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Gaussian model of vortex tangle in He II

Sergey K. Nemirovskii*
Institute of Thermophysics, 630090 Novosibirsk, Russia

~Received 20 November 1996!

A description of the chaotic vortex tangle in superfluid turbulent He II is developed. Unlike current phe-
nomenological theory dealing with only the macroscopic variable, the vortex line densityLv(t) and describing
thereby only the macroscopic hydrodynamic phenomena, our approach allows us to describe effects due to the
arrangement of the vortex tangle and the interaction of lines. To develop this approach we introduce a trial
distribution function in the space of vortex loop configurations which absorbs all properties of superfluid
turbulence known both from experiment and from numerical simulations. This trial distribution function is
built in terms of the path integral. A number of allowed configurations is obtained evaluating the path integral
with constraints connected with the established properties of the vortex tangle. Using the trial distribution
function we also build the characteristic~generating! functional which allows us to evaluate any average over
the vortex loop configuration. On the basis of the developed approach we briefly discuss some simple statistical
characteristics of the vortex tangle. A more extended example of the developed approach studying superfluid
mass current induced by vortex tangle is reported in a subsequent paper.@S0163-1829~98!04709-2#
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I. INTRODUCTION AND SCIENTIFIC BACKGROUND

It is widely accepted~see, e.g., Ref. 1 and Refs. 2 and!
that after exceeding some critical~fairly small! value of ve-
locity ~or of the relative velocityVns5Vn2Vn if one consid-
ers the case of counterflow! the entangled mass of the chao
vortex filament or the vortex tangle appears in the superfl
component of He II. The wide class of hydrodynamic ph
nomena associated with the presence of the vortex tang
called superfluid turbulence. The most standard schem
study superfluid turbulence is depicted in Fig. 1. The co
terflow is created by the application of a heat loadq to the
end of the channel filled by He II. When the heat load
small, the counterflow is supported by an extremely sm
drop of the temperature (DT}q) along the channel neede
to overcome the viscous flow of the normal component.
ter exceeding some critical value of the heat flux~of order of
1023 W/cm2) the temperature drop increases rapidly (DT
}q3), which indicates that an additional strong dissipat
mechanism appears. Feynman4 proposed that this mechanis
was the friction between the normal component and a se
chaotically distributed filaments of quantized vortices.
also proposed a qualitative scenario describing the evolu
of the vortex tangle. In accordance with this scenario
friction force between the normal component and vortic
causesin averagea growth of the total length of the vorte
filaments. When the vortex tangle becomes dense eno
the collisions of lines come into play. In the processes
collision or self-collision the lines reconnect. Subsequ
self-reconnections of the rings result in the appearance
cascadelike breaking down of the vortex loops which le
to an eventual reduction of total length~see Fig. 2!. The
competition of these two mechanisms results in the ‘‘eq
librium’’ state,5 when the total length of lines per unit o
volume, or vortex line densityLv is established in the sys
tem. The quantityLv is a function of the counterflow veloc
ity Vns and of parameters of the system, such as the b
temperatureT and pressurep.
570163-1829/98/57~10!/5972~15!/$15.00
id
-
is
to
-

ll

-

of

n
e
s

h,
f
t
a
s

i-

th

Feynman’s qualitative model was further developed in
classical works of Vinen6,7 who brought these ideas int
quantitative relations. In particular Vinen obtained the eq
tion bearing his name which governs macroscopic dynam
of the vortex tangle, i.e., evolution of the vortex line dens
Lv(t). This equation reads

dLv

dt
5avuVnsuLv

3/22bvLv
2 , ~1!

whereav andbv are the parameters~dependent on the bat
temperatureT and pressurep) specified by Vinen in the
experiment. The first term on the right-hand side of Eq.~1!
corresponds to the growth of the vortex line density due
mutual friction, the second one is connected to a decay
to the breaking down of the vortex rings. To find the form
the two components Vinen used dimensional considerat

FIG. 1. Turbulent counterflow in He II. The normal compone
flows from the heater carrying the heat fluxq5STVn ; the super-
fluid component flows toward the heater. Total mass currenj
5rnVn1rsVs50. The usual measured quantities are the drop
temperatureDT or/and pressureDp, attenuation and velocity of the
second sound propagating at different angles through the cou
flow, the shape of heat pulses, etc. Here are also depicted the
used in the present paper, thez axis is directed along the relativ
velocity Vns , axesx and y are arbitrary, however, symmetry be
tweenx andy is assumed.
5972 © 1998 The American Physical Society
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57 5973GAUSSIAN MODEL OF VORTEX TANGLE IN He II
as well as the results of the dynamics of single vortex rin
and the experimental data. In stationary cases Vinen’s e
tion yields the relation

Lv5
av

2

bv
2

uVnsu2. ~2!

