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Geometric equivalence of an integrable discrete Heisenberg spin chain
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We formulate and propose a procedure for mapping the dynamics of discrete~lattice! classical Heisenberg
ferromagnetic-spin-chain models onto the differential-difference nonlinear Schro¨dinger family of equations
which help in isolating integrable discrete ferromagnetic spin models.@S0163-1829~98!07801-1#
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Since the discovery of solitons by Zabusky and Kruska1

many nonlinear differential equations have been found
admit a soliton solution and a large number of physica
interesting integrable models have been identified.2 Among
the different physical models, the one-dimensional class
continuum Heisenberg ferromagnetic spin chain with diff
ent magnetic interactions has been identified as one of
interesting class of nonlinear dynamical systems in c
densed matter exhibiting soliton spin excitations. The s
dynamics of the above system is governed by the Land
Lifshitz ~LL ! equation3 and found to be integrable in man
cases. As the LL equation is a highly nontrivial vector no
linear partial differential equation, on many occasions, it h
been treated, after rewriting it in an equivalent represen
tion. Notable among them are the method of gauge equ
lence put forward by Zakharov and Takhtajan4 and the geo-
metric equivalence~space curve formalism! proposed by
Lakshmanan.5,6 In both the cases the LL equations represe
ing the spin dynamics can be mapped onto the family of
completely integrable nonlinear Schro¨dinger~NLS! equation
and its generalizations.4,7 For example, the simplest LL equa
tion ]S/]t5S̀ ]2S/]x2 representing the dynamics of th
one-dimensional classical continuum isotropic ferromagn
spin chain described by the Heisenberg Hamilton
H52(nSn•Sn11 is connected to the completely integrab
cubic NLS equationi (]q/]t)1(]2q/]x2)12uqu2q50 via
the geometric and gauge equivalence methods.4,6 These
methods have been used extensively to identify several i
grable classical continuum ferromagnetic spin models~see
for example Ref. 7, and references therein!. Simultaneously,
over the years, there was a development entirely on a di
ent perspective proving that the motion of a space curve
pick up integrable dynamics and identify themselves w
integrable and soliton possessing nonlinear partial differ
tial equations.~For details see Refs. 8,9, and referenc
therein!.

The LL equation representing the nonlinear dynamics
various classical continuum ferromagnetic spin systems h
been obtained as the long wavelength and low-tempera
limit of the lattice spin models. However, in nature, re
ferromagnetic crystals are characterized by lattice spin m
els. Therefore it is more realistic to understand the spin
namics of ferromagnetic systems at the discrete~lattice! level
570163-1829/98/57~1!/60~4!/$15.00
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rather than in the continuum limit. Advantageously, a fe
years after the discovery of the soliton, discretization of
integrable nonlinear differential equations started a
Ablowitz and Ladik10 constructed an integrable discrete an
log of the Ablowitz-Kaup-Newell-Segur hierarchy.11 Though
a number of integrable continuum ferromagnetic-spin m
els have been isolated, not much is known about the inte
bility of discrete ferromagnetic spin systems. In this dire
tion, an integrable ferromagnetic-spin model was propo
by Ishimori12 through the method of gauge equivalence a
expressed by the classical discrete equation of motion

dSn~ t !

dt
52Sn`F Sn11

11Sn•Sn11
1

Sn21

11Sn•Sn21
G , ~1!

in which the spins Sn are treated as classical thre
dimensional vectors,Sn5(Sn

x ,Sn
y ,Sn

z). The structure of Eq.
~1! demands that the length of the spin vector does
change with time, i.e.,Sn

25const. Ishimori12 obtained Eq.~1!
from the integrable differential-difference NLS equation

i
dqn

dt
5~11uqnu2!@qn111qn21#22qn , ~2!

which can be expressed as the compatibility condit
dLn /dt5Mn11Ln2LnMn for the linear eigenvalue problem
wn115Lnwn , dwn /dt5Mnwn , where the Lax pair
(Ln ,Mn) is given by

Ln5S l l21qn

2lqn* l21 D , ~3a!

Mn5 i S 12l22qnqn21* 2qn1l22qn21

2qn* 1l2qn21* 211l221qn* qn21
D , ~3b!

and using the gauge transformation

ŵn5gn
21wn , ~4a!

L̂n5gn11
21 Lngn , ~4b!

M̂n5gn
21Mngn2gn

21 dgn

dt
. ~4c!
60 © 1998 The American Physical Society
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In Eq. ~3b!, l is the eigenvalue parameter and in Eq.~4! gn
is an arbitrary matrix andwn is the eigenfunction. The clas
sical differential-difference spin equation~1! can be gener-
ated from the generalized Hamiltonian

H522(
n

ln~11Sn•Sn11!. ~5!

