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One-electron spectral functions of the attractive Hubbard model for intermediate coupling
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We calculate the one-electron spectral function of the attraétiegativet)) Hubbard model. We work in
the intermediate-coupling and low-density regime and obtain the self-energy in an approximate analytical
form. The excitation spectrum is found to consist of three branches. The results are obtained in a framework
based on the self-consisteitmatrix approximation, which is compatible with the Mermin-Wagner theorem.
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l. INTRODUCTION ing very involved since the simplest conserving approxima-
tion is the self-consistent T-matrix approacH ®
The Hubbard model involving electrons on a lattice, sub-Alternatively, variational-Monte Carlo calculations, based on
ject to an attractive interaction when they are on the saméhe Gutzwiller wave-functiof? and quantum Monte Carlo
site, is one of the simplest models for describing superconQMC) simulations have been perform&dThese methods
ductivity. Despite its simplicity, it has turned out to be very are providing results which then generate a need for a quali-
challenging for the theoreticians to give a simple descriptioriative analytical understanding. To that aim simpler calcula-
of its properties which is valid in the various regimes of tions based on Hubbard-Stratonovitch decoupling of the
coupling strength. In the weak-coupling regime, the link withinteraction:? slave-boson mean-field calculatiofsee, for
BCS theory of superconductivity has been done by Nesie instance, Ref. 13, and references thexen on the moment
and Schmitt-Rink. At sufficiently low T, an instability of the ~ calculation of the electronic spectral function have been
Fermi sea towards superconductivity occurs. In three dimenperformed.* Unfortunately the latter does not account for
sions, the transition is essentially mean-field in character. Ithe damping of the quasiparticles.
the opposite strong-coupling limif¢|—=), the electrons The aim of this paper is to treat analytically the
form bound pairs which are immobile since they can onlyintermediate-coupling regime, which is the most delicate.
move via virtual ionization with an infinite energy barrier. This allows us to give an analytical account of the results
However, for large but finit&J, those bound pairs essentially obtained with QMC simulations. We first review the self-
behave like heavy hard-core bosdmsth an effective mass ~consistentT-matrix approximation. As pointed out by sev-
m* ~m(U/t)] which are undergoing Bose-Einstein conden-é€ral authors? the corresponding numerical calculations typi-
sation at sufficiently lowl. On the lattice]T vanishes in the ~ cally yield a superconducting instability at a finife even in
limit |U|—o, while in the continuum limit, it remains two dimensions. This contradicts the Mermin-Wagner theo-
finite? This difference is due to the absence of a pair-r*em. We then propose an alternative scheme which complies
hopping term when working on the lattice. with this theorem. We then proceed to the calculation of the
In the intermediate-coupling regime, the physics will beélectronic structure.
dominated by the interplay between the quasiparticles and

the bound pairs, which may lead to nontrivial behavior. Il. THEORETICAL FRAMEWORK
Some basic physical features characterizing this regime have .
been previously studied by numerical medmghich showed We study the Hubbard model on the square lattice:
important deviations from canonical Fermi-liquid theory.
Even though it is still lacking a microscopical derivation +
) o = ORI e H= tic ,Ci,+U2 n,n; . 1
the attractive Hubbard model is interesting in its own right, .2, % WrheEhe Z W @

