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Systematic numerical study of spin-charge separation in one dimension
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The problem of spin-charge separation is analyzed numerically in the metallic phase of the one-band
Hubbard model in one dimension by studying the behavior of the single-particle Green’s function and of the
spin and charge susceptibilities. We first analyze the quantum Monte Carlo data for the imaginary-time Green’s
function within the maximum-entropy method in order to obtain the spectral function at real frequencies. For
some values of the momentum sufficiently away from the Fermi surface two separate peaks are found, which
can be identified as charge and spin excitations. In order to improve our accuracy and to be able to extend our
study to a larger portion of the Brillouin zone, we also fit our data with the imaginary-time Green’s function
obtained from the Luttinger-model solution with two different velocities as fitting parameters. The excitation
energies associated with these velocities turn out to agree, in a broad range of momenta, with the ones
calculated from the charge and spin susceptibilities. This allows us to identify these single-particle excitations
as due to a separation of spin and charge. Remarkably, the range of momenta where spin-charge separation is
seen extends well beyond the region of linear dispersion about the Fermi surface. We finally discuss a possible
extension of our method to detect spin-charge separation numerically in two dimensions.
@S0163-1829~98!03511-5#
w
de
al
n
r
e
r
it
o
s
pi
th
ks
tin
e
ith
n

re
o
se
f

d,
-
d
u

cl

th
O
e

ited.
ger
t
can

be
els
ere
ation

ral
-
e

ket
e
r-
. In

y
for
liza-
o
si-
n
er
icle

two
are

an-
nd.

e

I. INTRODUCTION

One-dimensional~1D! interacting fermion systems sho
a number of anomalous properties which cannot be un
stood in the framework of the Fermi-liquid theory of norm
metals. In particular, their momentum distribution and de
sity of states are in sharp contrast with Fermi-liquid theo
for energies and momenta close to the Fermi surface. In g
eral, 1D systems can be described by an effective low-ene
theory based on the exactly solvable Luttinger model w
suitably renormalized parameters and are thus referred t
Luttinger liquids~LL’s !.1–3 One of the most striking feature
of the Luttinger model is the complete separation of s
and charge degrees of freedom which manifests itself in
splitting of the single-particle spectral function in two pea
corresponding to spin and charge excitations propaga
independently.4–6,3 Another important characteristic of th
Luttinger model is the presence of power-law behavior w
interaction-dependent exponents for various correlation fu
tions.

Beside its application to 1D systems, LL theory has
ceived particular attention in the past years in the framew
of the theory of high-Tc superconductors. The normal pha
of the high-TcCuO2 planes shows in fact a number o
anomalous properties which can be possibly understoo
one assumes that the CuO2 planes are in a kind of two
dimensional LL state.7–11 In particular, it has been suggeste
that spin-charge separation could be present also in the C2
planes and that it plays an essential role in the way parti
are allowed to tunnel between the planes.12

