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One-electron spectral functions of the attractive Hubbard model for intermediate coupling
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We calculate the one-electron spectral function of the attractive~negative-U) Hubbard model. We work in
the intermediate-coupling and low-density regime and obtain the self-energy in an approximate analytical
form. The excitation spectrum is found to consist of three branches. The results are obtained in a framework
based on the self-consistentT-matrix approximation, which is compatible with the Mermin-Wagner theorem.
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I. INTRODUCTION

The Hubbard model involving electrons on a lattice, su
ject to an attractive interaction when they are on the sa
site, is one of the simplest models for describing superc
ductivity. Despite its simplicity, it has turned out to be ve
challenging for the theoreticians to give a simple descript
of its properties which is valid in the various regimes
coupling strength. In the weak-coupling regime, the link w
BCS theory of superconductivity has been done by Nozie`res
and Schmitt-Rink.1 At sufficiently low T, an instability of the
Fermi sea towards superconductivity occurs. In three dim
sions, the transition is essentially mean-field in character
the opposite strong-coupling limit (uUu→`), the electrons
form bound pairs which are immobile since they can o
move via virtual ionization with an infinite energy barrie
However, for large but finiteU, those bound pairs essential
behave like heavy hard-core bosons@with an effective mass
m* ;m(U/t)# which are undergoing Bose-Einstein conde
sation at sufficiently lowT. On the lattice,TC vanishes in the
limit uUu→`, while in the continuum limit, it remains
finite.2 This difference is due to the absence of a pa
hopping term when working on the lattice.

In the intermediate-coupling regime, the physics will
dominated by the interplay between the quasiparticles
the bound pairs, which may lead to nontrivial behavi
Some basic physical features characterizing this regime h
been previously studied by numerical means,3 which showed
important deviations from canonical Fermi-liquid theory.

Even though it is still lacking a microscopical derivatio
the attractive Hubbard model is interesting in its own rig
since it allows for studying various routes leading to sup
conductivity. Since the interaction is local, it will bes-wave
superconductivity, but the generalization to nonlocal inter
tion can be considered.4 In the weak-coupling regime, per
turbation theory is expected to work, and this has be
worked out by a series of authors,5 some of them focusing on
two-dimensional~2D! systems.6 Of special interest is the
low-density regime where chances of obtaining meaning
results are better, since the ratio of the scattering lengt
the average interparticle distance can be used as a sma
rameter. Unfortunately those calculations are quickly beco
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ing very involved since the simplest conserving approxim
tion is the self-consistent T-matrix approach.7–9

Alternatively, variational-Monte Carlo calculations, based
the Gutzwiller wave-function10 and quantum Monte Carlo
~QMC! simulations have been performed.11 These methods
are providing results which then generate a need for a qu
tative analytical understanding. To that aim simpler calcu
tions based on Hubbard-Stratonovitch decoupling of
interaction,12 slave-boson mean-field calculations~see, for
instance, Ref. 13, and references therein!, or on the moment
calculation of the electronic spectral function have be
performed.14 Unfortunately the latter does not account f
the damping of the quasiparticles.

The aim of this paper is to treat analytically th
intermediate-coupling regime, which is the most delica
This allows us to give an analytical account of the resu
obtained with QMC simulations. We first review the se
consistentT-matrix approximation. As pointed out by sev
eral authors,15 the corresponding numerical calculations typ
cally yield a superconducting instability at a finiteT, even in
two dimensions. This contradicts the Mermin-Wagner the
rem. We then propose an alternative scheme which comp
with this theorem. We then proceed to the calculation of
electronic structure.

II. THEORETICAL FRAMEWORK

We study the Hubbard model on the square lattice:

H5(
i , j

(̂
s&

t i j ci ,s
† cj ,s1U(

i
ni ,↑ni ,↓ . ~1!

