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Gaussian model of vortex tangle in He I
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A description of the chaotic vortex tangle in superfluid turbulent He Il is developed. Unlike current phe-
nomenological theory dealing with only the macroscopic variable, the vortex line deh$ilyand describing
thereby only the macroscopic hydrodynamic phenomena, our approach allows us to describe effects due to the
arrangement of the vortex tangle and the interaction of lines. To develop this approach we introduce a trial
distribution function in the space of vortex loop configurations which absorbs all properties of superfluid
turbulence known both from experiment and from numerical simulations. This trial distribution function is
built in terms of the path integral. A number of allowed configurations is obtained evaluating the path integral
with constraints connected with the established properties of the vortex tangle. Using the trial distribution
function we also build the characteristigenerating functional which allows us to evaluate any average over
the vortex loop configuration. On the basis of the developed approach we briefly discuss some simple statistical
characteristics of the vortex tangle. A more extended example of the developed approach studying superfluid
mass current induced by vortex tangle is reported in a subsequent BpE63-1820008)04709-2

I. INTRODUCTION AND SCIENTIFIC BACKGROUND Feynman’s qualitative model was further developed in the
classical works of Vineh’ who brought these ideas into

It is widely acceptedsee, e.g., Ref. 1 and Refs. 2 and 3 quantitative relations. In particular Vinen obtained the equa-
that after exceeding some criticéhirly small) value of ve-  tion bearing his name which governs macroscopic dynamics
locity (or of the relative velocity,,=V,,— V, if one consid-  of the vortex tangle, i.e., evolution of the vortex line density
ers the case of counterflguhe entangled mass of the chaotic £,(t). This equation reads
vortex filament or the vortex tangle appears in the superfluid
component of He Il. The wide class of hydrodynamic phe- dg,
nomena associated with the presence of the vortex tangle is dt
called superfluid turbulence. The most standard scheme to
study superfluid turbulence is depicted in Fig. 1. The counwherea, andg, are the parametefglependent on the bath
terflow is created by the application of a heat lapdo the  temperatureT and pressurep) specified by Vinen in the
end of the channel filled by He Il. When the heat load is€xperiment. The first term on the right-hand side of Eg.
small, the counterflow is supported by an extremely smalcorresponds to the growth of the vortex line density due to
drop of the temperatureA(T=q) along the channel needed mutual friction, the second one is connected to a decay due
to overcome the viscous flow of the normal component. Af-to the breaking down of the vortex rings. To find the form of
ter exceeding some critical value of the heat flakorder of the two components Vinen used dimensional considerations
102 Wicn?) the temperature drop increases rapidlyT(
«q®), which indicates that an additional strong dissipative Heuter
mechanism appears. Feynfignoposed that this mechanism Vortex 1 le
was the friction between the normal component and a set of / L L L/ o L L/ / LL L LS

chaotically distributed filaments of quantized vortices. He

also proposed a qualitative scenario describing the evolution X
of the vortex tangle. In accordance with this scenario the

friction force between the normal component and vortices S

causesn averagea growth of the total length of the vortex A

filaments. When the vortex tangle becomes dense enough, A AT Ap ge/ NN
the collisions of lines come into play. In the processes of cond sound probe
collision or self-collision the lines reconnect. Subsequent
self-reconnections of the rings result in the appearance of fows from the heater carrying the heat flpe STV, : the super-
cascadelike breaking down of the vortex loops which Iead?lwd component flows toward the heater. Total mass curjent

to an eventual reduction of total lengtbee Fig. 2 The  _ ., v —0. The usual measured quantities are the drop of
competition Of these two mechanisms results in the “eqUiyemperatureAT or/and pressura p, attenuation and velocity of the
librium” state” when the total length of lines per unit of second sound propagating at different angles through the counter-
volume, or vortex line densitf, is established in the sys- fiow, the shape of heat pulses, etc. Here are also depicted the axes
tem. The quantityC, is a function of the counterflow veloc- used in the present paper, theaxis is directed along the relative

ity Vs and of parameters of the system, such as the batelocity V., axesx andy are arbitrary, however, symmetry be-
temperaturel and pressure. tweenx andy is assumed.

a,|Vnd £3%- B, L2, 1)

\J\\

FIG. 1. Turbulent counterflow in He Il. The normal component
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which turned out to have a more complicated structure than

the one obtained with the help of E@), the attenuation of
longitudinal and transverse second sounds, averaged curva-
ture of the filaments, and a number of other quantities.
/\ Q O Schwarz also managed to express the rate of change of the
vortex line density dZ,/dt via the structure parameters
and demonstrated that it was equivalent to the Vinen equa-

tion (1), although with a different interpretation.
() (d) (&) Although the phenome_nological theory sucgessfully ex-
plains many phenomena, it has a number of serious problems
and open questionsee, e.g., Ref.)3 However, the follow-
ing aspect seems to be more important and topical. Being
stage of approaching of the line elemerith; stage of collapse and formulated in terms of averaged macroscopical variable

reconnectionje) stage of cascadelike degeneration of the vortexEv(t) the phenomenological theorY 'gnor,es Q|scretenes§ of
loops into thermal excitations. the vortex tangle and, correspondingly, it fails to describe

effects connected to distribution of the filaments, their inter-
é'icnon etc., unless one draws some additional suppositions.
g\lthough Schwarz’s numerical modeling expands consider-
ably the limits of the phenomenological theory it also has
restricted possibilities to study effects connected to the fine

FIG. 2. Cascadelike process of the break down of the vortex
ring due to reconnectiofFeynman, 1956 (a) initial stage;(b),(c)

as well as the results of the dynamics of single vortex ring
and the experimental data. In stationary cases Vinen's equ
tion yields the relation

5 structure of the vortex tangle. Indeed, as is often the case in
_% 2 numerical simulations, the structure parameters calculated by
- |Vns| . (2) L.

35 Schwarz can hardly be used to evaluate other quan(éigs,

the various correlation functioisthan the ones he had cal-

Relation(2) supplemented by some assumptions such as theulated. It is understood that the above mentioned statement
assumptions of isotropic and uniform distribution of the vor-does not concern the quantities which are directly expressed
tex lines in space served as a basis to evaluate the variowg& vortex line density and via the structure parameters.
guantities, e.g., the sound attenuation, mutual friction forceMeanwhile there exist many other physical quantities related
temperature gradient, etc. A large number of works existvith other physical phenomena which cannot be expressed in
where relations similar to Eq$l) and (2) were used to ex- terms of Schwarz theory. We will give some examples of
plain the various physical effects and further modificationssuch quantitiegand associated physical effectater in the

and corrections to the classical Feynman-Vinen theory wersecond section. Thus the question of developing the appro-

made(see, e.g., Ref.)1 priate stochastic theory of chaotic vortex filaments to calcu-
The Vinen equation can be incorporated into the classicdhte various averaged quantities arises.
hydrodynamics of He I[Refs. 8—10. This unified hydrody- Of course the most honest way to develop such a theory is

namics of superfluid turbulence describes a huge variety ab study stochastic dynamics of vortex filaments on the basis
nonstationary processes in the superfluid turbulent heliunof equations of motions with some source of chaos, for in-
such as propagation of strong thermal pulses, evolution aftance, introducing the Langevin force. However, because of
the temperature and the velocities fields, decay of the vortegxtremely involved dynamics of vortex lines this way seems
tangle, and other phenomerisee, e.g., Ref. )3 The ap- almost hopeless. Indeed the deterministic dynamics of the
proach developed by Feynman and Vinen is frequently revortex line elements in He Il is governed by an essentially
ferred to as the phenomenological theory of superfluid turnonlinear equation with nonpolynomial and even nonanalyti-
bulence, for the main constituents of this theory werecal nonlinearitiegsee, e.g., Ref. 13 or3This equation also
Feynman’s acute conjecture as well as Vinen’s experimentahcludes nonlocal terms due to Biot-Savart law. Because of
data. the mutual friction between vortices and normal component