Relation~2! supplemented by some assumptions such as
assumptions of isotropic and uniform distribution of the vo
tex lines in space served as a basis to evaluate the va
quantities, e.g., the sound attenuation, mutual friction for
temperature gradient, etc. A large number of works e
where relations similar to Eqs.~1! and ~2! were used to ex-
plain the various physical effects and further modificatio
and corrections to the classical Feynman-Vinen theory w
made~see, e.g., Ref. 1!.

The Vinen equation can be incorporated into the class
hydrodynamics of He II~Refs. 8–10!. This unified hydrody-
namics of superfluid turbulence describes a huge variet
nonstationary processes in the superfluid turbulent hel
such as propagation of strong thermal pulses, evolution
the temperature and the velocities fields, decay of the vo
tangle, and other phenomena~see, e.g., Ref. 3!. The ap-
proach developed by Feynman and Vinen is frequently
ferred to as the phenomenological theory of superfluid
bulence, for the main constituents of this theory we
Feynman’s acute conjecture as well as Vinen’s experime
data.

Further progress in the understanding of the nature of
perfluid turbulence and its relation to the vortex line dyna
ics can be found in a series of works by Schwarz~the key
papers are Refs. 11–13!. In a striking paper of this series13

Schwarz reported on the results of a direct numerical sim
lation of the vortex filament dynamics. Starting from th
equation of motion of the vortex line elements in He II a
assuming the vortex lines to reconnect while approach
each other, Schwarz showed that initially smooth vor
rings developed into a chaotic vortex tangle. He calcula
some of the characteristics of this vortex tangle, which
called the structure parameters of the vortex tangle. It ha
be said that performing numerical simulations Schwarz
marily concentrated on the phenomena and effects stu
before in phenomenological theory. In particular he cal
lated the force exerted by vortices on the normal compon

FIG. 2. Cascadelike process of the break down of the vo
ring due to reconnection~Feynman, 1955!: ~a! initial stage;~b!,~c!
stage of approaching of the line elements;~d! stage of collapse and
reconnection;~e! stage of cascadelike degeneration of the vor
loops into thermal excitations.
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which turned out to have a more complicated structure t
the one obtained with the help of Eq.~2!, the attenuation of
longitudinal and transverse second sounds, averaged cu
ture of the filaments, and a number of other quantiti
Schwarz also managed to express the rate of change o
vortex line density dLv /dt via the structure parameter
and demonstrated that it was equivalent to the Vinen eq
tion ~1!, although with a different interpretation.

Although the phenomenological theory successfully e
plains many phenomena, it has a number of serious probl
and open questions~see, e.g., Ref. 3!. However, the follow-
ing aspect seems to be more important and topical. Be
formulated in terms of averaged macroscopical varia
Lv(t) the phenomenological theory ignores discreteness
the vortex tangle and, correspondingly, it fails to descr
effects connected to distribution of the filaments, their int
action, etc., unless one draws some additional suppositi
Although Schwarz’s numerical modeling expands consid
ably the limits of the phenomenological theory it also h
restricted possibilities to study effects connected to the
structure of the vortex tangle. Indeed, as is often the cas
numerical simulations, the structure parameters calculate
Schwarz can hardly be used to evaluate other quantities~e.g.,
the various correlation functions!, than the ones he had ca
culated. It is understood that the above mentioned statem
does not concern the quantities which are directly expres
via vortex line density and via the structure paramete
Meanwhile there exist many other physical quantities rela
with other physical phenomena which cannot be expresse
terms of Schwarz theory. We will give some examples
such quantities~and associated physical effects! later in the
second section. Thus the question of developing the ap
priate stochastic theory of chaotic vortex filaments to cal
late various averaged quantities arises.