Numerical methods have been proven to be crucial for
theoretical understanding of models describing the Cu2
planes, since electron correlation is rather strong in th
570163-1829/98/57~11!/6370~6!/$15.00
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systems and perturbative methods are necessarily lim
Spin-charge separation is predicted exactly for the Luttin
model: anideal exactly solvable model. It is thus importan
to test numerically to what extent spin-charge separation
occur in a one-dimensionalphysical model. Moreover, in
order to prove the theories mentioned above, it would
important to check whether some two-dimensional mod
exist which display spin-charge separation. Recently, th
have been several attempts to detect spin-charge separ
in one- but also in two-dimensional models. In theU5` 1D
Hubbard model13 spin-charge separation occurs in a natu
way at all energies~and not only at low energies like ex
pected in a LL! due to the exact factorization of the wav
function.14 In a numerical work, Jaglaet al.15 have observed
the propagation in real time of a single-electron wave pac
created at a timet50 in a 1D Hubbard model. This wav
packet splits up into two excitations propagating with diffe
ent velocities that can be associated with charge and spin
a work by Puttika and collaborators16 the possibility of spin-
charge separation in the 2Dt-J model has been signaled b
the presence of two distinct characteristic wave vectors
the spin and charge degrees of freedom. Exact diagona
tion of the 1Dt-J model17 has evidenced the presence of tw
peaks in the single-particle spectral function whose po
tions scale witht and J, respectively, and have thus bee
identified with charge and spin excitations. In anoth
study18 two peaks have been detected in the single-part
spectral function of a 1Dt-J model with corresponding
peaks in the charge and spin susceptibilities. These
peaks can be seen, however, only for the momenta which
immediately next to the Fermi momentum and thus they c
not be associated with a dispersive spinon and holon ba
Finally, Kim and co-workers19 have detected two dispersiv
6370 © 1998 The American Physical Society
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57 6371SYSTEMATIC NUMERICAL STUDY OF SPIN-CHARGE . . .
bands fork,kF in a 1D t-J model close to half filling. This
is not surprising, since spin-charge separation is in fact q
natural to expect when one hole is added beyond half filli
The added hole decomposes indeed in a spinless hole a
spin misalignment which propagate with differe
velocities.19 Nevertheless, the interesting result of that wo
is that the photoemission spectrum of SrCuO2, also showing
two dispersive bands, is remarkably well reproduced by
numerical results.

In this work, we present a systematic quantum Mo
Carlo study of spin-charge separationawayfrom half filling,
where Luttinger-liquid theory is expected to hold, in th
whole Brillouin zone ~BZ!. The nontrivial prediction of
Luttinger-liquid theory is, in fact, that spin-charge separat
occurs in themetallic phase, where the band dispersion
linear. Spin-charge separationat half filling, as studied in the
model of Ref. 19, is, in our opinion, of a different natur
since in the insulating phase the holon dispersion isqua-
dratic instead oflinear. Of course, in the case of Ref. 19
was necessary to remain in the insulating phase, since
physical system in study was half filled.

For somevalues of the momentumk we are able to see
two peaks in the single-particle spectral function whi
correspond to the spin and charge excitations. However,
to the limited resolution of the maximum-entropy method
is not possible to resolve the two peaks in most of the BZ20

For this reason, in the rest of the BZ we work with th
imaginary-time Green’s functionG(k,t) which is obtained
directly from quantum Monte Carlo data without the need
analytic continuation. This has the advantage that one d
not need to introduce a further source of error produced
the analytic continuation to real frequencies. Specifically,
perform a nonlinearx2 fit of G(k,t) by using the solution of
the Luttinger model Gv1 ,v2 ,Kr

(LM) (k,t) ~Ref. 1! with two ve-

locities v1 , v2, and a normalization constantc as fitting
parameters.21 Our fit yields a finite value of the differenc
v22v1 larger than the statistical error in a large portion
the Brillouin zone. Moreover, the fitted values of the cor
sponding excitation energiesv1(k2kF) andv2(k2kF) coin-
cide, within the statistical error, with the spin and char
excitations, respectively, calculated independently via the
sociated susceptibilities. It is remarkable that this behav
extends well beyond the region of linear dispersion arou
kF where Luttinger-liquid behavior is expected.

Our paper is organized as follows. In Sec. II, we introdu
the model, and we show the results of the quantum Mo
Carlo simulation and analytic continuation to real freque
cies by means of the maximum-entropy method. In Sec.
we discuss and show the results of our fit of the imagina
time Green’s function with the result from the Lutting
model. Finally, we draw our conclusions in Sec. IV.

