PHYSICAL REVIEW B VOLUME 57, NUMBER 11 15 MARCH 1998-|

Temperature-dependent electronic structure and ferromagnetism in thed=o Hubbard model
studied by a modified perturbation theory
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The infinite-dimensional Hubbard model is studied by means of a modified perturbation theory. The ap-
proach reduces to the iterative perturbation theory for weak coupling. It is exact in the atomic limit and
correctly reproduces the dispersions and the weights of the Hubbard bands in the strong-coupling regime for
arbitrary fillings. Results are presented for the hypercubic and an fcc-type lattice. For the latter we find
ferromagnetic solutions. The filling-dependent Curie temperature is compared with the results of a recent
guantum Monte Carlo studyS0163-182808)04111-3

Correlations among itinerant electrons are responsible foof the resulting spectral densi#y . (E) are correct up tom
various interesting phenomena like spontaneous magnetic 0=3. These moments can be calculated exactlyl\bg}j}
der, the metal-insulator(Mott) transition, and high- :<[£ncka,cla]+>, where £=[-,H]_ . At eachk point of
temperature superconductivity. One of the simplest but nonthe Brillouin zone the first four moments=0, . . . ,3 pro-
trivial models describing correlated electrons on a lattice isjide four pieces of information that in the strong-coupling
the Hubbard mode!. Studying the Hubbard model in the regime determine the dispersions and the weights of the two
limit of infinite spatial dimensiorfs’ d is of special impor-  Hubbard bands. This moment approach has been success-
tance for the construction of a dynamical mean-field théoryfu”y emp|0yed beforehand to improve upon the Hubbard-I
For d=« the Hubbard model is considerably simplified but 5g|ytion®
nevertheless remains nontrivial: It becomes equivalent to an The approach of Kajueter and Kotlfaeproduces the cor-
effective impurity problem and can be mapf@anto the  rect moments up ta=2. Then=3 moment, however, may
single-impurity Anderson modelSIAM), for example. For pe of particular importance in the context of ferromagnetism

the latter, numerically exact solutions can be obtained byince it involves a higher-order correlation functittband
quantum Monte CarldQMC) calculations. On the other ghjft”),

hand, it may be helpful to have an analyti¢but approxi-
mative) expression for the self-energy at one’s disposal,
which recovers the exact QMC results as reliable as possible.
This allows a direct calculation of dynamic quantities on the
real energy axis for finite temperatures as well asTerQ.

Furthermore, valuable hints for the approximative solution Ofthe (possible spin dependence of which is known to favor

more complicated lattice models not accessible to QMC May, agnetic order and thereby decisively influences the mag-

be obtained. ; ;
. L . netic phase diagrarh.
For the symmetric case the iterative perturbation thdry Baged on thgse considerations the present authors have

(IPT) is known to give a rather realistic description of the ; ; -

L . roposed an improvement of the Kajueter-Kotliar approach
Mott transition. The IPT employs the self-consistent map'?ecSntIy‘O which Fs correct up tom=3 [Jhereafter referrzzl to
ping onto the SIAM, which is solved by means of second-as “modified perturbation theoryMPT)]. The main pur-
order perturbation theory around the Hartree-Fock SOlu“mE)ose of this paper is to study the effects.of the band &hjft
(SOPT-HB. To extend the IPT to nonsymmetric cases, Ka'in the paramagnetic as well as in the ferromagnetic phase.

jueter and Kotliaf proposed an interpolating expression for ; LS i
the self-energy, which for arbitrary band fillings reproducesWe compare our results with corresponding findings of pre

the atomic as well as the weak-coupling limit vious QMC studies.
coupling fimit. . Let us briefly recall the essentials of the theory. Details
For the study of ferromagnetism special attention has tg : _
. . . can be found in Ref. 10. In thd=o Hubbard model the
be paid to the strong-coupling regime. Fortunately, thg 1/

) ) . . self-energy is a local quantify® Via the mapping onto the
perturbation thegry of Haf”s and L_a_r?gprowdes MYOrouS — attactive impurity problem, it can be regarded as the self-
results forU—woo: In the first nontrivial order beyond the

atomic limit, the average dispersions as well as the Weightenergy of the SIAM provided that the hybridization function

L Bf the SIAM is suitably chosen. According to Kajueter and
of the two qulnatlng Hubbard bands are knowr_1 exatly. Kotliar,” we consider the following ansatz for the self-energy
One possibility to account for these strong-coupling resultsOf the SIAM:

in the construction of an analytical expression for the self-
energy is to ensure that the moments
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where 3(S°°YE) is the second-order U?) contribution
(SOQ to the self-energy within the SOPT-HF, whie. and

b, are free parameters that will be chosen such that the mo-

ments(1) are correct up tm=3. This requires, andb,, to

be'®

_ n*a(l_nfa)
. NP (1—ntH)’ @
B_,—B"—(u—u,)+U1-2n_,)
b, = o~ (=) +U( -

2~ (HF HF
U2ntH(1—nth)

wheren,, denotes the occupancy of the impurity lewef”
is its Hartree-Fock value, andl, is a fictitious chemical

potential that appears in the definition of the Hartree-Fock

Green's function. The parametat, is fixed by imposing the
conditionn{"P=n__ (for further discussions on this point see

Ref. 10. Finally, B{"P is the Hartree-Fock value of the band
shift B,.. All expectation values in the theory can be ex-

pressed in terms of the spectral density and thus can be de-

termined self-consistentff.