Further progress in the understanding of the nature of suhe usual conservation lavs.g., the conservation of enejgy
perfluid turbulence and its relation to the vortex line dynam-are violated. In addition the reconnection processes perma-
ics can be found in a series of works by Schwéte key nently change the topology of the system. Probably the most
papers are Refs. 11-)13n a striking paper of this serits  serious obstacle is that the stochastic behavior is expected to
Schwarz reported on the results of a direct numerical simube essentially one of nonequilibrium. For instance, analytical
lation of the vortex filament dynamics. Starting from the and numerical investigations of the far simpler model prob-
equation of motion of the vortex line elements in He Il andlem devoted to the stochastic behavior of the vortex ring in a
assuming the vortex lines to reconnect while approachindpcal approach, without friction and reconnection, showed
each other, Schwarz showed that initially smooth vortexhat the strongly nonequilibrium state, characterized by the
rings developed into a chaotic vortex tangle. He calculatedlux of the local curvature in Fourier space, is established
some of the characteristics of this vortex tangle, which hdsee Ref. 14 For this reason we think that an advanced
called the structure parameters of the vortex tangle. It has ttheory of chaotic vortex filaments will not be developed in
be said that performing numerical simulations Schwarz prithe near future and the question of the proper calculation of
marily concentrated on the phenomena and effects studiecarious properties due to the distribution and interaction of
before in phenomenological theory. In particular he calcu-discrete vortex filaments on the basis of rigorous theory re-
lated the force exerted by vortices on the normal componennains open as before.
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In this paper another, far more modest approach is devel-
oped. The main idea and strategy are the following. Al-
though the phenomenological theory of the superfluid turbu-
lence deals with macroscopical characteristics of the vortex
tangle, it conveys rich information concerning timstanta-
neousstructure of the vortex tangle. The main goal of the
present work is to construct a trial distribution function in the
space of vortex loop configurations of the most general form
which satisfies all the established properties of the vortex
tangle. It is assumed that this trial distribution function will
enable us to calculate any averaged quantities due to the
vortex tangle(see, however, remarks made in the Conclu-
sion). In particular we will discuss some stochastic properties
of the vortex lines at the end of this paper. A more extended
example of the developed approach, which concerns a super-
fluid mass current induced by the vortex tangle, will be ex-

posed in the subsequent paper. _ _ ) :
The structure of the paper is the following. In Sec. Il we °f the vortex line element is described by cusyg;), whereg; is
the arc lengths; (§;) =ds;(&;)/d¢; is a tangent vector, the unit vec-

discuss the properties of th@astantaneousvortex tangle tor alona th tox line<(£) = o 142 s the local ;
structure known from experiment and numerical simulations!©" 210nd the vortex linesy(¢;) =d”s; (¢;)/d¢ is the local curvature
ector. Vector productios; (gj)xs’1 () is responsible for the mu-

?{x(;:lasr?grzvirsr\%‘irﬁh?gg gfelejf%fe?#]?[gtltlﬁss?gj tigtt(ar]rig,/toz:ltr? cFal orientation of the tangent vector and the vector of curvature.
. 9 . g phy he initial point of the curve denoted by a dot is chosen as arbitrary.

which cannot be obtained within the framework of phenom-

enological theory. In Sec. Il we construct the trial distribu-

tion function of a general form satisfying all the known prop- labeled by indexj. They can be described as a set of func-

erties of the vortex tangle. Performing this procedure WE; ; : ;

. X ions s;(&), wheres;(&)) is the radius vector of the points
widely use the ideas and methods of the theory of poneFestiné(an) thel IoopJ.( \};riableg- labels the points of Ft)he';
chains. Section IV is devoted to the calculation of the char-Ioop It is convenient to choose] varialdeto be equal to the
acteristic functional. As it will be shown the use of a char- arc length; (0<£,<L,) (see Fig. 3 We remind the reader

zsga':::gnfg??;%ﬂs r;(:/ter(;nlgs S't?unt'f:lggtlﬁas'smglgfsr;reei Ij[]hat we are interested in the instantaneous picture of the vor-
. rages, but play y tex tangle, therefore dependence on time is omitted. The
the construction of the trial distribution function. In Sec. V

: - ; whole configuration of the vortex tanglg;(¢;)} is the uni-
we discuss some statistical properties of the vortex tangle'fication of all of the curveqs;(£)}=U,5(£,). Due to fre-

II. ARRANGEMENT OF THE VORTEX TANGLE guent reconnectio_ns, both th_e_ number o_f_ loops and their
lengthsL; are arbitrary quantities. In addition each of the
This section is devoted to summarizing our knowledge orloops can take any arbitrary shapé&;). It should be under-
the arrangement of the vortex tangle obtained from the instood, however, that in spite of the arbitrariness of these
vestigations of superfluid turbulence. Primarily this knowl- quantities the whole configuration should meet a number of
edge was accumulated from the experimental works, howrequirements. For instance, the total length of the loops per
ever, while interpretating of one or other experiments,unit of volume-vortex line density, is the well determined
investigators used the conception of superfluid turbulence aguantity satisfying the relation
a set of vortex filaments chaotically distributed in space. L )
Fetching various semi-quantitative speculations investigators j
’ , ¢ . <;,$ | |s,’<§j>|d§j>=£v

(along -\7;5)

FIG. 3. Space curve representing-aortex loop. The position

counterflowing He ll(Fig. 1) consists of a set of closed lines

()

drew a number of conclusions concerning vortex tangle
structure. As it was said in the Introduction these pure phe-
nomenological results were confirmed in numerical simulaHereV is the volume, the prime denotes derivative with re-
tions of the vortex lines dynamics made by Schwidrzhe  spect to the arc lengthy . The angle brackets denote overall
numerical modeling not only established numerical valuegiveraging over vortex loop configuratiofs(¢;)}. Since the

for a number of characteristics of the vortex tangle, but als/ariable¢; is chosen to be the arc length, the absolute value
allowed us to determine them in temperature regions wher@f the tangent vector is the unit

the experimental data were absent. For this reason we widely ,

use the structure parameters calculated by Schwarz as a ba- |Sj (gi)| =1 (4)

sis, although in principle we could appeal only to the experiyhjich leads to the relation

mental results. Therefore in addition to the simple introduc-

tion of the quantities characterizing the vortex tangle L

structure, we will briefly discuss what experimental results <2 fo d§j> =V, ®)
led to them. .

The filaments comprising the vortex tangle are distributed
in space in an anisotropic manner. There are two kinds of

The current view on the vortex tangle arrangement can banisotropy. The first one is connected to orientations of the
summarized as follows. The vortex tangle developed irfine elements and has been discovered in experiments on the

A. What we know about the vortex tangle structure
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attenuation of transverswith respect to the counterflow, see %’(51')- The measure of polarizatioh has quantitatively
Fig. 1) and of longitudinal second sountiThe measure of peen introduced by Schwarz by the relation

this anisotropy can be defined with the use of the structure
parameterg; , |, introduced by Schwar@ee Ref. 1Bwho < 1

confirmed the anisotropy of the vortex tangle in the numeri- 7
cal modeling. For our purposes it is more convenient to use VL,

other parametert,, (@=x.y,z) simply connected with the  \yheree, stands for the unit vector in the direction (along

ones introduced by Schwarz. The fraction of the vortex lineya counterfloww 2. On the strength of the arguments dis-
. . . n .

elements orientated along tkeaxis is cussed above, conditiofil) can also be brought into the

local form

L.
;fo‘sj'<§,->><§j'<§,->d§j>=||ez, (11

1 Ll ! !
<w:v; ) Sﬂ(g‘)s‘”(f”dg'> e © (5 (6)XS(E))=1,L1%,. 12
To move further we have to discuss what we mean by th&hough relation11) was taken from numerical simulation it
phrase “overall averaging over vortex loop configuration.” can be readily obtained from experimental data. Indeed, the
Based on what has been said above, we state that the overaimbination(s/(¢;) X §/(¢;)) appears to be a positive term
averaging includes averaging ov@f the shape of each of in the equation for the rate of change of length of the line
the loops(ii) the number of the loops and their lengths, andelement. Therefore it can be extracted by comparing this
(iii) the initial points of each of the loops. As far as the equation with the first term on the right-hand side of the
second and third items are concerned, unfortunately neitheyinen equation(1). This procedure has been carried out in
experiment nor theory give any clue to the according distri-Refs. 10 and 13.
butions. To overcome this problem we accept the supposition The next property of the vortex tangle concerns the mean
of full uniformity of the vortex tangle made by many inves- curvature of the lines. The idea that the mean curvature of
tigators and also confirmed in numerical simulations. Bethe vortex tangle should be of the order of interline space
cause of uniformity overalllocal averages such as goes back to Hall's work on superfluid turbuleriée.ater
(S1a(&)), (S1a(§))s5(£))), etc., should not depend on both this view was discussed by many authors and was rigorously

