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Phase separation of the two-dimensionai-J model
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The boundary of phase separation of the two-dimensibidaimodel is investigated by the power-Lanczos
method and Maxwell construction. The method is similar to a variational approach and it determines the lower
bound of the phase-separation boundary witfit=0.6+0.1 in the limitn,~1. In the physically interesting
regime of highT, superconductors where @3/t<0.5 there is no phase separation.
[S0163-182697)03441-3

Itis believed that the main physical properties of the high-on La,_,Sr,Cu0, also indicate that the doped holes were
temperature superconductors can be described by the twithomogeneously distributed mesoscopically and segregated
dimensional2D) t-J model on a square lattice. The Hamil- into walls separating the hole-poor antiferromagnetic do-

tonian is mains.
1 Theoretically, there are conflicting results. The first im-
H=—t > (.S, +Hc)+IX (Si .S _ninj) , portant paper on this issue is by Emetyal ! They used the
(i.j)o (ij) 4 exact diagonalizatiofED) to study the 44 cluster. Using

(1) Maxwell construction they claimed that phase separation oc-
where (i,j) is the nearest-neighbor pairs and;, curs for all values ofl/t. This result is contradictory to the
=¢;,(1—n; _,). In this model the two terms compete with later calculations by using quantum Monte C&¢QMC)
each other. The kinetic term favors the phase in which theind ED (Ref. 13 on the Hubbard model, which should be
electrons are homogeneously distributed in the plane to minieonsistent with theé-J model for smallJ/t. Putikkaet al.
mize the kinetic energy. While the exchange term attracts thetudied this problem using the high-temperature series ex-
electrons together to lower the magnetic energy. It is easy tpansion and found phase separatioriTat0 for J/t lying
see that for very largé/t the system will phase separate into apove a line extending frond/t=3.8 at zero filling to
a hole-rich region and a region without holes to maximizej/t=1.2 at half filling** Prelovek et al’® calculated the

the magnetic energy gain. ~ two-point and four-point density correlations using ED on
There are experimental evidences as well as theoreticglsters of size 18 and 20 sites. They found the two-hole

studies that indicate phase separation and superconductivify, \q state fod/t>0.2. ForJ/t> 1.5 the holes form domain

are closely related. It is even argued that the driving mecha\i\,a”S along the(1,0) or (0,1) direction, and phase separate

nism Of superconductivity .iS. the same as that of phas'r?nto a hole-rich and a hole-free phase for even larger
separatioh or superconductivity comes from the frustrated J/t>2.5. Hellberget al. determined very accurately that the

phase separatidnHence it is extremely important to deter- critical J/t for phase separation at low electron density limit

; o is J/t=3.4367° Poilblanc calculated the energy of two and
resolve these issues. This paper reports our findings of tht%ur holes by ED on several clusters up to 26 sites. The

phase—se_paratlon boundary. . . phase diagram includes a liquid dfwave hole pairs for

Experimentally, phase separation of the superconductin It=0.2 liquid of hole dropl for |
La,CuQ compound is observed by several t=0.2, a liquid of hole drop gts(qu_artet&: or ‘arger

A S J/t=0.5, and at even largdrt, an instability towards phase
measurements® The compound phase separates for o Yok L . d the oh di
0.01=<6=<0.06 belowT,~300K into the nearly stoichio- separatiort.” Yo oyamaet al. investigated the p i;se 1a-
rﬁetric antif.erroma net?cs: uQy, 5, with 6; less than 0.02 gram by the variational Monte CarlyMC) method.” The

