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Incommensurate magnetism in cuprate materials
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In the low-doping region, an incommensurate magnetic phase is observed_igSt&ZuQ,. By means of
the composite-operator method we show that the single-band two-dimensional Hubbard model reproduces with
good accuracy the experimental situation. In the higher-doping region, where experiments are not available, the
incommensurability is depressed owing to the van Hove singularity near the Fermi level. By changing doping,
the calculated incommensurability amplitude and the experimental critical temperature evolve in a similar way,
suggesting a close relation between superconductivity and incommensurate = magnetism.
[S0163-182698)07109-4

I. INTRODUCTION The bonding combination of Cu and O orbitals ends up being
quite deep below the Fermi level, so that no dynamical free-
The dynamical spin susceptibility for cuprate materialsdom is left to treatd and p orbitals separately (there is
has been investigated by inelastic neutron scattering ansome strong experimental evidence, mostly based on the
NMR techniques. Neutron-scattering data onstudy of the Knight shift, that in the CyOplane one spin
La,_(Ba,S),Cu0, have showh® that away from half fill-  degree of freedom is obsen/8d Then the resulting com-
ing the commensurate antiferromagnetic phase is suppressptéx can be described by a single-band Hubbard mtdel.
and short-range incommensurate antiferromagnetism develrdeed, the applicability of the model to the superconducting
ops. The magnetic Bragg peak in the dynamical structureopper oxide is related to the fact that upon doping most of
factor S(k,w) broadens and develops a structure with fourthese compounds exhibit a metal-insulator Mott transition.
peaks located at(1* §)m, 7] and [, (1= d)w]. The in- Some evidence of incommensurate magnetic correlations
commensurability amplitudé(x) does not depend on the was found in the 2D Hubbard mod&hnd in thet-J model®
frequency and temperature; it is zero up to the dopingy quantum Monte CarldQMC) calculations. To improve
x=~0.05 where a commensurate-incommensurate transition ke situation thet-t’ Hubbard model has been considered,
observed: then, it increases with the hole concentration but the results are not definite and there is no general
following the linear lawd(x)~2x up to x~0.12; beyond agreement®=27In the framework of a generalized random-
this point there is a deviation downwal8.Unfortunately, ~phase approximatiofRPA) it has been fourfd that for
experimental data abowe=0.20 are not available due to the negative values oft’ incommensurability starts developing
difficulty in preparing single crystals. It is important to at a finite hole density that increases from half fillingtas
stress that the value of doping=0.05, where the transition becomes more negative; for=0, §(x) goes to zero wher
is observed, corresponds to the value of doping where thgoes to zero, but the values are much smaller than the ex-
material becomes superconducting. These incommensuragerimental data. In Ref. 21 one- and three-band Hubbard
spin fluctuations with a very large energy scale are not obmodels have been studied by RPA in the limit of infirlite
served in other cuprate materials; a flat-topped magnetitor t’ #0 incommensurability is found with(x) close to the
peak has been observeih YBa,Cu0s,y With y~0.6, experimental data in the region of low doping, but far for
while for the case of the electron-doped NgCgCuOQ, no  higher doping. In Ref. 22 the case of positiVehas been
incommensurate magnetism has been obseRi&te differ-  considered by QMC calculations at zero temperature; incom-
ence in the spatial modulation experimentally observed irmensurability is found, but with peaks (k) moving along
La,_,SKr,CuQ, and YB3Cu;0s,., has been related to a dif- the diagonals in the Brillouin zone. In Ref. 23 exact diago-
ference in the topology of the Fermi surfadée? nalization studies of the-t’-J model have been performed;
From a theoretical side there has been a tremendous effdiar negative values of’ incommensurability is observed
to describe the experimental situation and many schemes @fith S(k) moving along the diagonals, while for positive
calculation have been proposed; however, it is still not cleavalues oft’ the peak inS(k) remains atQ=(,7) for all
if one model is sufficient to describe all different materials. Itdopant concentrations studied. Other models that predict in-
is believed, on both experimental and theoretical grounds;ommensurate spin fluctuations in,LaSr,CuQ, are based
that superconductivity and charge transport in highcu-  on the use of nearly nested Fermi surf&¢é3and phase
prates are mostly confined to the Cuplanes***so much  separatiorf®
attention has been dedicated to two-dimensi¢2B) models By means of the composite operator metfd€COM) we
that contain as an essential feature a competition between thave computed the spin magnetic susceptibijitk,w) of
band picture aspect and highly correlated many-body effectshe 2D single-band Hubbard mod@ljn the static approxi-
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mation, where finite lifetime effects are neglected. In particu- 0.5 1 0.5
lar, the uniform static susceptibilityy(x,T) for various val- [ eeeeeenes n=0.7 ]
ues of doping and temperature evidenced a striking 04 [ “f{'g : 104
gualitative agreement with the experimental situation in o I n=- : N
La,_,SrCu0,.*° [ U= ; ]