It may be noted that the Heisenberg Hamiltonian given e
lier can be obtained from Hamiltonian~5! when the angle
between the nearest-neighboring spins are maintained s
Though several continuum Heisenberg spin-chain mod
have been mapped onto the NLS family of equations thro
the method of space curve formalism,7 mapping of discrete
spin-chain models to the discretized~differential-difference!
NLS family of equations through this mechanism could n
be achieved thus far. This is due to the fact that the theor
discrete moving space curves has not been well underst
However, recently, Doliwa and Santini13 from the elemen-
tary geometric properties of discrete moving space curv
showed that the motion of it selects integrable dynamics
the Ablowitz-Ladik hierarchy of evolution equations. Th
has motivated us in this paper to develop a discreti
mechanism of the space curve mapping procedure for
discrete spin chains and to see whether the lattice spin e
tion ~1! can be mapped onto the differential-difference N
equation~2! which are known to be connected by the gau
transformation.

We consider the dynamics of spins in a classical o
dimensional ferromagnetic lattice withN spins represented
by the Hamiltonian~5! and governed by the classical lattic
equation of motion~1!. We now ask the question whethe
using a discretized mechanism of the theory of moving sp
curves, could the discrete spin equation~1! be mapped onto
the differential-difference NLS equation~2!. To find an an-
swer for this question, we proceed as follows. We consid
discrete curve represented by a sequence of points
marked by the position vectorRn . We then define a set o
basis vectors (rn ,tn ,bn) at the point n, on the discrete
curve13 as shown in Fig. 1. Herern is a unit vector in the
direction of the position vectorRn at the nth point of the
sequence, pointing from the center O of the sphere.tn is the
unit tangent vector at this point andbn is the unit normal
vector defined bybn5rn`tn . The transition from the basi
(rn ,tn ,bn) to the basis (rn11 ,tn11 ,bn11) at the next point
(n11) can be obtained by the superposition of the followi
two transitions given by

FIG. 1. Motion of a discrete space curve.
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~rn ,tn ,bn!→
@A#

~rn11 ,t8n ,bn!→
@B#

~rn11 ,tn11 ,bn11!,

where the matrices@A# and@B#, respectively, take the form

@A#5S cosun sinun 0

2sinun cosun 0

0 0 1
D , ~6a!

@B#5S 1 0 0

0 cosfn sinfn

0 2sinfn cosfn

D . ~6b!

Hereun is the angle betweenrn andrn11 andfn is the angle
betweent8n and tn11 as illustrated in Fig. 1.

Now, the full rotation giving the basis (rn11 ,tn11 ,bn11)
at the next point (n11) can be written using the matri
@C#5@B#@A# as

S rn11

tn11

bn11

D 5@C#S rn

tn

bn

D , ~7a!

where

@C#5S cosun sinun 0

2cosfnsinun cosfncosun sinfn

sinfnsinun 2sinfncosun cosfn

D . ~7b!

In a similar way the basis (rn21 ,tn21 ,bn21) can be obtained
from (rn ,tn ,bn) using the matrix@C#21 given by

S cosun21 2cosfn21sinun21 sinfn21sinun21

sinun21 cosfn21cosun21 2sinfn21cosun21

0 sinfn21 cosfn21

D .

~8a!

S rn21

tn21

bn21

D 5@C#21S rn

tn

bn

D . ~8b!

As the motion of the curve takes place on the surface of
sphere, the velocity field must always be tangent to the s
face so that we can write the velocity field as

drn

dt
5Vntn1Unbn , ~9!

whereVn andUn are the velocity field components parall
to tn andbn , respectively. The evolution of the orthonorm
frame (rn ,tn ,bn) can then be described by the antisymmet
matrix equation

d

dtS rn

tn

bn

D 5S 0 Vn Un

2Vn 0 Wn

2Un 2Wn 0
D S rn

tn

bn

D . ~10!

Here Wn is an unknown function to be determined. Now
defining a shift operatorE along the curve giving
Egn5gn11, the compatibility condition
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ES d

dtD5S d

dtDE, ~11!

when implemented between Eqs.~7! and ~10! or between
Eqs.~8! and~10! gives the evolution equations forun andfn

dun

dt
5cosfnVn112sinfnUn112Vn , ~12a!

dfn

dt
5Wn112cosunWn1sinunUn , ~12b!

and specifiesWn in terms of the velocity as given below:

Wn5
1

sinun
@cosfnUn111sinfnVn112cosunUn#. ~13!