since it allows for studying various routes leading to super-

conductivity. Since the interaction is local, it will tlewave =~ We consider an attractive interactionU€0) in the
superconductivity, but the generalization to nonlocal interacintermediate-coupling regimgy|<W), W being the band-
tion can be considerédin the weak-coupling regime, per- width. In two dimensions, any attractive potential has a
turbation theory is expected to work, and this has beeound state. In the cagel| =W, the binding energ¥, has
worked out by a series of authatspme of them focusing on been found to b&,~0.2W,2 namelyE,<W. We are thus in
two-dimensional(2D) systemg. Of special interest is the a situation where bound pairs exist and have a strong influ-
low-density regime where chances of obtaining meaningfuence on the physics via the splitting of the noninteracting
results are better, since the ratio of the scattering length tband into two subbands. In this regime, the pairs are ex-
the average interparticle distance can be used as a small panded. They become purely local only in tfg=cc limit,
rameter. Unfortunately those calculations are quickly becomsince for any finiteU they can move via virtual ionizatioh.
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We also note that the BCS theory successfully describes thdere, w,, are fermionic, and’, bosonic Matsubara frequen-
weak-coupling regime. However there does not exist anyies, whilet; represents théeventually renormalizedki-
analytical theory in the intermediate-coupling regime, andnetic energy. This set of equations is vadilove T, as no
most results are obtained out of numerical simulatittdn anomalous Green'’s function enters. Otherwise one can resort
the low-density regime, the self-consist@hmatrix approxi-  to the scheme obtained by Pederseml, by functional de-
mation is expected to be exact and has been solved by fvative techniques? This approximation is conserving and
variety of authord~® Unfortunately, numerical difficulties it diagrammatically corresponds to summing up the dressed
prevented those authors from obtaining results for arbitrarparticle-particle Iaddseg which includes the leading order in
U. We also note that the numerical solutions may lead t" €xpansion irkga.>” Another important quantity is the
unphysical results such as a finite critical temperature fofVO-Particle Green’s function which is defined by

Bose condensation of the pairs in two dimensions, which is . 8 . . N

contradicting the Mermin-Wagner theorem. We beliésee G@(q,i Vn):f e"(T.[Q(q,7)Q'(—q,0])dr, (6)
below) that this is due to the use of an inappropriate expres- 0

sion for the particle density. That however does not discreditvhereT , is the usual time-ordering operator and the operator
the scheme, and we are basing our approach on it. It amounts

. 1
to solvin ()= — LI
g Q*(q)= N% c iiCial (7)
T(q,i V)= _—L{ ) creates a pair having(center-of-mass wave vector
1+Ux(q,ivy) q. G@(q,iv,) is related to thel-matrix by
- _ - - s . U+T(q,i
X(@ivg)=B" 2 G(piw)G(d—piivg—ivn), (3) G?(q,ivn)= %. ®)
piwy
N . N R We calculate G?)(q,iv,) by inserting the free-electron
2(q,iwy)=—8" E T(p,iv)G(p—q,ivy—iwy), Green’s function into expressid®) for x(q,iv,). For sim-
P!¥n 7 plicity, we approximate the density of stat@®0S), p(€), of
the tight-binding band resulting from the Hamiltoniél) by
1 the square DOS$i.e., p(€) =1 for |e|<W/2 andp(e)=0
G(G,iwp) = . (5  otherwisg. .
o, —tg+u—2(q,iw,) For small momentaG‘?)(q,iv,) is given by
|
[ivn+ peg—|Ep| —2W+(q?/2)]
In - > In®
Y 2W(1—-g2/16) o2\ [ [ivg+pe—|Ep|—2W+(g2/2)]]
In®—| 1+ —|In - 5
16 [ivn+ ue—|Esl = (0?t/2)]

whereug=2u+W+|Ey|, ®=(2W+|Ey|)/|Ep| and|E,| is  quasiparticle. Correspondingly, the lowest order form of the
the binding energy of a pair. The binding energy is obtainedl' matrix, valid for small wave vector and frequency is given

as a solution of by
1 S—0 2
_U:X(qzovw:Eb)Lu:—W/Z’ (10 To(Give)= - __)|2Eb| :I’ . 12
which yields oo™ A7/AMG + pe
The mass renormalization factor of a pair is given by
|Ep| = zw( m) : (12)

m  W+|[E| |Ey|?
The form(9) has the correct behavior faet, going to infinity - mg w 2W2
in the low-density regime, i.eG®(q,iv,)—1fiv,.

