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Superfluid mass current induced by chaotic vortex lines in turbulent He II

Sergey K. Nemirovskii*
Institute of Thermophysics, 630090 Novosibirsk, Russia

~Received 20 November 1996!

Using the Gaussian model of a chaotic vortex tangle in counterflowing superfluid turbulent He II, we
calculate superfluid mass current induced by vortex filaments. This additional superfluid current directed
against the external superfluid flow is shown to appear due to the nonzero average polarization of the vortex
loops. In macroscopic descriptions, in particular in hydrodynamic experiments, the induced superfluid current
displays itself as a suppression of the superfluid density. The temperature dependent relative change of the
superfluid density2Drs /rs turns out to be several percent. Some experimental consequences such as an
additional pressure drop and a decrease of the velocity of the second sound propagating in the superfluid
turbulent He II are discussed.@S0163-1829~98!04809-7#
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I. INTRODUCTION AND SCIENTIFIC BACKGROUND

The idea that chaotic vortex loops comprising the vor
tangle in superfluid turbulent He II create a nonzero aver
superfluid velocity has been suggested by many scien
~see, e.g., Ref. 1!. Indeed, since the vortex loops have no
zero mean polarization~see Fig. 5 in Ref. 2!, it seems to be
natural that they induce a nonzero mean superfluid velo
as demonstrated in Fig. 1. Furthermore, since the mean
larization is directed along the external relative velocityVns

~created, e.g., by a heater!, it should be expected that th
induced superfluid current is also orientated alongVns . Thus
it will partly cancel the superfluid currentrsVs due to the
external source. On the macroscopic level, in particular
hydrodynamic experiments, the partial cancellation of
external superfluid current can be described as a suppre
of the ‘‘bare’’ superfluid density. Apart from some quantit
tive corrections, the study of this effect is essentially imp
tant for a further understanding of the nature and structur
the vortex tangle as well as the laws governing stocha
dynamics of vortex filaments. Another motivation of the i
terest in the discussed effect is connected with the fam
Kosterlitz-Thouless theory.3 Indeed, as is well known, in the
two-dimensional~2D! case the spontaneously created vor
pairs in helium film induce a superfluid mass current, co
parable with the one due to other excitations. This eff
renormalizes the ‘‘bare’’ superfluid density and leads to
specific phase transition. There exists a number of wo
asserting that the bulkl transition has the same nature~see,
e.g., Ref. 4!. Therefore the study ofJV created by vortices in
3D superfluid turbulent helium seems to also be attrac
from this point of view. Furthermore, a consideration of s
perfluid mass current induced by chaotic vortex filament
of crucial importance for hydrodynamics of superflu
turbulence.5 It was convincingly demonstrated in a series
works made by Geurst~see Refs. 6,7!, where he constructed
the hydrodynamics of superfluid turbulence in which the i
pulse of the vortex tangle was introduced as a new indep
dent variable. It was shown that this modified hydrodyna
ics includes a number of effects, for instance it explain
such classical problems of the theory of superfluid tur
570163-1829/98/57~10!/5987~8!/$15.00
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lence as a problem of the slow decay of the free vor
tangle.

To our knowledge the only attempt to calculate the sup
fluid current induced by the vortex tangle was undertaken
Geurst, in the papers cited above,6,7 in a phenomenologica
way. Using the variational principle as well as the Onsa
reciprocity relation and also some dimensional speculatio
Geurst derived a closed set of governing equations~includ-
ing an equation for the impulse of the vortex tangle! which
included some empirical constants. These constants w
specified from the comparison of the expressions for so
quantities~e.g., mutual friction force or the parameters of t
Vinen equation! with the ones obtained by Schwarz in
numerical simulation of the vortex tangle dynamics.8 In this
way Geurst concluded that the impulse of the vortex tan
decreases as the polarization of the vortex tangle incre
which seems to be strange.