In this paper we shall study the evolution of the spin . 93 [ 0 103
fluctuations on the doping concentration over the entire mo-S C n ]
mentum spectrum. In the next section we review the main 02 [ 102
formula and present the results for the incommensurability B i
amplitude. Some concluding remarks are given in Sec. Ill. 0.1 S 1 01

O 1%
Il. STATIC SUSCEPTIBILITY ! 1
0 Lo 1
The Hubbard Hamiltonidd is given by 6 4 2 0 5 4 6

H=i§;, tich(i)c(j)JrUzi: nT(i)nl(i)—,uzi: ct(i)edi).
1)

The notation is the following. The variablestands for the
lattice vectorR, . {c(i),c'(i)} are annihilation and creation
operators ot electrons at sité, in the spinor notation:

( T
c=
!

The fields{c(i),c'(i)} satisfy canonical anticommutation re-
lations

. cf=(clc)).

)

{eo(0),Ch (1)} =808,

(o), (Dy={cl(i),cl.()}=0. 3

tj; denotes the transfer integral and describes hopping be-

tween different sites; th&) term is the Hubbard interaction
between twac electrons at the same site with

n,(i)=cl(i)c ().

(4)

w is the chemical potential. In the nearest-neighbor approxi-

mation we write the hopping matrix as

1 )
t = —dtay = —4tg> e fa(k), )

FIG. 1. Density of statedl(w) as a function ofw for various
values of the dopingU/t=0.

wheren is the particle densityD is the double occupancy,
and byQf ;. s(k,®) we mean the retarded part of

[ d’p dQ
Qaﬂy&(k!w)zl f Weaﬁ(k_l—pvw_l—ﬂ)(;y&(piﬂ)-
8
The 22 matrix G(k, w) is the thermal causal Green'’s func-
tion, defined byG(k,w)=(T[ (i)' (j)1)rt, Where FT de-

notes the Fourier transformy(i) is the doublet composite
operator

(&)
‘“"‘(nm)' ©
with
£ =[1-n()]c(i), 10
2(i)=n(e(i) ay

describing the transitionsnE0)<(n=1) and (=1)
<(n=2), respectively. By means of the equation of motion
and by considering the static approximation, where finite
lifetime effects are neglected, the Green’s funct®(k, »)

where for a two-dimensional square lattice with lattice con-can be computed in the course of a fully self-consistent cal-

stanta

a(k)= %[cos{ ksa)+cogk,a)]. (6)

culation where no adjustable parameters are considéréd.

A. The noninteracting case

To better understand how the magnetic correlations are

The scale of the energy has been fixed in such a way thdnodified by the interaction, it is useful at first to consider the
t;, =0. It should be noted that since the interactions are recase of the noninteracting Hubbard modes., U=0). The
stricted at the same site, the dimensionality of the systerflensity of state®\(w), shown in Fig. 1, presents an energy
comes in only when a specific form far(k) is taken. In  band of widthA(w)=8t; the Fermi energy is situated at
other words, the stabilization of eventual cooperative phe«w=0 and the van Hove singulariHS) is at the center of

nomena is uniquely governed by the band dispersion.
We have showf that in the static approximation the dy-
namical spin susceptibility is given by the expression

2
x(K,w)= m[n(QlRlll+ 2Q 15+ Q%) +(2—n)

(7)

X (Q15+ 2QT05+ Q500 1,

the band. Whem<1 the VHS is located at an energy
w,4>Eg; by increasingn,N(w) shifts rigidly andw, de-
creases; fon=1 the VHS lies at the Fermi energy; for>1
we havew,<Eg. The Fermi surfacér9) is given in Fig. 2
for various values ofi. By increasingn, the volume of the
FS increases; fon=1 the FS is nested.