We consider an attractive interaction (U,0) in the
intermediate-coupling regime (uUu&W), W being the band-
width. In two dimensions, any attractive potential has
bound state. In the caseuUu5W, the binding energyEb has
been found to beEb'0.2W,8 namelyEb!W. We are thus in
a situation where bound pairs exist and have a strong in
ence on the physics via the splitting of the noninteract
band into two subbands. In this regime, the pairs are
tended. They become purely local only in theuUu5` limit,
since for any finiteU they can move via virtual ionization.1
5995 © 1998 The American Physical Society
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5996 57KAGAN, FRÉSARD, CAPEZZALI, AND BECK
We also note that the BCS theory successfully describes
weak-coupling regime. However there does not exist a
analytical theory in the intermediate-coupling regime, a
most results are obtained out of numerical simulations.6,11 In
the low-density regime, the self-consistentT-matrix approxi-
mation is expected to be exact and has been solved
variety of authors.7–9 Unfortunately, numerical difficulties
prevented those authors from obtaining results for arbitr
U. We also note that the numerical solutions may lead
unphysical results such as a finite critical temperature
Bose condensation of the pairs in two dimensions, which
contradicting the Mermin-Wagner theorem. We believe~see
below! that this is due to the use of an inappropriate expr
sion for the particle density. That however does not discre
the scheme, and we are basing our approach on it. It amo
to solving

T~qW ,inn!5
2U

11Ux~qW ,inn!
, ~2!

x~qW ,inn!5b21 (
pW ,ivn

G~pW ,ivn!G~qW 2pW ,inn2 ivn!, ~3!

S~qW ,ivn!52b21 (
pW ,inn

T~pW ,inn!G~pW 2qW ,inn2 ivn!,

~4!

G~qW ,ivn!5
1

ivn2tqW1m2S~qW ,ivn!
. ~5!
e
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Here,vn are fermionic, andnn bosonic Matsubara frequen
cies, while tqW represents the~eventually renormalized! ki-
netic energy. This set of equations is validabove Tc , as no
anomalous Green’s function enters. Otherwise one can re
to the scheme obtained by Pedersenet al., by functional de-
rivative techniques.12 This approximation is conserving an
it diagrammatically corresponds to summing up the dres
particle-particle ladder which includes the leading order
an expansion inkFa.5,9 Another important quantity is the
two-particle Green’s function which is defined by

G~2!~qW ,inn!5E
0

b

einnt^Tt@Q~qW ,t!Q†~2qW ,0!#&dt, ~6!

whereTt is the usual time-ordering operator and the opera

Q1~qW !5
1

N(
kW

c
2kW ,↑
†

ckW2qW ,↓
†

~7!

creates a pair having~center-of-mass! wave vector
qW . G(2)(qW ,inn) is related to theT-matrix by

G~2!~qW ,inn!5
U1T~qW ,inn!

U2
. ~8!

We calculate G(2)(qW ,inn) by inserting the free-electron
Green’s function into expression~3! for x(qW ,inn). For sim-
plicity, we approximate the density of states~DOS!, r(e), of
the tight-binding band resulting from the Hamiltonian~1! by
the square DOS@i.e., r(e)51/W for ueu<W/2 andr(e)50
otherwise#.

For small momenta,G(2)(qW ,inn) is given by
G~2!~qW ,inn!5
1

2W~12q2/16!

lnH @ inn1mB2uEbu22W1~q2t/2!#

@ inn1mB2uEbu2q2t/2#
J lnF

lnF2S 11
q2

16D lnH @ inn1mB2uEbu22W1~q2t/2!#

@ inn1mB2uEbu2~q2t/2!#
J , ~9!
the
n

kly
s a
wheremB52m1W1uEbu, F5(2W1uEbu)/uEbu anduEbu is
the binding energy of a pair. The binding energy is obtain
as a solution of

2
1

U
5x~qW 50W ,v5Eb!um52W/2 , ~10!

which yields

uEbu52WS 1

e22W/U21
D . ~11!

The form~9! has the correct behavior fornn going to infinity
in the low-density regime, i.e.,G(2)(qW ,inn)→1/inn .

The spectrum ofG(2)(qW ,inn) presents two features:~i! a
sharp quasiparticle peak, which can be found by expand
Eq. ~9! with respect toinn1mB2q2t/2; ~ii ! a continuous
spectrum which extends over energies above the one o
d

g

he

quasiparticle. Correspondingly, the lowest order form of
T matrix, valid for small wave vector and frequency is give
by

T0~qW ,inn!5
2uEbu2F

inn2qW 2/4m0* 1mB

. ~12!

The mass renormalization factor of a pair is given by

Z[
m

m0*
5

W1uEbu
W

2
uEbu2

2W2
F lnF. ~13!