Thus the problem of the proper calculation of superflu
current induced by vortex filaments remains open in spite
its obvious importance. Of course the main obstacle was
lack of any advanced stochastic theory of the vortex tan
which would allow one to evaluate various averages o
vortex line configurations. The approach developed in
previous paper2 provides the means to realize this task.
Sec. II of this paper we calculate the superfluid current d
sity with the help of the characteristic functional introduc
in Ref. 2. As it was predicted from a qualitative conside

FIG. 1. The oriented vortex loop induces average superfl
velocity in the direction of the mean polarization.
5987 © 1998 The American Physical Society
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5988 57SERGEY K. NEMIROVSKII
ation the vortex tangle creates superfluid flow direc
against external superfluid flow thereby decreasing the la
The corresponding temperature dependent relative chang
the superfluid density2Drs /rs turns out to be of severa
percent. We discuss both longitudinal and transverse ca
Section III is devoted to discussion of some experimen
consequences such as a jump of the Bernoulli pressure
change of the second sound velocity due to suppressio
superfluid density.

II. SUPERFLUID CURRENT CREATED
BY THE VORTEX TANGLE

A. Longitudinal case

Given some particular configuration of the quantized v
tex filaments $sj (j j )%5ø jsj (j j ), the superfluid velocity
vs

V(r … created by them is obtained from the Biot-Savart l
~the notation throughout this paper corresponds to that of
previous paper2!

vs
V(r …5

k̃

4p(
j
E sj8~j j !3@r2sj~j j !#

ur2sj~j j !u3
dj j . ~1!

Accordingly a full momentumPV of the additional super-
fluid motion connected to the presence of the vortex line

PV5rsE vs
V~r !d3r . ~2!

The direct use of Eqs.~1!,~2! encounters a problem typical o
vortex flows. The integral in Eq.~2! diverges both for smal
and for largeur2sj (j j )u ~see, e.g., Refs. 9,10!. Therefore the
question of the average velocity or of the full momentu
generated by vortices cannot be resolved in straightforw
way. On the other hand, it is known that in many respects
so-called Lamb impulse plays the role of momentum.11 In
general the Lamb impulse densityJV is defined by the rela-
tion

JV5
rs

2VE r3v~r !d3r, ~3!

wherev(r ) is the distribution of the vorticity. The singula
distribution of vorticity, viz., the vortex filament relation~3!,
can be rewritten as

JV 5
rsk̃

2V(
j
E sj~j j !3sj8~j j !dj j . ~4!

Thus the Lamb impulse depends on a particular configu
tion of the vorticity. In the case of superfluid turbulence w
have to calculate the quantityJV @Eq. ~4!# averaged over the
vortex loop configuration. We will accomplish the accordi
averaging using the Gaussian model of the vortex tangle
veloped in the previous paper.2 Let us start with the accord
ing calculation.

For convenience we perform the one-dimensional Fou
transform of the functionsj (j):

sj~j j !5(
k

sj~k!eikj j , k52pn/L j . ~5!
d
r.
of
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In k space the averagea component of the Lamb impuls
~4! can be written as

JV
a5K rsk̃

2V(
j

(
kÞ0

eabgL j S 1

2 ik D sj b~k!sj g~2k!L , ~6!

where the quantityeabg is the unit antisymmetric tensor
Harmonic k50 should be excluded in the summation b
cause of the closure of the vortex loops~see Ref. 2 for ex-
planations!.

The right-hand side of Eq.~6! belongs to a class of quan
tities which can be evaluated by the use of the character
functional introduced in Ref. 2. In terms of the characteris
functional the average Lamb impulseJV

a @Eq. ~6!# is ex-
pressed as

JV
a5

rsk̃

2V(
j

(
kÞ0

eabgL j S 1

2 ik D
3

d2W

iL jdPj
a~k!iL jdPj

b~2k!
U

all Pj 50

. ~7!

Using the quantityW$Pj
a(k)% constructed in the previou

paper we obtain that only thez component of the vectorJV
a

differs from zero and that it is equal to

JV
Z5

rsk̃

2V(
j

(
nÞ0

2NxyL jexpF2S 2pj0

L j
nD 2G . ~8!

