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SU(2) formulation of the t-J model: Application to underdoped cuprates
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We develop a slave-boson theory for thd model at finite doping that respects an (8Usymmetry: a
symmetry previously known to be important at half filling. The mean-field phase diagram is found to be
consistent with the phases observed in the cuprate superconductors, which dewae superconductor,
spin-gap, strange metal, and Fermi-liquid phases. The spin-gap phase is best understood as the staggered flux
phase, which is nevertheless translationally invariant for physical quantities. The physical electron spectral
function shows small Fermi segments at low doping that continuously evolve into the large Fermi surface at
high-doping concentrations. The close relation between th€)Sahd the W1) slave-boson theory is dis-
cussed. The low-energy effective theory for the low-lying fluctuations is derived and additional lying modes
[which were overlooked in the @) theory] are identified[S0163-182@08)08109-0

[. INTRODUCTION decouplind~" and study fluctuations about the mean-field so-
lution, which turns out to be a @) gauge theor§-°On the
It is well established that high-temperature superconducexperimental front, much work has focused on the under-
tivity appears in cuprates when holes are doped into the padoped region, defined as the region of hole concentration
ent compound, which is understood to be Mott-Hubbard anbetween the onset of superconductivity and the maxifal
tiferromagnetic(AF) insulators. Since the parent compound because many anomalous properties are found in the metallic
is insulating only by virtue of strong correlation, it stands to state in this regime. For example, unlike optimally doped
reason that a strongly correlated model is the requisite starsystems where the magnetic susceptibijtand the Knight
ing point to describe the cuprates. The simplest such modeihift are temperature independent, underdoped cuprates gen-
is the two-dimensional-J model and a large effort has been erally show a reduction iy below 400 K or sd! At the
made to study how the phase diagram evolves from &ame time the specific heat is found to be suppressed relative
Heisenberg antiferromagnet when a concentratiafi holes  to the T linear behavior expected for conventional mefals.
is introduced. The doping of a Mott-Hubbard insulator is aThis behavior suggests the formation of a gap in the excita-
relatively new problem in condensed-matter physics and intion spectrum. This gap also shows up in tleaxis
volves issues quite different from the doping of a band insufrequency-dependent conductivitybut the conductivity in
lator. A key question is the evolution of the Fermi surfacethe plane is not so strongly affected. The in-plane dc conduc-
with doping. At low doping, the unit cell is doubled in the tivity shows a suppression below about 200 K relative to the
AF state and the first holes will form small pockets, notlinear T resistivity observed at higher temperatures. This
unlike the doping of band insulators. The pockets are censuppression can be attributed to a reduction of the width of
tered at ¢r/2,77/2).} On the other hand, when the hole con- the Drude-like peak by a factor of 2 with little effect on the
centration is large, it is known that a large Fermi surface isspectral weight? The reduction of the conductivity is due to
formed, with an area given by-1x, in agreement with Lut- the scattering rate rather than to the carrier concentration.
tinger theorent. The point is that the local moments on the These observations suggest that the gap appears only in the
copper are now counted as part of the conduction electroapin and not the charge degrees of freedom in the two-
that makes up the Fermi sea. The key question is how thidimensional plane and has been loosely referred to as the
evolution takes place as a function of doping. It seems quitspin gap. We should add that the strongest gaplike behavior
likely that the state for intermediate doping may contain fea-has been seen in the Cu NMR relaxation rate and in neutron
tures not encountered before. Indeed, concepts such as quatattering, both of which are sensitive to spin excitation at
tum spin liquid states and spin-charge separation were intranomentum Q= (,7). This latter phenomenon usually
duced early on and much work has gone into thestarts at a lower temperature of order 200 K and it has been
development of a formal theory that exhibits some of thesargued that it is observed only in bilayer or trilayer
features One line of approach is to start from mean-field materialsi'*®We shall take the point of view that the behav-
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ior at (7, 7) may be a more delicate issue depending onwhere the gauge flux alternates on even or odd sublattices.
nesting properties at the Fermi surface, etc., and for the redthese states are related by local(@lauge transformations
of the paper we shall use the term “spin gap” to refer toand do not break translational symmetry. Furthermore, these
properties mentioned earlier that are characteristic of singlestates are connected smoothly to theflux phase at half
layer as well as multilayer cuprates. filling that has large excitation energy at the %D, point,
Very recently, angle-resolved photoemission experiment§omparable to that at (0,0). This is in agreement with pho-
have yielded important information concerning the electronido€mission experiments on the insulating cuprates, suggest-
excitations of underdoped cuprates. It was discovered that 89 that the AF state may resemble theflux phase at short
gap in the spectral functions already existed in the normaflistances>? Furthermore, in the experiment the state at

state'”8 Furthermore, the size of this gap and its depen_(o,w) moves towards the Fermi surface with doping, which

> L can be understood in the mean-field theory as a gradual clos-
Qence ork space is §|m|lar to thd-wavg-type gap Obseerd ing of the spin gap. In this wofR we also introduced a
in the superconducting state. The d|ff_eren_ce_ is that in th?esidual attraction between the boson and fermions and show
normal state, the gap appears to close in a finite segment negli,+ this gives to Fermi-surface segments near th (r/2)
(m/2,7/2), leaving a “Fermi-surface segment.” If this en- point that grows with doping. Thus the &) mean-field
ergy gap is related to the spin gap, this observation gives agheory allows us to answer the fundamental question of how
important boost to the notion of Spin-Charge Separation. Thlg']e Fermi surface evolves from hole pockets near the
is because when an electron is removed from the plane, as (%:/2,7/2) point near half filling to a large Fermi surface for
photoemission and i-axis conductivity, one is forced to |arge-doping concentration.
pay the energy cost to break the singlet pairs in the plane, In this paper we give a more detailed description of the
whereas for in-plane conductivity, charge transport may ocSU(2) theory and we also offer an alternative formulation
cur within the spin singlet sector. Such a behavior is in fact ghat has some advantage over the origina(ZUnean-field
natural consequence of the mean-field phase diagram of thikeory, particularly in the approach to large doping. More
t-J model that has been in existence for some tirhin this  specifically, in Sec. Il we show that the &) theory is in-
theory the constraint of no double occupancy is enforced byimately related to the original (1) theory. This leads us to
writing the electron operatar,; in terms of auxiliary fermi-  a formulation in terms of @ model of slowly varying boson
ons and boson particles, = f ;b and demanding that each fields. This is discussed in Secs. Il and IV. In Sec. V we
site is occupied by either a fermion or a boson. In a meanpresent detailed calculations of the electron spectral function,
field treatment, the order Dafamet%§=<fTifaj> and A comparing the original S(2) mean-field approach and the

a

=(fyfy—fyfy;) describe the formation of singlets envi- presento-modgl formqlation. We.also made some modifica-
sioned in Anderson’s resonating valence-bori@VB) tions of the interaction potential between fermions and
picture® Above the Bose condensation temperature of thd0sons, which lead to considerable improvement of the spec-
bosons, spin charge separation occurs at the mean-field lev#ial function when compared with experiments. In Sec. VI
In particular, in the underdoped regime the fermions aréve discuss the collective excitations of the theory, which are
paired in ad-wave state, leading to a gap in the spin excita-SU(2) gauge fields, and we point out the important massless
tion but no gap in the charge excitation. This scenaricdauge fields in different parts of the phase diagram. In par-
has been used as an explanation of the spin-gaficular, the existence of a massless mode in the staggered
phenomenon®2° flux phase is an important feature of the @Utheory com-
While the conventional (1) mean-field theory has many pared to the W) formulation. We also briefly discuss the
attractive features, it suffers from a number of defects. Firstfesponse to an electromagnetic field of the normal and super-
when an attempt was made to improve the theory by includconducting states.
ing gauge fluctuations, it was found that tbewave state
was unstablé' Second, in the underdoped regime, there are |1 RELATION OF THE SU (2) FORMULATION TO U (1)
indications that the system is unstable to the spontaneous THEORY
generation of gauge fluxes at finite wave vectdrSuch in- —_— i
stabilities will lead to a breaking of translation symmetry that ~ Affleck et al”" pointed out that the-J model at half fill-
is not observed experimentally. We note that it has beef’d obeys an exact S@) symmetry. They introduced the
suggested recently that a modifidevave state with a large SU(2) doublets
gap at the (Gy) point and vanishing gap along a segment
near (m/2,7/2) may be stable against gauge fluctuatiths. . fii _ fai 1
However, the question about finite wave-vector instabilities Y= f1.) 2~ —fl. @)
remains. Such considerations motivated us to produce a for-
mulation of the constraint that generalizes the(@Uheory  to represent the destruction of a spin up and spin down on
for the half-filledt-J model to thet-J model away from half  site i, respectively. This expresses the physical idea that a
filling.2* Our hope is that since SP) gauge symmetry is an physical up spin can be represented by an up-spin fermion or
exact symmetry at half filling, the mean-field approximationthe absence of a down-spin fermion once the constraint is
of our formulation may capture more accurately the low-imposed. The theory is invariant under the local transforma-
energy degrees of freedom and may be a better starting poitibn «,;— g;#,; , whereg is a 2X 2 matrix representation of
for smallx. Indeed, we found that in the underdoped region,the SU2) group. In the original formulation, which we shall
the mean-field solution may be understood akwave pair- refer to as the () theory, this symmetry is broken upon the
ing state, or equivalently as a staggered-flexl(x) phase, introduction of holes.
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In Ref. 24 a formulation of the constraint of no double (1-cl.ci)=(hTh)=(blb;+blb,)=x (8)
occupation in thet-J model was introduced that preserves ) ) _
the SU2) symmetry even away from half filling. The key and is enforced by the chemical poteniial

step is the introduction of a doublet of bosons The ag; enforces the local constraint
_ bu) . (397 Yu+hi 7 h)=0. ©)
by In particular, for/=3 we have
on each site, so that the physical electron operator can be
i P (fh i+ bliby—blby)y=1. (10

written as an S(2) singlet, i.e.,
The Lagrangian is invariant under the local @Wtransfor-

1 1 mation
Cli:Ehr'ﬂli:E(blifli+b;if£i)!
Vo= Wi, Mi—glh;, Uij_’giTUijgj :
c :ithﬂ :i(be _beT) (3) ang/_)ngaaT/gl_glaTQ;r! (11)
2i i Y2i \/— li'2i 2i' i/ . .
V2 2 whereg;(7) is a 2X2 matrix that represents an &) group
The t-J Hamiltonian element.