In the intermediate-coupling regime, the mass is only wea
renormalized while in the strong-coupling regime, there i
strong renormalization of the orderW/uUu. Due to the rela-
tionship between the two-particleT matrix and the two-
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57 5997ONE-ELECTRON SPECTRAL FUNCTIONS OF THE . . .
particle Green’s function, the quantitymB that we defined
above does represent the chemical potential of a pair, w
has bosonic character.

For qW ’s close to the nesting vectorQW 5(p,p), we obtain

T0~qW ,inn!5
2U2

inn1~qW 2QW !2/4m* 12m1uUu
. ~14!

In the vicinity of the zone corner, the renormalization of t
pair mass is different from the one close to the zone cen
Even in the intermediate-coupling regime, it is strong
renormalized to bem* /m'uUu/t. At qW 5QW , the form~9! of
the T matrix is actually exact, related to the fact that t
creation operator

h†5(
pW

cpW 1QW ,↑
†

c
2pW ,↓
†

~15!

of an ‘‘h pair’’ with center-of-mass momentumQW , satisfies
the simple commutation relation:16–18

@H,h†#5~U22m!h†. ~16!

Using the above expressions~12! and~14!, we can calculate
the self-energy. To lowest order, we insert the free-elect
Green’s function in Eq.~4!. The first contribution to the self
energy arises from the poles of theT matrix. Due to the
statistical factors we obtain~to that order of approximation!
that the contribution of theh resonance is exponentiall
small, as well as those following from the poles of t
Green’s function. After performing analytical continuatio
we are left with

S1~kW ,v!5
U2nd

v1tkW2m1mB1 i01
. ~17!

The quantitynd will be defined below, in Eqs.~26! and~27!.
S1(kW ,v) yields then the Green’s function as

G~kW ,v!5
1

2S 11
2~ tkW2m!2mB

xkW
D 1

v1
1

2
mB2

1

2
xkW1 i01

1
1

2S 12
2~ tkW2m!1mB

xkW
D 1

v1
1

2
mB1

1

2
xkW1 i01

,

~18!

where xkW5A@2(tkW2m)1mB#214U2nd. We immediately
note the two limiting behaviors, with respect to momentu
kW :

xkW'D12tgk2, ~19!

with g5uEbu/D and

D5AuEbu214U2nd ~20!

for small momenta; respectively,
ch

r.

n

xkW'2~ tkW2m!1mB1
2U2nd

2~ tkW2m!1mB

, ~21!

for large momenta.
At this stage of the calculation, the Green’s function ha

two-pole structure. The lower excitation branch correspo
to quasibound fermions~hereafter denoted as ‘‘bosonic
band!, while the upper branch describes the unpaired fer
ons ~fermionic band!. At small momenta, we obtain

G~kW ,v!5
D1uEbu

2D

1

v11/2~mB2D!2gtk21 i01

1
D2uEbu

2D

1

v11/2~mB1D!1gtk21 i01

~22!

with the spectral weight mainly located in the unpaired f
mion band@first contribution in Eq.~22!#. At large momenta,
the Green’s function results into

G~kW ,v!5
122U2nd /@2~ tkW2m!1mB#2

v2~ tkW2m!1 i01

1
2U2nd /@2~ tkW2m!1mB#2

v1tkW2m1mB1 i01
, ~23!

where the weight of the paired fermion band is even sma
than for small momenta. The form of the Green’s functi
Eq. ~18! differs from the one of Ref. 20 because the chemi
potentialm is located below the fermionic band in our pro
lem.

We note that there are two equivalent expressions for
particle density operatorn̂:

n̂i5(
s

@ n̂i ,s~12n̂i ,2s!1n̂i ,sn̂i ,2s#. ~24!

On one hand, we can use the left-hand side to express
particle densityn asn1, where the subscript 1 indicates th
the density is calculated out of the one-particle Green’s fu
tion:

n15b21 (
ivn ,kW

(
s

Gs~kW ,ivn!eivn01
. ~25!

Alternatively, we may use the right-hand side~rhs! of Eq.
~24! by separating explicitly the contributions from the u
paired fermions~first term! and the doubly occupied site
~second term!. The total densitynd of the latter is given by

nd5
1

b(
qW

(
inn

G~2!~qW ,inn!einn01

5(
qW
E

2`

` dv

2p
Im$G~2!~qW ,v1 i01!%NB~v!, ~26!