Substituting the quantitiesNxy andj0 from Ref. 2 we finally
have

JV
z 5

rsk̃

2V(
j

(
nÞ0

2Ap

2

I l

c2
3LV

expF2S 2pj0

L j
nD 2G

5
rsk̃ I lLV

1/2

2c2
2

. ~9!

Evaluating Eq. ~9! we changed(nÞ0→*dn becausej0
!L j , and used the fact that the total length of vortex lin
per unit of volume( j (L j /V) is nothing but the vortex line
densityLV .

In accordance with Schwarz’s calculations8 the ‘‘equilib-
rium’’ vortex line densityLV satisfiesLV

1/25(I l /bc2
2)uVnsu,

whereb5( k̃ /4p)ln(1/c2LV
1/2a0), (a0 is the core radius!. The

weakly dependent onLV combination (1/4p)ln(1/LV
1/2a0) is

close to unity for usual values of the vortex line dens
realized in the experiment. Using it as well as the relat
Vs52(r/rn)Vns held in counterflow, formula~9! can be
rewritten in terms of external superfluid velocityVs as

JV
z 52F rI l

2

2rnc2
4GrsVs . ~10!

Relation~10! shows that the vortex tangle induces the sup
fluid current directed against the external superfluid curre
Formally the connection between the nonzero polarization
the vortex tangle and the superfluid mass current induced
chaotic vortex lines is reflected in formula~9! by the fact that
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JV
z increases as the quantityI l increases. For this reason th

result thatJV
z }I l

21 obtained by Geurst6,7 and discussed in the
Introduction seems to be unclear. The power 2 with wh
the polarizationI l enters Eq.~10! is the result of the fact tha
the quantityLV

1/2 is also proportional to quantityI l .
From a macroscopic point of view, in particular in hydr

dynamic experiments, the additional superfluid mass cur
which cancels a part of the applied external velocity sho
display itself as a suppression of the superfluid density. It
be said that this effect is the 3D analog of the Kosterli
Thouless effect, except the distribution of vortices has
been derived theoretically, but in fact has been taken fr
experimental data~see for comments the previous paper2!.
Suppression of the superfluid densityDrs being defined as a
response of the system to the applied infinitesimal superfl
velocity dVs ,

Drs5
dJV

d~dVs!
, ~11!

has a tensor nature. Applying Eq.~11! to relation ~10! one
concludes that the longitudinal relative suppressionDrs /rs
is

Drs

rs
52F rI l

2

2rnc2
4G . ~12!

Thus we expressed the suppression of the superfluid c
ponentDrs /rs via structure parameters of the vortex tang
Using the known values for the structure parameters~see
Ref. 8! one can evaluate the suppressionDrs /rs as a func-
tion of temperature. The result depicted in Fig. 2 shows t
the suppression of the superfluid componentDrs /rs as a
function of the temperature is of the order of several perc
We think it is a pretty large effect deserving experimen
study.

As was mentioned in the Introduction there are a num
of works where authors explain the bulkl transition in He II
by the spontaneous appearance of oriented vortex lo
which create a mean superfluid flow cancelling the app
superfluid flow~see, e.g., Ref. 4!. According to Ref. 4 this
cancellation can result in the vanishing of the superfl
component, i.e., to be the reason of thel transition. In this
connection it seems interesting to study the behavior of

FIG. 2. The predicted behavior of the suppression of the su
fluid densityDrs /rs as a function of temperature.
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quantity Drs /rs near Tl̇ obtained in our work. Strictly
speaking our approach is not applied directly for tempe
tures nearTl . Indeed, due to the divergence of couplin
constantsa and a8 entering the equation of motion of th
vortex line and due to the fact that they became the str
functions of both the relative velocity and frequency~see,
e.g., Ref. 1!, the dynamics of vortex lines is rather differe
from the one in the low-temperature region. Therefore b
the experimental results on the superfluid turbulence and
merical simulations of the vortex tangle dynamics perform
in the low-temperature region which were the bases for
formalism are hardly valid for theTl vicinity. However, the
extremely simple form of relation~12! as well as its clear
physical meaning give some hope to at least follow the t
dency of theDrs /rs behavior while approachingTl .

