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Temperature-dependent electronic structure and ferromagnetism in thed5` Hubbard model
studied by a modified perturbation theory

T. Wegner,* M. Potthoff, and W. Nolting
Institut für Physik, Humboldt-Universita¨t zu Berlin, Invalidenstraße 110, D-10115 Berlin, Germany
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The infinite-dimensional Hubbard model is studied by means of a modified perturbation theory. The ap-
proach reduces to the iterative perturbation theory for weak coupling. It is exact in the atomic limit and
correctly reproduces the dispersions and the weights of the Hubbard bands in the strong-coupling regime for
arbitrary fillings. Results are presented for the hypercubic and an fcc-type lattice. For the latter we find
ferromagnetic solutions. The filling-dependent Curie temperature is compared with the results of a recent
quantum Monte Carlo study.@S0163-1829~98!04111-3#
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Correlations among itinerant electrons are responsible
various interesting phenomena like spontaneous magneti
der, the metal-insulator~Mott! transition, and high-
temperature superconductivity. One of the simplest but n
trivial models describing correlated electrons on a lattice
the Hubbard model.1 Studying the Hubbard model in th
limit of infinite spatial dimensions2,3 d is of special impor-
tance for the construction of a dynamical mean-field theo3

For d5` the Hubbard model is considerably simplified b
nevertheless remains nontrivial: It becomes equivalent to
effective impurity problem and can be mapped4,5 onto the
single-impurity Anderson model~SIAM!, for example. For
the latter, numerically exact solutions can be obtained
quantum Monte Carlo~QMC! calculations. On the othe
hand, it may be helpful to have an analytical~but approxi-
mative! expression for the self-energy at one’s dispos
which recovers the exact QMC results as reliable as poss
This allows a direct calculation of dynamic quantities on t
real energy axis for finite temperatures as well as forT50.
Furthermore, valuable hints for the approximative solution
more complicated lattice models not accessible to QMC m
be obtained.

For the symmetric case the iterative perturbation theor4,6

~IPT! is known to give a rather realistic description of th
Mott transition. The IPT employs the self-consistent ma
ping onto the SIAM, which is solved by means of secon
order perturbation theory around the Hartree-Fock solu
~SOPT-HF!. To extend the IPT to nonsymmetric cases, K
jueter and Kotliar7 proposed an interpolating expression f
the self-energy, which for arbitrary band fillings reproduc
the atomic as well as the weak-coupling limit.

For the study of ferromagnetism special attention has
be paid to the strong-coupling regime. Fortunately, the 1U
perturbation theory of Harris and Lange8 provides rigorous
results forU→`: In the first nontrivial order beyond th
atomic limit, the average dispersions as well as the weig
of the two dominating Hubbard bands are known exact8

One possibility to account for these strong-coupling res
in the construction of an analytical expression for the s
energy is to ensure that the moments
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of the resulting spectral densityAks(E) are correct up ton
53. These moments can be calculated exactly byM ks

(n)

5^@Lncks ,cks
† #1&, whereL5@•,H#2 . At eachk point of

the Brillouin zone the first four momentsn50, . . . ,3 pro-
vide four pieces of information that in the strong-couplin
regime determine the dispersions and the weights of the
Hubbard bands. This moment approach has been succ
fully employed beforehand to improve upon the Hubbar
solution.9

The approach of Kajueter and Kotliar7 reproduces the cor
rect moments up ton52. Then53 moment, however, may
be of particular importance in the context of ferromagneti
since it involves a higher-order correlation function~‘‘band
shift’’ !,

Bs5Tii 1(
j Þ i

Ti j

^cis
† cj s~2ni 2s21!&

^nis&~12^nis&!
, ~2!

the ~possible! spin dependence of which is known to fav
magnetic order and thereby decisively influences the m
netic phase diagram.9

Based on these considerations the present authors
proposed an improvement of the Kajueter-Kotliar approa
recently10 which is correct up ton53 @hereafter referred to
as ‘‘modified perturbation theory’’~MPT!#. The main pur-
pose of this paper is to study the effects of the band shiftBs

in the paramagnetic as well as in the ferromagnetic pha
We compare our results with corresponding findings of p
vious QMC studies.

Let us briefly recall the essentials of the theory. Deta
can be found in Ref. 10. In thed5` Hubbard model the
self-energy is a local quantity.2,3 Via the mapping onto the
effective impurity problem, it can be regarded as the se
energy of the SIAM provided that the hybridization functio
of the SIAM is suitably chosen. According to Kajueter an
Kotliar,7 we consider the following ansatz for the self-ener
of the SIAM:

Ss~E!5Un2s1
asSs

~SOC!~E!

12bsSs
~SOC!~E!

, ~3!
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where Ss
(SOC)(E) is the second-order (U2) contribution

~SOC! to the self-energy within the SOPT-HF, whileas and
bs are free parameters that will be chosen such that the
ments~1! are correct up ton53. This requiresas andbs to
be10

as5
n2s~12n2s!

n2s
~HF!~12n2s

~HF!!
, ~4!

bs5
B2s2B2s

~HF!2~m2m̃s!1U~122n2s!