Equations(5) and (6) are a faithful representation of the
2 a4 + t-J model, just as the more standardlJrepresentation is.
H= 2 [J(Si-§j—aninj) —t(C,iCqj+H.C] (4 The two representations must be equivalent, as long as we
&b ) . ) include all the fluctuations. To understand the relation be-
can now be written in terms of our fermion-bosdRB) tween the S(P) and the W1) theory, we will rewrite the
fields. The Hilbert space of the FB system is larger than thagu(g) theory to make it as similar to the (1) theory as
of the t-J model. However, the local S©) singlets satisfy- possible. In Appendix A we will do the reverse, i.e., we will
ing (¢! 74, +bl7h;)|phyg =0 form a subspace that is start with the W1) theory and write it in the form of the
identical to the Hilbert space of theJ model. On a given SU(2) theory; we will also discuss some subtleties of the
site, there are only three states that satisfy the above cofielation.
straint. They arefl|0), f1|0), and 14/2(b]+b}fif1)|0) The key ingredient is that the two-component boson field
corresponding to a spin-up electron, and a spin-down eledd the SU2) representation is nothing but an & rotation
tron, and a vacancy, respectively. Furthermore, the FEPfthe standard slave bosdn, i.e.,
Hamiltonian, as a S(2) singlet operator, acts within the sub- b
space and has the same matrix elements as-thélamil- h:g-( ')_ (12)
tonian. The projection to the physical subspace is accom- A0
plished by introducing a set of three auxiliary fields
ag;, /=123, on each sité. The partition function is
written after a standard Hubbard-Stratonovich transformation (Zil _zi*2>
gi= )

The matrixg; can be parametrized as

as (13

*
Zjp Zj1

Z:f Dh Dh'Dy DwagoDU exp( _J"Bt), (5)  with the constraint® ,z*,z,,= 1, which is satisfied by the
0 parametrization

where the Lagrangiam is given by zilze‘i(“’”e“(d”z)co%, zi2=e“(“’2)e‘(‘f”2)sing.

_J 1 ~
C=52 THUU I+ 52 (9.6, + Ui vy X 19
Uy bl It is natural to introduce the isospin vector
1 - -
+i§; aj, ElﬂLiT/l//ai-i-hiTT/hi) I'=2% 7,525=(sin 0 COS ¢,Sin 6 sin ¢,cos6). (15)
Furthermore, it is easy to check that
T(g.— +TUTh - s
2 N [(0= w3+ TU; Iy 6) gimeg! =7-1. (16)
The matrix Thusl has the meaning of the local quantization axis param-

etrized by the polar coordinatgsand ¢. The anglea in z
andg; is redundant and can be absorbed into the phase of

—Xxi A
' 7 in Eq. (12). Using Eq.(12) we can write Egs(5) and(6) as

ij

A xij

. i i | _ N B
whereX,J-r.epresents fgrmlon honmg ang; Lepresggr:ts fer Z:f Dg Db Db'Dy Dy'Da,DU ex _j L]
mion pairing, respectively, and =3J/8, t=t/2°° The 0
density of physical holes equals the total density of bosons (17)
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where

J 1 .=
L'=52 Uy +5.2 wil(9:+80:7) 8+ TUy 1
1] ),

1 - -
dr—pt ETr{Ts[giTao' T0i — (ﬁrgiT)gi]}‘Sij

I

We see that the path integral of the @Utheory is very
similar to that of the 1) theory. Here note that the first line
of Eq. (18) is invariant against the local gauge transforma-
tion (11). To see this we transform of the integral variables

+2 b
]

t
+ 5T (1+73)9/U;;9] (18

l/’ang;r’ilvfai, giTUijgj:Uij- and glay 70— (,97)9;
=a,- 7. Then Egs(17) and(18) become
~ —p =~ B_
z=f Dg Db Db'Dy Dy'Da,DU exp(—f L’
0
(19
and
-~ 3 e
L'==> THU!U;]
210 i
1 3
+§i;a ol [?T+a§=:1 agTa 5ij+JUij}¢ja
+2 b{(0,-p+ b= T2 xibfbi. (20

Note thatL’ no longer depends og so that theg integral
can be dropped. If we drop theg;? integral, Eqs.(19) and
(20) have the same form as the(1) formulation with an

exception that therd is replaced byt=2t. It is not our
purpose to derive the exact equivalence between ttlg U
and SU2) path integrals, but rather we want to point out
how low-lying fluctuations in the S(2) formulation may be
reproduced in the (1) picture.

The U1) mean-field theory corresponds to fixiggto be
unity (so thati =z) and findingU;, anda$”, which mini-
mizes the action after summing ovgérandb. In the under-
doped region, it was found that(” corresponds tal-wave
pairing of fermions. Thus the SB) symmetry at half filling
is broken by the boson term for finite At the same time, it
is clear that fox<1, there is a host of (1) mean-field states
U;;=g/U{Pg; that are close in energy to tlibwave state.
Since these states are degenerate=ad, we may expect an
energy cost of ordekJ per hole orx?J per unit cell. An

LEE. NAGAOSA, NG, AND WEN

57

function sum. This additional degree of freedom is just rep-
resented by the functional integral ox@m Eq. (17) and this
is the motivation for adopting the $P) formulation.

In Ref. 24 a mean-field theory was introduced for the
SU(2) action(5) and(6). The mean field is a saddle point of

the action with respect ttJ;; and 50, after integrating over
#,¢" andh, h', which is possible because the action is qua-
dratic in these variables. We find that the mean-field phase
diagram is only slightly modified from the () case and
consists of six different phaseé) In the staggered flux
(s-flux) phase

Upivi= = mx—i(=)xhA,

Uiisy=—mx+i(—=)xhA, (21)

and a'0i=0. In the U1) slave-boson theory, the staggered
flux phase breaks translational symmetry. Here the breaking
of translational invariance is a gauge artifact. In
fact, a site-dependent $2) transformation W;
=exdi(—1)x""v(m/4)7,] maps thes-flux phase to the
d-wave pairing phase of the fermiondJ;; ;;=—x73

+ A, which is explicitly translationally invariant. In the
s-flux phase the fermion and boson dispersions are given by

+E; and *E,, where E;=\(e—ad)%+ 7% &=
—2J(cosk+cosk)x, n;=—2J(cosk—cosk)A, with a
similar result forE,, with J replaced byt . Sinceiai=0 we
have(f!.f )=1 and(b]b;)=(bjb,)=x/2. (ii) The m-flux
phase is the same as thdlux phase, except hepe=A. (iii)
The uniform RVB(URVB) phase is described by EQ1)
with a{)izA:O. (iv) A localized spin phase hds;;=0 and

ap, =0, where the fermions cannot hofy) The d-wave su-
perconducting(SC) phase is described by, i 5 y=—x73
+Ar, andad#0, a5?=0, (b;)#0, and(b,)=0. (vi) The
Fermi-liquid (FL) phase is similar to the SC phase, except
that there is no fermion pairingA(=0).

The connection with the (1) mean-field theory is now
clear by using Eq(18). The SU2) mean-field consists of
fixing U;; =U{” and ap=af”). For each{g;} the integral
over ¢, 4", b,b' gives the free energy of a(ll) mean-field
theory with

0)

Ujj(9)=g/U{”g; (22)

and

ao- 7=0/ay’ 79 +9/3,9;. (23)

Upon integration ovefg;}, we see that the S@) mean-field
theory includes the (1) mean-field statéU(” ,a{”} and all

ij
the configurationdU;; ,a0} connected to it by S(2) rota-

tions. Thus, forx<<1 all the low-energy excitations are in-

example of special interest is the staggered flux phase th&tuded in the partition sum. This is the reason why we be-

has a Dirac spectrurg, = \/sz"' AE at (w/2,7/2). Since the

lieve the SU2) mean-field theory is a better starting point for

density of states of the Dirac spectrum is linear in energy, théinderdoped cuprates.

energy cost is- ,uf;/AJ for a given fermion chemical poten-
tial. To satisfy the fermion number constraipt; ~ VxAJ so
that in this case the energy cost is expected ta/Ad x°?

We note that with the exception of the superconducting
and Fermi liquid phases{”’=0 in the SU2) mean-field
solution. This means thaf Lfai>= 1 and the constrair{tL0)

per unit cell. At finite temperatures, we expect that theses satisfied by(b]b;)—(bjb,)=0. Unlike the U1) case, the
low-energy configurations should be included in the partitiondensity of fermions is not necessarily-Xk. It is this feature
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that allows the staggered-flux adewave states to be gauge theory. We also find that a judicial choice Ufi(jo) that ex-

equivalent descriptions in treflux phase, for instance. One hibits the symmetry of a given phase yieldsranodel that

consequence is that the node in the gap function of the ferexhibits the proper symmetry. As a first example we discuss

mion excitation is pinned at#/2,7/2). In Ref. 24 it was the URVB state.

found that by including an attraction between the boson and

fermion due to the exchange @&, fluctuations, Fermi- Ill. o MODEL OF THE FERMI LIQUID

surfacelike features can be recovered in the physical electron AND THE URVB PHASES

spectral weight that is shifted away fromr2,7/2). ) . .
pA similar g;ituation appears in th%a URV/(é pha)se. The fer- In U(1) mean-field the‘jry s mamkji(iO) in the URVE

mion Fermi surface encloses area 1 and one must go beyomsthte is given byJi(jO)=(_)gi X?). Here we make the choice

mean-field theory to produce electron Fermi-surfacelilke feai(ij =iXo, SO thatUi(jO):iXOI is” proportional to the identity

tures that. obey the Luttinger theorem. The problem IS eveRement. ThusUi(jo) itself is invariant under a global SP)

more serious in the FL phase. Even thoughis now not  transformation.

equal to zero, the fermion Fermi surface area approaches 1 Forai=a2=0 the bosond; andb, are diagonalized by

—x only very slowly with increasing and decreasing tem- the energy dispersion

perature. The FL state exists only foeJ/t, so the motiva-

tions behind the S(2) mean-field theory are no longer ap- Eg?= — 2txo(sink,+ sink,) + a3— u. (24)

plicable. Nevertheless, this observation means that tH@)SU

mean-field theory does not evolve towards thg)Umean-

field theory in a way that is acceptable.