Let us note first of all that the expression (I l
2/c2

4) entering
relations ~10!,~12! can be extracted from the experiment
data on heat transfer in He II near thel point. Indeed, while
applying a supercritical heat fluxq, there appears a gradien
of the temperature¹T proportional to the mutual forceFns
between normal and superfluid components. In turn the m
tual forceFns is expressed via the Gorter-Mellink consta
A(T). Thus the former can be obtained analyzing expe
ments on heat transfer. On the other hand, from a mic
scopic point of view the quantityFns can be evaluated via th
structure parameters~see Ref. 8! and is proportional to
I l

2/c2
4 . Elaborating this scheme one concludes that the sin

lar part of the suppression of the superfluid density is

Drs

rs
52

A~T!r2k̃

rnB~T!
. ~13!

Here B(T) is a singular part of the Hall-Vinen coefficien
which behaves as (Tl2T)20.33 in the vicinity of thel point
~see, e.g., Ref. 1!. The situation with the behavior of th
Gorter-Mellink constantA(T) is much more involved. The
gradient of the temperature¹T is not proportional toVns

3 , as
expected from the relationFns } LVVns , but as was shown
by Leiderer and Pobell12 and by Ahlers,13 it has a more com-
plicated dependence¹T (Vns) fitted by ¹T}Vns

m . To cure
this problem and to retain the Vinen theory Leiderer a
Pobell proposed that one should to take into account
influence of critical velocityVns,cr . Fitting their data they
concluded thatA(T)} (Tl2T)20.35, thereforeDrs /rs has
no singularity nearTl . The same conclusion could be mad
from the direct scaling analysis of quantity (I l /c2

2) nearTl

made by Swanson and Donnelly.14 On the other hand, Ahl-
ers, neglecting the influence of the critical velocityVns,cr and
straightforwardly fitting his data, concluded thatm runs from
3 to 4 with theA(T)} (Tl2T)20.23whenm53, andA(T)}
(Tl2T)20.64 whenm54. It is easy to see that depending o
the choice of quantitym, the suppression of the superflu
density Drs /rs as a function of (Tl2T) either converges
(m53) or diverges (m54). Thus the question of whethe
the chaotic vortices are the cause of the full vanishing of
superfluid density remains open. We think, therefore, t
experimental study of superfluid turbulence near thel point
is an important field having many applications. Moreov
we feel that the present problem of thel transition in a heat
flux attracts the attention of many researchers.

r-
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5990 57SERGEY K. NEMIROVSKII
B. Transverse case

With the goal of discussing the possibility to detect t
effect of suppression of the superfluid componentDrs /rs by
the transverse second sound, let us study what would ha
if one imposed a small transverse counterflow velocitydVns

x

on the main flow~see Fig. 3!. We would like to remind the
reader that in Vinen theory the superimposing of the sm
transverse counterflow velocity changes nothing since b
vortex line densityLv and its dynamics depend on only a
absolute value of the counterflow velocity, but the latter do
not change to first order. On the other hand, it is obvious
something should happen. From the point of view of t
approach developed here, an application of the small tra
verse counterflow velocitydVns

x results in a slight change o
the orientation of the polarization of the vortex tang
whereas the mean curvaturej0 and vortex line densityLv do
not change~to first order indVns

x ). Apparently the change o
the polarization direction should lead to the appearance
transverse (x) component of superfluid mass currentdJV

x in-
duced by the vortex tangle. Just as in the longitudinal c
the additional current results in a suppression of superfl
densityDrs

x in the x direction defined by

Drs
x5

dJV
x

d~dVs
x!

. ~14!