II. QUANTUM MONTE CARLO SIMULATION

We consider the 1D Hubbard model with periodic boun
ary conditions described by the following Hamiltonian:

H52t(
i ,s

~ci 11,s
† ci ,s1H.c.!1U(

i
ni↓ni↑ , ~1!
te
.
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whereci ,s
(†) are annihilation~creation! operators for an elec

tron at sitei with spins andnis5ci ,s
† ci ,s . The energy scale

t of the model will be set to unity in the rest of the paper
The simulations were carried out with the grand-canoni

quantum Monte Carlo method22,23 on a 64-site lattice with
inverse temperature 1/kBT5b520, Hubbard repulsionU
54, and an electron density of^n&'0.75. The simulations
yield the one- and two-particle Green’s functions at discr
imaginary timest with 0<t<b. We used a discretization o
the imaginary-time axisDt50.0625. The spectra~one-
particle photoemission spectrum, and charge and spin
ceptibilities! were then obtained by analytically continuin
the imaginary-time results to real frequencies by means
the maximum-entropy method.24,25,20

Figures 1 and 2 show a density plot of the charge and s
susceptibilitiesxr andxs , respectively. The gray scale give
a measure for the value ofxr/s(q,v) as a function of mo-
mentum transferq and excitation energyv. The dispersion
relation for spin and charge excitations is defined by
maxima ofxr/s which are indicated by dots with error ba
in the figure. A linear fit of these maxima nearq50 yields

FIG. 1. Density plot of the charge susceptibilityxr(q,v) as
obtained by the analytic continuation of the quantum Monte Ca
charge-charge correlation function with the maximum-entro
method. The gray scale corresponds to the value ofxr(q,v) @darker
regions correspond to larger values ofxr(q,v)# and the dots with
error bars show the peak positions with their uncertainty. The lin
fit ~straight line! for small q yields the charge velocityvr as indi-
cated in the upper left corner.

FIG. 2. Density plot of the spin susceptibilityxs(q,v) with the
same conventions as Fig. 1. The linear fit~straight line! yields the
spin velocityvs .
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6372 57ZACHER, ARRIGONI, HANKE, AND SCHRIEFFER
the spin and charge velocitiesvs51.17060.074 andvr

52.05060.093 which agree very well~within the statistical
error! with Bethe-ansatz results26 for the infinite lattice and
zero temperature.

However, it is not sufficient to have two different veloc
ties~or, equivalently, energy dispersions! for the two-particle
spin and charge modes in order to conclude that the sys
shows spin-charge separation. In fact, in a Fermi liquid th
are spin and charge excitations that originate from collec
modes and do not destroy the quasiparticle.27 The quasipar-
ticles thus remain well defined and do not split into a cha
and a spin excitation as occurs in a Luttinger liquid. On
other hand, in a Luttinger liquid~or in spin-charge-separate
system in general! a particle injected at a certain pointx
decays into a spinon and a holon propagating with differ
velocities. The separation of the two excitations could th
be detected by means of a ‘‘diagnostic operator’’ measur
the time dependence of spin and charge at a given pointy far
away fromx. In the case of spin-charge separation, this
agnostic operator would then measure two different pas
times for the charge and spin perturbations of the injec
particle. True spin-charge separation in the sense of the
tinger model should be thus identified with different ener
dispersions in the spin and charge susceptibilitiesassociated
with corresponding low-lying excitations in the singl
particle spectrum.18

In Fig. 3, we plot this single-particle spectrumA(k,v)
~Ref. 20! in the whole Brillouin zone. Close to the Ferm
momentum the band dispersion is approximately line
which justifies the mapping to the Luttinger model. How
ever, the spectrum becomes broader when going away f
the Fermi surface. This phenomenon has two reasons: F
the resolution of the maximum-entropy method gets wors
higher energies, due to the exponential kernel in the spe
theorem, and second, according to Luttinger-liquid theo
the single peak starts to split into two peaks representing
spin and charge excitations propagating with different
locities. However, fork very close tokF these two peaks
which should be separated by an energy (v22v1)(k2kF),
are still too close together for the maximum-entropy meth
to distinguish them. On the other hand, at larger values
(k2kF) the excitation energies are too high and t