For noninteracting fermion systems, the spin magnetic
susceptibilityy (k,w) can be expressed as
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FIG. 4. Spin magnetic susceptibility (k) along the line
k=(mk,) for kgT/t=0.01 and various values of the doping.

u/t=0.

lim xox —In(kgT/t), lim x(Q)x—In(kgT/t)2. (13
T—0 T—0
FIG. 2. Fermi surface for various values of the dopibgt=0.

In Fig. 3 we showN(w), xo, andx(Q) versusn. All these
d%p f(E(p))—F(E(p+K)) guantities exhibit a peak far=1, due to the VHS; the stron-

5 , (12 ger divergence exhibited by(Q) is due to the nesting of the
(2m)*" o=E(p+k)+E(p) Fermi surface. Whem#1 the Bragg peak aQ=(,)
opens in four peaks, situated &t =[ w(1=6),7(1+6)];
with E(p) and f(E) being the energy spectrum and the there is a transition from commensurate to incommensurate
Fermi distribution function, respectively. The static suscep-magnetic correlations. In Fig. 4 we shoyk) along the line
tibility x(k) depends on the density of states and thereford,= 7, m/2<k,<3m/2. The peaks exhibited by(k) are due
on the position of the VHS; for a certain value nfand to the VHS in the density of states; at half filling the VHS is
therefore for a certain value @f,,, x(k) exhibits a maxi- at the Fermi valuev = u; when we move away from half
mum for a certairk*. Whenn=1 the VHS lies at the Fermi filling the singularity moves:
value anck* = Q= (, ). On the other hand, when we have
a nested Fermi surface there is a logarithmic divergence of w,u>p  for n<l (hole doping
the staggered susceptibilig( Q) at low temperatures. It is a
characteristic property of the free Hubbard model that for the

same value oh=1 we havew,;=Er and a nested Fermi The behavior is completely symmetric due to the particle-
surface. As a consequence, in addition to the divergenceole symmetry of the model. The incommensurability ampli-
coming from the nested Fermi surface there is one comingyde 5(x) increases as a function of the dopimg1—n.
from the VHS in the density of states anqQ) exhibits a  This is shown in Fig. 5, wheré(x) is reported versus. We

x(K,w)=-2

w,u<m for n>1 (electron dopiny (19

stronger divergence thapy: also give the shift of the van Hove frequency with respect to
3.0 3.0 1.5 1.5
o i
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FIG. 3. N(u), xo, and x(Q) as functions of dopingu/t=0 FIG. 5. w,y—u and §(x) as functions of dopingU/t=0 and

andkgT/t=0.01. kgT/t=0.01.
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FIG. 6. Density of statedl(w) as a function ofw for various
values of dopingU/t=4.

the chemical potential. It is interesting to observe that
w,n— # and 8(x), when reported as functions »f obey the
same law:

w,u—u~ax® a~3.62 _ o
5(x)%bx4/3, b~131. (15) FIG. 7. Fermi surface individuated by the lower-energy spec-

trum E,(k) for various values of the dopindgl/t=4.

B. The interacting case

d?p f(Ei(k+p)—f(E;j(p))

For the interacting case, owing to the Coulomb repulsion Xii(k):j (2m)° . —E; Kij(k.p).

! ’ ) Ei(k+p) Ej(p)
two bands, the lower and the upper Hubbard bands, open in (18)
the density of states, as shown in Fig. 6. We see that by
increasing doping the VHS moves across the Fermi energy (k) andE,(k) are the upper and the lower Hubbard sub-
situated atw=0. Two VHS's appear: One has an energybands and;;(k,p) are expressed in terms of the spectral
wq,4>u and practically does not contribute; the other isintensities. The explicit expressions for these quantities have
close to the Fermi energy and there exists a critical vajue been computed in the framework of the COM and are re-

of the doping such that ported in Ref. 29. The ternyine= X121 x21 describes the
propagation of a spin accompanied by a spin excitation be-

wo y<pm  for x<x, tween the two bandg,(k) andE,(k), while the two terms
> for X>xe. (16) Xu1 and y,, describe the propagation with a subsequent in-

traband spin excitation. Sinde; takes values mostly above
The value ofx, does not change with temperature and isthe chemical potential, the contribution gf; is small. The
determined by the ratit/t, varying from 0 to 1/3 whety/t  interband termy;qe, is shown in Fig. 8. This term originates
changes from zero to infinity; fdd/t=4 we havex,=0.27.