The variation of the Lamb impulsedJV while applying small
arbitrarydVns should be evaluated from the following rule

dJV5
rsk̃

2 (
j H E ^sj~j j !3sj8~j j !&U

Vns1dVns

dj j

2E ^sj~j j !3sj8~j j !&U
Vns

dj jJ . ~15!

The indexVns1dVns in the first integral points out that w
have to calculate the average for the main flow plus a sm
additional flow, whereas the second average should be
culated for the main flow only. ImposingdVs to be directed
in the x direction and taking thex componentdJV

x of the
vectordJV one concludes that

FIG. 3. Illustration of the transverse experiment. Small perp
dicular deviationdVns of the counterflow velocityVns changes the
orientation of the polarization of the vortex tangle, whereas
vortex line density and mean curvature do not change to the
order indVns .
en
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dJV
x 5

rsk̃

2 (
j
E $^sjy~j j !3sjz8 ~j j !&uVns1dV

ns
x

2^sjz~j j !3sjy8 ~j j !&uVns1dV
ns
x %dj j . ~16!

Note that it is not necessary to subtract the average on
main flow @the second term on the right-hand side of E
~15!# for the combination̂ sj (j j )3sj8(j j )&uVns

does not have

a x component at all. Using prescription~7!, relation~16! can
be expressed in terms of the characteristic functional and
be rewritten via matrixNab(k):

dJV
x 5

rsk̃

2 (
j

(
kÞ0

S 2

2 ik D $Nyz~k!uVns1dV
ns
x

2Nzy~k!uVns1dV
ns
x %. ~17!

Since in first order indVns
x both the mean curvaturej0 and

vortex line densityLv do not change, the distinction of th
matrix Nab(k)uVns1dV

ns
x from Nab(k)uVns

stems from the dif-

ferent orientations of the flows. Therefore the mat
Nab(k)uVns1dV

ns
x is to be obtained by the rotation of the m

trix Nab(k)uVns
through the small anglew5arctanudVs

xu/uVsu
around they axis ~see Fig. 3!. Multiplying the matrix
Nab(k)uVns

by the matrix of infinitesimal rotation

Nab~k!uVs1dV
s
x5S 1 0 w

0 1 0

2w 0 1
D Nab~k!uVs

, ~18!

we have

Nab~k!uVs1dV
s
x5S Nxx~k! Nxy~k! wNzz~k!

Nyx~k! Nyy~k! 0

2wNxx~k! 2wNxy~k! Nzz~k!
D ,

~19!

whereNab(k) are the elements of the matrixN for the un-
disturbed counterflow~see Ref. 2!. Substituting Eq.~19! into
Eq. ~17! we conclude that the superimposing of the sm
external transverse counterflow results in the appearanc
transverse superfluid current directed againstdVs

x and equal
to

dJV
x 52F rk̃ I lav

4rnc2
2bv

GrsdVs
x . ~20!

Relation ~20! implies that the transverse suppression of
perfluid density (Drs /rs)x is

S Drs

rs
D

x

52F rk̃ I laV

4rnc2
2bV

G , ~21!

i.e., one half of the longitudinal value.

III. SOME EXPERIMENTAL CONSEQUENCES

In this section we discuss some experimental con
quences of the results obtained above. Although the supp
sion of superfluid density is pretty large, of the order
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5–10 % of the ‘‘bare’’ superfluid density, we do not kno
how it can be measured directly. Instead we propose
hydrodynamic effects which are connected with the supp
sion of the superfluid density in supercritical counterflow

A. Jump of the Bernoulli pressure

One possibility to detect the suppression of superfl
density is a measurement of the pressure differenceDpB be-
tween points inside and outside a channel where the cou
flow of He II is realized. It is known~see, e.g., Ref. 15! that
under some suppositions the analog of the Bernoulli
takes place in superfluid hydrodynamics. Namely, in ste
flows the combination

p1S 1

2
rsVs

21
1

2
rnVn

2D ~22!