FIG. 3. Density plot of the single-particle photoemission sp
trum A(k,v) with the same conventions as Fig. 1. It is seen that
dispersion around the Fermi energy~dotted line! is linear over a
broad momentum range, thus justifying ourLuttinger-liquid ansatz
for the single-particle Green’s function.
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maximum-entropy method becomes less reliable as
plained above. In both these cases the two peaks merge
a single broader peak and spin-charge separation is no
tectable. There are, however, some favorable intermediak
points where spin-charge separation is directly detectabl
the single-particle spectral function. In Fig. 4, we show t
spectral function for one of these favorable points. Herek is
neither too close nor too far from the Fermi surface and
maximum-entropy method~without using anyprior knowl-
edge! yields two well-separated peaks. Their positions a
consistent with the spin and charge excitation energies~indi-
cated by two dots with horizontal error bars! calculated in-
dependently from the spin and charge velocities (vr/s
5Dk vr/s). Previously, it was not possible to resolve spi
charge separation in the one-particle spectrum20 mainly be-
cause they were carried out in a low-doping regime (^n&
close to 1! where the difference of spin and charge velocit
is relatively small.26

III. FIT OF THE IMAGINARY-TIME GREEN’S
FUNCTION

In order to carry out asystematicstudy of spin-charge
separation it is important to detect spin and charge exc
tions over the whole BZ, or at least in an extended reg
around the Fermi surface. However, due to the additio
rather large error introduced by the maximum-entropy a
lytic continuation method to the quantum Monte Carlo da
this turns out to be very difficult for manyk points, as we
have discussed above. For this reason, we work directly w
the data for theimaginary-timeGreen’s functionG(k,t). In
the asymptotic limit (t*1) and close to the Fermi surfac
(1kF) this function should approach the Green’s function
the Luttinger model for right-moving fermions, i.e.,

Gv1 ,v2 ,Kr

~LM ! ~k,t![E dx e2 ikxG̃v1 ,v2 ,Kr

~LM ! ~x,t!, ~2!

-
e

FIG. 4. Single-particle photoemission spectrumA(k,v) ~in ar-
bitrary units! for k2kF524.5p/32. The dots with horizontal erro
bars indicate the position of spin and charge excitations calcul
by vr/s5(k2kF)vr/s with vr/s obtained from Figs. 1 and 2. Fo
this k point close to the Fermi momentum the maximum-entro
method is able to resolve two separate peaks in the spectral fun
which can be identified as the spinon and holon excitation, resp
tively.
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with

G̃v1 ,v2 ,Kr

~LM ! ~x,t!

5
eikFxc

Av1t1 ixAv2t1 ix~x21v2
2t2!2~Kr11/Kr22!/8

,

~3!

wherec is a normalization constant28 andkF the Fermi mo-
mentum. Therefore, in order to identify the spin and cha
excitationsdirectly in the Green’s function, we carry out
nonlinearx2 fit of our data forG(k,t) to Gv1 ,v2 ,Kr

(LM) (k,t). The

fit parameters are the two velocitiesv1 andv2, and the nor-
malization constantc.21 Due to the statistical error in th
quantum Monte Carlo data, we get statistical err
Dv1 , Dv2, and Dc for the parametersv1 , v2, and c,
respectively. The splitting of the single-particle mode in
two excitations is thus detected when the difference betw
the two velocities is larger than the statistical error. Furth
more, in order to make sure that the two excitations coinc
with the spin and the charge modes one has to comparv1
and v2 with the velocitiesvr and vs calculated indepen
dently via the susceptibilities.

However, in order to carry out this fit one should not u
the data from the whole interval 0.0<t<b for the following
reasons. First of all, the Hubbard-model and the Lutting
model Green’s functions should coincide only asympto
cally. For this reason, we chooset>1.0. Moreover, the in-
terval b/2<t<b is equivalent to2b/2<t<0 so that we
can omit the former. In addition, as can be seen in Fig. 5
logarithm of the imaginary-time Green’s function is qui
sharply defined up tot'5.0. Fort*5.0, large~relative! er-
rors start to develop due to the small value of the Gree
function in these points. For this reason, we choose to c
out our fit only for the data in the interval 1.0<t<5.0 in
order to select the less ‘‘noisy’’ data. In order to check th
our results do not depend on this choice, we also carry
the fit for the data in the interval 1.0<t<b/2510.0~Fig. 6!.
This turns out to be quite similar to the first one~Fig. 7!
except for larger statistical errors. In Fig. 7, we show t
result of our fit with theT50 Green’s function@Eq. ~2! with
Eq. ~3!# for several values ofq5(k2kF). The vertical black
lines show the value of the spinon and holon excitation
ergies«1(q)[v1(q)q and«2(q)[v2(q)q, respectively, ob-
tained from the fit with the single-particle Green
function.29 As one can see, we obtain a clear separation
the two modes for almost all theq points. In addition, the