U2n2s
~HF!~12n2s

~HF!!
, ~5!

wherens denotes the occupancy of the impurity level,ns
(HF)

is its Hartree-Fock value, andm̃s is a fictitious chemical
potential that appears in the definition of the Hartree-Fo
Green’s function. The parameterm̃s is fixed by imposing the
conditionns

(HF)5ns ~for further discussions on this point se
Ref. 10!. Finally, Bs

(HF) is the Hartree-Fock value of the ban
shift Bs . All expectation values in the theory can be e
pressed in terms of the spectral density and thus can be
termined self-consistently.10

The MPT reduces to the IPT for smallU and is exact in
the atomic limit. By construction it is fully consistent wit
the rigorous results of Harris and Lange forU→` and yields
the correct moments of the spectral density up ton53 for
arbitraryU. The approach of Kajueter and Kotliar7 is recov-
ered ifBs andBs

(HF) are set to their atomic limit values~i.e.,
Bs5Bs

(HF)5Tii [0). Note, however, that in Ref. 7 the fict

tious chemical potentialm̃s has been used to enforce th
Luttinger theorem. This implies that the theory is intrins
cally limited toT50 ~see Ref. 10!. The more unproblematic
condition ns

(HF)5ns that is chosen here to fixm̃s has to be
preferred since it allows us to perform finite-temperature c
culations, too. The results forT50 and near half-filling
show that this choice is still consistent with the Lutting
theorem~see below!.

Let us first consider the paramagnetic Hubbard mode
the hypercubic lattice away from half-filling (n,1). The
Bloch density of states~BDOS! is given by Ref. 2,r0(E)
5exp(2E2)/Ap. Figure. 1 shows the density of states~DOS!
for U54, kBT50.138 and different bandfillings obtaine
within the MPT. The comparison with the QMC results
Jarrell and Pruschke11 shows that the MPT qualitatively
yields the correct results as concerns the shifts as well as
changes in height and width of the high-energy char
excitation peaks in the spectrum with varying filling. Eve
for temperaturesTÞ0 the Kondo-type resonance shows
at E'm. This low-energy feature is more pronounced in t
QMC spectra compared with the MPT. We then investiga
the effect of taking into account then53 moment: For any
filling considered, it turns out that there are only min
changes in the spectra~which would hardly be visible on the
scale in Fig. 1! when settingBs5Bs

(HF) . For the paramagne
we conclude that the effects introduced by the band shift
rather unimportant.

Figure 2 shows the MPT spectra forU54, n50.94 and
different temperatures. We have also calculated the unif
static susceptibility in the paramagnetic phase by applying
o-
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infinitesimally small field:x5(]/]H)(n↑2n↓)uH→0. As can
be seen in Fig. 2 the Kondo peak starts growing when
susceptibility differs from the Curie law. The local effectiv
magnetic moment@meff

2 }Tx(T)# is quenched asT→0. This
effect has been termed ‘‘collective single-ban
Kondo-effect’’.12 Furthermore, one can see in Fig. 2 by com
paring theT50 spectrum with the free (U50) spectrum
that the DOS is unrenormalised at the Fermi edge,rs(m)
5r0(m0), which is an equivalent formulation of the Lut
tinger theorem in infinite dimensions.13 Let us stress once
more that, contrary to Ref. 7, this has not been enforced

FIG. 1. Densities of states forU54, kBT50.138, and different
fillings on the hypercubic lattice. Results of the modified perturb
tion theory~MPT! in comparison with QMC results from Jarrell an
Pruschke~Ref. 11!.

FIG. 2. Densities of states forU54, n50.94, and different
temperatures. Thin dashed line:U50. Inset: uniform static suscep
tibility x vs temperature.



bi

b

re

i
th

s
tu
is

.
a

A
the

ro.
n

rst
-
e

n
g

the
nd,
an

lts
ined

d y

Th

57 6213BRIEF REPORTS
the choice for the parameterm̃s . For fillings well below
half-filling rs(m) is found to be slightly lower thanr0(m0).
We did not find ferromagnetic solutions on the hypercu
lattice. The susceptibility never diverged forU<6. This is in
agreement with the results in Ref. 11. ForU5`, however, a
region of nonvanishing ferromagnetic polarization is o
tained within the noncrossing approximation14.

On an fcc-type lattice ferromagnetism has been found
cently within QMC by Ulmke15. The high weight in the
BDOS ~Ref. 15! r0(E)5exp@2(11A2E)/2#/Ap(11A2E)
at the lower band edge favors ferromagnetic order.16 Stable
ferromagnetic solutions are likewise predicted by the MPT
a wide region of the phase diagram. Figure 3 shows
magnetisationm5n↑2n↓ for U54 as a function of tem-
perature for different band-fillings. Forn,0.67 we observe
second-order phase transitions. The magnetization curve
continuous and terminate at the respective Curie tempera
TC . The inverse static susceptibility obeys a Curie-We
law for high temperatures. For lower temperatures withT
.TC a slight curvature (]2x21/]T2.0) is observed~not
visible in Fig. 3!. x21 vanishes atT5TC . The critical expo-
nent of the susceptibility turns out to beg'1 as expected
We encountered numerical difficulties to obtain an accur
value forg.