The spectrum of5®(q,iv,) presents two featuregi) a  In the intermediate-coupling regime, the mass is only weakly
sharp quasiparticle peak, which can be found by expandingenormalized while in the strong-coupling regime, there is a
Eq. (9) with respect toiv,+ ug—g%t/2; (i) a continuous strong renormalization of the ord&v/|U|. Due to the rela-
spectrum which extends over energies above the one of tH®nship between the two-particl& matrix and the two-

PInd. (13
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particle Green’s function, the quantifyg that we defined

above does represent the chemical potential of a pair, which

has bosonic character.
For g's close to the nesting vect®= (, ), we obtain

_U2
+(q—Q)¥4m* +2u+|U|

To(Q,ivy)=- (14)

iv,
In the vicinity of the zone corner, the renormalization of the

pair mass is different from the one close to the zone cente
Even in the intermediate-coupling regime, it is strongly

renormalized to ben* /m~|U|/t. At q=0, the form(9) of
the T matrix is actually exact, related to the fact that the
creation operator

+

+3,1%-p.1 (15

7

= C;T3

p
of an “7 pair” with center-of-mass momentui, satisfies
the simple commutation relatidfi=*®

[H,7"]=(U-2u)7". (16)

Using the above expressiofis2) and(14), we can calculate

the self-energy. To lowest order, we insert the free-electron

Green's function in Eq(4). The first contribution to the self-
energy arises from the poles of tfie matrix. Due to the
statistical factors we obtaifto that order of approximation
that the contribution of they resonance is exponentially
small, as well as those following from the poles of the
Green’s function. After performing analytical continuation,
we are left with

U2nd

wHti—p+pg+iot

3 (Kw)= (17)

The quantityny will be defined below, in Eq426) and(27).
El(lz,w) yields then the Green’s function as

. 1 2(tg— ) — 1
G(k,w)=§(1+ (ti— ) — up -
Xk .
k w+ E/.I,B—EXlZ'f-Io+
l( 2(tg—p) + s 1
Al 1 '
Xk o+ = gt =Xg+i0*
Zlu‘B 2 k
(18)

where xg=\[2(tyi— )+ ug]’+4U%ng. We immediately
note the two limiting behaviors, with respect to momentum
k:

Xe~ A+ 2t yk2, (19
with y=|Ep|/A and
A=|Ep|?+4U?ng (20)

for small momenta; respectively,
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2U%ng

D — (21
2(tg—p) +

Xg~2(tg—p) + g+ :
for large momenta.

At this stage of the calculation, the Green’s function has a
two-pole structure. The lower excitation branch corresponds
to quasibound fermionghereafter denoted as “bosonic”
band, while the upper branch describes the unpaired fermi-
ons (fermionic bangl. At small momenta, we obtain

r.
1

o+ 12 ug—A)— ytk>+i0*

A+|Ey|
- 2A

G(k,w)

A—|Ey|
2A

1
0+ 12 ug+A)+ ytk?+i0"
(22

with the spectral weight mainly located in the unpaired fer-
mion bandfirst contribution in Eq(22)]. At large momenta,
the Green'’s function results into

+

_ 1-2UPng/[2(tg— p) + pgl?
o—(tg—p)+i0”"

. 2U%ng /[ 2(tg— p) + pp]?
o+ti—u+ug+io”*

>

G(K

, W

: (23
where the weight of the paired fermion band is even smaller
than for small momenta. The form of the Green’s function
Eq. (18) differs from the one of Ref. 20 because the chemical
potentialu is located below the fermionic band in our prob-
lem.

We note that there are two equivalent expressions for the

particle density operatat:

=20 [N o(1= N o)+ oM . (24)
On one hand, we can use the left-hand side to express the
particle densityn asn;, where the subscript 1 indicates that
the density is calculated out of the one-particle Green’s func-
tion:

=812 2 G,(Kiw,e ",

iwp kO

(25

Alternatively, we may use the right-hand si@és) of Eq.
(24) by separating explicitly the contributions from the un-
paired fermions(first term) and the doubly occupied sites
(second term The total densityny of the latter is given by
_ 1 )~ iv,0"
nd_Ez > GA(q,ivy)e'™n
q

ivy

0 d .
:E,;‘ ﬁwﬁ'm{e(a(qlﬁi0+)}NB(w), (26)