& andj . Therefore relatior{6) is factorized as confirmed in Schwarz’s numerical simulation. He calculated
the coefficiemc§ connecting the averaged squared curvature
<Sj,z(§j)sj,z(‘fj)><v%; fOLjd§j> —1,, with the quantityZ, . In our notation this property reads
) 1 N e
and, in combination with Eq(5), can be rewritten in the <VT$ fo %(f,—)’%(&;)dé,—> =c3L, (13
local form v

or, in the local form,

<SJ,2(§J)SJ,2(§J)>: Izz- (7)

1eeNT (£ — 2
The essence of the performed procedure is the separation of <% (gj)% ())=c2L, (14

an overall averagilng into the one over the.sh.apes of the qups The uniform superfluid turbulence which we are inter-
and other averaging. Therefore accomplishing preaveragiNgsieq in s realized in wide channels. More rigorously it im-
over loop lengths, over the number of loops and their |n|t|alplies that interline spacé= E;l/Z should be much smaller

points, a trivial matter due to full uniformity, we are left with than the size of channel. In this case we can disregard lines

an average over the shape of some “averaged” loop haVm%nding on surfaces and consider all lines to be closed loops.
bl structure parameters as the wh_ole vortex tar.]gléondition of the closeness of the lines can be written as
Thus the problem is reduced to constructing a distribution

function in the space of the configuration, where the “aver- L
aged” curve takes various shapes. We, however, retain the f q’d§=0. (15
index j for consistency of presentation. 0

Relations analogous to EG7) can be written down fox |5 a4dition we suppose that the length of each of the loops is

andy components: greater than the mean radius of the curvature, as observed by
) , Schwarz'?
Li=(Is/ ()~ (16)
(S,()S () =1—1,=1,,. ) ‘ J

Apart from the direct evidence following from Schwarz’s
Due to|s/(¢j)|=1 [see Eq(4)] parameters,,, |,,, and work we can bring forward the following argument in favor

|, obey the obvious identity of condition (16). The length of the vortex filament is first
changed due to the deterministic process of ballooning or of
Lt lyy+1,,=1. (100  shrinking of the loops and, secondly, due to reconnection

processes. The reconnection can decay the loops into two
The second kind of anisotropy, the so-called polarizationsmaller loops in the case of self-collision or can fuse them
is connected with a mutual orientation of the tangent vectointo a larger loop in the case of collision with other loops.
sj’(gj) of the filament segments and the vector of curvatureClearly the loops collide more frequently with other loops
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than are subjected to the self-collision. Therefore it seem#ccordingly, the full momentuni,, of the additional super-
plausible that long loops prevail due to the reconnection profluid motion connected to the presence of the vortex tangle is
cesses.

The properties expressed by relatiqB$—(16) are about _ V, o\ 13
the extent of our knowledge concerning the vortex tangle PV_pSf vs(r)d°r. (20
arrangement in superfluid turbulent helium Il. Following ) . )
Schwarz we will call the quantitiels , 1 (@ndly, 1yy, 152, With the direct use of relatlonSl9),(ZQ) a proplem ty'plcal
l,, C,, as the structure parameters of the vortex tangle. ThefPr vortex flows is encountered. The integral in relati@o)
depend on the temperatufeand the pressurp and do not  diverges for both small and large—s;(§;)| (see, e.g., Refs.
depend on the applied counterflow velocity.. Numerical 18, 19. Therefore the question of the _averaged velocity or of
values of the structure parameters as a function of temper&l€ full momentum generated by vortices cannot be resolved

ture are given in the original work by Schwi&tand in Refs. N2 straightforward way. On the other hand, it is known that
1 and 3. in many respects the so-called Lamb impulse plays the role

of momentum. In general the Lamb impulse density is de-
B. Other quantities of interest fined as

The structure parameters introduced in the previous sub- Ps 3
section convey valuable information on the vortex tangle ar- Jy= 2y rXw(r)d, (21)
rangement. In addition they can serve as a basis for the
evaluation of various quantities connected to the observewherew(r) is the distribution[microscopical, not averaged
physical phenomena, such as the Gorter-Mellink constanf(r)] of the vorticity. For the singular distribution of the
coefficients of the extraattenuation of the second sgboth  vorticity, viz., for chaotic vortex filaments, E¢21) can be
transverse and longitudinaldrift velocity of the vortex rewritten as
tangle, etc. Details of the corresponding procedure can be
found in Ref. 13. However, there are many other important Ps Lj ,
characteristics of the vortex tangle which are connected with Jv= Z_VE Jo S(&)xs(§)dé; ). (22)
other physical phenomena and which cannot be directly ex-
pressed via structure parameters or a combination of therThe following papel® is devoted the study of the quantity

Let us give several examples of these quantities. Jy.
For the first example we take the average vorticity of the Due to the interaction between vortices, the vortex tangle
superfluid velocity Q(r) and its Fourier transform(,. should display some kind of elasticity. As a result it is ex-

These quantities may have nonzero values and should hpected that the long-range interaction between different vor-
taken into account when more complicated flows than a onetex lines element will lead to macroscopic modes such as
dimensional counterflow are considered. They have to b&vaves of the vortex line density i.e., three-dimensiq3a))

introduced as the following averages: analogs of the Tkachenko wave$he measure of elasticity
is determined by the energy of the interaction. The energy of
Q(r)=<§; 3£ dsjé[r—sj(fj)]> 17 the vortex tangle is defined by the average
1
and E=<§f psv§d3r>
® .
Qk=< fde’re*'krz i;ds.g[r_ -(§-)]> PsK J’ j i S (&)s(§) _
(2m)° IR A B Jo Jo @ -sg it @
~ 3g e 19 By use of the well-known formula
(277)3/2
1 4mdk
where’ is the quantum of circulation. The closest example ﬂ: fk K2 e, (24)

of the flow of the superfluid component with a nonzero av-

eraged vorticity created by a set of vortex lines is the case ahe average energy [Eq. (23)] can be rewritten as
rotating He Il. In this case the superfluid component simu-

lates(in average the solid-body rotation, and the averaged e <PsK2 d3k

vorticity is just the areal density of the vortex lines multi-

plied by x as follows from relatior(17).

Another quantity which influences the hydrodynamic L (L _
properties of the superfluid turbulence is mean superfluid xf f sj’(gi)sj’(g,-)dgidgje'k(ﬁ(fﬂ*si(fj)) . (25
velocity created by vortex tangle;’(r). It is obtained by 0’0
averaging the Biot-Savart law

< Ky L S/ (&)X [r—s5(&)]
4

7 Jo Ir=s(&)3

2 7 )k

For the next example, we would like to point out that the
proper entropy of the vortex tangle is

S'=ke(INT ({§(£)})), (26)

dg,-> . (19
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whereI'({s;(¢)}) is the number of the vortex loop configu- preserving-assumption can be confirmed or refuted by in-
rations (see next section The quantityS" enters the equa- specting relations similar to E¢28).

tions of hydrodynamics of superfluid turbulensee Refs. 3 We gave several examples of the averages responsible for

and § and the knowledge of it is necessary for the correctinteresting phenomena in the turbulent counterflowing He II.

study of unsteady hydrodynamic processes. Apart from independent interest, the study of these phenom-
Let us consider the average ena can supply important information concerning the fine

structure of the vortex tangle. It is easy to see that none of
Lj . , the quantities introduced can be expressed via structure pa-