We believe the origin of these difficulties lies in fixing As explained in Ref. 24 the S2) mean-field theory so-
~(0) - T :
aj”) as a mean-field parameter from the beginning. &3t |,tion for the Fermi liquid is given bpg<0 andb, contains

=0, the constra?nt.is sf'itisfiTed on the av_eragei(lhﬂ/rh):O. a Bose-condensed part so thit)=bee'® . Note that at
For example, this impliegb;;b,;)=0. Using Eqs(13) and  finjte T, thermal excitations makéblb,)+#0. From Eqs(8)
(15), this suggests that the isospin vectds randomized so  and(10) we see that the fermion density

that (I;)=0. On the other hand, as we approach the super-

conducting phase boundafl, from above or the Fermi- T 1 T

liquid boundary from the URVB side, the boson fielg <§ fi“fi“>_1 X+ 2(bzbz) @9
becomes phase coherent and we expect that it should be . )

slowly varying in space and time. In these regions, the short'S Not equal to +x, so that Luttinger theorem is not obeyed.
range correlation of the boson field is not captured by théds discussed in the Introductlon,_thls motivates us to try the
SU(2) mean-field theory. This motivates us to formulate an®-model approach, where we write

alternative effective theory for the $2) partition function, = iGeT

which we shall refer to as the-model description. hj= hje"~° (26)

Our strategy is to pick a mean-field configuratibry’)
and consider a slowly varying configuratibpin Eq. (6) or,
equivalently, a slowly varying; andb in Eq. (18). For each
configuration,éo is solved to satisfy the constraint locally,
after performing the integral ovef, ™. Thus, in principleﬁo
is a functional of{h;}. Our final goal is to produce an effec- ! - ., - ~ O~ .
tive Lagrangian for{h;} that will take the form of some L :EHZQ ’ﬁ;ra[(af+a0'7)5ij+‘lui(j )Wia‘LiZj b;
nonlinearoc model to describe the low-energy physics of the
problem. This is the opposite limit to the ) mean-field
theory: The assumption of a unifora is valid when theh;
configurations are rapidly varying on the scale of the fermion
correlation length, which is of orde€fy= e /A in the s-flux t 0)
phase. This picture is valid at high temperatures, whereas the + ETr[(1+ m3)Ujj]
o-model approach is expected to be applicable near the su-
perconducting transition and the crossover to the Fermiwhere
liquid state. The truth most likely lies in between the two . o
extreme limits in most parts of the phase diagram and it will ay-7=glay 79— (d,9")g. (28
be of interest to explore the consequences of both limits.

It is clear that anyJ )’ related toU’ by a SU2) gauge .

In the Fermi-liquid phase, the boson condenses to the bottom
of the band, located for this choice of gauge @t
=(7wl2,7/2).

and look forh; that is slowly varying in space and We can
further parametrizeh;= gi(g). Locally we can consideg;

=gp as constant. By introducing= g/ we see that.’ in
Eq. (18) takes the 1) form

X

1 -
9= pt 5T (a9 1]

The local U1) mean-field solution of Eq26) is given by
j

transformation will give an equivalent description. Thus we&o= aocZ @nday is the fermion chemical potential chosen in
can start with any (1) mean-field configuration. In prin- a way that ensures that thlefermion density is *x. From
ciple, we should optimize the parametgrandA at the end Egs.(26) and (16) we find that

of the calculation, but in practice we expect these parameters R R

to be not so different from that given by th€1) mean-field ag;=agol (9i)- (29
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The physical electron Green function in the @Wtheory We expand irh about the bottom of the boson bands and

- N the effective Lagrangian takes the form
G(r,1)=—(T,[cy(r,7)c1(0,0)])

- ~ 1 — ——
1 . . R , Lessi=h'd, h+-—]s;h|>—uh'h
== S(TIh'(F,7)ya(F,7)y1(0,0h(0,0)]). : 2m;
(30) +Dym, }(hTh)2+|b|2ag(r,7) - 1(r,7)
Assumingb is Bose condensed, we have, within the mean- 1
field theory, * qu |20(a, @) *mhg (4, @) (37)

ol o ) The D, term is used to model the repulsion between bosons

G(r,7)=—5bo(TLFa(r, ) f1(0,01)+ (incoherent pajt and D, is of order unity for infinite on-site repulsion. We
(31)  have rewritten the coupling betweén and a, using Egs.

i - . (16) and (12). Since EQq.(37) is quadratic inay, it can be
The fermion party,, and therefore the physical electron gjiminated, yielding a fermion contribution to the Lagrangian

Fermi surface now satisfy the Luttinger theorem in this

slowly varying approximation. |b|4l (q,wp)-1(q, @)
We would like to remark that the electron Green function L'e=— > © " "
in the U(1) theory has the form dn oo (0, )
G(r,7)=—(T.Lc;(r,cf(0,0)]) ~——|b| S (g0 1(q,0n)
q,on
=—(T[b'(r,nf(r,Nf{(0,0b(0,0]). (32 o)
The U1) mean-field Green function is —Col+CIq?+C, q (38)
G(r,7)=—bT[f(r,7)](0,0])+ (incoherent pajt Using I-T=1, the first term issC,Jd|b|* and it modifies the

(33 D, term in Eq.(37) to D;=D;+CyJ. For J<t, this is a

after the boson condensation. Although the coherent part h da” correction. Tﬁ obtain a desgrillptiog jn Eemllz of the
the same dispersion relation, the quasiparticle weight in thd®'ds 2= (21,2,), wherez,,z, are defined in Eq(13), we

U(1) mean-field Green function is twice the quasiparticleWrite h=(by+ b)z and integrate out théb field. We find
weight in the SW2) mean-field Green function.

We next derive an explicit expression for tllemodel _E@ to 12 ot X 2
Lagrangian by expanding ia, and integrating out the fer- [’e”_s D1|Z 9.2 +|bo|*2"0,2+ 2mb|aiZ| +LE,
mion. This is a systematic procedure for smallStarting (39)
from Eq. (5), the fermion integration yields a contribution
—Tr In(9,+IUP—ia,- 7). An expansion ina, to quadratic 1 . | |
order yields the term EF:EXZ‘]E *(dn)- 1(@,00)| C10°+C, q

q,wn

(40)

1
Lle=2 535(d,©n)a3 (g 00)756(d,0n), (3% we have approximateb? by x andby, is a constant of order
dn JX at low temperature. The first term in E@O) is a ferro-
where magnetic Heisenberg interaction between the isospins. Using
the usualC P! representation, it can be written as

B ) L
ng(q,wn):fo dr e'“’nfzi eia-(ri—rp

C ~
x|~ iR)zZ?, (41
X Tt (DY Ta45(0)). (35)
where
For the URVB statergy= 78,5, where 7y may be
expanded for smalj and <g as —
P f lonl=<g Ai=§[zTaiz—((9izT)z]. (42

|wn|

7 (0, )=+ CiI Lg%+ CHI 2 .

(36) Note that whereas the boson part in E29) has the full @4)
symmetry, the fermion part has only(®) symmetry because
The coefficientmy=—C{J %, andCj, C;, andCj are it is independent of the overall phase The second term in
constants of order unity. The leading term gives a contribu£g. (40) describes dissipation due to particle-hole excitations
tion —C(J|ag|?. The negative sign is a reminder that the of the Fermi sea. Note that the fermion contribution is pro-
mean fielda, is a saddle point with the stable direction along portional tox2J, which is smaller than the boson contribu-
the imaginary axis. We shall see that this negative sign yieldtion, which is proportional tot even in the overdoped re-
correctly a repulsive interaction between the bosons. gion (xt=J). For example, ifT>x2J we can ignore the
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fermion term and if we further make the classical approxi-

mation, we conclude that at high temperatures the system is Hbmean:TE ,(hl !erQ)
described by the classical(© model. There is no phase k

transition but instead there is a crossover temperature of or-
derxt below which the phase coherence length grows expo-
nentially. This is opposed to the (1) mean-field theory

where there is a Kosterlitz-Thouless transition. Of course this
transition is destroyed when gauge fluctuations are taken int‘é’here
account® However, in our case vortex excitations are de-
stroyed by SW2) fluctuations and we can expect a suppres-

sion of the development of phase coherence in th¢25U W, =—2i *A(sink,—sink,)=—2i Ay,  (46)
formulation due to the addition of low-lying degrees of free-

dom. It is interesting to ask what the nature of these low-2nd=, represents summation over half of the Brillouin zone.

Vk+a|0'TI Wk+Q+E |OTI

Wk+507" Vk+Q+alo7'I

X

i ) 45
hero/’ 49

V= —2x(sinky+sinky) = -2y,

efi(ix+iy)77/2_ (47)

energy excitations is. In the effective Lagrangic@9), the To study the boson-condensed phase at low temperatures,
degeneracy for constanis a gauge symmetry: Any constant let us first assume th%'ozo. In this case the boson band

z is related by a global gauge transformation to th@)U bottom is atk=(/2,7/2) if aj is not too large. Thus the
URVB state. Wherz is slowly varying, we can use Eq?2) condensed boson has the form

to see that in the (1) representationJ;; =iX09ing is gen- _

erated, which in general contains pairing amplitudgs as (bl(l) _(bl

well as modifications of the hopping terg; which affects bo(i)/ b,

both the boson and fermion energy. This is in contrast to the ) )
U(1) formulation, where only the phase fluctuationgf is For such a bosgn condensation the boson free energy is an
included. Thus we may view the $2) formulation as away even function ofa ;. We also note that

to discover low-lying excitations that were not so obvious in

the U(1) picture. To complete the discussion of the low-lying |~

excitations we need to introduce gauge fields to the effectivé (Kx.Ky,aq,8 )=

Lagrangian. This will be done in a later section.