The Fermi surface individuated by the lower-energy spec- 1.2 r 7 1.2
trum E, (k) is shown in Fig. 7. We see that the Fermi surface - Uh= 1
is nested fox=X,. 1 | T=0.01 x=0 q1
The shifting of the VHS and the band structure effects r ]
have a drastic influence on the form of the susceptibility. 0.8 I - 08
Theoretical calculations performed show that aroundZ ]
Q=(m,m) x(k) has an incommensurate structure along the & 0.6 - 06
four corners of a square, with a minimum@t This incom- > ]
mensurate structure contains a mixing of two components 0.4 - 04
The relative position and the intensity of the two contribu-
tions change significantly with doping. When the interaction 0.2 ¢ 0.2
is included, the&k-dependent susceptibility(k) can be writ- r ]
ten as Y B yye————__
/2 3w/4 T Sm/4 3n/2
2 k,
X(k)_i’jz:]_ Xij(k)’ @7 FIG. 8. Interband termy;y(k) along the linek=(m,k,) for

kgT/t=0.01 and various values of the dopimg=0.27 with step
where 0.03.U/t=4.
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FIG. 11. Spin magnetic susceptibility(k) along the line
k=(mky) for various values of the dopingk. U/t=4 and
kgT/t=0.01.

a peak in the susceptibility, which moves from the commenmensurate structure with a peak coming frgfe,, located
surate positionQ=(m, ) to (m,w/2) when the doping is at (7,7), and a smaller peak, coming frog3,, located near
increased fronx=0 to Xx=X.. The intensity of the peak (,#/2). Upon doping, the two peaks moves for different
reasonsy,, moves because the van Hove singularity moves
shown in Fig. 9. This term gives a peak that is a reminiscentowards the Fermi energyyi..r moves because the band
of the van Hove singularity in the density of states. At zerostructure changes with doping. When the critical doping
doping the VHS is far from the Fermi energy and the peak isx=x, is reached, the VHS is at the Fermi energy and the
located at ¢r,7/2) and has a low intensity. When doping Fermi surface is nested. A commensurate structure is recov-
increases, the peak increases its intensity and moves alorged with a very high peak coming fromy,.
In Fig. 12 the incommensurability amplitudé(x) is
X=X, the VHS lies at the Fermi energy determining a peakshown as a function of doping. In the region of Ighigh)

in the uniform static susceptibility, as reported in Fig. 10.doping the peak coming fromgier (x22) is predominant and
Also, for x>x. we have a closed Fermi surface that becomesery well separated from the other; in these regié(e) has
been evaluated as the middle point of the half-width of the
peak ofy,, is situated afQ and has a very high intensity due peak and we have a linear behavior. In the region
to the concomitance of these two effects. It is interesting t@.10<x=<0.18 the two peaks overla@(x) has been calcu-
lated by taking the average of both peaks and we have a
same law as given in Eq15). An enlarged Fermi surface plateau due to the superimposition 9§, and yiper. FOr

with a volume larger than the noninteracting one has beegomparison we report the experimental data of Refs. 4, 5, 7,
shown by QMC calculatio$®! and by other theoretical and 8. The linear behavior of(x), observed in the low-

works3? The total susceptibility is shown in Fig. 11 for three doping region, agrees exceptionally well with the experimen-
values of doping. For zero doping we mainly have a com-

decreases by increasing doping. The intraband tepmis

the line k,=m, m/2<k,<3w/2). At the critical doping

nested atk=x. and opens fox<x. (cf. Fig. 7. Then the

note that the peak position gf, moves toward€) with the

1 1 1
S T S N |
0.8 F X o8
L Ut=4 1
06 T=0.01 7 0-6
04 b Tl 404

0.2 _’J
4 J) ANFUREES SR RIS P IR UV ST RIS B )
0 01 02 03 04 05 06

X

FIG. 10. Density of states at the Fermi enefdyux) and the
uniform static susceptibilityo(x,T) as functions of the doping.
U/t=4 andkgT/t=0.01.
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FIG. 12. Incommensurability amplitudé§(x) as a function of
the dopingx. The dashed line indicates the theoretical result.
U/t=4 andkgT/t=0.01.
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. Ref7 ®  Ref 36 the critical doping fromx=0 to some criticak; due to the
e Ref.34 ®  Ref 37 shift of the VHS. This shift explains and reproduces well the
40 A Ref.35 - 40 unusual normal state behavior of, in hole-doped
35 ; o 3 cuprates”**** The other is a band-structure effect that is
o responsible for the incommensurate modulation of the mag-
30 < hs 1 30 netic susceptibility in the low-doping region.
’s / A 1 s The picture that emerges is that the magnetism probed by