A= < 2 fo (§(£) X 5(§))dé&i ), (27 rameters of the phenomenological theory of superfluid turbu-
lence. To evaluate them one has to have some rules to ac-

wheres;(¢;) is the velocity of the line element. The quantity €omplish averaging. We propose to do it with the help of a

é-(g-) is expressedgenerally as a functiongvia the instan- trial dlstnbynon function construction which is the main pur-

ancous confraton f e vorex angi(£))wih e P52 1 1S ek SEfre e roceed o s proced e

help of the equation of motiofsee, e.g., Ref. 23The right- the ch teristi tinufunctional gedq y

hand side of Eq(27) is an averaged net area swept out by the e characteristi¢or generatingfunctional.

motion of the lines. The quantitl bears a manyfold physi-

cal interest. For example, the equation of motion of the vor- C. Introduction of characteristic functional

tex line can be derived from the variational principle, and the | et us consider the following averaged quantity, the so-

contribution of the lines into the action is proportional to the called characteristic functional:

area swept out by the moving lindsee Ref. 2D Further-

more, thez component ofA is just the rate of the phase ) L

slippage caused by the motion of vortex lines transverse to W({Pj(gj)}):<exr<lz j Pj(i;)sj'(ﬁj)dgj)>-

the counterflowV, s (see Ref. 21 Finally, the integrand in booo (29)

(Eg. 27 is the discrete variant of quantitysX (V Xvy),

which is called the vortex force and plays a significant role inThe characteristic functional is of special interest. The point

the vortex dynamic¢see Ref. 19 Of course all of the prop- is that one is able to calculate any average depending on the

erties of A discussed above are not independent and weortex line configuration by using simple functional differ-

listed them just to stress an importancefor applications.  entiation. For instance the average tangent ve@oi(¢;)),
Using the distribution function it is even possible to de-the average vector of curvatu(eﬁ’a(gj», or the correlation

scribe dynamics of various quantitiég{s;(¢;)}) averaged function between the orientation of different elements of the

over loop configurationgA({s;(£;)})). Indeed, reverting the  vortex filaments(s],(£)s 4(¢;)) are readily expressed via a

time dependence for the line elements positigh&s;)  characteristic functional according to the following rules:
—s;(§j,t) and using a chain rule, we can write down the rate

of change of the quantityA({s;(¢;,t)})) in the form
<Sj,a(§j)>zw : (30
HA{g(&.D1) _ D JH’ SA({s(&,0)}) ﬂs(&',t)dg, 125 e p=0
at "o estgy ot SW
(28 (Sa())= AL (3D
S 0g TPE) | ypg’
Expressing the velocity of the line elemérj(tfj) with the
help of the equation of motidA we find that the right-hand , , 5°W
side of Eq.(29) is an average of some functional of the <Sja(§j)sjg(§j)>=.5Pa e . (32
vortex line configuration. Thus we have obtained a rule for FOPF(£0)10P(£52) | 4y p_g

fivg?écgkaggntpf thﬁ evlgltétlon_of qu?gt'(fg{s’i(%.'tt)}p .t' The other quantities are expressed via a characteristic func-
ytion shouid be given. 1he Tuture GISMOUtion ., 5 in 4 bit more sophisticated way. For instance the Fou-

function will correspond to the instantaneous picture of the . L
vortex tangle, i.e., to the “equilibrium” state of the vortex rier transform of the averaged vorticifyy [Eq. (18)] can be

tangle. Therefore, by saying dynamics, we have in mind onl evaluated with the help of the characteristic functional by the

small deviations from the “equilibrium.” Nevertheless the ise of the following procedure:
possibility to introduce macroscopic dynamics of the vortex L.

tangle in a regular way seems to be very important. Foer:E f ]dgje—iksj(O)_
example, while derivating of the governing equatidn for i Jo 16P;(&;) {P(e)=—KO(E O£ — ¢!
the evolution of the vortex line density, Vinen made a very a o ’(33)
important assumption that the rate of change of the vortex

line densityd., /dt is a function only of the instantaneous Where 6(&;) is the unit stepwise function. The production
value of £,. This property was called the self-preserving 6(¢;) 0(§;— &) selected out points lying in range<(
assumption. As was discussed in Ref. 3 this assumption is:¢; on thej curve. This choice assures the appearance of
justified if and only if the other characteristics of the vortex the correct quantitg'*Si(¢) after integration of the exponent
tangle other than the quantitg,(t) relax to the “equilib- in relation(29). The quantitys;(0) is the initial point of the
rium” state much faster thanl,(t) itself. The self- j curve which is chosen to be arbitrary.
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In a similar way the mean enerd¥) [Eqg. (25)] can be We use the usual supposition in statistical physics that all
calculated as configurations corresponding to the same macroscopic state
have equal probabilities. Thus the probabilR{{s;(&;)}) for
2 3
[ d Kk (Li L
®=-25 (X[
0o Jo

the vortex tangle to have a particular configuratig(¢;)}
should be proportional to Bljowed: Where Ngioweq IS the

<~ | 2
hJkk number of allowed configurations which is, of course, infi-
ngidgjefik[s(oksj(m] nite:
X oW (34) P({s(£p}) - (37)
. 1 i o« -
| OP(£)i OPI(§)) 3 N roned

Here a set of P,(£)) in the characteristic functional BY the term “allowed configurationsNeyoweqWe mean only

W({P,(£/)}) is again determined with the help of th# the configurations that will lead to the correct values for all
ol average quantities known from experiment and given by re-

functions ) . . )
lations(3)—(16). The following subsection will be devoted to
P.(&)=—KO(E)O(&— &) a detailed elaboration of the ideas given above.
| I I | 17
"N _ ’ _ g B. Introduction of th traints and the effective L i
Pj(gj )_ kg( gj )9( é’:j gi ), (35) ntroauction o e constraints an e efreclive Lagrangian

The number of allowed configurations, or number of
P.(¢)=0n#i,j. curves, is expressed by the path integral in space of 3D
curves supplemented by some constraints which follow from

Relation (35) implies that we choose an integrand of the conditions (3—(16), or, to be precise, which will lead to
characteristic functional29) from only points lying in the  {hese conditions:

interval from O toé; on thei curve and from O t&; on the

j curve. When evaluating the self-energy of the same loop
i=j, one has to distinguish points, and put them to be, Nallowede D{si(£;)} X constraintgs(&))}. (38
e.g. & and .

Although the characteristic functional is defined via the|n this subsection we will introduce the constraints dictated
distribution function as some auxiliary quantity, it plays aby conditions(3)—(16), and modify expressiofi38) into a
significant independent role in stochastic theory. For in-standard and tractable form. Let us begin with conditi&n
stance, in many body problems the use of a characteristigoncerning the total length of vortex lines. This condition
functional (in this theory it is usually called a generating implies that among the possible curves, labeled¢py we
functiona) allows one to get the shortened description ofhave to choose only curves whose lengths are fixed and
statistical properties in terms of the Green function and equaequal toL; . Taking the local form of this conditiof) we
tions for them. Another example would be the case of clasimpose the corresponding constraint into the integrand of Eq.
sical turbulence, where one derives the master equation fqBg) as aé function:
the characteristic functional directly from the equation of
motion of the fluid avoiding the use of a distribution function ,

(see, e.g., Ref. 22 Similarly in our work the characteristic N(a{foweﬁf Dsi(&)X 8(|s"(&)|—1). (39
functional is used not only for the calculation of different
averages but it also plays a key role in the derivation of thegecause of the absolute valuef(¢;), which is a nonana-

trial distribution function. lytical function, this expression will lead to a theory which is
not tractable. We will use here a trick known from the theory
Ill. CONSTRUCTING A TRIAL DISTRIBUTION of polymer chains, where a similar problem appears. Let us
FUNCTION OF GENERAL FORM divide the j vortex line into a set of discrete points and

hange th th integral r tion of th | on
A Main definitions change the pa egral by production of the usual ones

