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Geometric equivalence of an integrable discrete Heisenberg spin chain

M. Daniel
Loomis Laboratory of Physics, University of lllinois at Urbana-Champaign, Urbana, lllinois 61801
and Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University, Tiruchirapalli 620 024, India

K. Manivannan
Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University, Tiruchirapalli 620 024, India
(Received 4 June 1997

We formulate and propose a procedure for mapping the dynamics of di§leitiee) classical Heisenberg
ferromagnetic-spin-chain models onto the differential-difference nonlinear @olgey family of equations
which help in isolating integrable discrete ferromagnetic spin mo@i8&163-18208)07801-1

Since the discovery of solitons by Zabusky and Krugkal, rather than in the continuum limit. Advantageously, a few
many nonlinear differential equations have been found tgears after the discovery of the soliton, discretization of the
admit a soliton solution and a large number of physicallyintegrable nonlinear differential equations started and
interesting integrable models have been identifiddnong  Ablowitz and Ladik® constructed an integrable discrete ana-
the different physical models, the one-dimensional classicdPg of the Ablowitz-Kaup-Newell-Segur hierarchyThough
continuum Heisenberg ferromagnetic spin chain with differ-2 number of integrable continuum ferromagnetic-spin mod-
ent magnetic interactions has been identified as one of th@lS have been isolated, not much is known about the integra-
interesting class of nonlinear dynamical systems in conDility of discrete ferromagnetic spin systems. In this direc-
densed matter exhibiting soliton spin excitations. The spirfion, an integrable ferromagnetic-spin model was proposed
dynamics of the above system is governed by the Landad?y Ishimori? through the method of gauge equivalence and
Lifshitz (LL) equatior and found to be integrable in many expressed by the classical discrete equation of motion
cases. As the LL equation is a highly nontrivial vector non- ds, (1) s, s,
linear partial differential equation, on many occasions, it has —2SA 1 -1 1)
been treated, after rewriting it in an equivalent representa- dt 1+S; S 1+5S-a)
tion. Notable among them are the method of gauge equivqh which the spinsS, are treated as classical three-
lence put forward by Zakharov and Takhtéﬁamd the geo- 4imensional vectorsS, = (Sh,S,S5). The structure of Eq.
metric equwaélence(space curve formalls)np'roposed by (1) demands that the length of the spin vector does not
Lakshmanart® In both the cases the LL equations represent- L . = 3 .
. . . . change with time, |.eS?n—c0nst. Ishimori? obtained Eq(1)
ing the spin dynamics can be mapped onto the family of ther the int ble diff tial-diff NLS i
completely integrable nonlinear Schiinger (NLS) equation rom the integrable differential-ditierence equation
and its generalizatiorfs’ For example, the simplest LL equa- dq
tion 9S/9t=S/\g*S/9x? representing the dynamics of the id—tn:(1+|qn|2)[qn+1+qn,1]—2qn, (")
one-dimensional classical continuum isotropic ferromagnetic
spin chain described by the Heisenberg Hamiltonianyhich can be expressed as the compatibility condition
H=—-2,5,-S,+1 is connected to the completely integrable dL_,/dt=M,,L,—L,M, for the linear eigenvalue problem
cubic NLS equationi(dq/dt) +(a°a/dx?) +2|q|?’q=0 via ¢ . ,=L,¢,, de,/dt=M,p,, where the Lax pair
the geometric and gauge equivalence metddThese (L,,M,) is given by
methods have been used extensively to identify several inte-

grable classical continuum ferromagnetic spin modske A A 1g,
for example Ref. 7, and references theyeBimultaneously, Ln= —agt At (33
over the years, there was a development entirely on a differ- n
ent perspective proving that the motion of a space curve can 1-22—q,q* — g+ N2
pick up integrable dynamics and identify themselves with M :-( nHin-1 n n-1 ) (3b)
integrable and soliton possessing nonlinear partial differen- —gr+N%0f, —1HNT3HQRdn)]
tial equations.(For details see Refs. 8,9, and references . .
therein. and using the gauge transformation
The LL equation representing the nonlinear dynamics of %:ggl%’ (49

various classical continuum ferromagnetic spin systems have
been obtained as the long wavelength and low-temperature N 1
limit of the lattice spin models. However, in nature, real Ln=0n+1LnGn. (4b)
ferromagnetic crystals are characterized by lattice spin mod-
els. Therefore it is more realistic to understand the spin dy-
namics of ferromagnetic systems at the disctletitice) level