9 i 17> ' critical J/t for phase separation at the high density limit they

and Neel temperaturdy~250 K, and a metallic supercon- found is 1.5, which is consistent with Putikiea al.
ducting oxygen-rich phase k&uQ,, 5, with 5,~0.06 with Most recently Hellberg and Manousakisinvestigated
T.~34 K. The Sr doped compound $3SrCu0,, s also this problem by the Green’s function Monte CaftlBFMC)
phase separates forx=<0.03 into superconducting method and Maxwell construction for larger clusters. Their
La,_,SrCuQ,, s (8'~0.08) and nonsuperconducting phase diagram is similar to Emest al!! They conclude
La,_,SrCuQ,, # (8"~0.00) phase$.Recent muon spin- that thet-J model phase separates for all valuegifin the
resonance and nuclear quadrupole-resonance experfiniénts low doping regime.
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n.= 74/82(open triangles An error bar is shown only when
it is larger than the symbol. We also compared our energy of
J/t=1 for 50/64 with the result of a high-temperature series
expansiorf’ The best energy we get is1.183(2) while the
high-temperature expansion result is1.20(2). They are
well in agreement. In Fig.(b) we show the best energies we
are able to obtain for clusters with 36, 50, and 82 sites as a
function of electronic density. For comparison we also show
the exact energies of 16 siteSEnergies are little lower for
the smaller clusters. For 50 and 82 sites, there seems to be
very little finite size effect. The energy per site is a fairly
smooth function of density. We do not find large effect due
to different Fermi surface topology in the physical regime.

To find the phase-separation boundary by using Maxwell
construction we are interested in the variation of the slopes
in figures like Fig. 1b). In other words we are interested in
the second derivative of energy with respect to the electronic
density, or the inverse compressibility. It turns out that there
is a systematic variation of this quantity as the energy ap-
proaches the ground state or as the power increases in our PL
method. Although in the physical regime most of our best
data have not yet converged to the exact ground state, this
systematic variation is enough for us to determine the lower
bound of the phase-separation boundary.

It is difficult to read out the slope variation from figures

L like Fig. 1(b), as the curve is almost a straight line for
095 10 n.>0.85. Therefore we shall follow Emest al! by exam-
n, ining another quantity. In the one-dimensiotal model the
phase-separated state contains electron-free and electron-rich
FIG. 1. (a): Typical plots of energy per site vs powers for phases. However, it phase separates into a hole-free phase,
J/t=0.6, n.=32/36 (open circleg n.=44/50 (full circles), and je  the antiferromagnetic Heisenberg island, and a hole-rich

n.="74/82 (open trianglels (b) energy per site as a function of ppase in the two-dimensionald model. Thus the energy of
electronic density ford/t=0.6 with different cluster sizes. Dia- the phase separated state is in the form

monds are the exact result of 16 sites. Open circles are for 36 sites
and full circles are for 50 sites, both are obtained by Bld-s.
Triangles are for 82 sites with Pldlyera-
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E=(Ng—N)ey+Ne,, )

whereNg is the total number of sites aridlis the number of
sites in the hole-rich phase,=1.169 denotes the Heisen-
berg energy per sit®. And e;, is energy per site in the uni-
The theoretical results of different groups discussed abovform hole-rich phase, which is a function of the hole density
are consistent at the largét and low electron density re- in this phasex=Ny/N. Ny, is the number of hole€E can be
gion. But unfortunately, in the interesting physical regime ofrearranged into the form
high-T. superconductors, 0s31/t<0.5 and high electron

density 0.75n,<0.95, they are in disagreement. We have E=Nsey+Npe(x), €)
used the power-Lanczd®L) method®?' to obtain the best where

estimate of the ground state energy in this physical regime

for the largest clustef82 site$ that has been studied so far. e(x)=[ —ey+en(x)]/x. (4)

Based on the variational argument we show that there is no

phase Separation in this physica| regi?ﬁe_ If e(X) of a particularJ/t has a minimum ak=Xn, and the
The ground state energy of the Hamiltonian of EL.is  hole density of the total system is smaller thap, the sys-

calculated by using the PL method. The PL method we usetem will adjust the size of the hole-rich phasesuch thak,,

is similar to the GFMC method but without using importanceis equal toN, /N and it minimizes the total energy in E¢§).