should be constant. Following Ref. 15 we refer to the te
inside the parentheses as the Bernoulli pressurepB . In the
counterflow the quantitypB is expressed via applied he
flux q as

pB5
rnr

2rs
~q/ST!2, ~23!

where S is the entropy density. The circumstance that
expression for the Bernoulli pressure~23! includes the quan-
tities rs andrn gives an opportunity to detect and to measu
the effect of the suppression of superfluid density descri
above. Really, after exceeding the critical velocity, the v
tex tangle develops in the channel which results in a cha
of the superfluid density. According to relation~23!, the
change of the superfluid density leads to the jumpDpB of the
Bernoulli pressure as is schematically shown in Fig. 4.
for numerical values, the evaluation with the help of re
tions ~12!,~23! gives for the jump of the Bernoulli pressur
DpB the value of order 10 Dyn/cm2 for the temperatureT
51.62 K and for heat flux of order 1W/cm2. The excessive
pressure dropDp in superfluid turbulent helium has actual
been observed in a number of works~see, e.g. Ref. 16!, but
usually it was attributed to nonuniformity of the counterflo
~in transverse direction! and to the ‘‘eddy’’ viscosity.

FIG. 4. Jump of Bernoulli pressure appearing in the counterfl
after exceeding the critical value of the heat flux~schematically!. A
dashed line corresponds to pure Bernoulli pressure without supp
sion of the superfluid density.
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B. Transverse second sound experiment

The second hydrodynamic effect which we would like
discuss, is related to the propagation of second sound in
supercritical counterflow. The second sound testing is on
the most popular experimental methods of studying sup
fluid turbulence. The expression for the second sound ve
ity includes superfluid densityrs . Thus the measurement o
the second sound velocity in the supercritical counterfl
would enable us to study the effect of the suppression
superfluid density. The longitudinal second sound modula
the value ofLv, therefore the effect of the suppression ofrs
may be confused with other phenomena arising from
vortex line density dynamics. For this reason we discuss h
only the case of transverse second sound.

Formula~21! for the transverse change ofrs was derived
for a static case. To use relation~21! for dynamical phenom-
ena we have to develop our approach a bit further. The g
eral theory~see, e.g., Ref. 17! asserts that for a nonstationa
process, whendVns

x is a harmonic function of time,

dVns
x }exp~ ivt !, ~24!

formula ~21! should be improved. Namely, the suppressi
of superfluid density in this situation becomes a function
frequencyv in the following form:

Drs
x~v!5~Drs

x!static

1

11 ivtJ
. ~25!

Here (Drs
x)static is the transverse change of superfluid dens

in the static transverse experiment introduced by Eq.~21!, tJ
is the time of the relaxation of the superfluid mass curr
JV , which is supposed to satisfy the conditionvtJ!1. Thus
the shift ofDrs

x(v) is the complex quantity, which implies
that besides the change of the second sound velocity t
will also be an additional dissipation and dispersion. Tak
the real part of relation~25! and employing conditionvtJ

!1 let us rewriteDrs
x(v) in the form

Drs
x~v!5~Drs

x!staticS 1

vtJ
D 2

. ~26!

The relaxation time of the superfluid mass currentJV
x can

be found from a dynamical consideration. Let us consi
first the dynamics of the full currentJV . Using the prescrip-
tion made in Sec. II B of the previous paper2 we have to
revert a time dependence for the line element positi
sj (j j )→sj (j j ,t) and to differentiate~with respect to variable
t) the expression for the Lamb impulse~4! with the subse-
quent use of the chain rule. Accomplishing such a proced
we arrive at the following expression for the rate of chan
of quantityJV :

dJV

dt
5rsk̃(

j
E ^ṡj~j j ,t !3sj8~j j !&dj j

52rsk̃(
j
E ^sj8~j j !3@Vs1V i1asj8

3~Vns2V i !#& dj j . ~27!