NB(v) being the Bose-Einstein distribution function. Owin
to the latter, at low temperatures, only the low-energy par
the two-particle spectrum, Im$G(2)(qW ,v1 i01)%, will con-



.
r

n
a
c
av

ie

a
in

-
th

c
o
-
tl
lin

-
-
-

tro
ic

n-

e
ra

th
s

is

of
ake
o-

ex-

-
s in
ario.
.
le
l by

ly

he

le

r

n-

ce
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tribute to nd . According to the discussion following Eq
~11!, this low-energy part has two contributions: the sha
quasiparticle excitation, given by Eq.~12!, which dominates
for small momenta, and the low-frequency tail of the co
tinuous spectrum ofG(2)(qW ,inn). Since it does not have
sharp structure, it would only contribute a featureless ba
ground to the one-electron spectral function; thus, we h
neglected it for the calculation of the self-energyS1(kW ,v).
Neglecting the continuum also in calculatingnd , we find,
according to Eqs.~8!, ~12!, and~26!:

nd5R(
qW

NBS q2

4m
Z2mBD . ~27!

Thus, in our approximation, the number of doubly occup
sitesnd is given by the ‘‘number of bosons,’’nB

nB[(
qW

NBS q2

4m
Z2mBD , ~28!

weighted by a factor

R5S uEbu
2W D 2

F~ lnF!2, ~29!

which is the residue of the two-particle Green’s function
the bottom of the two-particle band. These bosons, hav
energyEB5(q2/4m)Z and chemical potentialmB , represent
pairs of electrons being~virtually! bound by the on-site at
traction. These results correspond to the observation of o
authors~see, for example, Ref. 9! that, for sufficiently strong
attraction, the two-particle Green’s function,~respectively,
theT matrix! can be interpreted as a ‘‘bosonic Green’s fun
tion.’’ However, there is a weight factor between the tw
For largeuUu, this weight factorR goes to one: in the strong
coupling limit, all the double occupancy is due to coheren
propagating quasibound pairs. In the intermediate-coup
regime, which we want to consider (uUu&W), the weight
factor R is roughly 0.5: only about one half of the two
particle spectrum in Eq.~9! is resulting from coherent exci
tations. In the weak-coupling regime,R vanishes, thus ren
dering our approximation invalid in this limit.

Since, in our approach, there is gap in the one-elec
spectrum, separating the ‘‘bosonic’’ band from the fermion
one, there is no difficulty in obtaining the number of u
paired electronsnF as

nF5(
kW ,s

JkW f F~«kW ,s!, ~30!

where f F(«kW ,s) is the usual Fermi distribution function. Th
dispersion«kW ,s of the unpaired fermions and the spect
weight JkW entering Eq.~30! are

«kW ,s5
1

2
~xkW2mB!,

JkW5
1

2S 11
2~ tkW2m!2mB

xkW
D . ~31!

The total particle density results into
p

-

k-
e
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g

n

l

n5nF12nd . ~32!

For noninteracting particles, we may equally well use bo
rhs and lhs of Eq.~24! to calculate the density, since Wick’
theorem applies. However, the identity~24! may be violated
in an approximate treatment like perturbation theory. This
the reason why the self-consistentT-matrix calculation
breaks down at lowT in two dimensions. By calculating the
density by means of Eq.~25!, there is nothing preventing
T(qW 50W ,v50) from diverging at finiteT, signaling a phase
transition, while using Eq.~32! would definitively keep
T(0W ,0) finite for any finite temperature. By making use
Eq. ~32!, we make sure that Bose condensation can only t
place atT50, in agreement with the Mermin-Wagner the
rem. Indeed, according to the expressions~27! and ~28! for
nd andnB , respectively, the bosonic chemical potentialmB ,
for a givennd ~or nB) and ford52, is different from zero at
any finite temperature, which inhibits Bose condensation,
cept for T50. In principle, for d52 one should see a
Kosterlitz-Thouless~KT! transition. However, since our ap
proximation does not treat the bosonic phase fluctuation
an adequate way, we cannot expect to see the KT scen
On the other hand,Tc may well be finite for a 3D system
Actually our procedure is similar in spirit to the two-partic
self-consistent approach to the repulsive Hubbard mode
Vilk et al.19,20