sampling and the fixed node approximation. The method i$inceNs, ey, andNy, are all constants, the total energy is

essentially a variational approach. Applying more powers tgninimized ase(x) is minimized. Thus«y, is the critical den-

a trial wave function implies a better approximation of thesity for phase separation at thit.

ground state wave function. Details of the method are dis- We calculatede(x) from the energy of the uniform states

cussed in Ref. 20. The trial wave functions we used are they(x) by the PL method and found the minimume(fx) on

optimized Gutzwiller wave functions, resonating valence6x 6, \/50x 50, and/82x /82 clusters for several densi-

bond state(RVB),>® and RVB with antiferromagnetic long ties andJ/t. It is very difficult to get the converged ground

range ordef? In Fig. 1(a) energy per site is plotted as a state energy in the physical regime due to the sign problem.

function of power forJ/t=0.6 and three different densities: After we have found the optimized wave function in the

n.=32/36 (open circley n,=44/50 (full circles), and VMC calculation we used the PL method to project the trial
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FIG. 3. Phase-separation boundary on the phase diagram of the

two-dimensionalt-J model evaluated by ED on thex# lattice

(Ref. 12 (open diamonds by the high-temperature series expan-
sion(Ref. 19 (dashed ling by the GFMC methodRef. 19 (dotted

line), and the PL method on 36 sitéfull triangles, 50 sites(full
circles, and 82 sitegfull square. The phase boundary determined
by the VMC method for 36 site@pen trianglesand 50 sitegopen
circles is shown in the inset.

comparing energies obtained for these different Fermi sur-
faces might be inaccurate. To examine this argument care-
fully, we have compared systems with closed shell Fermi
surfaces only. In Fig. @) e(x) calculated from close shells

of different size of lattices fod/t=0.4 shows similar behav-

ior as Fig. 2a). The minimum ofe(x) shifts toward smaller
hole density. The trend of,,, moving with increasing power

is the same for both close and open shells. Hence the shell

for close shells for different size of lattices, 74/82, 42/50, andeffect is not important here.

50/64.

In Fig. 3 we show the phase-separation boundary deter-
mined by the best,,. The PL1-power 6 phase boundaries
of 36 sites and 50 sites are shown as full triangles and full

wave function onto the ground state systematically. Thecircles, respectively. Also some of the PL1-power data of

PL-1 power=4 (for 82 sites or PL-1 power=6 (for 50 and
36 sites energy is used here as thg(x). It is about 2—4 %

82 sites are also shown as full squares. Hor=0.6 the error
bars of thee(x) for n,= 80/82, 78/82, and 76/82 are larger

lower than the variational energy. We estimate the difference¢han the difference of these thregx), thus error bars of,,
between the best PL energy is within 1 or 2 % of the trueare shown in the figure near these electron densities.

ground state energy.

e(x) vs x=1-—n, calculated on 50 sites far't=0.4, 0.6
and 1.5 is shown in Figs.(2—2(c), respectively. It is inter-
esting to note the trend of the shift efx) with powers. For
J/It=0.4[Fig. 2@)], at the VMC level, the minimum of(x)
is atx,,=0.16. It shifts tox=0.04 (the minimum hole den-
sity we calculated for this clusteimmediately after the first-
order Lanczos improvemen(PL1-VMC) and stays at the
density up to 6 powers. Fal/t=0.6 [Fig. 2(b)], x,, shifts
from x=0.2 (VMC) to x=0.16 (PL1-VMC) and tox=0.08
(PL1-power6) at last. ForJ/t=1.5[Fig. 2(c)], X, shifts
from x=0.48(PL1-VMC) to x=0.4 (PL1-powet2) and to
x=0.36 (PL1-powe+6) at last. It is clear thak,, shifts

The dashed line in Fig. 3 is the result of high temperature
series expansiolf. A similar result is obtained by the varia-
tional study'® They assumed the system separates into a
hole-free Heisenberg antiferromagnet and an electron-free
vacuum state. This overestimates the energy required for the
phase-separated state, since electrons can “evaporate” from
the Heisenberg island to gain energy. Their crititalt~1.2
is larger than ourJ./t=0.6. Similar argument was also
given by Hellberg and Manousakis.