The averages introduced in the previous section can be .
calculated using a distribution functioR({s;(¢;)}) in the Dsj(gj):f ‘]DSj(gj)HE[ f‘]d(sj(ml)_sjn)-
space of vortex loop configurations. According to the general (40)
prescriptions the average of any quant§({s;(¢;)})) de-
pending on the vortex loop configurations is HereJ is a Jacobian corresponding to the change from the

variables;(¢;) to the derivativesi’(gj). The explicit shape of
e _ e " the Jacobiand is not significant since it is usually cancelled
(Bis(6)1) {sj%)} Bs(nPis (). (36 against the one in the normalizing factor for the probability
) - Plsi(§)] in Eq. (37). Then the integration for each of the
Here P({s(£))}) is the probability of the vortex tangle to links s, 1)~ Sa= Ly in relation (40) should be accom-
have a particular configuratiois;(¢;)}. The meaning of the  plished with the delta function constraing§|L,|—1) corre-
summation over all vortex loop configuratio®s ¢, iN sponding to the fixed length of the link. In the theory of
formula (36) will be clear from the further presentation. polymer chains they offer to relax rigorous conditigip|
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=|, and to replace it by using the smeared-¢@aussiah
distribution of the link length with the same value of the
integral (see, e.g., Ref. 23

fd3ln5(|ln|—ln)=>fd3ln(%)e'ﬁ”ﬁ. (41)

Parametel, here, the so-called effective bond length, is usu-
ally established in experiment. Gathering contributions from
all links and coming back to the continuous case

L

2 . I
H efln/azzefzn(sjn-#lfsjn)zlaz:e*)\lf |5j"2d§j (42)
n

° FIG. 4. Schematic picture of the curve averaged with weight

one obtains that the number of configuratiofid), ., of the  €xPC-Aafgls’|?dé)). Although the averaging was performed over
j vortex loop supplemented with constraiﬂ¢|s-’(§j)|— 1) smooth lines, the resulting curve is a fractal object with a kink at
i

can be written each point.
" N L,-| e The constanh ; was factored out of the sum, otherwise the
Na'uowedxj IDs;(&)xe” M | 1517, (43)  average would depend on indgxhich would contradict the
_ . . supposition of full uniformity.
Here the Jacobiad differs from the one used in E¢40), The next constraint to be discussed is connected to the

however, this has no effect because of the remark made afteurvature of the lines. It is known that though the resulting
Eqg. (40). The quantity\, is a parameter of our theory which curve averaged according to Hd5) has a correct length; ,
will be determined later. Before we move further it is worth jt is not smooth, but wiggly at each point as schematically
discussing the sense of the fulfilled procedure once more. Agepicted in Fig. 4. Indeed the distance between Pajiits1)

for the theory of a polymer, the introduction of the Gaussianand s;(¢;,) of the curve is expressed by the relatitsee,
chains instead of real polymers does not significantly influe.g., Ref. 23

ence most of the important physical applicatiqsse Ref.
23). One can say that a loss of some rigorousness is an ac- (£ =S (E))= V(E— )Ny 4

ceptable sacrifice for the obvious simplicity. This conclusion (8(£2) =8 (&)= V(&= g2 St
concerns our model to a greater extent than polymer theory,;nanal

s ytical wheng;;— &;,. In other words, the average
Indeed, the choice of the arc lengéh as a label for the

, : ) curve(s;(¢;)) does not even have a first derivative. To make
vortex filament was a question of convenience. The samg smqoth we have to introduce into the effective Lagrangian

treatment might be applied to another label, say, the a7, a term with a second derivative and, further, in order to

length € at some moment of time. While the lines are in make it have finite curvature we have to introduce a term
motion, some parts of the curve shrink whereas other parigith a third derivative, etc.,

stretch. Therefore the real value|sf'(¢;)| does not have to
be equal to unity exactly, but should be smeared-out. L L

Returning to relatior{43) we conclude that the use of the j L; =)\1f |sﬁ’|2d§j+)\2f |5"|%d¢;
constraint(4) leads to the familiar form for the number of 0 0
allowed configurations of the¢ loop as a path integral over L
all configurations with weight proportional to exp(L;) +)\3f s [2dg+ - . (48
where the effective Lagrangian is determined by 0

_ L, The effective Lagrangiari48) is isotropic, therefore it
f £ _klfo |s'[°d¢; . (44) will give an isotropic distribution of the line which is wrong.
To improve the situation we have to impose that the coeffi-
Using formula (37) we conclude that the probability cients\ be matricedso far diagonal For instance, relation

Pilsi(§;)] for the j loop to have configuratios;(&;) is the  (44) should be changed by the following expression:
Wiener distribution(see Ref. 2B

L; Lj rot Lj rot Lj A
Pils(£)1=N; exp(—xlfo'|sj’|zc|gj . (45 kleo ijs]xdfjﬂlyfo Sjysjydfjﬂlzfo $2529¢;
where/\/j i§ the corresponding normalizing factor. — ijS! Aaﬁsj/ dé . (49)
In a similar way we can account for other loops so the full Jo A5
Lagrangian corresponding to the constr¢hﬁ(§j)| =1 is de-
termined by The next step is to take into account the polarization of
L the vortex tangle. To have a nonzero value for the averaged
J' 52)\12 f J|%'|2d§j- (46) polarity we have to add nondiagonal terms into the matrix
7 Jo A*F. The according correction to the Lagrangian is
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Lo one has to specify all of the parametersand cancel the
f oL; =7\pJ (5 X)), déE;. (50)  uncertainty in the expansici6). The most convenient way
0 LT .. K
to do this is to calculate the characteristic functional and
The indexz implies that we have to take only tlzecoordi-  study its properties to specify an explicit form of the param-
nate in the vector productiogf X' eters entering the trial distribution function. The following
Finally, since the effective Lagrangian includes deriva-section is devoted to this procedure.
tives of different ordersg , s/, ands’) it is convenient to

perform the one—dimensional Fourier transform ala@ng IV. CONSTRUCTION OF THE CHARACTERISTIC
FUNCTIONAL
s(§)= > s (k)€ 4, k=2mnlL;. (51 A. Calculation of the characteristic functional in x space
K

Our first step is to calculate the characteristic functional

Because of the closure conditi¢hd) defined by relatior{29). It is convenient to do so ir space.

1 (L In « space the characteristic functional can be obtained by
L—J 5 dé=5/(k)|c=0=0 (520  accomplishing a 1D Fourier transfor(gl) in Eq. (29):
jJo
the zero harmonic of derivgtivi{(gj) is zero, therefore we W({P,-(K)})=<exr{i2 D Lij(K)SJ-/(—K)> >
will further exclude harmonie=0 in the summation in 1D i k#0
Fourier space. Correspondingly, evaluation of the path inte- (58

gral in the k representation should be accomplished accord

h : The various averages are readily obtained using this defini-
ing to the following rule:

tion. For instance, the averaged values of the tangent vector
(30) and of the vector of curvatur€81) can be evaluated

f Dis()}=11 11 f dsi(x). (53)  with the use of the following rules:
j «k#0
Further we will use both sides of this relation interchange- _
ably. Saé))=2, e — T — = . (59
Summarizing everything concerning the effective La- all P(x)=0

grangian and using relatidi37) it can be inferred that prob-
ability P({sj(«)}) that the vortex tangle has the particular ik oW

. . : —ik)e " —— .
configuration{s;(«)} is (5a(£))= 2 ( ) iL;5P% () P00

60)

Pds()H=N exp( —;0 ﬁ({%(K)})>, (54

Likewise the two point correlation functigmelation(32)] is

. L Xpr via the char ristic functionaki fol-
where A is overall normalization. expressed via the characteristic functionakispace as fo

The density of Lagrangiag{s,(x)} in « space &' lows:
Sx(K)\ [ A(k) A(k) A(x) CHEIEPEN
E{SJ(K)}=Z Sy(K) A(k)  AP(k)  AH(k) = 2 e ikéjigTikag)2
Si(k) ] \ A®(k) AP (k) A*(k) K1, K2#0
ij(_K) 52W 5
x| Sy(=#) |. (55) "L, 0P (xy)iL PP (61
iy ILjoP}(k)IL 0P (K2) | 4y =0
sz(_K)
. . . To calculate the characteristic functional in tkespace
apB
'Sl'tf:scsul?gonal terms of the matrix“* have the following [relation (58)] we employ the trial distribution function in-

troduced in the previous section. Using relatidbd)—(57)
ACC= N g 1P+ N gk NggkOF - - a=x,y,2.  (56) one can rewrite expressigb8) in the following form:

From the definition of the nondiagonal part of the Lagrang-
ian (50) and from the assumed symmetry in the plajy it WP (x)})=N| ID{s(x)}
follows that

A= (i k)N, AV= — (1K) (57) xexn[—Ei 2 (A P055(— )

Expressions(54)—(57) determine the probability of the
allowed vortex loop configuration of the most general form XGXI{IE > [ S[Pj(x)s/ (— x)
satisfying all the known properties of the vortex tangle. Thus
they can be considered to be the trial distribution function
which we were looking for. Of course to use this function +Pj(—K)Sj’(K)]] : (62
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where S2W
» iLjOP ()il SP( k)
N:{J’JDSj(K)eXF{_; zo Sf(K)A“B(K)qE(—K))J ={2N"B(k1)S_ .., AN""(ic1) P (— k)NPY(i5)
XP/(—Ky)}
is the overall normalization.
The right-hand side of relatio(62) is evaluated by the XEX{—E > szPJ”(K)NM”(K)PJ—”(—K) _ (66)
standard “full square procedure” expressed by identity I «#0
Using Eqgs{(65) and(66) in relations(59)—( 61) we conclude
that

f ]_k[ dzkex;{—%1 ZnAan;]'F; (zur +2zZxuy)

(§a(&j1)5p(£2)) = Egoe““fﬁl‘QQZN“B<xlx (67)

=exr< _%1 U”Annl‘u:)*j l_kl dz _hence the averaged squared tangent vesfo¢))s (&) is
just
xexp — 2, znAnmz’,;). (63
p( nm <sj’a(g,-)sj'a(§j)>=§0 2N k). (69)

The integral in Eq(63) is taken over a set of complex vari- Accordingly, the averaged squared vector of curvature
ablesz,, [dz.= [dRezdImz,. The matrixA,, is supposed (Sa(£))5a(§))) is
to be the Hermitian, and the matrik_} is inverse to the
matrix A, . Using this rule for each of the Fourier harmon- (€D (&))= > 2k2NY(k). (69)
ics in Eq.(62) we get k#0
Note that formulag68) and (69) are valid both for each of
the componentsx and for the sum over. As far as the
W({Pj(K)}):ex;{ _Z 2 prﬁ(K)Naﬁ(K)pjg(_K) , average polarization of the vortex tangle is concerned it is
I k#0 (64 expressed via the matri¥“?(«) as follows:

((SjxSjy — Sy Six))
where the matriN*?(«) is equal to 1/4’[ A“P(k)]" L. EI-

ements of both the matrid*?( «) and the matrixA *4( k) do = 29&0 g iK1t ko)
not depend on index, otherwise the local averages would 12
?epend onj which contradicts the full uniformity supposi- X[(iKz)ny(K1)57K1,K2—(iKz)Nyx(Kz) 57K1'K2]_
ion.
The second step in realizing the scheme outlined at the (70

end of Sec. Il B is to study general properties of the chargy constructing the nondiagonal elements of the Hermitian
acteristic functional(64) issuing from method it has been matrix AXY() and AYX(x) are odd functions of argument

built. Before doing it let us connect the matmﬁ_(x) (SO It is obvious that the inverse matri®4(x) satisfies the
far not determined explicitlywith the characteristics of the ggme conditions. Therefore

vortex tangle expressed by formuk@—(16). The functional

derivatives entering relationé59)—(61) as applied to the NY*(k)=NYY(— k)= —N"¥(k). (71
characteristic functional64) are evaluated according to the . . . . )
following rules: Using this chain of relations we finally arrive at

((SiSly = SySh)) = 2 2(i-)N(x). (72
SW L k#0

————— = 2N""(k)P{(— k1)

ILJ EPJ () ! B. Trial form of the matrix N%A(k)

_ 2pu wv v Inspecting the method of constructing a trial distribution
><exp( EJ: ,Zo LiPFGONT AP (=) | function as well as the way of deriving a characteristic func-
tional we can deduce some very general properties of the
matrix N“4(k): (i) the matrix N“#(k) =NP¥(— k) is the
Hermitian onej(ii) the diagonal terms d““(«) should be
Here it has been taken into account thét’(«) is the Her- even functions of «; (i) the nondiagonal terms
mitian matrixN*”(x)=N"%(— ) . Likewise the second de- N*(x),N*¥(x) should be odd functions of; (iv) to guar-
rivative is antee the existence of arfg™ (£&)s"(¢;)) for any n one

(65)
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has to require that the elements of matN%?(«) decrease Furthermore, since only a few characteristics of the vortex
faster than any power functioa™*2. tangle are known, the matriX*¥(«) should not include too

In addition to these properties, the math£#(«) should many parameters. Finally, it should be simple enough and
give the correct values of the mean tangent vectotractable otherwise the whole method would be meaningless.
(s,(£))s,(§)), of the mean squared curvature As a suitable candidate satisfying all the listed properties
(S.(&)8,(£))), and of the polarization((ssy,—S,Sy)).  We propose a matridl*#(«) of the following form:

Nexp( — k2£3) (i k) N¥exp( — k2£3) 0
—(ik)NYexp(— k2&5)  NYexp(— k&) 0 _ (73
0 0 NZ%exp( — k2£2)
|
It will be shown later that quantity, is nothing but the §0\/;

. . . 2 2 2 2 2 27750 2
correlation length. It will also be shown th& is of order of oL, = L. Z 2n T expg —n » . (76
the mean curvature, or of order of the interline space. Thus, jonal ] ]
besides the above conditiofi$—(iv) one more strong sup- Changing agairE , ;— /dn we obtain
position that all the correlation functionés?(&;1)s

X(&j2)) have the same correlation length of the order of 5 1
the interline space is made. Some semiquantitative proof of §o=2 2, (77)
that fact based on the consideration of kinematic relations Coky

such ass;s”zo, '’ +s's'=0, etc,, has been given by gjncec? is of the order of unitysee Ref. 1§ the quantityé,
Schwarz. is of the order of the interline spaa&, /2.
Analogous calculations for polarization of the vortex
C. Specifying coefficientsN*? in « space tangle(11) allow us to determine the coefficieNt”Y in non-

. . . . . i Wb -
The final step in constructing the characteristic functiona/di2gonal terms of matril“"(«):

is to specify the coefficients*? as well as the quantityy . 312
These five quantities can be obtained comparing relations N¥Y=2 /7 &Ly _ \/E l (78)
(68)—(72), where matrixN*?(k) is taken from Eq(73) with ! L; )
relations(3)—(16).

Let us start with the calculation of the coefficiet”. It An evaluation of the pre-exponent factdis” (75)—(78) and
can be found from a comparison of relatit8) for the mean  Of the quantityé, in the matrixN“#(«) [Eq. (73)] completes
x fraction of the tangent vector obtained in experiment withthe calculation of the characteristic functional and conse-
relation (68) for the same quantity expressed via the characquently of the trial distribution function.
teristic functional(64) with matrix (73):

D. The characteristic functional in £ space

20 2 o . .
IXX:2NXX[ 2 ex;{ —nz( 50) }_1}. (74) For many purposes it is more convenient to deal with a

L; representation of the characteristic functional, i.e., with
W({P;(£))}) [Eq. (29)]. To obtain it we have to perform an
Employing condition&y<L; and changingS ,— fdn we invers% Fourier transformatior) in the expression
arrive at 2 #0L Py (k)N*"(k)P{(— k) entering the exponent in the
characteristic functional64). The according calculations
e 1 lead to the following result:

. . (79
i (1-2¢&0/m/Ly) Eo LZPE(k)NH(1)P(— k)
K#

Of course this result is valid for each of the components with oL
correspondindy,l,,. Note that we retained the small term =j if jd TdE"PE(ENYNEY(E — EMVPY( & 79
2&o\//L; in the denominator on the right-hand side of Eq. 0o Jo ASPHEINTE =PI, 79
(75). Its origin is from the closeness of the vortex lines and it wvg e em ] v
plays a significant role in questions where the closeness o¥here N (¢j —¢&j) is the Fourier pretransform dfif*’(«)
the vortex lines is relevar(see below. minus zero harmonic

To specify the quantity, one has to use the relations for
the average squared vector of the curvature. Comparing EQs.  \urv(g/ — g7y = el <& ~EINEY( )= NA¥( k=0
(13)and (69) and using the expression fod*¢ obtained (& —¢)) zu b (x) («=0).
above one concludes that (80)

n all

XX_
N*" =1,
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The matrixN*(&/ — &) will be evaluated separately for | ( g — g2
diagonal and for nondiagonal terms of the matN£?(«) N*(& — &)= — 2 lexg - 22—
[Eq. (73)]. Let us start with the diagonal terms which are to 2(1—2&p\mIL) 45
be obtained from R
[Li—(§ -1 2éVm
o |2 +expg — 282 - |
Naa(fj g;/) Naa{E eIK(§J gl)eX[{ ( On) }_1} 0 J
<al L; (87)
81
®D) and the nondiagonal ones are
Using againX, ,— Jdn one obtains
X " I £1/2 " (fj’_ ;,)2
N )’(gl gl)_ (gj gj)ex _—2
aa( ¢! " Iaa (g] f ) 450
N(&— &)= =) eX
2(1-2&\mlL) ag5 (Lj— & —&)?
L. — (& —&exd — ——21 217 ||
2&m him =)l 4¢5 )
- . (82
L (88)
As for the nondiagonal terms, similar calculations lead to thel he elemenNY(&j — &) = —NY(&] — &7); the other terms
resu't are zero.
It is easy to check that the use of the mathk‘V(gj’
LY (& — &2 - 5}’) leads to correctwith accuracy up t@&,/L;) values for
NY(E - &)= (& —¢&) =L quantities(s's’),(s's"),((s'*s"”Y —s'Ys™)), etc. Indeed using
2 48 the rules for working with the characteristic functional
W({P;()}) in & space described in Sec. Il C one obtains
N*¥Y= — NY*, (83 )
Because of the chang®, 4 — Jfdn formulas(82) and (83 (Sa(§)5u(£))= P (£1 P (E) =laa,
do not satisfy the condition of periodicity and the closeness 1R A Tanp=0
of the loops: (89
! " v ! " 2
N# (6 = &) =N#!(L;+ & — &). gyt oW

((SixSly = SiySix)) =277 - :
- : - B9 P12 18P (£)i 0P/ (£i2) | yyp g . -
This disagreement can be remedied by the substitution of =061 = &

’ " ! " ! " = I |‘Cl])./2’ (90)
NAA(E] = &) =N — &)+ NEHL = (& — &) 11
(84 52
for diagonal(even elements and by (Sal£)50(8))= 3€j10&2
X ! U X ! 1" X I 1" 52W
Ny(gj_gj)_){N y(gj_fj)_N y[l—j_(gj_gj)]}v X—— p—
(85) i 5P (&)i6P(E) ], P=0,6, = &
for nondiagonal(odd elements. SinceN“”(¢/—¢/) is a 52 (§ £)2 1
sharply decreasing functidifior (SJ-’ _ 5}’)2501 this substitu- :3511(95;2@(;{ 450 2§0

tion does not significantly change the behaviorI\Uf”(gj’
—¢]) for small (¢ — &) but improves the situation forg( =c2c,. (91)
—¢/) =L; . We will retain hereafter the previous notation

for redefined matrix elements for it will not lead to confu- 1Nese expressions are in full agreement with relati@s

(16) making our scheme self-consistent.

sion.
Finally the characteristic functional i§ space has the
following form: V. SOME STATISTICAL PROPERTIES
OF THE VORTEX TANGLE
(b In this section we describe some statistical properti f
WP () =exd — PE(&! _ properties 0
(P& p( ; fo fo (&) the vortex tangle which emerged from the formalism devel-

oped above. We restrict ourselves to the calculation of the
X NAY( gi, _ g](/)P_V(é—(r) , (86) simplest characteristics to see what the poss_|ble arrangement
of the vortex tangle stemming from the trial distribution
function is. In particular we calculate the correlation function
where the diagonal terms of matrfnkf”(gj’ —g;’) are between orientations of different elements of the lines, be-
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tween the tangent vector and the vector of curvature, etc. We As far as the correlations between different components
also calculate the average distance between different parts of vectors;(¢;) and its derivatives are concerned, it follows
the loops and, correspondingly, their sizes. Using these cafrom a similar consideration thaiz andyz correlations are
culations we discuss the distribution of different loops overabsent. The strong correlation betweeandy components
their lengths. appears due to nonzero polarization and depends on the order
of derivatives entering the expression. If the difference of

A. Correlation functions orders is an odd number then the correlation function be-
haves in a usual way having a maximum value in pdint
—¢;,=0 with a subsequent exponential decay. If this differ-
ence is an even number the correlation function behaves
similar to the correlation functiofs!, (£j1)S/,(£j2))-

Let us begin with an evaluation of the correlation function
between orientations of different elements of the line. It is
immediately obtained taking the functional derivative from
characteristic functionaW({P;(¢)}) in & representation

(86) and from relation(32):
B. Average size of loops

l e / _(511—512)2 Let us now calculate the quantit{(s*(¢;)—s*(0))%
1_250\/;“_)\ ex 482 (here is assumed a summation owgrwhich is the average
0 squared distance between the initial point of the cls(®
p[ [Li— (&1 &)1
+expg —

and the points(¢;). Note that we deal with real distance in
5 the usual spacéot along the curve therefore this consid-

450 eration concerns the real size of the vortex loop embedded in

250\/;) 3D space. Note also that if one did not accomplish the sum-

(So(€i1)Sa(§j2)) = (

(92) ~ mation overe, this quantity would describe the size of the
loop along thex axes. Using thé presentation of the char-
acteristic functional86), the quantity{(s“(fj)—s"(O))2> is
rewritten as follows:

L
Inspecting relatior(92) one concludes that close poings
—¢&jo=¢&p and points satisfyind L;— (£1—§j2) <&, are
strongly correlatedthe latter condition appears because of § (6
the closeness of the loop&hen this correlation weakens as <(Sa(§j)_sa(0))2>:J j d€j10&5(S,(£j1)54(£)2))
ex;{—(gjl—gjz)Z/4gg] turning into as-correlated structure: 070

& (4 |
exiT — (&1 £2)21483]~2\mEod( £~ ). (99 = 7 Fagu0g,—
s 0 12 o Jo %8 §'2(1—2goﬁ/L)
Thus we arrive at a very important conclusion. The cor-

relation length of orientations of different parts of the curve (&1~ &2)°

is of the order of the mean radius of curvature or, in accor- x| exn - 4¢2

dance with EQq(77), of the order of the interline space. This 0

view corresponds to current notions of the vortex tangle and % [L;— (&1 gjz)]j
+ —

discussed previously by Schwarz*3 It is worth noting that

there is a small negative correlation between distant points 45(2)

due to the term— 250\/;/Lj on the right-hand side of rela- 2¢ N

tion (92). The origin of this term is connected with the close- _ 250 ) (94)
ness of the line because each of the elements of the line L;

“remembers” that the whole line should return to the initial _ _ _
point. Discarding this effect, the correlations between remote For §;<§&, the exponent is close to the unit and with
(along the curvefy<¢j;—&j,) points vanish and the line accuracy ZO\/F/LJ- we conclude that the average squared

takes on a random walk structure. distance in thex direction is
The correlation between different vectors of curvature ) )
(9,(£1)5(£;2)) behaves in a similar manner. The only ex- ([Sa(£5) —32(0)]) = &1 4o (95)

ception is that a small negative correlation disappears bes, the full distance is
cause of the differentiation ove .
In a similar way the correlation between derivatives of ((s(g,-)—s(O))z):gjz. (96)
different orders can be evaluated. Let us consider, e.g., the
correlation between the tangent vector and the vector of cur- |n the intermediate region of argumendté&,< &=L,

vature(s/ “(&1)5“(¢j2)) - It has to be evaluated as — &, the exponent can be approximately replaced by a
function [see relation(93)], which together with Eq(94)
a . . . AY
<Sj'a(§j1)%'a(§j2)>: 7 <5j'a(§j1)%'a(§j2)>- gives the following resultwith accuracy Z,#/L;):

2y -
The interesting feature of this quantity is that it is zero when ([5:(&) = 8.(0)1%)~ 26l (&~ /L) (97
&j1=§j,, then it grows reaching its maximum value at point Note that the quantity- 250\/;/Lj was disregarded only in
&j1— &jo~ &o/2, then this growth is changed with the usual the denominator of relatio(®4) whereas it was retained in
exponential decay. the numerator, where its contribution is comparable with the
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and as a result it should have some drift velocity as well as
inducing a nonzero mean superfluid velocity.