Vk+a:)7'| WK+Q+EIOT !
Wk+5|07'| Vk+Q+aBTI

IV. o MODEL OF THE SUPERCONDUCTING -
AND THE STAGGERED-FLUX PHASES

—2)(ak+a|07'| 2iA7'3yk+5|OT'

—2iAPy AT 2xactapr!

: . , (48)

We repeat the procedure in the preceding section for the

staggered-flux phase by choosing an approptitii?é matrix. ~ satisfies

Once again anyJ i(jo) that are related by gauge transforma-

tions will give the same result, but it will be convenient to

use aU? that exhibits the symmetry of the state. We have |~ 1
ij ) ) M (K, Ky ,aq,a9)=

noted before that in the SB) mean-field theory, the-flux xRy 90140

state breaks the SB) symmetry down to ((1). This moti-

vates us to choose the followirg{ to describe thes-flux

phase. . . XM (Ky k80, =@ 0)

We choose the following ansatz to describe #iflux
phase: 1

-1
-1

Uil = —ix— (=17, Ul =—ix+(-1)7, X 1 . (49
(43 1

and Thus the fermion free energy is also an even functioa bf

. —~ Therefore,a,=0 is a self-consistent solution.
ag(i)=ap+(—1)'a (44) : :

0 0 0 We would like to remark that;; in Eq. (43) does not
) i . _ contain any fermion pairing. However, the boson condensate

Note thatU” IS Invariant 'l,_lrldel' globa+3 rotations. In the induces nonzeralo_ A nonzeroa%!z induces a pairing con-

momentum space;=3;e” 1y, , we have densate of the fermions. But whaé'zzo there is no pairing

and the fermions are in a normal Fermi-liquid state.

Now we are ready to discuss some basic physical proper-

HInean:’jzk ,(lﬂl,lﬁlﬂg) ties of our ansatz for different orientation of the condensate
(bq,b,). Without lose of the generality, we may assume

Vk+a|o7" Wk+Q+§BTI i b, /b, to be real. In this casaf):O. We see that wheh,
X ~ | , =bh, (in this caseag=0) the ansatz describes a translation
Witagr  Viegtapr | | ¥+ and rotation invariant state. This state is equivalent to the
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usuald-wave paired state in the(l) mean-field theory after The last two terms are introduced phenomenologically to
an SU2) gauge transformation. It describeslavave super- model the breaking of the @) symmetry down to-y sym-

conducting statéwith a finite chemical potentialof the t-J metry whenC;+# C,. This is adequate fof near thex-y
model. Whenb, #b, andb;b,#0, we haveaj#0 andag plane but, strictly speaking, needs further modification near
#0. There is a pairing condensate in the fermions. The anthe north and south poles, due to the singular behavior of the
satz describes a superconducting state oftthienodel that energy cost given by Ed51).

also breaks the translation symmetry. The quasiparticle exci- To gain some understanding of the phases of the nonlin-
tations have finite gap except at four isolated points neaear o model, let us consider the classical limit where the
(= 7/2,=w/2). Whenb,#0 andb,=0, we havea3+#0 and  dependence of is neglected. If ¢;,2,) is restricted to the

ag®=0. There is no pairing condensate in the fermions. Thenanifold of minimum energy, i.el, is in thex-y plane, the
ansatz, despite the boson condensate, does not corresponchiedel is equivalent to twa-y models, with the Kosterlitz-
a superconducting state. It instead describes a Fermi liquitthouless transition af =~ (1/4m,)mx. This temperature
with broken translation symmetry and small pocketlike q5e will be suppressed by fluctuationsiobut of thex-y

Fermi surfaces. This result is obtained through a later Calc%lane because the energy cost per unit area isxJdlyHow-

lation OT electromagnetic response. . __ever, we need to introduce gauge fields to &§) before the
At high enough temperatures, the thermal f|UCtuat'°”§ow-Iying excitations can be fully discussed.
make(b,)=(b,)=(ag)=0. In this case the ansatz describes

a translation and rotation invariant metallic state, which is
just thes-flux phase studied in Ref. 24

In order to derive ar model for theh field, we integrate

out the fermions as before. The difference now is thgf In this section we compute the physical electron Green
= 380, Where o= mho# mhe. We find that 75,(0) function G(r,7) assuming that we are in the disordered

phase of ther-model description. We have within the mean-
field theory

V. THE ELECTRON SPECTRAL FUNCTION
IN THE o-MODEL DESCRIPTION

~C}J, whereasrZ,(0)=0 for a,=0. This is becauses is
the density-density response function ar{0) is the com-
pressibility of the fermion that vanishes due to the vanishing R 1 R

density of states in the middle of the band. For firifewe G(r,7)=— §<TTth/I(I’,7) #1(0,00h) (53
find that 75,(0)=Cja3. Now we can eliminatea, to ex-

tremize the action. The problem retains rotational symmetry

in the x-y plane, but is anisotropic in the direction. For
example, forl in the x-y plane, we haveai=0 and the Where
energy of the mean-field state is

~Gg(r,7)GR(T,7), (54)

Gg(r,7)=(T[h'(r,7)h(0,01),Gk(r,7)

Eve= — 4tyx+ LXZ. (50) == <TT[E( F, T)FIZ T(O'O)D- (59

! The boson Green function contains two parts. Note that at

temperaturd most bosons are in states that have energies of
order T from the bottom of the boson band. Thus at high
energies the boson Green function is given by the single-
boson Green functioGg as if no other bosons are present.

2] The imaginary part of this part of boson Green function ex-
3\/C—é tends the whole bandwidth of the boson band. At low ener-

gies(of orderT), the boson Green function is determined by

This result indicates that the boson condensate tends to stij0Se nearly condensed bosons at low energies. Thus we may
in the manifold that satisfie$b,|=|b,|, i.e., I,=0. As assume that bosons do condense and the second .paﬂrt of the
pointed out earlier, this state is equivalent to thevave boson Green function can be approximated by ceoesty,

pairing state as opposed to the sttez, which corresponds whereQy, is the momentum of the bottom of the boso'n band.
to the staggered-flux state with finite chemical potential. ~ FTom the above discussion we see that the mean-field elec-

We can follow the procedure of Sec. Il to derive an ef- fon Green function has the form
fective Lagrangian for the field. The important difference is ) 047 )
the appearance of the anisotropy energy. Ignoring the gradi- Ge'=consX e~ G+ Gjy’ . (56)
ent terms from the fermion contribution, we can write down
the effective Lagrangian

On the other hand, for=z, we havea}=a2=0. Eliminat-
ing ag we find the mean-field energy to be

Eve= — 4tyx+ x32, (51

The second term comes from the convolutiorGdf andGr
and is the incoherent part of the Green function. The first
term is the coherent part since its imaginary part is given by

2 my X X2y’ i functions. (Note those discrete-funct k
Loo== 21719 724 x7t9 2+ 922+ 417.7.|2 discrete§ functions. ( lote those discreté-function peaks
3D, " " | T 2mb| K 2C, 1212 should really have a finite width of orddrif the bosons do
21, not really condense as in tleflux and URVB phaseslt is
+ x5 2_1512)2 52 this coherent part that gives rise to the quasiparticle peaks
2 (|21| |ZZ| ) . ( ) . .S .
Cs observed in photoemission experiments. The more exact ex-
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pression ofc{? is given by Eq(C1) in Appendix C. At low 20 ; o ; o)
temperatures the lengthy expression can be simplified as : ﬁﬁ :
— ) ) T
0 X [0 [k — = % '
Gé (w,K)== ; + : +Gi(n . (57) : _}m:
2lw—E" (k) w—E(k ) r— y —
N = TRz
The incoherent part satisfies 2%
% . @
+odw 1 : :
g 0)_—
J Fmeit=g o Fe—
—i e R
which can be shown by using E(C1). “_ﬁ—"u:}—: :
In the following we go beyond the mean-field theory and % :
discuss several corrections to the mean-field Green function. ° 1 0 1 1 0 1

As low energies, bosons are nearly condensed. The boson . o

fields (b;,b,) [or g;(t)] change slowly in the time direction _ FIG. 1. Electron spectral function. Theaxis is the frequency.
(within a range of order T) and in the spatial direction The curves are for the following values &f from top down to
(within a range of ordea/t/T). Thus locally we may think bottgm/.s Esa) /;:((;)W/Ef/g)o—)(”/‘l}g”/fz)’ (?ndkid()_l?i&gm)
there is really a boson condensation and calculatérttean- (> 7/8:57/8), =(0,0)=(m/2,ml2), =(0m)

field) electron Green function in the boson-condensed phasa(o’o)' We have chosedi=1.

Since in the different regions the boson fields (b,) point : _ _
to different directions, the total Green function can be ob-%:7) at two sides of the peafat (m/2—6,7/2=5)] are
nhanced by the averaging. It is because wigenl,

tained by averaging the mean-field Green functions for al MG(w=0k) has a Fermi pocket aroundt(m/2,+ m/2).

the directions. We would like to point out that the fermion W that th . hes thal
Green functions are different for different directions of the ' ¢ S€€ that the averaging ovgrpushes “wave spec-
frum towards a spectrum that shows a segment of Fermi

boson fields because different local boson fields give rise t
surface.

different localaj, that enforces the constraint. . :
) . In the above calculation of the spectral function, we only
The above picture of calculating the electron Green func-

tion naturally comes from outr-model treatment of the include some simple fluctuatior(ge., the uniform fluctua-
SU(2) theor yThe averaging weights for different directionstions of boson fielif One may wonder how reliable the

Y- ging 9 above result is. In the following we calculate Gy by in-
are determined from the model. We now make the crude

aporoximation that we are in the hiah-temperature phase o luding some different fluctuations. We find that the spin
PP '9 P re p gaps around (@&, ) and (= 7,0) are quite robust. However,
the & model, where all slowly varying configuratiozsare

equally likely the low-energy spectral function near- @/2,+ 7/2) (to-
We have already seen in Sec. Il that this procedure yield ether with the positions and the shapes of the Fermi seg-

2 Eermi surface that obevs the Luttinger theorem in th entg are sensitive and are essentially determined by the
e y 9 Sluctuations. Although different fluctuations have different
Fermi-liquid phase where the bosons are condensed and

| . . . .
the URVB phase where the bosons are nearly condenseﬁgfeCtS' they in general stretch Fermi points of the mean-field

The fluctuations of the boson fields in the URVB phase will ey INt0 Fermi segments.

ive rise to finite broadening of the quasivarticle peaks. We The dominant effect of fluctuations is to bind the bosons
9 9 > d P P " “7and the fermion into an electron. This corresponds to an
now perform the same procedure in thélux phase.