The MPT reduces to the IPT for sm&Jl and is exact in
the atomic limit. By construction it is fully consistent with
the rigorous results of Harris and Lange fdr 0 and yields
the correct moments of the spectral density umte3 for
arbitraryU. The approach of Kajueter and Kotlfds recov-
ered ifB, andB{"') are set to their atomic limit valugse.,
B,=B"P=T,,=0). Note, however, that in Ref. 7 the ficti-
tious chemical potentiak, has been used to enforce the
Luttinger theorem. This implies that the theory is intrinsi-
cally limited toT=0 (see Ref. 19 The more unproblematic

conditionn{N=n_that is chosen here to fix, has to be

preferred since it allows us to perform finite-temperature cal-,

show that this choice is still consistent with the Luttinger
theorem(see below.

Let us first consider the paramagnetic Hubbard model o
the hypercubic lattice away from half-fillingng&1). The
Bloch density of state¢$BDOS) is given by Ref. 2,04(E)
=exp(—E?)/\/. Figure. 1 shows the density of stat&09
for U=4, kgT=0.138 and different bandfillings obtained
within the MPT. The comparison with the QMC results of
Jarrell and Pruschkt shows that the MPT qualitatively
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FIG. 1. Densities of states fay =4, kgT=0.138, and different
fillings on the hypercubic lattice. Results of the modified perturba-
tion theory(MPT) in comparison with QMC results from Jarrell and
Pruschke(Ref. 11).

infinitesimally small field:y = (d/dH)(n;—n)|4_0. As can
be seen in Fig. 2 the Kondo peak starts growing when the
susceptibility differs from the Curie law. The local effective

effect

has
culations, too. The results fof =0 and near half-filling o1 qo-effect

been

“collective

magnetic momer[t,uf}ﬁocTX(T)] is quenched a$—0. This
termed
" 12 Furthermore, one can see in Fig. 2 by com-

single-band

paring theT=0 spectrum with the freelW{=0) spectrum

that the DOS is unrenormalised at the Fermi edgg,u)
n=po(,u0), which is an equivalent formulation of the Lut-

tinger theorem in infinite dimension3.Let us stress once

more that, contrary to Ref. 7, this has not been enforced via

0.6

o
wn

yields the correct results as concerns the shifts as well as the

changes in height and width of the high-energy charge-

excitation peaks in the spectrum with varying filling. Even
for temperature§ #0 the Kondo-type resonance shows up
at E~ u. This low-energy feature is more pronounced in the

QMC spectra compared with the MPT. We then investigated

the effect of taking into account the=3 moment: For any
filing considered, it turns out that there are only minor
changes in the specttevhich would hardly be visible on the
scale in Fig. 1 when setting,=B{""") . For the paramagnet
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density of states

we conclude that the effects introduced by the band shift are

rather unimportant.
Figure 2 shows the MPT spectra for=4, n=0.94 and
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_ _ FIG. 2. Densities of states fdd =4, n=0.94, and different
different temperatures. We have also calculated the uniforreemperatures. Thin dashed lilg=0. Inset: uniform static suscep-

static susceptibility in the paramagnetic phase by applying aribility y vs temperature.
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For n=0.67 the phase transitions are of first order. A
finite magnetisation is still found for temperatures above the
zero T, of x ! (see Fig. 3 fom=0.67). At a temperature
T=T,>T, the magnetization noncontinuously drops to zero.
BetweenT, andT, there is a second ferromagnetic solution
with a magnetizatiorinot shown that vanishes ak; and that
coalesces with the plotted magnetization curve of the first
solution atT,. Decreasing also results in a stronger curva-
ture of y ! nearT, while at high temperatures we still have
Curie-Weiss behavior. Finally, fon=0.69, y~! remains
positive for all temperatures. This scenario is well known
from previous studies of the Hubbard model in conser¥ing

as well as nonconserving approximatih$or n=0.67 the

FIG. 3. Thick lines: magnetization for the fcc lattidd=4 and  true Curie temperatur€. (with T,<T-<T,) can be found,
n=0.2,0.3,0.4,0.5,0.6,0.65,0.67,0.7,0.8,0.85 vs temperature. Thié_g_, by means of the Maxwell construction Considering the
lines: corresponding inverse static susceptibiliy * for n H_m isotherms at different temperatures. On the other hand,
=0.2,...,0.65. Dashed linen=0.67. we cannot exclude the fact that the first-order transition is an

_ artefact of our approximation.