FIG. 5. Logarithmic plot of the imaginary-time Green’s functio
G(k,t) vs t with k5kF1p9/64, as obtained from quantum Mon
Carlo data.
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velocities are slightlyq dependent as expected from a curv
band. To check that these modes correspond to spin
charge degrees of freedom, we plot in the same figure
dispersions calculated from the peaks of the correspond
susceptibilities. The width of the gray regions indicates
peak positions within their uncertainty. As one can see,
dispersions obtained in the two ways coincide within t
statistical error. We find it remarkable that, even atk points
far from kF , the fit with the Luttinger-liquid Green’s func
tion is in agreement with the two-particle response, althou
the dispersion is no longer linear. It thus seems that spin
charge separation survives even at higher energies.

In Fig. 7 we used the simplest form of Eq.~3!, namely,
the one withKr51.0. This is not, in principle, the correc
value of the correlation exponentKr whenUÞ0. Actually,
one could useKr as a further parameter to fit the data o
alternatively, use the result from the Bethe-ansatz solution30.
It turns out, however, that an attempt to fitKr yields an error
of the order of 0.5, which means thatKr cannot be deter-
mined by our fit. It also turns out that theresult of the fit
does not depend crucially on the value ofKr we are using.
Indeed, as one can see from Fig. 8, where we show
results of the fit obtained with the Bethe-ansatz valueKr

50.7, these do not differ appreciably from the ones in Fig
For this reason, the noninteracting valueKr51.0 can be
safely used. This is important, because in this way it is p
sible to test the occurrence of spin-charge separation e
without knowing whether the system has anom

FIG. 6. Spin and charge dispersions«1 and «2 vs q5k2kF

~error bars without and with a central dot, respectively! as obtained
from thex2 fit of the quantum Monte Carlo data for the imaginar
time Green’s function with the Luttinger-liquid Green’s functio
@Eq. ~2! with Eq. ~3!#. The Luttinger-liquid Green’s function is
taken at zero temperature and with correlation exponentKr51. The
fit is carried out for the data in the imaginary-time interval 1.0<t
<10.0. For comparison, we also show the dispersions obta
from the peak positions~with corresponding uncertainty! of the spin
~dark gray! and of the charge~light gray! dispersions~cf. Figs. 2
and 1!.

FIG. 7. Same as Fig. 6 except that the fit is carried out for
data in the time interval 1.0<t<5.0.
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lous scaling (KrÞ1) or not. This could be useful in case
where the anomalous exponent may be not knowna priori
and may be difficult to evaluate. In this case, one can ass
a form of the fitting function without a spectral anomaly~i.e.,
Kr51), but simply with a branch cut due to spin-char
separation. This could be useful, for example, to test sp
charge separation in 2D as we shall discuss below.

Since the quantum Monte Carlo simulations are carr
out at finite temperatureb51/(kBT)520, we also perform
our fit with the Luttinger-model Green’s function at the sam
temperatureGv1 ,v2 ,Kr

(LM) (k,t;b520), which has the same form

as Eq.~2! with Eq. ~3! replaced with

G̃ v1 ,v2 ,Kr

~LM ! ~x,t;b!

5eikFxAgv1,1S px

b
,
pt

b
;b Dgv2 ,KrS px

b
,
pt

b
;b D , ~4!

with

gv,K~ x̃ , t̃ ;b!52 i Fb

p
@cosh~ x̃ !22cos~ t̃ !2#G2~K11/K !/4

3e2 iarg~ tanhx̃1 i tant̃ !. ~5!