Ng(w) being the Bose-Einstein distribution function. Owing
to the latter, at low temperatures, only the low-energy part of

the two-particle spectrum, H6?)(q,w+i0")}, will con-
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tribute to ny. According to the discussion following Eqg. n=ng+2ngy. (32)
(112), this low-energy part has two contributions: the sharp ) . )
quasiparticle excitation, given by E(L2), which dominates ~For noninteracting particles, we may equally well use both
for small momenta, and the low-frequency tail of the con-rhs and Ihs of Eq(24) to calculate the density, since Wick's
tinuous spectrum of5()(q,iv,). Since it does not have a f[heorem app_lles. However, th_e identi@4) may be wolated .
sharp structure, it would only contribute a featureless back!l' &n approximate treatment I|ke_perturbat|9n theory. Th|s IS
ground to the one-electron spectral function; thus, we havg1e reason why th_e self-c_on&stgﬂ't—matrlx calcu!atlon
. . - reaks down at low in two dimensions. By calculating the
neglectgd it for the F:alculatlon Qf the self-gner@y(k,g)). density by means of Eg25), there is nothing preventing
Neglecting the continuum also in calculatimg, we find, - > . . . . :
according to Eqs(8), (12), and (26): T(q:_(_),w:O)_from _dlvergmg at finiteT, S|gr_1a_l|_ng a phase
transition, while using Eq.32) would definitively keep
T(G,O) finite for any finite temperature. By making use of
: (27) Eq. (32), we make sure that Bose condensation can only take
place atT=0, in agreement with the Mermin-Wagner theo-
Thus, in our approximation, the number of doubly occupiedrem. Indeed, according to the expressi¢2® and (28) for
sitesng is given by the “number of bosons,iig ng andng, respectively, the bosonic chemical potenjig,
5 for a givenny (or ng) and ford=2, is different from zero at
N =E N CI_Z_ (28) any finite temperature, which inhibits Bose condensation, ex-
BT : Blam* ™~ #8) cept for T=0. In principle, ford=2 one should see a
Kosterlitz-ThoulesgKT) transition. However, since our ap-
weighted by a factor proximation does not treat the bosonic phase fluctuations in
) an adequate way, we cannot expect to see the KT scenario.
RZ(@) ®(Ind)2 (29) On the other handl, may well be finite for a 3D system.
2w ’ Actually our procedure is similar in spirit to the two-particle

L . . . self-consistent approach to the repulsive Hubbard model b
which is the residue of the two-particle Green’s function aly/jik et 11920 PP P y

the bottom of the two-particle band. These bosons, having
energyEg=(q?/4m)Z and chemical potentigkg, represent
pairs of electrons beingvirtually) bound by the on-site at-

q2
ng=RX NB(—Z—uB
q

4m

Now for a two-dimensional system, we can explicitly
evaluate the number of pairs. We obtain

traction. These results correspond to the observation of other 2R o AIWZI2)- gl _ 1

authors(see, for example, Ref)%hat, for sufficiently strong Ng= In , (33
attraction, the two-particle Green’s functiofrespectively, BWZ efre—1

the T matrix) can be interpreted as a “bosonic Green'’s func-

tion.” However, there is a weight factor between the two. 1 |Ep|+A efl2(ug=4) 4 1

For large|U|, this weight factolR goes to one: in the strong- nF_BWy A oP2ug A W) 1 q |’ (34)

coupling limit, all the double occupancy is due to coherently
propagating quasibound pairs. In the intermediate-couplingynere A and y have been given above.

regime, which we want to considefU|=W), the weight After having carefully chosen the density(see below,
factor R is roughly 0.5: only about one half of the two- \ye are ready tenumerically solve Eqs(32), (33), and(34)
particle spectrum in Ed9) is resulting from coherent exci- for the chemical potential, as a function of temperature. The
tations. In the weak-coupling regim®, vanishes, thus ren- resylting u5(T) vanishes exponentially &=0. From Egs.

dering our approximation invalid in this limit. (8) and (12), we obtain that the range of the two-particle
Since, in our approach, there is gap in the one-electrogsyeen’s functior¢ is given by

spectrum, separating the “bosonic” band from the fermionic

one, there is no difficulty in obtaining the number of un- ¢ \/T
aired electronsir as —= , 35
p F a 2|/LB| ( )
nF:E Eefe(ery), (30) wherea is the lattice spacing. It is displayed in Fig. 1, for
ko 7 three different values of the coupling strendthand with

fixed densityn=0.1. We note that it shows a strong depen-

wherefr(eg ) is the usual Fermi distribution function. The dence orU. At very low temperatures, it is given by

dispersiongg , of the unpaired fermions and the spectral
weight Z; entering Eq.(30) are ¢ /_ﬁt
2 _eﬁWZI‘VBR (36)
a 2 '