the choice for the parameter,. For fillings well below The filling dependence of - (for n=0.67: T;) can be
half-filling p,(w) is found to be slightly lower thapg(u,). compared with the available numerically exact QMC results
We did not find ferromagnetic solutions on the hypercubicfrom Ref. 15 where the Curie temperature has been obtained
lattice. The susceptibility never diverged 10<6. This is in
agreement with the results in Ref. 11. Rdr=oo, however, a
region of nonvanishing ferromagnetic polarization is ob-
tained within the noncrossing approximattn

On an fcc-type lattice ferromagnetism has been found re-
cently within QMC by Ulmké®. The high weight in the w
BDOS (Ref. 15 po(E) =exd —(1+2E)/2)/\Ja(1+ V2E)
at the lower band edge favors ferromagnetic offeStable
ferromagnetic solutions are likewise predicted by the MPT in
a wide region of the phase diagram. Figure 3 shows the
magnetisatioom=n,—n, for U=4 as a function of tem-
perature for different band-fillings. For<0.67 we observe
second-order phase transitions. The magnetization curves ar
continuous and terminate at the respective Curie temperature
Tc. The inverse static susceptibility obeys a Curie-Weiss
law for high temperatures. For lower temperatures wWith
>Tc a slight curvature 2y~ Y/9T?>0) is observednot w
visible in Fig. 3. x ! vanishes aT =T. The critical expo-
nent of the susceptibility turns out to be~1 as expected.
We encountered numerical difficulties to obtain an accurate
value fory.
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FIG. 5. Density plots of the spectral density: energy on yhe
FIG. 4. Filling dependence of the Curie temperatlige(T, for axis, Bloch dispersiom(k) on thex axis.U=4,n=0.6, and the fcc
n=0.67) forU=4 on the fcc lattice. Solid lines: MPT. Dashed lattice. First row:]-spectral density| -spectral density, and density
lines: MPT results withB(,:Bf,H':):O. Thin (solid and dashed of statesp,(E—u) (solid line 7, dashed line:|) at kgT=0.022
lines: T, (zeros ofy~1). Points with error bars: QMC resulfseros  (magnetizationm=0.57). Second row:kgT=0.058, m=0.32.
of x 1) by Ulmke (Ref. 15. Third row: kgT=KkgT=0.065.
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by linear extrapolation of the inverse susceptibility. As canresonancéat E~0) is expected in the noninteracting case.
be seen in Fig. 4, the MPT result reasonably agrees with th€he | spectrum shows the lower as well as the upper Hub-
QMC data. In particular, there is remarkable agreement witlhard band. When increasing the temperat(second row,
respect to the maximuriic and the corresponding filling. k;T=0.058, m=0.32) the upper Hubbard band in the
Contrary to the paramagnetic phase, there is a strong effegpectrum comes into existence. The resonance smears out
of the (spin-dependeitband shiftB,, for the ferromagnet. ang starts growing in the| spectrum. AtkgT=KkgTc

Both, the range of existing ferromagnetic solutions as well as- g gg5third row) where| and| spectra coincide, it is still

the values forT, and Tc, are strongly affected if we set ;gipje. Finally, we notice that there is a strong transfer of

_p(HF - P,
B,=B{". We find that taking into account correctly the gpectral weight between the Hubbard bands with increasing
n=3 moment tends to improve the agreement with the QMGemperature. In the channel the upper one gains weight at

results(see Fig. 4. o o the cost of the lower, in the channel the situation is re-
There are no hints for non-Fermi-liquid behavior in all versed

our calculations. The imaginary part of the self-energy van- In conclusion, ensuring the correctness of the moments of

ishes quadratically & = w in the paramagnetic as well as in the spectral density up to= 3 is a necessary condition to be

the ferromagnetic solutions far=0, even at the quantum- ; : : .
o . _ consistent with the rigorous results of Harris and Lange for
critical pointn,~0.16 (for U=4).

The evolution of the spin-dependent spectral density Withthe strong-coupling regime. In this respect the modi_fied per-
increasing temperature is shown in Fig. 5 for 0.6. Since trbation theory not only represgnts a concept_ual improve-
the self-energy i& independent, the spectral density dependd™ent upon the approach of Kajueter and Kotliar, but also
onk via the Bloch dispersior(k) only. For the calculation Yi€lds closer agreement with QMC data. Tipessiblé spin
of the density of states which is also shown in Fig. 5, thedependence of the higher-order correlation functioBg)(

spectral density has to be weighted with the BDOS:

1
poE)= gj de(k)po(€(k))Ag()o(E— ). (6)

At the temperaturé&gT=0.022, where the system is nearly
fully polarized (m=0.57), the upper Hubbard band in the

that appear in th@=3 moment is important for ferromag-
netic order and has been shown to affect critical fillings and
temperatures considerably. On the contrary, there are only
minor effects ofB, for the paramagnet. Improvement upon
the IPT can also be expected for the antiferromagnet at half-
filling.

spectrum is missing because there are not enough interaction This work has been supported by the Deutsche Fors-
partners. The same spectrum without the narrow Kondo-typehungsgemeinschaf6FB 290.
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