, wv,, andc, far fror.n ke, the fit W|t_h the Luttlngerthwd Green’s func-
respectively. The splitting of the single-particle mode intotion is in agreement with the two-particle response, although
two excitations is thus detected when the difference betweeH1€ dispersion is no longer linear. It thus seems that spin and
the two velocities is larger than the statistical error. Furthercharge separation survives even at higher energies.

more, in order to make sure that the two excitations coincide N Fig. 7 we used the simplest form of E€g), namely,
with the spin and the charge modes one has to compare the one withK,=1.0. This is not, in principle, the correct

and v, with the velocitiesv, and v,, calculated indepen- value of the correlation exponekt, whenU#0. Actually,
dently via the susceptibilities. one could use&K, as a further parameter to fit the data or,

However, in order to carry out this fit one should not use@lternatively, use the result from the Bethe-ansatz soldton.

the data from the whole interval Gs0r< 3 for the following It turns out, however, that an attempt toKig yields an error
reasons. First of all, the Hubbard-model and the Luttingerof the order of 0.5, which means thkt, cannot be deter-
model Green's functions should coincide only asymptoti-mined by our fit. It also turns out that thresult of the fit
cally. For this reason, we choose>1.0. Moreover, the in- does not depend crucially on the valuetof we are using.
terval g/2<r<p is equivalent to— 8/2<r<0 so that we Indeed, as one can see fro.m Fig. 8, where we show the
can omit the former. In addition, as can be seen in Fig. 5 théesults of the fit obtained with the Bethe-ansatz valye
logarithm of the imaginary-time Green’s function is quite =0.7, these do not differ appreciably from the ones in Fig. 7.
sharply defined up te~5.0. Forr=5.0, large(relative) er- ~ For this reason, the noninteracting valg=1.0 can be
rors start to develop due to the small value of the Green'§afely used. This is important, because in this way it is pos-
function in these points. For this reason, we choose to carr§ible to test the occurrence of spin-charge separation even
out our fit only for the data in the interval x0r<5.0 in  Without knowing whether the system has anoma-
order to select the less “noisy” data. In order to check that
our results do not depend on this choice, we also carry out

the fit for the data in the interval 10r< 3/2=10.0(Fig. 6). ] IHH

This turns out to be quite similar to the first oflgig. 7) 40

except for larger statistical errors. In Fig. 7, we show the c 11§ I

result of our fit with theT=0 Green'’s functiofEq. (2) with _-:;f_ixx ------- =
Eq. (3)] for several values of|= (k—kg). The vertical black 0.0 |

lines show the value of the spinon and holon excitation en- Sl

ergiese((q)=v1(q)gq ande,»(q)=v,(q)q, respectively, ob- _n/4' o a4 -

tained from the fit with the single-particle Green'’s
function?® As one can see, we obtain a clear separation of FIG. 7. Same as Fig. 6 except that the fit is carried out for the
the two modes for almost all thg points. In addition, the data in the time interval 187<5.0.
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FIG. 10. Fit of theU =0 imaginary-time Green’s function with
eEq. (2). The straight line shows=vrq whereuvg is the Fermi
velocity of theU=0 system.

FIG. 8. Same as Fig. 7 except that the fit is carried out with th
Luttinger-liquid Green’s functiofiEqg. (2) with Eq. (3)] with corre-
lation exponenK ,=0.7.

lous scaling K,#1) or not. This could be useful in cases the noninteractingGreen’s functionG(®©)(k,7; 8) with the
where the anomalous exponent may be not knawpriori  function (2) assuming artificially the same statistical errors
and may be difficult to evaluate. In this case, one can assumgs the ones obtained in the quantum Monte Carlo simulation.
a form of the fitting function without a spectral anoméile.,  As one can see in Fig. 10, in this case the spin and charge
K,=1), but simply with a branch cut due to spin-chargeye|ocities obtained are equal within the statistical error, as it
separation. This could be useful, for example, to test spingnhould be.
charge separation in 2D as we shall discuss below. . Another motivation of this work was to test a “diagnostic
Since the quantum Monte Carlo simulations are carrieqhnerator that can be applied to detect numerically the oc-
e an e f spin andchrge searaon ' many oy 5
temperatur@f}'\"v) ) (gk,r;ﬁ=20), which has the same form tem fro_m quantum Monte Carlo data. !f one uses exact di-
1:02.K, agonalization, where the spectral function of the system can
as Eq.(2) with Eq. (3) replaced with be evaluated directly, it is of course not necessary to fit the
_ imaginary-time Green’s function. However, we believe that
Q(ULI'\,/'U)Z,KP(X,T;,B) the systems that can be studied by exact diagonalization
(10-16 sitepare too small to allow for a systematic study of
= el \/gvl'l FF ) 4 momentum, like in Ref. 15 The Fourier transforntin mo-
mentum and imaginary-frequency sproéthe spin-charge-
with separated Green's function, E@), with K,=1 reads

spin-charge separatioexcept for a very high value of the

—(K+1K)/4
gv,K(Xv T;B): —Ii

g[cosrﬁ(’)z—cos}')z]

1
Vio—ei(K)io—e(k)’

©6)

O(LM)
Xefiargtan&ﬂtan;) (5) gul,vz,Kp(kx‘l’)Oc

In Fig. 9, we show the fit performed with the more compli-

cated finite-temperatureBE=20) Green's function Eq94)  where €,(K)=v,(k—kg) and e,(k)=v,(k—kg) represent

and(5). As one can see, the results are not appreciably difthe spin and charge excitatiofreeasured from the chemical

ferent from the ones of Fig. 7, which means that the temperapotentia) in which the single-particle excitation is split. The

ture of our simulation is low enough and we can safely fit M) « (k,0) could be expected to hold
2'%p

: _ same form ofG(*W
our results with theT=0 Green’s function. totically. i L ¢ Il f . d o th
Finally, to check that the two different velocities and asymptotically, 1.€., Tor smail frequencies and close to the

v, obtained are not an artifact of our fit, we carry out a fit of Fermi surface, in higher dimensions. Close to the FerEn| sur-
face, one will have a direction-dependent dispersigfk)

40 =(k—kg)-v(Ke) wherev(kg) is the Fermi velocity of the
point at the Fermi surfacIéF closest tok. Spin-charge sepa-
ration would be signaled by two different, direction-
¢ ﬂi dependenbl(IZ) andsz(IZ) for a givenlz.

,:fii’:

et IV. CONCLUSIONS

0.0

—1/4 0 q n/4 /2

To summarize, we carried out a test of spin-charge sepa-
ration in the 1D Hubbard model at finite doping. It is in

FIG. 9. Same as Fig. 7 except that the fit is carried out with thegeneral difficult to resolve the peaks corresponding to the
Luttinger-liquid Green'’s functiorfEq. (2) with Egs. (4) and (5)] spin and charge excitations in the single-particle spectral
with finite temperature 8= 20) and correlation exponeht,=1. function due to the loss of accuracy which occurs when ana-
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lytically continuing the imaginary-time quantum Monte “diagnostic operator” to test a possible occurrence of spin-
Carlo results to real frequencies. For some values of the maharge separation in two dimensions.

mentum close to the Fermi surface, however, we were able to

resolve two peaks whose energies correspond to the peaks at
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