We now map the one-dimensional classical discrete
romagnetic spin chain described by the Hamiltonian~5! and
the discrete equation of motion~1! onto the discrete curve b
identifying the classical three-component spin vectorSn(t)
with the unit vectorrn(t) of the discrete curve. In view o
this identification, Eq.~1! can be rewritten as

drn

dt
52rn`F rn11

11rn•rn11
1

rn21

11rn•rn21
G . ~14!

Using Eqs.~7! and ~8! for rn11 and rn21, respectively, Eq.
~14! can be rewritten as

drn

dt
522S tan

un21

2
sinfn21D tn

22S tan
un21

2
cosfn212tan

un

2 Dbn . ~15!

On comparing Eq.~15! with Eq. ~9!, we obtain

Vn522tan
un21

2
sinfn21 , ~16a!

Un52S tan
un

2
2tan

un21

2
cosfn21D . ~16b!

Substituting Eqs.~16! in Eq. ~12!, we obtain

dun

dt
52S tan

un21

2
sinfn212tan

un11

2
sinfnD , ~17!

dfn

dt
5

2

sinun11
S tan

un12

2
cosfn111tan

un

2
cosfnD

2
2

sinun
S tan

un11

2
cosfn1tan

un21

2
cosfn21D .

~18!

Thus the equation of motion~1! representing the dynamics o
spins in a classical one-dimensional discrete ferromagn
chain has been equivalently expressed in terms of a se
coupled equations~17! and~18! representing the evolution o
the two anglesun andfn described in the motion of a dis
crete space curve on the surface of a sphere.
r-

tic
of

Now, in order to see whether the set of coupl
differential-difference equations~17! and~18! are integrable,
so that ultimately the spin excitations can be expressed
terms of solitons, we try to identify them with known inte
grable differential-difference equations. For this we defin
new angleCn , and expressfn as the difference betwee
two successive values ofCn , i.e.,

fn5Cn212Cn . ~19!

In view of this, Eqs.~17! and ~18! can be rewritten as

dun

dt
522tan

un11

2
sin~Cn212Cn!

12tan
un21

2
sin~Cn222Cn21!, ~20!

dCn

dt
52S 12

1

sinun11
tan

un12

2
cos~Cn2Cn11! D

2S 2

sinun11
tan

un

2
cos~Cn212Cn! D . ~21!

Upon making the transformation

qn5tan
un

2
exp~ iCn21!, ~22!

Eqs.~20! and ~21! are found to be equivalent to the follow
ing equation:

i
dqn

dt
5~11uqnu2!@qn111qn21#22qn . ~23!

Equation~23! is the same integrable differential-differenc
NLS equation given as Eq.~2! which is also found to be
gauge equivalent to the discrete spin equation~1!. Equations
~2! or ~23! have been solved by the inverse scattering tra
form method andN-soliton solutions have been obtained.12

In order to verify the success and generality of the meth
we employ the above mapping procedure to the only ot
integrable discrete spin model available and which has b
recently proved to admitN solitons and is gauge equivalen
to the discrete Hirota equation.14 We find that the integrable
discrete spin model governed by the equation of motion

dSn

dt
52JSn`F Sn11

11Sn•Sn11
1

Sn21

11Sn•Sn21
G

12KF ~Sn•Sn11!Sn2Sn11

~11Sn•Sn11!
2

~Sn•Sn21!Sn2Sn21

~11Sn•Sn21! G ,
~24!

is geometrically equivalent to the discrete Hirota equatio

i
dqn

dt
5J$~11uqnu2!@qn111qn21#22qn%

2 iK $~11uqnu2!@qn112qn21#%, ~25!

upon using our discrete space curve mapping procedure
veloped here for which the velocity field componentsVn and
Un are of the form
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Vn522J tan
un21

2
sinfn2122KS tan

un

2
1tan

un21

2
cosfn21D

~26a!

Un52JS tan
un

2
2tan

un21

2
cosfn21D12Ktan

un21

2
sinfn21 .

~26b!

HereJ andK are constant parameters.
We conclude that the integrable discrete~lattice! spin

equation~1! representing the dynamics of one-dimensio
classical discrete ferromagnetic spin chain characterized
the Hamiltonian~5! and the higher-order integrable discre
spin model governed by the equation of motion~24! are
geometrically equivalent to the integrable differentia
difference NLS family of equations~2! and ~25! namely the
ic
l
by

discretized cubic NLS and the discrete Hirota equations,
spectively. The method of discrete space curve mapping
posed in this paper for classical discrete spin chain mod
help identifying equivalent integrable discrete soliton mod
in the NLS family. The procedure will immediately draw th
attention for isolating integrable lattice spin models, if an
corresponding to the known integrable classical continu
ferromagnetic spin systems.
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