. ~ _,dg
M,=d, angn_gn1 dtn- (40
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[A] [B]
(rn 1tn vbn)—>(rn+11t’n 1bn)_)(rn+litn+l’bn+1)7

where the matricegA] and[B], respectively, take the form

cosd, sing, O

[A]=| —sing, cosf, O, (6a)
0 0 1
1 0 0
0 [B]=| O cosp, sing, |. (6b)
FIG. 1. Motion of a discrete space curve. 0 —sing, cosp,

Hered, is the angle between, andr,,,, and¢, is the angle
In Eq. (3b), \ is the eigenvalue parameter and in E4). g, betweent’,, andt,, ; as illustrated in Fig. 1.
is an arbitrary matrix ana,, is the eigenfunction. The clas- Now, the full rotation giving the basis{,;,tn+1.004+1)
sical differential-difference spin equatidt) can be gener- at the next point fi+1) can be written using the matrix
ated from the generalized Hamiltonian [C]=[B][A] as

] Mn
ther | =[C]| tn |, (78

It may be noted that the Heisenberg Hamiltonian given ear- bniy by

lier can be obtained from Hamiltoniaf®) when the angle \yhere

between the nearest-neighboring spins are maintained small.

Though several continuum Heisenberg spin-chain models cos, siné, 0
have been mapped onto the NLS family of equations through _ - .

the method of space curve formaliSnmapping of discrete [Cl= ?o&bn.sman CO#”COSH“ Sinn | (7b)
spin-chain models to the discretizédifferential-differencg Sing,sing,  —sing,cosd, Cosp,

NLS family of equations through this mechanism could not - ; ;

be achieved thus far. This is due to the fact that the theory ! O?nsE:nll?r Vg%ylj:;;)?ﬁ'esrf{ altr':;{_cl]?ri_ gli)vggnbse obtained
discrete moving space curves has not been well understood. neneEn

However, recently, Doliwa and Santtiifrom the elemen- COSf,_, —COSp,_;SiN6,_;  SiNgd,_;SiN6,_;
tary geometric properties of discrete moving space curves,

H=—2; IN(1+S, Sy+1)- (5)

showed that the motion of it selects integrable dynamics of | SNfn-1  COSpn-1C0Fn-_1  —SiNn_1COLy—y

the Ablowitz-Ladik hierarchy of evolution equations. This 0 Sing,—1 COSp,—1

has motivated us in this paper to develop a discretized (89
mechanism of the space curve mapping procedure for the

discrete spin chains and to see whether the lattice spin equa- M-1 In

tion (1) can be mapped onto the differential-difference NLS th1 | =[C77} t (8b)
equation(2) which are known to be connected by the gauge " A

transformation. by-1 by

~We consider the dynamics of spins in a classical oneas the motion of the curve takes place on the surface of the
dimensional ferromagnetic lattice witN spins represented sphere, the velocity field must always be tangent to the sur-

by the Hamiltoniar(S) and governed by the classical lattice face so that we can write the Ve|0city field as
equation of motion(1). We now ask the question whether

using a discretized mechanism of the theory of moving space dr,
curves, could the discrete spin equatidhn be mapped onto H:Vntn+ Unby, ©)

the differential-difference NLS equatig2). To find an an-

swer for this question, we proceed as follows. We consider #hereV, andU, are the velocity field components parallel
discrete curve represented by a sequence of points arifl t, andby, respectively. The evolution of the orthonormal
marked by the position vectd®,. We then define a set of frame (,,t,,b,) can then be described by the antisymmetric
basis vectors r(,,t,,b,) at the pointn, on the discrete Mmatrix equation

curve’® as shown in Fig. 1. Here, is a unit vector in the

direction of the position vectoR,, at the nth point of the d Fn 0 Vo Un fn
sequence, pointing from the center O of the sphigrés the —| t, | = =V, 0 W, th |. (10
unit tangent vector at this point arg, is the unit normal dt b —U. —-W. 0 b

n n n n

vector defined byo,=r,/\t,,. The transition from the basis
(rn.tn,b,) to the basis (,41,th+1.054+1) at the next point Here W, is an unknown function to be determined. Now,
(n+1) can be obtained by the superposition of the followingdefining a shift operatorE along the curve giving
two transitions given by Eg,=0,.1. the compatibility condition
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d) (d) Now, in order to see whether the set of coupled
E = E,

dat at (11 differential-difference equationd7) and(18) are integrable,

so that ultimately the spin excitations can be expressed in
when implemented between Eq§) and (10) or between terms of solitons, we try to identify them with known inte-
Egs.(8) and(10) gives the evolution equations féf, and¢,  grable differential-difference equations. For this we define a
new angle¥,, and expressp, as the difference between