FIG. 4. Filling dependence of the Curie temperatureTC (T2 for
n>0.67) for U54 on the fcc lattice. Solid lines: MPT. Dashe
lines: MPT results withBs5Bs

(HF)50. Thin ~solid and dashed!
lines:T1 ~zeros ofx21). Points with error bars: QMC results~zeros
of x21) by Ulmke ~Ref. 15!.

FIG. 3. Thick lines: magnetization for the fcc lattice,U54 and
n50.2,0.3,0.4,0.5,0.6,0.65,0.67,0.7,0.8,0.85 vs temperature.
lines: corresponding inverse static susceptibilityx21 for n
50.2, . . .,0.65. Dashed line:n50.67.
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For n>0.67 the phase transitions are of first order.
finite magnetisation is still found for temperatures above
zero T1 of x21 ~see Fig. 3 forn50.67). At a temperature
T5T2.T1 the magnetization noncontinuously drops to ze
BetweenT1 andT2 there is a second ferromagnetic solutio
with a magnetization~not shown! that vanishes atT1 and that
coalesces with the plotted magnetization curve of the fi
solution atT2. Decreasingn also results in a stronger curva
ture ofx21 nearT1 while at high temperatures we still hav
Curie-Weiss behavior. Finally, forn>0.69, x21 remains
positive for all temperatures. This scenario is well know
from previous studies of the Hubbard model in conservin17

as well as nonconserving approximations18. For n>0.67 the
true Curie temperatureTC ~with T1,TC,T2) can be found,
e.g., by means of the Maxwell construction considering
H-m isotherms at different temperatures. On the other ha
we cannot exclude the fact that the first-order transition is
artefact of our approximation.

The filling dependence ofTC ~for n>0.67: T1) can be
compared with the available numerically exact QMC resu
from Ref. 15 where the Curie temperature has been obta

FIG. 5. Density plots of the spectral density: energy on they
axis, Bloch dispersione(k) on thex axis.U54, n50.6, and the fcc
lattice. First row:↑-spectral density,↓-spectral density, and densit
of statesrs(E2m) ~solid line ↑, dashed line:↓) at kBT50.022
~magnetization m50.57). Second row:kBT50.058, m50.32.
Third row: kBT5kBTC50.065.
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by linear extrapolation of the inverse susceptibility. As c
be seen in Fig. 4, the MPT result reasonably agrees with
QMC data. In particular, there is remarkable agreement w
respect to the maximumTC and the corresponding filling
Contrary to the paramagnetic phase, there is a strong e
of the ~spin-dependent! band shiftBs for the ferromagnet.
Both, the range of existing ferromagnetic solutions as wel
the values forT1 and TC , are strongly affected if we se
Bs5Bs

(HF) . We find that taking into account correctly th
n53 moment tends to improve the agreement with the QM
results~see Fig. 4!.

There are no hints for non-Fermi-liquid behavior in a
our calculations. The imaginary part of the self-energy va
ishes quadratically atE5m in the paramagnetic as well as i
the ferromagnetic solutions forT50, even at the quantum
critical point nc'0.16 ~for U54).

The evolution of the spin-dependent spectral density w
increasing temperature is shown in Fig. 5 forn50.6. Since
the self-energy isk independent, the spectral density depen
on k via the Bloch dispersione(k) only. For the calculation
of the density of states which is also shown in Fig. 5, t
spectral density has to be weighted with the BDOS:

rs~E!5
1

\E de~k!r0~e~k!!Ae~k!s~E2m!. ~6!

At the temperaturekBT50.022, where the system is near
fully polarized (m50.57), the upper Hubbard band in the↑
spectrum is missing because there are not enough intera
partners. The same spectrum without the narrow Kondo-t
n
the
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fect
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resonance~at E'0) is expected in the noninteracting cas
The ↓ spectrum shows the lower as well as the upper Hu
bard band. When increasing the temperature~second row,
kBT50.058, m50.32) the upper Hubbard band in the↑
spectrum comes into existence. The resonance smears
and starts growing in the↓ spectrum. At kBT5kBTC

50.065~third row! where↑ and↓ spectra coincide, it is still
visible. Finally, we notice that there is a strong transfer
spectral weight between the Hubbard bands with increas
temperature. In the↑ channel the upper one gains weight
the cost of the lower, in the↓ channel the situation is re
versed.

In conclusion, ensuring the correctness of the moment
the spectral density up ton53 is a necessary condition to b
consistent with the rigorous results of Harris and Lange
the strong-coupling regime. In this respect the modified p
turbation theory not only represents a conceptual impro
ment upon the approach of Kajueter and Kotliar, but a
yields closer agreement with QMC data. The~possible! spin
dependence of the higher-order correlation functions (Bs)
that appear in then53 moment is important for ferromag
netic order and has been shown to affect critical fillings a
temperatures considerably. On the contrary, there are o
minor effects ofBs for the paramagnet. Improvement upo
the IPT can also be expected for the antiferromagnet at h
filling.
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