Our estimate of thel./t=0.6=0.1 is actually a lower
bound. The exact phase-separation boundary should be to the
right of our result in Fig. 3. When we use a much poorer
estimate of the ground state energy as our VMC result, the

monotonically toward a smaller value when the energyphase boundary is shifted lower. This is shown in the inset of

moves closer to the ground state.
The results presented in Figs(ag-2(c) are calculated

Fig. 3. The VMC results of 36 site@pen trianglesand 50
sites(open circleg show a much smallei,/t.

with a fixed lattice size and different electron numbers. Another way to understand this argument of lower bound
Hence Fermi surfaces have different shapes and, in particis to examine the variation af(x) with power. In Fig. 4 we
lar, there are open and closed shells. It has been atytied ~ show the change @#(x) between PL1-power6 and VMC
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06 were phase separation, thg, would be at the saméor
nearby density rather than the same number of holes.

. It is also interesting to note that in Fig(k2, for J/t=0.6

. the minimumx,, seems to be at four holes instead of two

. holes. This is observed for both 36 and 50 sites. It seems to
. be quite consistent with a recent claim by PoilbfHnihat

. there is a phase with quartets for €&3/t=<0.8. But our data

. are not accurate enough for 82 sites to make a more definite
conclusion.

Recently Hellberg and Manousakihave used GFMC to
determine the phase-separation boundary. The phase bound-
ary they reporteddotted line in Fig. 3 is similar to our
variational boundarysee the inset of Fig.)3Without know-
ing details of their calculation we cannot completely under-
stand this discrepancy. A possible clue is that they might not
have obtained low enough energy in the high electron den-
sity regime. As shown in Fig. 2, in particular Figid®, until
the energy is lower enough to be closer to the ground state, it
" is very easy to make the conclusion that there is a minimum

FIG. 4. Thee(x) difference between PL1-powe6 and PLO- of ?(X) at a finite ho(ljetdensltya the oh tion b d
VMC for 50 sites. The values are proportional to the area of the n summary, we determine € phase-separation bound-

circles. ary by the PL method and Maxwell construction. We have
studied various size of clusters and densities of holes. The
largest cluster studied is 2 holes in an 82-site lattice. Using
the variational nature of the PL method and the systematic

) ) variation of the energy as a function of hole density we con-
for 50 sites. The values are proportional to the area of the,qe that the criticall,/t for phase separation in the low
circles. Because of the dfactor in Eq.(4), the smaller the hole density limit is at least=0.6. There is no phase sepa-
hole density the more improvemente(fx) will likely occur. ration in the physical regime.

Because of the variational nature of the PL method, the ; soy1d be pointed out that the results reported above are
larger the improvement observed between VMC antyniained by assuming the hole-rich region in the phase-
PL1-power6 the larger the difference between the exaclsgparated state has a uniform hole density. We have not yet

result and PL1-power 6 will be. Hence, once the minimum  ¢qnsidered more exotic possibilities such as the stripe
Xm IS at the lowest hole density such #$=0.4 in Fig. 2, a hasel5:27.28

better estimate of the ground state energy by applying more
powers will not change the minimum to higher hole density. We wish to thank C. S. Hellberg, H. Q. Lin, and W. O.
Based on this argument we are confident to conclude tha&utikka for many useful discussions. This work was partially
there is no phase separation in the physical regime whergupported by the National Science Council of Republic of
0.3<J/t<0.5. China, Grant Nos. NSC 86-2811-M-007-001R, 86-2112-M-
We have found that fod/t<0.5, the minimum ok(x) is  001-042T, and 86-2112-M-029-001. Part of the computa-
always at two holes for clusters of different siz&§, 36, 50, tions were performed at the National Center for High-
and 83. As argued by Dagottet al, this might indicate a Performance Computing in Taiwan. We are grateful for their
two-hole bound staté but not phase separation. If there support.
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