8ko=5 (Xk— MB), : . . ,
2 ® Oppositely, in the intermediate temperature ran§ebe-

comes independent &f. We also find that decreases with
increasing|U|. In the strong-coupling limit the rati@/R
' 31 tends to zero and thus the exponential divergencgiofl/T
is suppressetthere remains only the power-law dependence
The total particle density results into E~1IT).

Lo}
=
.

1 2(tg— ) —
FE(HM

Xk
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10 to obtain the correction to the self-enerfyhich will be
denoted below a&,(q.,iw,)] after having performed the
8| first iteration of the Eq(4), which results into the Green’s
function given by Eq(18). The task can be performed ana-
6| lytically provided that the upper fermionic branch in Ef8)
< and the unperturbed initial Green’s functi@’b(ﬁ,iwn) al-
s most cancel each othére., present comparable weights and
4 denominators This imposes a precise limitation on the
choice of the two parameters of our model, i.e., the coupling
5L strengthU and the density. It reads
AE (37)
%.0 02 0.4 0.6 0.8 10 2A '

Th In this regime, we may consider only the lowdrosonig

FIG. 1. Range of the two-particle Green’s function, as a func-branch of the Green’s function, given by E48); hereafter,
tion of temperaturd’, at densityn=0.1, for three different interac- jt will be denoted agl(a,i wy). This is an important point
tion strengths,U=—4t (short-dashed line U=—6t (full line),  tg stress; although the bosonic branch has a very small spec-
U=—8t (dotted ling, andU=—10t (long-dashed line tral weight, it contains the most important physics in the
low-density limit, at least at the level of the perturbative

We may now define a coherence temperaflyg as the  approach we have adopted. We calculate the first correction
temperature at which the range of the two-particle Green'sg the two-particle propagator ag, with

function exceeds 10 lattice spacings. We obfBip~0.1a&
for U=—4t and T,~0.1t for U=—6t, which may be
compared to T, as obtained from the numerical
simulationst! We see that they compare favorably and that,
moreover,T .., decreases with increasing, again in agree-
ment with numerical simulations. Finally, we note that
becomes of the order of the lattice spacing at temperatures
well below |E,|/2. We now turn to the temperature depen-
dence of the number of pairs. It is displayed in Fig. 2, as

x1(Aiv)= 2 Gy(q—Pp,ivy—iwy)Go(p,iwy)

iwp.p
+ 2 Go(d—Piivg—iwn)Gi(p,iwp).
ion,p
(38)
alCarrying out the summation over Matsubara frequencies, we

function of T, for three different values dff and at density
n=0.04. At low temperatures, it is independentTofSince
the binding energy of the pa{and the gapdecreases ad
gets smaller,ny begins to decrease at a lowdr for
U= -6t than for U=—1Q, for example. In all casegy
decreases by a factor 2 at=A/2.

obtain that the statistical factors are exponentially small and
thus there is no correction tg to that order. Thus, th&
matrix is still given by Eq(12). We can now proceed to the
calculation of the second-order correction to the self-energy.
It is given by

In order to reach a better self-consistency, we now calcu-

late how the quasibound states affect the two-particle propa-
gator. Our approach is perturbative, in the sense that we want

0.030 T

0.025 r b

0.020

&° 0015

0.010

0.005

0.000 : : '
0.0 1.0 2.0 3.0 40
Th

So(Qiw)= 2 To(pivg)Gu(p+aivy+io,), (39

ivy.p

yielding, after performing analytical continuation,

- |Eb|2<1>t)<xa—2(ta—m—na
io-|
2(q,w) Wy 2

1
>< .
w—1/2(Xg— pg) +i0"

L Yoo/ xgG-2(tg 5= 1)~ e
W

2Xg-q
1
>< .
0+2u+|U[=1/2AX5_g+ug) +i0"