E h unif p tiom: = ImG K i effective attraction between the bosons and the fermions.
or each uniform configuratiog; =g, m F(“.” ) in One way to include this effect is to use the diagram in Fig. 2
general contains fous-function peaks as a function .

X to approximate the electron Green function, which corre-

(Note.that for ge”‘?fa@ wc_a_have both tran§lat|on symmetry sponds to an effective short-range interaction of the form
breaking and fermion pairingAfter averaging over all ori-
entations ofg, we get a translation invariant electron Green v
function. This averaging also gives quasiparticle peaks an — =(¢™)(hTy)=—-Vc'c, (59)
intrinsic width and line shape. 2

Figure 1 presents a numerical calculation of the electron .
spectral function using the above approximation. We havé(‘”th V<0. We get

chosenJ =J/2 andy=1 so that the fermion band bottom is
at around—2J, to be consistent with experiments. We have

sett =t=2J so that the incoherent part of the spectral func-
tion extends from—8t=—16J to 0O, in order to agree with
the numerical results. We have also Aéjy= 0.2 so that the

gap near (Gy) is about 0.4. Roughly, the spectral function C /_m C
is similar to that of ad-wave paired state with a spin gap AN s s %
around (O 7) and (= 7,0) of orderA g~ 0.4]. However,

the line shape and linewidth are quite different. If one plots FIG. 2. Diagram for renormalized electron Green function. The
IMG(w=0Kk) one can see that wings toward 4(), and solid (dashedlline is the fermion(boson propagator.

1

SR (60)

e
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20 o o o) (O,TC) (mT,m)
% = ~a
D= — " d b
/,2 S ’
0 = —— '—E_g
20 :

(c) E (@ —
== 0,0 (m,0)

- J'“‘\LI—Jh . .
P — —_———at FIG. 5. Solid linesa, b, ¢, andd are paths of the four momen-
)k)“;jﬁ = : tum scans in Fig. 3. The solid curves are a schematic representation
ij‘j@ of the Fermi segments where the quasiparticle peak crosses the zero
R
° -2 0 1 -2 0 1 energy.

FIG. 3. Electron spectral function. The curves are for the fol-=0.4, x=0.1, andT=0.1]. Here we choosé/y=0.4, so
lowing values of k, from top to bottom: (8) k=(—=/4,  that the renormalized gap near £9, is about 0.4. The
wl4)—(ml4,3wl4), (b) k=(—m/8m/8)—(37/85mI8), () kK  valueU is determined from requiring the renormalized elec-
=(0,0)—(m/2,m/2), and(d) k=(0,m)—(0,0). We have chosed  tron Green function to satisfies the sum rule
=1. The paths of the four momentum scans are shown in Fig. 5.

) , , , =»dw [ d?k
However, in general, fluctuations induce more complicated f — | ——=ImG.=x. (64)
interactions. A more careful treatment can be found in Ap- 02m) (2m)?
pendix C, where we treat two different kinds of fluctuations. \;qte that the mean-field electron Green function in @y
The first one is the fluctuation cdj, which induces the does not satisfy this sum rule
following interaction between the fermions and the bosons:

Y rg-h7h (61) J do [ d% ImMGL =x/4 (65)
' 0o2m) (27)2 ¢ '
The second ondwhose importance was pointed out by
Laughlir®®) is the fluctuation oﬂXij|, which induces We find that the gap near (®,7) and (+ 7,0) survives
the inclusion of gauge ang;;| fluctuations. However, spec-
—t(¢'h);(hTy);= —2tc]c; . (62)  tral functions near £ «/2,+ /2) are modified. The Fermi

point at (mr/2,7/2) for the mean-field electron Green function
Ggo’ is stretched into a Fermi segment as shown in Fig. 5.
We would like to point out that the electron Green function
obtained here does not show any “shadow band'wat0,
V(k)=U +2t(cosk,+cosk,) (63) i.e., ImG,(0k) does not have any peak outside the
(0,7)-(7,0) line as the mirror image of the peaks that appear
for V in Eq. (60). Here the first and the second term comesinside the (Og)-(7,0) line.
from the first and the second kind of fluctuations. In Figs. 3 The spectral function obtained here is qualitatively similar
and 4 we plot the electron spectral function calculated frorrbut quantitatively different from the one obtained in Ref. 24
Eq. (60). We have chosed =J/2, t=t=2J, y=1, A/y  through a similar calculation. The only difference is that here
we include an additional termt@cosk,+cosk,). Without
this term the quasiparticle peaks near (0,0) get strongly
renormalized and become very strong. The quasiparticle en-
ergies near (0,0) get pushed so high that they are nearly

. % | degenerate with the energy gap nearn()0,Those features
J Hﬂﬂ obviously disagree with experimental observations. After in-

This is nothing but the original hopping term. We expect the
coefficientt to be reduced due to screening, but in the fol-
lowing we adopt the form

il ||!“IH=HI:::..: cluding the 2(cosk,+cosk,) term the agreement with ex-
1 jill : periments improved a lot. Due to a cancellation between the
0 Faggii b [l U and 2(cosk+cosky) neark=(0,0), the quasiparticle en-
Wﬁl ﬂ g]@ ergies and spectral weights near (0,0) are quite close to the
- % Iﬁ mean-field values and the gap at#D,now can be quite
oy %?ﬁﬁ different from the quasiparticle energy at (0,0).
i i The incoherent part of the electron spectral function con-
tains two broad peaks, each with a width abotit Bhe in-
@2m2) Om 0O @2r2) @m0 coherent part of the electron spectral function is roughly
FIG. 4. The points describe the dispersion of the quasiparticliven by the boson density of states. In the(3uheory, the
peaks for thes-flux phase in Fig. 3. The vertical bars are propor- bosons experience the staggered flux, which causes the
tional to the peak values of I8, which are proportional to the double-peak structure in the boson density of states and in
quasiparticle weight. the incoherent part of the electron spectral function. As we
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-——— VI. GAUGE FIELDS

‘ N We next investigate the low-lying excitations of the effec-
’ \ tive action. We first consider the URVB state. Starting from
L \ Eq. (39), it is natural to introduce the transverse component

of the gauge fieldéi by the standard replacement

FIG. 6. Self-energy diagram for the fermion Green function.
The solid(dashedl line is the fermion(gauge propagator. Ji— i+ ifii i ie,&i _ 68)

changek, the relative weight of the two broad peaks changedRecall that in the (L) case, transverse gauge field enforces
due to thek dependence of the coherence factorandv.  the constraint that the sum of the fermion and boson current
The mean-field results of the double-peak structure and thghould vanish. Here the three components of the gauge field
way in which the relative weight changes agree quite well , ~=1,2,3 enforce the vanishing of the analogetsur-

with the numerical calculationt. However, the numerical rents corresponding to the density constraint given in Eq.
calculations also observed certain shift of the positions of th€9). An important difference is that in the $2) formulation

two peaks ak changes. The mean-field results do not havehe external electromagnetic field couples only to the bosons
this shift. If we include only théJ term the peak positions in because the physical electron density is given in terms of the
the renormalized electron spectral function still do not shiftboson density by Eq(8), whereas in the (1) formulation
much. However, if we include both thel and Z(cosk, one is free to couple tha field to the boson or fermion, and
+cosk,) terms the peak positions start to shift in a way the physical response function is the same after including the
similar to what is observed in numerical calculations, as hascreening by the (1) gauge field, leading to the loffe-Larkin

been pointed out by Laughlin in Ref. 30. combination rules. We shall see how these rules are recov-
The electron spectral functions calculated above havered or modified in the S@2) case.
pretty sharp peaks even at high enerd&sy forw~—2J) In the URVB case, it is most convenient to rotate locally

in contrast to experimental findings that quasiparticle peakg the U1) formulation as done in Eq27). For g; slowly
are much wider at high energies. This discrepancy can bearying in space, we have
resolved by including the self-energy of the fermion due to
the gauge fluctuation. One can show that the self-energy Ui(jo)ﬂgfui(jo)gfUi<j°)+iX0(aang)gj, (69)
from the diagram in Fig. 6 is proportional to andk. Thus o o o .

o - i iDarticleWherei =j + a. This is becaus®(? is invariant under an
the lifetime is proportional to the inverse of the quasiparticle |Ta. i, , , y
energy. To include this effect, we may assume the electrofilobal rotation. The second term in E&9) gives rise to the

Green function to have the form usual transformation property of $2) gauge fields:
o o 8y 7=0"a0 79+ (90g"g, & -7=g'a;-79-i(agNg
ST N L) GO (L) | (70
 2lo-E' (K-iyw) o-EL(K-iyw) " after combining with Eq(23). In the rotated frame, the fer-
(66 mion i obeys the 1) mean-field solution with a chemical

potential that enforces the fermion density to beX. We
1 can now expand to quadratic orderai;j. The effective La-
Ge=—r7—. 6 rangian takes the form
e (Géo)) ,1+ U ( 7) g g

— I — 1 =~ - —
=ht ', — (g +ia - ++ieA)h|?