Now for a two-dimensional system, we can explicit
evaluate the number of pairs. We obtain

nd5
2R

bWZ
lnS e2b@W~Z/2!2mB#21

ebmB21
D , ~33!

nF5
1

bWg S uEbu1D

D D lnS eb/2~mB2D!11

eb/2~mB2D2gW!11
D , ~34!

whereD andg have been given above.
After having carefully chosen the densityn ~see below!,

we are ready to~numerically! solve Eqs.~32!, ~33!, and~34!
for the chemical potential, as a function of temperature. T
resultingmB(T) vanishes exponentially atT50. From Eqs.
~8! and ~12!, we obtain that the range of the two-partic
Green’s functionj is given by

j

a
5A t

2umBu
, ~35!

wherea is the lattice spacing. It is displayed in Fig. 1, fo
three different values of the coupling strengthU and with
fixed densityn50.1. We note that it shows a strong depe
dence onU. At very low temperatures, it is given by

j

a
5Abt

2
ebWZn/8R. ~36!

Oppositely, in the intermediate temperature range,j be-
comes independent ofU. We also find thatj decreases with
increasinguUu. In the strong-coupling limit the ratioZ/R
tends to zero and thus the exponential divergence ofj in 1/T
is suppressed~there remains only the power-law dependen
j;1/AT).
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We may now define a coherence temperatureTcoh as the
temperature at which the range of the two-particle Gree
function exceeds 10 lattice spacings. We obtainTcoh'0.16t
for U524t and Tcoh'0.1t for U526t, which may be
compared to Tc as obtained from the numerica
simulations.11 We see that they compare favorably and th
moreover,Tcoh decreases with increasingU, again in agree-
ment with numerical simulations. Finally, we note thatj
becomes of the order of the lattice spacing at temperat
well below uEbu/2. We now turn to the temperature depe
dence of the number of pairs. It is displayed in Fig. 2, a
function of T, for three different values ofU and at density
n50.04. At low temperatures, it is independent ofT. Since
the binding energy of the pair~and the gap! decreases asU
gets smaller,nd begins to decrease at a lowerT for
U526t than for U5210t, for example. In all casesnd
decreases by a factor 2 atT'D/2.

In order to reach a better self-consistency, we now ca
late how the quasibound states affect the two-particle pro
gator. Our approach is perturbative, in the sense that we w

FIG. 1. Range of the two-particle Green’s function, as a fu
tion of temperatureT, at densityn50.1, for three different interac
tion strengths,U524t ~short-dashed line!, U526t ~full line!,
U528t ~dotted line!, andU5210t ~long-dashed line!.

FIG. 2. Density of quasibound pairs as a function of tempera
T, at densityn50.04, for U526t ~full line!, U528t ~dotted
line!, andU5210t ~dashed line!.
’s

t,

es
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to obtain the correction to the self-energy@which will be
denoted below asS2(qW ,ivn)# after having performed the
first iteration of the Eq.~4!, which results into the Green’s
function given by Eq.~18!. The task can be performed an
lytically provided that the upper fermionic branch in Eq.~18!

and the unperturbed initial Green’s functionG0(qW ,ivn) al-
most cancel each other~i.e., present comparable weights an
denominators!. This imposes a precise limitation on th
choice of the two parameters of our model, i.e., the coupl
strengthU and the densityn. It reads

D2Eb

2D
!1. ~37!

In this regime, we may consider only the lower~bosonic!
branch of the Green’s function, given by Eq.~18!; hereafter,
it will be denoted asG1(qW ,ivn). This is an important point
to stress; although the bosonic branch has a very small s
tral weight, it contains the most important physics in t
low-density limit, at least at the level of the perturbativ
approach we have adopted. We calculate the first correc
to the two-particle propagator asx1, with

x1~qW ,inn!5 (
ivn ,pW

G1~qW 2pW ,inn2 ivn!G0~pW ,ivn!

1 (
ivn ,pW

G0~qW 2pW ,inn2 ivn!G1~pW ,ivn!.

~38!