(40)
where w. is a frequency cutoff needed by the assumption

: N A2 *
FIG. 2. Density of quasibound pairs as a function oftemperaturéhat the 7 resonance is sharp forQ(-q)“/4m*<wc

T, at densityn=0.04, for U= -6t (full line), U=—8t (dotted
line), andU=—10t (dashed ling

~U?/W, with m* =m(|U|/t). This corresponds t¢Q—q|
<U/W, as it is borne out by numerical calculations of the
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Dispersion Relations

U=-6t
20.0 T

0.042
0.040

0.038 r

100 F \ 1

0.036

0.034 . . ‘ 0.0 " }
5.0 15.0 25.0 35.0 45.0 -

8] T

FIG. 3. Particle density; which is obtained by using E¢25); T~

the chemical potential is calculated numerically out of 88). The
/ -10.0 ‘ ‘
temperature i§/t=0.5. 0.0 1.0 2.0 3.0 4.0
q,
(a) Dispersion Relations

two-particle Green’s functio(® covering the whole Bril- Ue_1ot
louin zone?!8 The precise value of the cutoff has little in- 20 -
fluence in the followingnumerica) results. We note that the
first contribution in Eq.(40) is following from the long-
wavelength behavior of th€ matrix, while the second is due
to the % resonance. Even though bath and the first con- \\
tribution to3 , originate from the pole of o(q,i v,,), given in 10 T
Eq. (12), they are found to have opposite dispersions. The i
total self-energy results as R —

3(q,0)=31(q,0)+3,(q,0). (42) 0r 7

At this point of the calculation, we can recalculate the par- T~
ticle densityn; by evaluating explicitly Eq(25), using the ~
Green'’s function resulting from E@41). Since there is na 10 | T
priori reason that this would yield a result comparable to 0.0 1‘0 2‘0 3‘0 4.0
what is following from Eq.(32), this is a consistency check ) ) ) ) )

of the framework we are using. The result is displayed in ®) Qs

Fig. 3. It is obvious that this is in very good agre_:ement with 5. 4. (a) Spectrum of the Green’s function at=0.04, T/t
the expected valua=0.04 for all values olJ. This means  _q 1 andu=—6t. It consists of the bosonic bar{dashed ling
that our calculation is consistent. It also implies that, on 0Nghe fermionic bands(dotted and dashed-dotted linesand the

hand, a small change in the chemical potential corresponds resonance bandull line). (b) The same ag), for U= — 10t and
to a small change in the particle density, but on the othep=oq.1.

hand, it may induce a big change in the pair density.

|U|= 10t are essentially the santat same densiti¢sup to a
small shift; moreover, we note that they are opposite to the
We can now summarize our findings by plotting the vari-free fermion dispersion. The weight decreases with increas-
ous pieces of the spectral function. This is done in Fig),4 ing momentum and gets mostly negligible fg~2. It de-
for U= -6t (E,=—t) andn=0.04, and in Fig. ) for U  creases with increasify|, at smallg’s, but the total weight
=—-10t (E,=—4.2) andn=0.1, for momenta along the remains constant.
diagonal of the Brillouin zone. In both cases, the spectrum (i) The fermionic band that was coming out of the first
consists of four branches. The spectral weights of the variouspproximationl Eq. (18)] is now resulting as a superposition
branches are displayed in Fig(ab for U=—6t and n of two branches which would merge into a single one, were
=0.04 and Fig. &) for U=—-10t andn=0.1. damping taken into account. This superposition is done out
These results can be commented as follows: of the two branches which are most free-electron-like. This is
(i) There is a branch at negative energies following fromsomewhat arbitrary, especially in the domain where the hy-
the quasibound states. It is centered aroun@lV/2— (A bridization with the other branch, which lies at positive en-
+|Ep|)/4 with a widthW— (A —|Ep|+2ug)/2<W. The de-  ergies too(see beloy, is strong. Consequently, we do not
pendence inJ is weak, and the dispersions fliy| =6t and  show the spectral weights in this range. The width of the

lll. EXCITATION SPECTRUM
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Spectral Weights
U=-6t

more and more clearly separated by a gap wheh in-
creases. The width of the two bands is smaller than in our

10 e o calculation, in particular the lowgbosonig band has very

little dispersion. However, the weightthe fermionic band

has large weight for large wave vectors, whereas the weight
of the negative energy bosonic band is concentrated near the
zone centeris similar to our Figs. 4 and 5.