The analysis carried out above shows that the loop of
lengthL; has a sizeD;~ oL, therefore the volume occu-
pying by thej loop is V;~ &°L;"?. The corresponding vor-
tex line density £; is £j~L;/&23%= (L5 (&5
~£v(§c1,’2/L]-1/2). Because of the conditiogy<L;, the vortex
line densityL; of the single loop is smaller than total vortex
line densityL, . This implies that the real vortex tangle has
{Polarization) to consist of many loops. Due to the lack of information

: about the distribution of the loop lengths over(see Sec.
IlA) we are not able to ascertain the fine structure of the
many-loop vortex tangle. This obstacle is not serious since
many physical effects are determined only by the orientation
of the line element and their polarization. In other words, the
corresponding quantities are additive over the number of
loops(see Sec. Il B However, for other problems the ques-
tion of the distribution of loops over their lengths can be
relevant. In this case it is possible to introduce some aver-

FIG. 5. Snapshot of the “average” vortex loop obtained from aged lengtti; which should be considered as a parameter of
the analysis of the statistical properties. Closg{R) parts of the  the developed approach.

line are separated in 3D space by distage The distant parts
(R<A£) are separated in 3D space by the distagizerRA £ (with
a correction due to the closeness, see)ieds a whole the loop is
not isotropic having a “pancake” shape with different sizes in lon-  \we now summarize the obtained results and revise the
gitudinal and transverse directions. In addition the loop has a totghin steps of the developed approach. The main result can
average polarizationfs; (¢;) X 5/(£;)d;) forcing the loop to drift e formulated as follows. Based on the well-established ex-
along the vectoW,. perimental data on the vortex tangle structure in He Il we

constructed a trial distribution function in the space of the
one from the exponential terms. The reason for this is thayortex loop configurations of the most general form compat-
for &; larger thang, (but smaller thar. ;) the vortex line has ible with these data. We assume further that a trial distribu-
a random walk structure and the distance between initiajion function obtained in this way will enable us to calculate
points*(0) and poinis*(¢;) increases as’g—j. The role of the  various averages over vortex loop configurations. The use of
term —2§0\/;/Lj is to force the line back to assure that the characteristic functional simplifies the calculation of
[Sa(£j) —S.(0)]—0, when¢; —L;. these quantities.

Relation(97) should, however, be corrected in the region Let us discuss once more the assumptions made while
near the end of the link;— §,=<¢; . In this region the main developing the whole procedure and outline the class of the
contribution will appear from the second exponent in theproblems which can be resolved with the method of the trial
right-hand side of relatiof®4). This contribution will prevail  distribution function. The main premise of our approach was
the quantity gj—gjzn_) and the final result is relation (37) expressing that the allowed configurations cor-

responding to the same macroscopic state have equal prob-
abilities. This assumption is widely used to solve problems

{sized; ~Vizl &

VI. CONCLUSION

_ 2 (L.—£)2
([52(£)) =8 0)]9) = (L= §))", of equilibrium states and it seems quite reasonable for our
o _ o problem. We can refer to the work of Polyakdwn classical
which is obvious due to the periodicity. turbulence where it was noted that, “One can say that while

Summarizing the results obtained in this subsection wesjpps' distributions are uniform on surfaces of fixed values
conclude that the vortex loop behaves as a flexible polymegf conserved quantities, the turbulent distributions are lo-
(see, e.g., Ref. 23 The small parts of the line behave as cated on surfaces of constant fluxes of the corresponding
rodlike polymers whose lengths are exactly equal to distancguantities.”

¢'—¢" along the curvgsee Fig. 5. At larger distances the  ~ The next question which we would like to discuss con-
filament has a random walk structure with the effective boncterns the constraints imposed by relatiof®—(16). Of

length of the order of the correlation lengghor of the order  course these few properties are by no means the full descrip-
of the mean radius of the curvature, or of the order of inter'tion of the vortex tang|e structure and the question of
line space. Because of the closeness condition the pure rafjhether the trial distribution function, satisfying only a few
dom walk structurds,(&;) —s,(0)| = V& is violated and  selected conditions, is adequate enough to evaluate correctly
changes by dependen¢®?). In addition, due to anisotropy other quantities. One more question is what the possible re-
the whole average loop has a “pancake” form in theli-  strictions on the class of these quantities would be. We can
rection. In addition, since the vortex filaments are orientatedgive the following answer to these questions. Regardless of
unlike polymer chains, there is an anisotropy related with thehe fact that there were not many input conditig8s-(16),
mutual orientation of vectors ands’ . Thus the vortex loop  they include almost all the requested information concerning
as a whole has nonzero polarizati()jtisi’(gj)><s’1’(§j)d§j>, the orientation of the vortex line elements and their curva-
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tures. In other words these input conditions involve almosto note that attempts to describe stochastic properties of clas-
all information concerning the first and second derivatives ofical vortex filaments based on principles of the equilibrium
functionss;(¢)), s/ (), ands{(¢;), respectively. This in turn  Boltzman's statistics seem incorrect. In contrast, our model
implies that the quantities of interest containing derivativegs based mainly on the experimental data, therefore it is a
of not too high order can be evaluated correctly by the use ofather phenomenological one. It does not explain how certain
the trial distribution function. But it also implies that expres- arrangements of the vortex tangle appear, instead it assigned
sions containing derivatives of higher orders can hardly bédo calculate various averages over the vortex loop configura-
calculated correctly in this way. In any case the reliability oftions. Put another way, the developed approach can be con-
the according calculations will not be too high, although theysidered as a convenient and simple “tool” for the evaluation
can be taken as a rough estimation. However, we do ndr estimation of various effects due to the presence of the
know an example of the quantities expressed via high ordevortex tangle in turbulent superfluid helium.
derivatives and bearing any physical interest. On the con-
trary, the quantities of physical interest are expressed via
derivatives of first and second order. There is a wide class of
such quantities and of the corresponding effects. A number This work was partly supported by Grant No. 96-02-
of examples were given in Sec. Il. 19414 from the Russian Foundation of Basic Research. Dif-
The trial distribution function was derived based on anferent parts of the work were presented at the University of
instantaneous picture of the vortex tangle and, as a consdsukuba(Japan, 1996 at workshopsMicrogravity in Low
guence, the dynamical propertiésxcept those which deal Temperature Physicdasadena, 1995, 1996, at Benfer-
with the small deviation from the “equilibrium” stajedrop  ence on Low Temperature Physics LTPtague, 1996, and
out of consideration. In particular we are not able to answeat the Symposium on Quantum Fluids and Crystals QES97
the question of how the structure of the vortex tangle develParis, 1997. | would like to thank the participants of these
ops. We are also not able to answer how it appeared. Wmeetings for very fruitful discussions. | am particularly
suppose that this structure is the result of very subtle andrateful to Professor G. Ahlers, Professor M. Tsubota, Pro-
very involved dynamical nonequilibrium processes whichfessor W. Glaberson, Professor C. Barenghi, Professor D.
unfortunately cannot be described analytically because of th8amuels, Professor G. Williams, and Professor M. Murakami
complexity of the problem. In this connection we would like for their stimulating questions and discussions.
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