Carrying out the summation over Matsubara frequencies,
obtain that the statistical factors are exponentially small a
thus there is no correction tox to that order. Thus, theT
matrix is still given by Eq.~12!. We can now proceed to th
calculation of the second-order correction to the self-ener
It is given by

S2~qW ,ivn!5 (
inn ,pW

T0~pW ,inn!G1~pW 1qW ,inn1 ivn!, ~39!

yielding, after performing analytical continuation,

S2~qW ,v!5S uEbu2Ft

Wg D S xqW22~ tqW2m!2mB

2xqW
D

3S 1

v21/2~xqW2mB!1 i01D
1

U2vc

W S xQW 2qW22~ tQW 2qW2m!2mB

2xQW 2qW
D

3S 1

v12m1uUu21/2~xQW 2qW1mB!1 i01D ,

~40!

where vc is a frequency cutoff needed by the assumpt
that the h resonance is sharp for (QW 2qW )2/4m* <vc

'U2/W, with m* 5m(uUu/t). This corresponds touQW 2qW u
&U/W, as it is borne out by numerical calculations of th
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6000 57KAGAN, FRÉSARD, CAPEZZALI, AND BECK
two-particle Green’s functionG(2) covering the whole Bril-
louin zone.12,18 The precise value of the cutoff has little in
fluence in the following~numerical! results. We note that the
first contribution in Eq.~40! is following from the long-
wavelength behavior of theT matrix, while the second is du
to theh resonance. Even though bothS1 and the first con-
tribution toS2 originate from the pole ofT0(qW ,inn), given in
Eq. ~12!, they are found to have opposite dispersions. T
total self-energy results as

S~qW ,v!5S1~qW ,v!1S2~qW ,v!. ~41!

At this point of the calculation, we can recalculate the p
ticle densityn1 by evaluating explicitly Eq.~25!, using the
Green’s function resulting from Eq.~41!. Since there is noa
priori reason that this would yield a result comparable
what is following from Eq.~32!, this is a consistency chec
of the framework we are using. The result is displayed
Fig. 3. It is obvious that this is in very good agreement w
the expected valuen50.04 for all values ofU. This means
that our calculation is consistent. It also implies that, on o
hand, a small change in the chemical potential correspo
to a small change in the particle density, but on the ot
hand, it may induce a big change in the pair density.

III. EXCITATION SPECTRUM

We can now summarize our findings by plotting the va
ous pieces of the spectral function. This is done in Fig. 4~a!,
for U526t (Eb52t) andn50.04, and in Fig. 4~b! for U
5210t (Eb524.2t) and n50.1, for momenta along the
diagonal of the Brillouin zone. In both cases, the spectr
consists of four branches. The spectral weights of the var
branches are displayed in Fig. 5~a! for U526t and n
50.04 and Fig. 5~b! for U5210t andn50.1.

These results can be commented as follows:
~i! There is a branch at negative energies following fro

the quasibound states. It is centered around2W/22(D
1uEbu)/4 with a widthW2(D2uEbu12mB)/2,W. The de-
pendence inU is weak, and the dispersions foruUu56t and

FIG. 3. Particle densityn1 which is obtained by using Eq.~25!;
the chemical potential is calculated numerically out of Eq.~32!. The
temperature isT/t50.5.
e

-

n

e
ds
r

-

us

uUu510t are essentially the same~at same densities!, up to a
small shift; moreover, we note that they are opposite to
free fermion dispersion. The weight decreases with incre
ing momentum and gets mostly negligible forqx;2. It de-
creases with increasinguUu, at smallqW ’s, but the total weight
remains constant.

~ii ! The fermionic band that was coming out of the fir
approximation@Eq. ~18!# is now resulting as a superpositio
of two branches which would merge into a single one, w
damping taken into account. This superposition is done
of the two branches which are most free-electron-like. Thi
somewhat arbitrary, especially in the domain where the
bridization with the other branch, which lies at positive e
ergies too~see below!, is strong. Consequently, we do no
show the spectral weights in this range. The width of t

FIG. 4. ~a! Spectrum of the Green’s function atn50.04, T/t
50.1, andU526t. It consists of the bosonic band~dashed line!,
the fermionic bands~dotted and dashed-dotted lines!, and the
h resonance band~full line!. ~b! The same as~a!, for U5210t and
n50.1.
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fermionic band is slightly larger than the original bandwid
and shows little dependence onU. Its dispersion is parallel to
the free fermion one.

~iii ! There is a third branch resulting from theh reso-
nance; its dependence inU is weak and both curves~for
uUu56t anduUu510t) are parallel. It comes down in energ
with increasinguUu. The contribution of theh resonance
band is very small, barely accounting for 5–10% of the sp
tral weight at its maximum, which is located nearqW 5QW .