If we assume the decay rate of the fermion to fav) Leg=h'(0; 13- TreA)h+ 2mb|(a'+'a' T+ieA)h|

=|w|+ o, the resulting spectral function is quite similar to

the line shapes observed in experiments. —uh™+D;m, Y(h"h)?
To summarize, we have considered three models that treat
different types of fluctuations. First is the locally condensed- + EaL/(q,wn)aLm( —q,— wn)w;ryn(q,w). (71)

boson picture. In this picture the quasiparticle peaks obtain
intrinsic linewidths and line shapes. Also, this picture allows

us to recover the Fermi surface that has the Luttinger volum¥hereh=(b.,0),

in the URVB phase and the Fermi-liquid phase. Second is /m . mo

the short-range attraction between the bosons and the fermi- T (4, 0)=(j (0, 0n) | (—a,—wp)), (72)
ons. Those interactions are mainly due to aﬁegauge and T

|xij| fluctuations, which stretch the Fermi points of mean- Jo=¢ 7 ¢, (73)

field Green function into Fermi segments. This attraction can _ _ _ ~

also make the electron Green function satisfy the spectral Jo=i[0" 7 a,0—(9,0M) 7 Y. (74
weight sum rule of the-J model. Third is the decay of
fermions (yxw) due to the gauge fluctuations. This effect
broadens the quasiparticle peaks at high energies and makes

the spectral function look quite similar to the ones observed g I _ %y 7™, ) (75)
in experiment. Y g2 )

The spatial components are purely transverse
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and in the URVB staterrfmz 8,mm, . This gives rise to We integrate ouai in the standard way and we find the

three degenerate transverse gauge modes that are massles®ilowing dependence of the transverse electromagnetic field

the URVB state. This is confirmed by explicit calculation in 4. :

Appendix B. In the Fermi-liquid phade is Bose condensed

and these modes are massive due to the Anderson-Higgs X

mechanism. Eeﬁ:(eAi)zm_[l
It is now clear from Eq.(71) that only the component b

a/®) is capable of screening i field. Thus it is the com-  where 7'l = 7, (8;—0;0;/9%). The coefficient ofA? is the

ponent of the gauge field parallel to the quantization axis insuperfluid density. On the minimum energy manifol|

(z'7%2)?

_1+mb7TL/X ' (79)

the rotated frame that plays the role of thélgauge field.  =|z,| the second term in Eq79) vanishes and the super-
Equation(71) becomes fluid density is exactlyx. This is thed-wave state as we
n discussed earlier. On the other hand, when the vekttor
o —bh g+ a3+ eA)bt g+a ®teA)bl? points towards the north or south polg;z,|=0 and we
e =D (J7+ 80"+ eAo) 2mb|( o Abl havez'73z= = 1. In this case the fermion spectrum is that of

1 the staggered-flux phase with a finite chemical potential. The
— u|b|?+ D1m51|b|4+ _[(ai'<1>)2+(ai’(2))2]|b|2 responser*” for this orientation ofl is that of a metal,
2my, which vanishes in the limitv,q—0,0<q. In this case the
1 two terms in Eq(79) cancel and we find that;=0, i.e., the
+ Eal'/(q,wn)a;/(—q,—wn)ﬂ';,,(q,w). (76) staggered-flux phase is not a superfluid. In general, we ex-
pect that in the superconducting phase quctuatioriEaWay
The coupling of the perpendicular componerits 1,2 tob ~ from the equator will cause a reduction of the superfluid
may be approximated by the expectation value ofdensity due to the second term of E@9). For a more com-
((a/”)?)|b|2, which simply renormalizes the chemical po- plete treatment, we will neéed more detailed information on
tential x. Thea® component can be integrated out and givesm™” and its dependence dn which will be discussed else-
rise to the loffe-Larkin combination rule where.

() = ()t () (77) VIl. CONCLUSION

where #F is the /=3 component, i.e., the usual density- The main result of this paper is the derivation of the ef-
density response function of the fermions. Equatit) also  fective low-energy Lagrangian in terms of the boson figlds
shows that even in the ) formulation, only a single com- andz, and their coupling to gauge fields. These are given in
ponent of the gauge field couples to the boson phase arfed. (39) together with Eq.(68) for the URVB and Fermi
plays an important role in suppressing the phase coherendi@luid phases and Eq78) for the s-flux and underdoped
of the boson, just as in the(l) theory. superconducting phases. In the case of the URVB phase and
We next turn our attention to theflux phase. The main the Fermi liquid phase, we show that temodel approach
difference is that th&J matrix is invariant only under a; ~ allows a smooth crossover to thel) mean-field descrip-
rotationg; = exp( 6s), so that the S(®) symmetry is broken t!on, recovering all the deswable properties such as the Lut-
down to U1). This produces a mass in thé=1,2 modes linger theorem for the Fermi surface area and the loffe-
and only the/=3 gauge mode remains massless. This ig__arkln combination rules. Thl_s is a considerable
also checked by explicit calculation in Appendix B. Phenom-Improvement over the S@) mean-field theory.
enologically, we are led to the following effective Lagrang- N the staggered-flux phase themodel description offers
ian by gauging Eq(52) and keeping only thai component SOmMe insight into the connection of the @Jwith the U(1)

of the gauge field: theory. The staggered-flux phase is the disordered phase of
the effective Lagrangiai(78) so that we may interpret the
om 25 spin-gap phase as fluctuations amairgave state and-flux
L ff:_b|ZTD02|2+iXZTDoz_ L|D-z|2— 2,2, states and a variety of states in between. While the phase
D, 2m, ! 2C, diagram is quite similar to the {@) theory, the collective
o 1 excitations are very different. In the(l) theory the gauge
- 2_1502\20 — 43, uvy3 mode acquires a large mass gap of order-&}J. In the
203(|21| |22°)"+ Za"W & (78) SU(2) theory there are three gauge modes, two are massive
with mass of order\, while one remains massless. We be-
where#" is the polarization tensor of the fermions fﬂi lieve the |ow-|ying gauge modes may he|p stabilize this
gauge field andDy=4,+eAy+ a§7-3 and D=0 +ieA phase. In any case, the massless gauge modes will lead to
+ iai?’7-3. large fluctuation effects, which we have not truly explored in

Equation(78) describes the low-lying excitations of the this paper.
underdoped regime: The superconducting and the spin-gap We also performed extensive numerical work to explore
phases correspond to the ordered and thermally disordergde consequence of the-model description for photoemis-
phases ofL.;, respectively. We defer a full discussion of sion experiments. We find that within the uncertainties of the
this problem to the future. Here we give a qualitative discustheory the qualitative features are not that different from the
sion of the superfluid density in the low-temperature phaseSU(2) mean-field theory once the boson-fermion attraction
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was included. We find an energy gap in the electron specor many helpful discussions. P.A.L. was supported by NSF-
trum, large near (@5) and vanishing along a Fermi segment MRSEC Grant No. DMR-94-00334 and X.G.W. was sup-
near (/2,7/2). The precise size and location of these segported by NSF Grant No. DMR-94-11574 and the A.P. Sloan

ments is beyond the accuracy of the present theory, bkt the Foundation.

dependence is that of a broadermkd/ave gap. We consider

the agreement of this feature with the experiment to be APPENDIX A: RELATION BETWEEN U (1) AND SU(2)
strong support of the present approach. ThgZ3lheory THEORY

naturally describes an unusual superconducting transition . .
that is not associated with opening or closing of spin gap. We start with the usual (1) slave boson formalism where

We have not treated gauge fluctuations adequately in thide operatociT(, creatlng an elgctron with Smel on sitel Is
paper for us to describe the energy dependence or the lif€Presented by the spingfermion) operatorf;, and the ho-
shape of the spectral function, so that at present detaile@n (boson operatorb; as
?hueelsetg);i that distinguish the“energy gyap as measured fr?m o —fTh (AD)
g edge or from the “centroid” of the spectral fea e lio™i

ture remain unanswered. _ The physical states satisfy the local constraint

We expect the S[2) mean-field theory to be applicable at
high temperatures and the-model description to be more + +
accurate near the phase boundary to the superconducting and (E figfiotbibi— 1) |phys =0. (A2)
the Fermi-liquid phases. This is because the fermions re- 7
spond to local fluctuations in the boson fields on a lengthrhen the partition functioZ of thet-J model is represented
scale of§,=J/T in the URVB phase and:==J/A in the in terms of the functional integral as
s-flux phase. On the other hand, the boson fluctuations are on
a scaletg=(t/T)¥? for T>T and ég=x"Y2 for T<T{,
where T®Q=7xt is a mean-field Bose-condensation tem-
perature. Wherée> &g, we expect the fermion to average ) )
over the local boson fluctuations and the (8Umean-field ~ With the Lagrangiari. given by
theory is appropriate, whereas tleemodel approach re-
quires thatér< &g . The difficulty is that forT<T{ we do
not have a good understanding &f because the coherence
of the bosons is greatly suppressed by gauge fluctuations. In
principle, we should solve the model to obtairég to obtain
a self-consistent solution, but that is beyond the scope of the
present paper. This is why we explore the consequences of
both methods and it is fortunate that the results are qualita- T <N T
tively similar in thes-flux phase. +Ei bi (9~ utag)h t; Xiibyb;

One important outcome of the present work is that it is
clear that the transition to the superconducting state is very =LgtLlg. (Ad)
different from the conventional BCS theory. In BCS theory
T is controlled by the closing of an energy gap in the elec
tronic excitation spectrum. In the present ca$g,is con-
trolled by boson fluctuations of our effective Lagrangian. We

zzf Dy Dy'Db Db*DU Daoexp(—fﬁL), (A3)
0

J
L= EE Tr[U,TJU,J]
uy
3
ar""z agTa
a=1

1 ~
+§i2 Wiy 5ij+JUij}‘/fja

ha

where the first line is the Lagrangidni for the fermions and
‘the second line is the contributidrs from the doped holes.
Here the SW2) matrix U;; has the spinon pairing order pa-

. S rameterA;; and the hopping order paramepgr as the ma-
also note that the effective Lagrangian is not of the conven- 4 ppIng * P e

. . —y* AF . . .
tional Ginsburg-Landau form with a simple complex ordertrix elements, i.e.U;; I[A:” xil,-J]' The spinori;, is given
parameter. The internal gauge degrees of freedom, paramy Eq. (1). We have introduced threays. The three-
etrized by¢ and ¢ [see Eq.(14)], plays an important role. component} is the time component of the(l) gauge field

For example, long range phase coherence can be destroyggresponding to the constraith2). The components 1 and
by 6 fluctuations. Thus our picture of the normal phéte - correspond to the constraint

disordered phase of the mode) is very different from that

suggested by a number of workéfs3*based on the idea of (phys|fi1fiolphys = (phys|1,f 1| phy9 =0, (A5)
phase fluctuations or a conventional BCS order parameter. In

the latter picture normal state transport is due to chamge 2which are redundaft and are left out in the usual (1)
collective modes, whereas we have chaggeetallic carri-  formulation.