Here we used forṡj (j j ,t) the right-hand side of the equatio
of motion of the vortex line, discussed in detail, e.g., in R

s-
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5992 57SERGEY K. NEMIROVSKII
1, the quantitya is the friction coefficient,V i is the velocity
of the line elements induced by the vortex filament config
ration ~including the contribution from image vortices! and
expressed by the Biot-Savart law. With good accuracy~see,
e.g., Ref. 8! the quantityV i can be taken from the so-calle
local approximationV i5bsj8(j j )3sj9(j j ), where, we recall,

b5( k̃ /4p)ln(1/LV
1/2a0) (a0 is the core radius!. It is easy to

see that if one took a local approximation forV i the contri-
bution in the integral from the second term on the right-ha
side would vanish due to symmetry. Furthermore, the us
supposition is that the external superfluid velocityVs is uni-
form. Therefore the contribution in the integral from the fir
term in the right-hand side should also vanish. The rest of
right-hand side of Eq.~27! is nothing but the forceFsn ex-
erted by the normal component on the vortex tangle so
arrive at the following result:

dJV

dt
5Fsn . ~28!

This result expresses the obvious fact that the rate of cha
of the Lamb impulse is equal to the applied external for
Nevertheless Eq.~28! needs some comments. The most u
pleasant thing about this equation is that the quantityJV is
not conserved, but, on the contrary, it will either vanish
grow up to infinity depending on the initial conditions. Th
situation is identical to the behavior of the vortex rings mo
ing in He II which either grow up to infinity or vanish de
pending on their radius and polarization. However, in
steady caseJV should be constant and the question of wh
equilibrates the action of the friction force to sustain t
stationary situation arises.

One of the possible ways to cure this situation is to ab
don the assumptions made while deriving the equat
namely, the use of the local approximation and the supp
tion of the uniformity ofVs @Eq. ~28!#. Then the right-hand
side of Eq.~28! should include the additional terms

2rsk̃(
j
E ^sj8~j j !3Vs

total&dj j , ~29!

whereVs
total is the sum of the external and full self-induce

velocities, including a nonlocal contribution as well as t
one that appears from image vorticity near the boundar
Expression~29! is called the vortex force~see, e.g., Ref. 10!.
It can be rigorously proved that a nonlocal contribution
well as the local one does not change the value of the t
Lamb impulse. As for the contribution from the image vo
ticity, it does change the dynamics of the vortex lines es
cially near the walls~this question is of independent inte
est!. However, the according effects are too weak to reso
the paradox. One more omitted effect during the derivat
of Eq. ~28! is related with the reconnection processes. Ho
ever, reconnection processes do not change the Lamb
pulse~see Ref. 18! therefore the consideration of them do
not resolve the problem either~Ref. 19!.

We think that the resolution of the discussed problem
deeper and simpler simultaneously and lies in the fact
the deterministic equation of motion of the vortex line cann
be applied to describe the evolution of quantities having
tistical origin. Moreover, it cannot be applied to describe
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stochastic dynamics of the line itself. Indeed because of
nonlinearity the dynamics of vortex filaments should
highly unstable producing a huge amount of uncontrol
perturbations in the motion of the line. These chaotic pert
bations are usually introduced into equations of motion
random~or Langevin! forces supplemented by some supp
sition concerning their stochastic properties. The steady c
is reached as a result of the competition of the determini
terms and of the random forces. The description of the c
otic vortex filament dynamics appears to apply the same p
cedure. The introduction of random force should also cha
the equations for the evolution of macroscopic quantities
particular, the equation for the Lamb impulse@in comparison
with relation~28!# which would resolve a problem of stead
states. We would like to remind the reader that a sim
conclusion was made by Schwarz8 who also faced the prob
lem of the degeneration of the vortex tangle in his numeri
simulations and was obliged to use a procedure of artifi
mixing. A random forcing of the filaments may solve th
degeneration problem in a more physical manner.