It is interesting to compare our results with quantu
Monte Carlo ~QMC! simulations.11,21 The calculations of
Ref. 11 have been performed forn50.4 and for uUu
524t,28t,212t. This is likely to be outside the realm o
densities for which theT-matrix approximation is really
valid. Nevertheless, the following features coincide with o
findings: there are two distinct excitation branches which

FIG. 5. ~a! Spectral weight of the bosonic band~dashed line!,
the fermionic bands~dotted line! and theh resonance band~full
line!, for n50.04,T/t50.1, andU526t. ~b! The same as~a! for
U5210t andn50.1.
,

-

r
t

more and more clearly separated by a gap whenuUu in-
creases. The width of the two bands is smaller than in
calculation, in particular the lower~bosonic! band has very
little dispersion. However, the weights~the fermionic band
has large weight for large wave vectors, whereas the we
of the negative energy bosonic band is concentrated nea
zone center! is similar to our Figs. 4 and 5.

Reference 21 presents new results for the one-elec
spectral function forn50.1, one of the density values tha
we have used, anduUu58t. Here again, there is a fermioni
branch at positive energiesE ~positive with respect to the
chemical potential!, separated by a ‘‘pseudogap’’ from th
excitations atE,0. Weight and width of the fermionic ban
is similar to our result. The excitations atE,0 have most
weight near the zone center, as we find it. However, th
structure seems to be more complex: with increasing w
number they split into two ‘‘subbranches.’’ The lower pa
has downward dispersion and seems to correspond to
bosonic branch. The other subbranch produces weight
the chemical (E.0) potential for large wave numbers. Th
might correspond to ourh resonance, provided that its en
ergy near the zone corner, lying at a positive energy in
calculation, would in reality be lower. In this respect, th
spectral functions forn50.4 anduUu526t, also shown in
Ref. 21, are particularly interesting: forE.0, besides the
strong fermionic branch, there is a second branch of exc
tions the dispersions of which are very similar to theh peak
in our Figs. 4 and 5.

Thus, the main features of our spectral functions seem
be present in the Monte Carlo results, although the la
show a more complex structure. A detailed and more qu
titative comparison with QMC should also take into accou
the fact the ‘‘maximum entropy method’’ used there in ord
to extract spectral functions from data obtained as functi
of the ~imaginary! Matsubara frequencies does not easily
low for an unambiguous identification of excitations wi
small weight.

Finally, we note that we do not obtain any spectral weig
at zero frequency, signaling the presence of a correla
induced gap. We also checked that including particle-h
excitations in the calculation does not affect this conclusi
The appearance of a true gap in our calculation is, at le
partly, due to the fact that our spectral lines have no wi
~except that the ‘‘doubling’’ of the fermionic branch gives
hint to a broadening of the latter!. Spectral functions with
finite line width would be obtained either by doing theqW
sums in the expression~4! for the self-energy more precisely
and/or by evaluatingG andS by solving Eqs.~2!–~5! self-
consistently.

In summary, we have determined the excitation spectr
of the attractive Hubbard model at intermediate coupling
of a simple analytical calculation. We first pointed out
intrinsic problem of perturbation theory relative to the impl
mentation of the Mermin-Wagner theorem. We made use
an alternative expression for the density to obtain a qua
tively correct theory which does not break down at lowT in
two dimensions, in contrast to previous self-consistent ca
lations. We obtain an analytical expression for the Gree
function which reproduces the qualitative features of
QMC simulations in the low-density regime.
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Rodrı́guez-Núñez, and H. Beck, Phys. Rev. B52, 16 223~1995!.

9R. Haussmann, Z. Phys. B91, 291 ~1993!.
10P. J. H. Denteneer, G. An, and J. M. J. van Leeuwen, Phys. R

B 47, 6256~1993!.
11J. M. Singer, M. H. Pedersen, T. Schneider, H. Beck, and H
.

.

J.

v.

.

Matuttis, Phys. Rev. B54, 1286 ~1996!; J. M. Singer, M. H.
Pedersen, and T. Schneider~unpublished!; J. M. Singer~private
communication!.

12M. H. Pedersen, Ph.D. thesis, University of Zurich, 1996; M.
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