In Fig. 9, we show the fit performed with the more comp
cated finite-temperature (b520) Green’s function Eqs.~4!
and ~5!. As one can see, the results are not appreciably
ferent from the ones of Fig. 7, which means that the temp
ture of our simulation is low enough and we can safely
our results with theT50 Green’s function.

Finally, to check that the two different velocitiesv1 and
v2 obtained are not an artifact of our fit, we carry out a fit

FIG. 8. Same as Fig. 7 except that the fit is carried out with
Luttinger-liquid Green’s function@Eq. ~2! with Eq. ~3!# with corre-
lation exponentKr50.7.

FIG. 9. Same as Fig. 7 except that the fit is carried out with
Luttinger-liquid Green’s function@Eq. ~2! with Eqs. ~4! and ~5!#
with finite temperature (b520) and correlation exponentKr51.
e
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the noninteractingGreen’s functionG̃(0)(k,t;b) with the
function ~2! assuming artificially the same statistical erro
as the ones obtained in the quantum Monte Carlo simulat
As one can see in Fig. 10, in this case the spin and cha
velocities obtained are equal within the statistical error, a
should be.

Another motivation of this work was to test a ‘‘diagnost
operator’’ that can be applied to detect numerically the
currence of spin and charge separation in a many-body
tem from quantum Monte Carlo data. If one uses exact
agonalization, where the spectral function of the system
be evaluated directly, it is of course not necessary to fit
imaginary-time Green’s function. However, we believe th
the systems that can be studied by exact diagonaliza
~10–16 sites! are too small to allow for a systematic study
spin-charge separation~except for a very high value of the
momentum, like in Ref. 15!. The Fourier transform~in mo-
mentum and imaginary-frequency space! of the spin-charge-
separated Green’s function, Eq.~3!, with Kr51 reads

Ĝv1 ,v2 ,Kr

~LM ! ~k,v!}
1

Aiv2«1~k!Aiv2«2~k!
, ~6!

where «1(k)5v1(k2kF) and «2(k)5v2(k2kF) represent
the spin and charge excitations~measured from the chemica
potential! in which the single-particle excitation is split. Th

same form ofĜ v1 ,v2 ,Kr

(LM) (k,v) could be expected to hold

asymptotically, i.e., for small frequencies and close to
Fermi surface, in higher dimensions. Close to the Fermi s
face, one will have a direction-dependent dispersion« i(kW )
5(kW2kWF)•vW (kWF) wherev(kWF) is the Fermi velocity of the
point at the Fermi surfacekWF closest tokW . Spin-charge sepa
ration would be signaled by two different, direction
dependent«1(kW ) and«2(kW ) for a givenkW .

IV. CONCLUSIONS

To summarize, we carried out a test of spin-charge se
ration in the 1D Hubbard model at finite doping. It is
general difficult to resolve the peaks corresponding to
spin and charge excitations in the single-particle spec
function due to the loss of accuracy which occurs when a

e

e

FIG. 10. Fit of theU50 imaginary-time Green’s function with
Eq. ~2!. The straight line showsv5vFq where vF is the Fermi
velocity of theU50 system.
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lytically continuing the imaginary-time quantum Mon
Carlo results to real frequencies. For some values of the
mentum close to the Fermi surface, however, we were ab
resolve two peaks whose energies correspond to the pea
the sameq5k2kF in the spin and charge susceptibilitie
respectively.

By fitting the quantum Monte Carlo data for th
imaginary-time Green’s function with the exact solutio
from the Luttinger model with the spin and charge velocit
as fitting parameters, we have been able to resolve the
excitations over the whole Brillouin zone. The two excitati
energies found in the fit agree, within statistical error, w
the spin and charge excitations, respectively, identified w
the peaks of the spin and charge susceptibilities. Rem
ably, this occurs also away from the region where the b
dispersion is linear. We also suggested an extension of
e

o-
to
at

s
o

h
k-
d
is

‘‘diagnostic operator’’ to test a possible occurrence of sp
charge separation in two dimensions.
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