In spite of their undoubted importance, the problems
posed above are obviously beyond the scope of our pa
Therefore to proceed and to determine the time of relaxa
tJ of quantityJV

x entering Eqs.~25! and~26! we use a rough
estimate, casting Eq.~28! into standard relaxation form

dJV
x

dt
5

dFsn
x /dVns

x

dJV
x /dVns

x
JV

x . ~30!

The fraction on the right-hand side of relation~30! can be
considered as an estimate~upper limit! of the inverse relax-
ation time 1/t j . DenominatordJV

x /dVns
x should be extracted

from relation~20!. As far as the numerator is concerned,
can be evaluated by the use of Eq.~27!, where we have to
substituteVns→Vns1dVns

x , Vs→Vs1dVs
x , average them

over the total flowVns1dVns
x , and, finally, to take thex

component. Accomplishing the corresponding algebraic m
nipulations we finally obtain20

1

tJ
'

8a~12I xx!

b
Vns

2 . ~31!

Combining Eqs.~21!,~26! with Eq. ~31! and inserting the
result into the expression for the second sound velocityu2
one concludes that the transverse second sound propa
slower in counterflowing He II. The relative changeDu2 /u2
is

Du2

u2
52 f ~T!

Vns
4

v2
. ~32!

Here the functionf (T) is composed of structure paramete
of the vortex tangle:

f ~T!5
4rk̃ I l

2a2~12I xx!
2

rnc2
4b3

. ~33!

Decreasing the second sound velocity in counterflow
He II was really observed about two decades ago by Vida21

To our knowledge there was only one attempt to consi
this effect theoretically made by Mehl.22 He explained the
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change of the second sound velocity by introducing
imaginary part into the Hall-Vinen constant. However,
addition to some numerical disagreement, Mehl’s theory
not explain the strongVns dependence in experimental da
Let us compare our result~32! with the Vidal experiment
Using the data on the structure parameters one obtains
e.g., for temperature 1.44 K, the value of the functionf (T) is
about 620 s2/cm4 . Taking the frequencyv54.3 rad/s, use
in Ref. 21, andVns52 cm/s one obtains thatDu2 /u2'4
31024, which is very close to the observed value.

IV. CONCLUSION

One of the purposes of this paper was to demonstrat
potentiality of the method of the trial distribution functio
developed in the previous paper.2 Indeed the exposition o
Sec. II convincingly showed that the calculation of the La
impulse was reduced to some simple procedure not requ
any additional suppositions.

Of course this purpose was not the only one, moreov
was not even the main goal. We think that the results
tained in this work have independent physical interest.
deed, though the idea that the chaotic vortex tangle ind
nonzero mean flow was discussed earlier, it was not bro
into a developed quantitative theory. Meanwhile as
shown in this work the quantitative study of the Lamb i
pulse leads to a number of interesting physical effects.
major one of them is the suppression of the superfluid
sity, which, in addition, turned out to be fairly large, of t
order of several percent. Unfortunately the uncertainty in
experimental data did not allow us to resolve the very
portant question concerning the behavior of the quan
Drs /rs nearTl .

The revealed effect can be detected and measured i
drodynamic experiments in He II, where the superfluid d
sity is relevant and enters the corresponding formulas i
explicit form. We discussed two hydrodynamic phenom
such as the additional pressure drop and the decrease
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velocity of the second sound propagating in superfluid t
bulent He II.

In our opinion one of the most important by-products
the analysis of the dynamics of the Lamb impulse made
Sec. III. The conclusion that the deterministic dynamics
the vortex line cannot be applied to an adequate descrip
of the evolution of the Lamb impulse~and other macroscopic
quantities!, nor to a description of the vortex line dynamic
itself can drastically change our notions of the nature of
superfluid turbulence. This point of view coincides with
similar conclusion made by Schwarz8 who obtained it in a
numerical simulation.

Another important by-product is that the characteris
time of relaxation of the Lamb impulse is close to the one
the vortex line densityLv(t). This result, implying that mac-
roscopic dynamics of the vortex tangle cannot be reduced
the only Vinen equation, can also force us to revise many
the classical results.
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