neutron-scattering experiments is correlated with the carrier
20 density. In the low-doping region the susceptibility is mainly
controlled by the termy;.e;» Which describes band-structure

T (%)
o
o
e
»
'S ENET FEETE FRETE FERwa|

15 . %2 3 15 effects and then reflects the topology of the Fermi surface. In
10 A 10 the overdoped region the Fermi energy is close to the VHS
sk "y R and the effect of nesting in the intraband term is important.
o E In YBa,Cus0g 4y We have a different topology of the Fermi
I e I | surface and no nesting is expected; this might be the reason
0 0.05 0.1 5 )0.15 0.2 0.25 why incommensurability is not observed.
(x
FIG. 13. Experimental values df. for La, ,SrCuQ,, taken IIl. CONCLUDING REMARKS

from Refs. 7 and 34-37, versus the calculated incommensurability

amplitude(x). The solid line is a guide to the eye. The main results obtained in this paper are summarized as

follows. There is experimental evidence that in hole-doped

tal data reported in Refs. 4-8; the downward deviation rehigh-T, cuprates the Fermi level is close to the VHS for
ported in Refs. 7 and 8 for>0.12 might correspond to the values of doping close to those where the superconducting
plateau observed theoretically. It is important to stress thagphase is suppressed. In the context of the Hubbard model a
the calculated incommensurability amplitudéx) goes to van Hove scenario describes well some of the unusual prop-
zero only in the zero-doping limit because our analysis iserties observed in the normal state, but our analysis shows
restricted to a paramagnetic ground state. that this scenario is related to the overdoped region and not

The same result fof(x) can be obtained by considering to the optimal doping. The existence of a critical doping
Imx(k,w). Some results have been given in Ref. 33. Wewhere the VHS lies at the Fermi energy should imply a peak
preferred to study thd-dependent susceptibility(k) be- in the staggered susceptibility. Then we predict that com-
cause this quantity provides more strict information aboutmensurate magnetism should be recovered in the nearness of
the spatial range of the magnetic correlations. On the othghe critical doping and beyond a close similarity between
hand, an exact experimental determinationxg¢k) is not  8(x) andT in the entire region of doping. Recalling that in
easy since it must be calculated by the accessHifle w) La,_,Sr,CuQ, the commensurate-incommensurate transition
through a Kramers-Kronig relation. is observed at the same value of dopig0.05 where su-

One of the most striking features of the results presentegerconductivity starts, at least for }{aSrCuQ,, a
in Fig. 12 is the resemblance between the incommensurabiscenarié® that relates the superconducting phase to the pres-
ity amplitude 5(x) and the critical temperatur€;. 5(x) is  ence of incommensurate magnetism emerges.
maximum in the region of optimal doping whefg is maxi- Note added in prooflncommensurate magnetic fluctua-
mum. It has already been experimentally observed in Ref. ions have been recently obser{®ih YBa,Cu;Og With
that there is a linear relation betweé(x) and T, up to the  peaks along the diagonals of the Brillouin zone, starting from
optimal doping levek=0.15. Our theoretical results confirm the M point. In the context of the Hubbard model, this situ-
this behavior and show that a close similarity betweééx) ~ ation can be describ&tby considering the hopping term
andT, exists in the entire region of doping. This can be seerflong the diagonal of the plaquettet’-U mode).
in Fig. 13 where experimental values fdr, taken from
Refs. 7 and 34—37, are reported versus the calculated incom-
mensurability amplitudeS(x).

The present analysis shows that the interaction in the The authors wish to thank Professor M. Marinaro and Dr.
Hubbard model has mainly two effects. One is the change of\. Avella for many valuable discussions.
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