ers. We believe the absence of signatures of strong supercon- Now we consider the S(2) gauge transformation, which
ducting fluctuations in the normal state favors our point ofis defined as the rotation of the spingrin terms of a SU2)
view. matrix g; as

vi—di=9lvi, Uy—U;=g/U;g;,
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The LagrangiarLg for the fermions remains invariant with
respect to the gauge transformatioh6), while the holon
contributionLg changes. Then away from the half filling,

(U,ay) and (U,Eo) are physically different configurations.
Next we divide the functional integral ové# and a, into
two parts, i.e., the representativel ©,a{”’) and those that
are related to it by the S@@) rotationg asg'U®g anda,

=g/a’gi— (9,90 9;:

f DU DayF(U,ay)

=f DU(O)DaBO)f Dg F(g'u%g,g/a(’g;
~(3,91)9). (A7)

No two members of (©,a”) are related by any SQ)

rotationg. We change the notation of the Grassmann vari-
able in Eq.(A3) to ¥ and then we change the Grassmann

integral variables toy=gv, '=4"g" to obtain

zzf Dy Dy'Db Db*DU®Da” Dg

0)

xexp{ - fﬁdTL,(l,/f,l//T,b,b* UO g% ).
0
(A8)

The Lagrangian is given by

J
L’=§<iEj> Tr(Uf Uy)

1 ~
52 W (0:+37)8;+IU P10

o
* 1 t.(0) +
+iEj b | d;—u+ ETF{Ts[giao gi—(d.91)ai1} | 6

——Tr[(1+r3)gTU(0) ]}bj. (A9)

We now parametrizey; in terms ofz using Eq.(13) and
bind thez with the slave bosob to define the S(2) boson
h:(bllbz) as

Dia=274b; . (A10)
This can be represented by
b
hi =0 ol (All)

Now the Lagrangia.’ in Eq. (A9) is written in terms ob,
andb, instead ofb andg. First the Berry phase term is

LEE. NAGAOSA, NG, AND WEN

>

1
[bi* d,bi— ETV[ 73(9,97)gi1b} bi}

1
52(

a

b a,b;+

-3

Zra&‘rzla Zla& Z )b* )}

= ad.b;+ Z&z,a 9.Diq,
> | b a.b; 2 b*b; Eb* b
I

(A12)

where we have used the relatioX,zfz,=1 and
A2 Z52,) =2 (240,25 +250,2,)=0. Next the hopping
term of the boson is written as

——Tr[ (1+75)9/Ug;1bfb;= —th{U{h; . (A13)

In summary, the partition functiod is written as

B
zzf Dy Dy'Dh DhTDU(O)DagO)exp{—f L),
0
(A14)
with the Lagrangiarl given by

E=—2 THUP U+ 5 2 yll(o,+al) 8

FIUP et 2 (0, pag )=t nU ;.

(A15)

Now the Lagrangian is invariant with respect to the(3U
gauge transformation given in EQL1). Then the constraint
that no two configurations((?),a{")) are related by can be
relaxed because it gives only the constant gauge volume.
Then we can drop (0) frord anday. This has the form of
the SU2) gauge theory proposed by Wen and Lee. However,
we note that in the latter theory, the last term in BL5) is

replaced byt =ih; TUDh;, wheret =t/2. A possible source

of this difficulty is that in Eq.(A4) we impose three con-
straints using three Lagrangian multipliea§, whereas in
the standard (1) formulation, only a single Lagrangian mul-
tiplier ag is used. We cannot justify this procedure because
the three constraints involve noncommuting operators. An-
other possible source of discrepancy is that in going from
integration overb and g to integration overh, a Jacobian
may be necessary.

APPENDIX B: MICROSCOPIC DERIVATION
OF GAUGE FIELDS

In this appendix we describe the microscopic derivation
of the gauge fields in each of the mean-field states. We begin
by giving several arguments for when the gauge field is ex-
pected to be massless. We then show by explicit calculation
that for the URVB phase there are three massless transverse
gauge fields. Finally, we present a calculation of the propa-
gator of the massless gauge field in thélux phase after
integrating out the fermions. Because we are interested in the
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low-energy dynamics, we consider only the massless gauger URVB state, and
fields. The first task is to identify the massless gauge fields.

For this purpose let us consider the following gauge- P(p?>=[(Xz—A2)2—4X2A2]1i4iXA(X2—Az)Ts
invariant term that appears in the free enetyy: (B9)
F=Tr(Py;, .. Ui PiT,J-, _____ Ui, (B1)  for s-flux and 7-flux states. Then it can be easily seen that in

URVB and 7-flux (y=A) states, all the gauge fields remain

where massless while onlg® remains massless in tiseflux state.
P —U.U Uy (B2) For ther-flux state we can choose the gauge where
is the product of U's along a closed loopi—j U =i(=1)vy1, U =ixl. (B10)

—---—k—i. When we writeU;; as

(O) iz 1 1(0)siadr Now we explicitly derive the effective action for the
Ujj=Uj e'i=Uj e i, (B3)  gauge fields up to the quadratic orders. We start from the
Lagrangian in Eq(6). We divide the link variabl&J;; anda,

with Ui the mean-field configuration, we obtain the follow into the mean-field value and the fluctuation around it

ing contribution to the free energy aﬂ :

Uj=UP+oU;, a=a+sa.  (B1D)

Integrating out the fermions and bosons, we obtain the effec-
tive action foréU;; and day,

(B4)

Then if P(©©) does not commute with,, Eq. (B4) gives the  Ser= JE T (U T+ 8U7) (U + 8U;5) 1= Trein(— Geg
mass to the gauge field®. For example, ifP(®=c1

+C373, With C’s being constants, + 8ag+J8Uj) + TreIn(— Ggg + dag+t8Uy)), (B12)
. . 1 ~
e'ap Ve 1a=p0) ¢ [q, P(O)]+ i’[a,[a,P 7]+ - where J=3J/8 and Tg and Tg are the fermionic and
bosonic traces. The Green functio@®, and Gg, in the
=Col+Cara+Ca(alr,—acr) mean-field state are given by
c _ . — .
S @, @ rmien ) -TUP Gadmionusma? U

and a' and a® becomes massive. This is nothing but the
Higgs mechanism, wher® is the Higgs field that is site
variable belonging to the adjoirfzecton representation of
SU(2). The condensation oP breaks the symmetry from
SU(2) to U(1) and only one gauge field, i.@? in the above
example, remains massless. On the other handp(%#
=col for every elementary plaquett®(®) for arbitrary +JE T U 15U, +5U U 1
closed loop is consk 1 independent of the gauge choice. In {0

this case we can choose a gauge Whe}*é’ocl and all the
gauge fieldsa’,a?,a® remain massless. Now we apply the
general consideration above to the each mean-field state. We
chose the gauge where the link variablf?’ for each state is —Tr[Ggo(dap+téU;;) ]+ J 2 T 8U] 8U;]
given by

Now we can expand EdB12) as

Ser=So+ S1+ S+ -+ :3<Z> T U U]
L)
+T1[ Ggo( Sag+ J 8U;))]

1 ~ ~
Ui(ioJ)rX:UI( _|X01 (BG) +ETrF[Gpo(ﬁao'i‘J5U|1)6F0(5ao+J&Ulrjl)]

for the URVB state, while 1
© - - _ETrB[GBo(ﬁa{)‘f’tb‘Uij)
Ujitx= —x73—i(—=1)*x"vA
o X Ggo(dag+toUirjr) ]+ --. (B14)
UiPly=—xmsti(—1)x A (B7)

The mean-field equation is obtained from the condition that
for s-flux and 7-flux states. Then the product &f's along  he first-order terms iU vanish[here we chose the form
an elementary plaquetfey is obtained as Eq. (B7) for the s- and =-flux states, but the mean-field

© equations obtained are valid also for the URVB state by set-
Py = xo1 (B8)  ting A=0 andy= xol:
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X7k

— 1(7 d*k - —_—
Ix= J (2#) [1 2f(2JEy)] an=§f45;F[Jyg(—2¢myU

LW +tyn(— me—2txo i) 1, (B21)

”[n( pg— 2tE) —N(— pg+ 2EY]|

~ (7 d%
JA:J
~n(2m)?

wherey, = sink,+sin ky. At first glance this appears differ-
ent from Eqg.(B15), but it can be shown by using partial

JEY] integration that Eq(B15) is reduced to Eq(B21) by setting
A=0 andy= xo. This can be also written as

tA”ﬁm 2E) —n(— g+ 2tEY] |, — = d%k —~
4E, MB™ 2k a k Jon_J S[3%x0vEf (= 2Tx0m0)
-m(2m)
(B19 _ ~
+tPx0 7k’ (— e~ 2txo 7)1, (B22)
where
wheref’(x)=af(x)/ax[n’ (x) = an(x)/ox].
¥x=cosky+cosky, 7=cosk,—cosk,, Now we consider the second-order contribut®n The
gauge fields are related ®@J;; as
Ex=V(x 7+ (8m0)°, (B16) .
8Uii+ = 0Uj =~ Xo&fj 1 Ta- (B23

andf(x) andn(x) are the Fermi and Bose distribution func-
tions, respectively. The condition that the first-order terms inThen the couplingS,,, between the fermiongoson$ with
day vanish gives Eq(9), which is satisfied by the mean-field the gauge field is written as
solutions.