Reference 21 presents new results for the one-electron
spectral function fom=0.1, one of the density values that
we have used, anidJ| = 8t. Here again, there is a fermionic
branch at positive energids (positive with respect to the
chemical potentia) separated by a “pseudogap” from the
excitations aE<0. Weight and width of the fermionic band
02 & . is similar to our result. The excitations B0 have most
N | weight near the zone center, as we find it. However, their
structure seems to be more complex: with increasing wave
number they split into two “subbranches.” The lower part
has downward dispersion and seems to correspond to our
bosonic branch. The other subbranch produces weight near
the chemical E=0) potential for large wave numbers. This
might correspond to ous, resonance, provided that its en-
ergy near the zone corner, lying at a positive energy in our
calculation, would in reality be lower. In this respect, the
spectral functions fon=0.4 and|U|=—6t, also shown in
Ref. 21, are particularly interesting: f&>0, besides the
strong fermionic branch, there is a second branch of excita-
tions the dispersions of which are very similar to theeak
in our Figs. 4 and 5.

Thus, the main features of our spectral functions seem to
be present in the Monte Carlo results, although the latter
show a more complex structure. A detailed and more quan-
titative comparison with QMC should also take into account
0.2 b 7 the fact the “maximum entropy method” used there in order
S to extract spectral functions from data obtained as functions
Te— T of the (imaginary Matsubara frequencies does not easily al-
99,0 70 50 20 4.0 low for an unambiguous identification of excitations with
small weight.

(b) 9 Finally, we note that we do not obtain any spectral weight

FIG. 5. (a) Spectral weight of the bosonic bartdashed ling at zero frequency, signaling the presence of a correlation

the fermionic bandgdotted ling and thes resonance ban¢ull  induced gap. We also checked that including particle-hole
line), for n=0.04, T/t=0.1, andU = —6t. (b) The same ag) for  €Xcitations in the calculation does not affect this conclusion.

U=—10t andn=0.1. The appearance of a true gap in our calculation is, at least
partly, due to the fact that our spectral lines have no width
(except that the “doubling” of the fermionic branch gives a
fermionic band is slightly larger than the original bandwidth, hint to a broadening of the latierSpectral functions with
and shows little dependence bh Its dispersion is parallel to  finjte line width would be obtained either by doing tie
the free fermion one. _ sums in the expressidg#d) for the self-energy more precisely,
(iii) There is a third branch resulting from the reso-  andjor by evaluatings and3. by solving Eqs.(2)—(5) self-
nance; its dependence ld is weak and both curveffor  consistently.
|U| =6t and|U|=10x) are parallel. It comes down in energy  |n summary, we have determined the excitation spectrum
with increasing|U|. The contribution of thexy resonance of the attractive Hubbard model at intermediate coupling out
band is very small, barely accounting for 5-10% of the specof a simple analytical calculation. We first pointed out an
tral weight at its maximum, which is located negr Q. intrinsic problem of perturbation theory relative to the imple-
It is interesting to compare our results with quantummentation of the Mermin-Wagner theorem. We made use of
Monte Carlo (QMC) simulationst?! The calculations of an alternative expression for the density to obtain a qualita-
Ref. 11 have been performed far=0.4 and for |U| tively correct theory which does not break down at Idvin
= —4t,—8t,—12t. This is likely to be outside the realm of two dimensions, in contrast to previous self-consistent calcu-
densities for which theT-matrix approximation is really lations. We obtain an analytical expression for the Green'’s
valid. Nevertheless, the following features coincide with ourfunction which reproduces the qualitative features of the
findings: there are two distinct excitation branches which geQMC simulations in the low-density regime.

0.8 = i

0.0 - T — Il
0.0 1.0 2.0 3.0 4.0
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Spectral Weights
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