do : two successive values &f ,, i.e.
e =C0Sh VS Uy Vo, (12 8.
o=V, 1—V,. (19
%=Wm+1—cosenwn+sin0nun, (12b In view of this, Eqgs.(17) and(18) can be rewritten as
. _ _ , do, On+1 .
and specifiedV, in terms of the velocity as given below: T —2tanTsm(\Ifn,1—llfn)
1 : 0
Wn:m[co“:‘ﬁnun+l+5|n¢nvn+l_Cosgnun]- (13 +2tannz—_1$in(\lfn,2—\lfn,l), (20
We now map the one-dimensional classical discrete fer- dw P
romagnetic spin chain described by the Hamiltonf@nand n_ (1_ i tanﬂcog(q;n_qrn+l))
the discrete equation of motida) onto the discrete curve by dt SINGp 1 2

with the unit vectorr(t) of the discrete curve. In view of

identifying the classical three-component spin vedg{t) (
this identification, Eq(1) can be rewritten as

bhn
singnﬂtanicos(llfnl—\lfn)). (21

Upon making the transformation

dry M+1 M-1
—=2r, . (14
dt (T T PR qn=tan%exr(i‘lfn,l), 22)
Using Eqgs.(7) and(8) for r,,., andr,_4, respectively, Eq.
(14) can be rewritten as Egs.(20) and(21) are found to be equivalent to the follow-
ing equation:
drn 0n—1 .
E=—2 tanTsmqﬁn_l)tn dqg, ,
| dt :(1+|qn| ) Gn+1+An—1]1—205. (23)
On— 0
-2 tannTICO&ﬁn—l—taﬂgn by (19  Equation(23) is the same integrable differential-difference
NLS equation given as Ed2) which is also found to be
On comparing Eq(15) with Eq. (9), we obtain gauge equivalent to the discrete spin equatibn Equations
(2) or (23) have been solved by the inverse scattering trans-
V.= —2ta 9nflsin¢ (163 form method andN-soliton solutions have been obtaingd.
n 2 n-1» In order to verify the success and generality of the method
we employ the above mapping procedure to the only other
0, On_1 integrable discrete spin model available and which has been
Up=2 tani—tanTco&bnl). (16D recently proved to admit solitons and is gauge equivalent
to the discrete Hirota equatidfiWe find that the integrable
Substituting Eqs(16) in Eq. (12), we obtain discrete spin model governed by the equation of motion
dé On— 0 d _
d_tn:2 tannTlsinqbnl—tannz—Hsinqbn), 7 d—Sth=2JSh/\ 1+2”:;n+1+ 1+2'§n—1
do, 2 0. 0, + o] S S 0SS _(&-Sn_l)sq—sq_l}
Wzm tanTco&ﬁnH—i—tanECO&;Sn) (1+S5,-Shi0) (1+S-Sh-1) '
(24)
2 tarontt T On-1 _ , _ . : ,
sing, a”_2 cospy, an—2 COSpp_1]. is geometrically equivalent to the discrete Hirota equation
(18) .da,

i——=3{(1+]an/*)[An+ 11 An-1]1— 205}
Thus the equation of motiofl) representing the dynamics of dt " L "
spins in a classical one-dimensional discrete ferromagnetic CiKI(1+ a2 _ o5
chain has been equivalently expressed in terms of a set of KA+ {00 )L 2= Gn 2T}, 29
coupled equation&l7) and(18) representing the evolution of upon using our discrete space curve mapping procedure de-
the two angled,, and ¢, described in the motion of a dis- veloped here for which the velocity field compone¥tsand
crete space curve on the surface of a sphere. U, are of the form
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0, no1 discretized cubic NLS and the discrete Hirota equations, re-
tan; +tan7005¢n71 spectively. The method of discrete space curve mapping pro-
(263 posed in this paper for classical discrete spin chain models
help identifying equivalent integrable discrete soliton models
1 in the NLS family. The procedure will immediately draw the
+2Ktan——=sing, ;.. attention for isolating integrable lattice spin models, if any,
(26b) corresponding to the known integrable classical continuum
ferromagnetic spin systems.

an—l .
V,=-2J tanTsqun,l— 2K

an an—l
U,=2J tang - tanTco&bn, 1

HereJ andK are constant parameters.
We conclude that the integrable discretattice) spin The work of M.D. forms part of a major research project
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the Hamiltonian(5) and the higher-order integrable discrete Physics, University of lllinois at Urbana-Champaign where
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