Now we study the second-order teri8s From the con-
siderations given above we consider only the gauge fields S; ;= > 2 coskM[ZJXOa () Pt gr2Tati—qr2
that commute wittP(). First consider the URVB ang-flux \/_Na #v kg
states, WheréJi(jO)ml and all the gauge fields remain mass- +2tX0aa(q)hk+q/ZTahk 2] (B24)
less. When we make a gauge transformation

wherey, 4" are spinors. Nows, is explicitly given by

Uiy —U;=aUg] (B17)
the action does not change. Let us take €' %", If g; com- S,= > E [23x56,,— 1153 (@) —1153°(a) ]a%(a)a)
mutes withU{”, we have A
. x(=q), (B25
Ujj=Ue =07, (B18)
where

If we consider this as an expansiat);; aboutU{” which

corresponds to a pure gauge configuration, we can see that - d
the coefficient of the second-order termaf)= ¢, 6; van- HZib(q)=45abf]'2X§f
ishes for anya=1,2,3 for the URVB andr-flux phases and ~m(2m

only for a=3 for thes-flux phase. f(&krqr) — F(Ek—q)

Generally, the second-order contributi8p can be writ- X cosk,
ten as twm= &k+qret Sk—qr2

2k

coskM

. (B26)

1 where &= —2Jx07vk. A similar expression is obtained for
$=52 2 q}i:,) 1125(q,i wg)a%(q,iw)a(— g, —iwy) 1122%(q). It can be easily seen that in the limif—0,
o (B19) 73°(q) +1152°(q)—23x36,, by using the mean-field
equation (B22). A similar cancellation is obtained for
and the above consideration guarantees the masslessnessabfa?,a® in the -flux state and fom? in the s-flux state.

a? and leads to the condition Finally, we present a calculation of the gauge field propa-
gator when the fermions are integrated out, i.e., we compute
112°(q=0ji w,=0)=0. 820 I3°(a,iwg) =I15%(,iwp) —I133%(q=0,w,=0) in terms

of the contlnuum apprOX|mat|on in the limit of small
Herea,b=1,2,3 for the URVB andr-flux states, whilea  vg(,w,, andT compared with]. For the URVB state, this
=h=3 for thes-flux state. calculation is exactly the same as in thé€llcase described
To make things more clear, we describe here the explicitn Ref. 10. For thes-flux state, we consider the following
calculation for the URVB state. Taking the gauge choice ofeffective Lagrangian for the fermions in the continuum ap-
Eq. (B6), the mean-field equation is obtained as proximation:



L=f d?r ¢l[D,—2iJx(Dy+D,) 037
+i2JA(D,—Dy) oyl
+f d?r yl[D,—2iJx(Dy—D,)oa73+i2TA(D,

Dy)o2]i, (B27)

where D, =d,+ia>,. Since the problem has relativistic

symmetry it is convement to introdua@e, = (—iag,ay, ay).
The spinor ¢4 [¢»] describes the fermions near
+(7w/2,m12) [ = (w/2,— w/2)] in k space. Because of the
double periodicity in the gauge choice of E®R7), k andk
+ (7, 7) are coupled and’s are the Pauli matrices describ-

ing this 2xX 2 space in addition to the original isospin space
spanned byr matrices. When we integrated over the fermi-

ons in Eq.(B27), the following integralg,,,(q) appears:

g,w(q)=f

where k=(ko,k1,k2)=(w,IZ) is the vector in 21 dimen-
sions.
By using Feynman'’s trick, i.e.,

d*k k,(k+0q),
(2m)° k2(k+q)?’

(B28)

1 1
ab Jo

dz

[az+ b(l—z)]z' (829

the integral is transformed as

o)== [az[ ¥

fdzf d*k K26,,+2(1-2)q,q,
(2m)° [K?+z(1-2)9°)?

ky,(k+q),
(k+29)°+2z(1—2)g%]?

(B30)

Now g,,(q) is diverging if the ultraviolet cutoffA for k
integration is infinity. This is cured if one considegsg,(q)
—9,,(0), which is converging wher — 0. Using

f d3k 1 1
(2m)° K3(k+q)? 8q’

whereq= Vq2+ »?, we obtain

0,0y~ 8,,0° [
0,0 -0,,(0)= L8 [Nz i)

2

_ q,uqv_ 5/.qu

8¢

Using Egs.(B31) and (B32), we obtain the effective action
of the gauge field at zero temperature

(B31)

2+A2

~ X
J2XAfxy(Q)fxy(_q)+ 16xA

1
S.=> =
eﬁéq

X[fox(Dfox(—a) +fo (@ foy(—a) ]|, (B3
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wheref,,=d,a,—d,a,. The coefficient ofa,a, of this
expression gives the inverse of the gauge propagator that is
correct for smallg and w in the lattice model.

APPENDIX C: ELECTRON SPECTRAL FUNCTION

The more exact expression of the mean-field electron
Green functionG(? is given by

G'=(T(cic))
1
=N 32 WP @—ku'(@)+v a-ko (@)
q
X 2 AnelEg(a—k)]+nelEg(a)]}

« 1
w—[El(q)—Ela—k)]-is

Z| -
N|

+
x% [uP(q—Kk)o'(q)—vP(q—k)u(q)]?

x 2 {nlEy(@—k)]+neEL ()]}

X ! .
w—[E" (q9)-E2(q—K)]-i&

HereN is the number of sites and

EL(k) == (e)?+ (nh)?,

(CY

ex=2Jx(cosk,+cosk,),
n=2J A(cosk,—cosky),
E2 (k) =+ V(€)*+(7)°~ us,
€p=2tx(cosk,+ cosk,),

=2t A(cosk,—cosky),

fb

uf'b(k)=i\/1+ _
V2 Ve )

\/

f.b
€k

V(e 2+ ("%

1 gt

2 [

v (k)=

Ny ¢(E) are boson or fermion occupation numbers at energy

E. The incoherent part comes from the terms containing

n:(E.). One can show that 16{>)=0 for »>0 and

do 0) 1
Elme :E . (CZ)
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FIG. 7. Electron spectral function fol,/U,=-1/3. The FIG. 8. Electron spectral function fdd,/U,;=1. The curves

curves are for the following values &f from top to bottomia) k are for the following values ok, from top to bottom:(a) k=
=(—wl4ml4)— (7l4,3m/4), (b) k=(—m/8,7/8)— (37/8,57/8), (— mld,7wl4)— (wl4,37/4), (b) k= (— 7/8,7/8)— (37/8,57/8), (C)
(c) k=(0,0)—(mw/2,7/2), and(d) k=(0,7)—(0,0). We have cho- k=(0,0)—(m/2,77/2), and(d) k=(0,7)—(0,0). We have chosen
senJ=1. J=1.

A . . . ~
The coherent Earts come from the terms contaimpd").  since the interaction couples to bathand c, we have to
Note thatn,[E-(k)] is almost zero except near (0,0) and invert a 2<2 matrix to calculate the electron Green function.
(7r,7). Approximating those peaks by functions in k Noting that<Cka>=<’5l’5l> and introducing
space, we get
GP(k) —iGY(K)

GOk GOK+Q))’ 8

f 2 f 2
X (] | (k)] iG.. (CY G=
2l w—E" (k) w—E (k

Ge” (k)=

we find that the electron Green function is tfigl) compo-

Next we will consider effects of fluctuations. We will nent of the 2¢2 matrix

consider two different types of fluctuations. The first one is
the fluctuations o0&, whose effect is modeled by the effec-

U, o\]?
tive short-range interaction between the fermions and the Ge=|G 1+ ! H i (C9)
bosons: 0 Uy/],
yrryhtsh . (c4y  Note that wher,=0 Eq.(C9) reduces to E¢(60). U, , are
) . ) obtained by rewriting the interactiofC4) in the ¢ and ¢
The second one is the fluctuations|gf;| that induces basis:
—t(h"y)i(y'h);= —2tcic] . (C5)

- - 1 .. ..
U¢TT¢hTTh=3uCTc—U§¢T7hhTT¢ (C10
In the s-flux phase the electron operatof=1/y2¢'h
mixes with an operatorc T=1/\2¢"7°h. We find that

Z 2t URTE
(Tc |, ochy=iGY with Q= (7, ) is nonzero and given by =3Ucic—Uc'c+---.

(C11)
11 -
GOk =—= df(aub(a—K +of brg—k The term represented by the ellipsis has the form
@ (=R 2% [w(@ua-k)+viguia-k] " 7?hh' 712y and does not contribute to the electron Green

function. ThusU,;=3U andU,=—U for the interaction in

X[v (@)uP(q—k) —u(a)v(q—Kk)] Eq. (C4).
At low energies the interactions are dressed by fermion
X Z aB{ny[Ex(a—K)1+n[EL(Q)]} bubbles. Because tr&, gauge field is massless in theflux
wp=t phase, its fluctuations mediate a long-range interaction. Thus
1 the interactiony' 72yh'73h is enhanced at low energies. To
X ; b - (Ce)  study this effect let us consider an extreme case, which has
w—[E(q)—Eg(q—Kk)]—=is the interaction
X 1 - Uy PyhT7%h C12
zzvf(k)uf(k) - —+ - in - vy @2
w—EL (k) w—E_(k)

(C7) =Ucfc+UcTc+---. (C13
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The term represented by the ellipsis does not contribute to In Figs. 7 and 8 we plot the electron spectral function for

the electron Green function. Thus the electron Green funcy,/U,=—1/3,1. We have chosed=J/2, t=t=2J, x

tion in this case is given by E4C9) with U;=U,=U. =1, Al/x=0.4, x=0.1, andT=0.1J. The valueU, is
From the above discussion, it is also easy to see that thgetermined from requiring the renormalized electron Green

interaction induced by théy;;| fluctuations modifies only function to satisfies the sum rule

U

fwdw d2kl G— o1
G {G .. [U1t2t(cosk,+cosk,) 0 ”1 0 (2m)? MGe=X. (C15
e™ T+ ]
0 Uz 11 The main purpose of the above study is to understand the

(C14 ambiguity in the electron spectral function due to our uncer-
tainty in treating gauge fluctuation. We find that the gap near
In summary, if we treat bosons as a free Bose gas anfD= ) and (= 7,0) survives the inclusion of gauge fluctua-
include the attraction induced by the gauge #ngl fluctua-  tion. However, spectral functions near r/2,+ m//2) are
tions, the electron Green function is approximately given bymodified. Foro<0 the electron spectral functions are quite
Eg. (C14). However, different treatments of fluctuations re- similar for the three different choices &f,/U,=-1/3,0,1.
sult inU,/U, in a range from—1/3 to 1 and absolute mag- However, foro>0 the spectral functions show some notable

nitudes ofU, , are of ordert. differences.
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