Of course the most honest way to develop such a theor
to study stochastic dynamics of vortex filaments on the ba
of equations of motions with some source of chaos, for
stance, introducing the Langevin force. However, becaus
extremely involved dynamics of vortex lines this way see
almost hopeless. Indeed the deterministic dynamics of
vortex line elements in He II is governed by an essentia
nonlinear equation with nonpolynomial and even nonanal
cal nonlinearities~see, e.g., Ref. 13 or 3!. This equation also
includes nonlocal terms due to Biot-Savart law. Because
the mutual friction between vortices and normal compon
the usual conservation laws~e.g., the conservation of energy!
are violated. In addition the reconnection processes per
nently change the topology of the system. Probably the m
serious obstacle is that the stochastic behavior is expecte
be essentially one of nonequilibrium. For instance, analyt
and numerical investigations of the far simpler model pro
lem devoted to the stochastic behavior of the vortex ring i
local approach, without friction and reconnection, show
that the strongly nonequilibrium state, characterized by
flux of the local curvature in Fourier space, is establish
~see Ref. 14!. For this reason we think that an advanc
theory of chaotic vortex filaments will not be developed
the near future and the question of the proper calculation
various properties due to the distribution and interaction
discrete vortex filaments on the basis of rigorous theory
mains open as before.
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5974 57SERGEY K. NEMIROVSKII
In this paper another, far more modest approach is de
oped. The main idea and strategy are the following.
though the phenomenological theory of the superfluid tur
lence deals with macroscopical characteristics of the vo
tangle, it conveys rich information concerning theinstanta-
neousstructure of the vortex tangle. The main goal of t
present work is to construct a trial distribution function in t
space of vortex loop configurations of the most general fo
which satisfies all the established properties of the vor
tangle. It is assumed that this trial distribution function w
enable us to calculate any averaged quantities due to
vortex tangle~see, however, remarks made in the Conc
sion!. In particular we will discuss some stochastic propert
of the vortex lines at the end of this paper. A more extend
example of the developed approach, which concerns a su
fluid mass current induced by the vortex tangle, will be e
posed in the subsequent paper.15

The structure of the paper is the following. In Sec. II w
discuss the properties of theinstantaneousvortex tangle
structure known from experiment and numerical simulatio
We also give several examples of quantities due to the vo
lines arrangement which are of definite physical interest
which cannot be obtained within the framework of pheno
enological theory. In Sec. III we construct the trial distrib
tion function of a general form satisfying all the known pro
erties of the vortex tangle. Performing this procedure
widely use the ideas and methods of the theory of polym
chains. Section IV is devoted to the calculation of the ch
acteristic functional. As it will be shown the use of a cha
acteristic functional not only significantly simplifies th
evaluation of various averages, but also plays a key rol
the construction of the trial distribution function. In Sec.
we discuss some statistical properties of the vortex tang

II. ARRANGEMENT OF THE VORTEX TANGLE

This section is devoted to summarizing our knowledge
the arrangement of the vortex tangle obtained from the
vestigations of superfluid turbulence. Primarily this know
edge was accumulated from the experimental works, h
ever, while interpretating of one or other experimen
investigators used the conception of superfluid turbulenc
a set of vortex filaments chaotically distributed in spa
Fetching various semi-quantitative speculations investiga
drew a number of conclusions concerning vortex tan
structure. As it was said in the Introduction these pure p
nomenological results were confirmed in numerical simu
tions of the vortex lines dynamics made by Schwarz.13 The
numerical modeling not only established numerical valu
for a number of characteristics of the vortex tangle, but a
allowed us to determine them in temperature regions wh
the experimental data were absent. For this reason we wi
use the structure parameters calculated by Schwarz as
sis, although in principle we could appeal only to the expe
mental results. Therefore in addition to the simple introd
tion of the quantities characterizing the vortex tang
structure, we will briefly discuss what experimental resu
led to them.

A. What we know about the vortex tangle structure

The current view on the vortex tangle arrangement can
summarized as follows. The vortex tangle developed
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counterflowing He II~Fig. 1! consists of a set of closed line
labeled by indexj . They can be described as a set of fun
tions sj (j j ), wheresj (j j ) is the radius vector of the point
resting on thej loop. Variablej j labels the points of thej
loop. It is convenient to choose variablej j to be equal to the
arc lengthj j (0<j j<L j ) ~see Fig. 3!. We remind the reade
that we are interested in the instantaneous picture of the
tex tangle, therefore dependence on time is omitted.
whole configuration of the vortex tangle$sj (j j )% is the uni-
fication of all of the curves$sj (j j )%5ø jsj (j j ). Due to fre-
quent reconnections, both the number of loops and th
lengthsL j are arbitrary quantities. In addition each of th
loops can take any arbitrary shapesj (j j ). It should be under-
stood, however, that in spite of the arbitrariness of th
quantities the whole configuration should meet a numbe
requirements. For instance, the total length of the loops
unit of volume-vortex line densityLv is the well determined
quantity satisfying the relation

K 1

V(j
E

0

L j
usj8~j j !udj j L 5Lv . ~3!

HereV is the volume, the prime denotes derivative with r
spect to the arc lengthj j . The angle brackets denote overa
averaging over vortex loop configurations$sj (j j )%. Since the
variablej j is chosen to be the arc length, the absolute va
of the tangent vector is the unit

usj8~j j !u51, ~4!

which leads to the relation

K (
j
E

0

L j
dj j L 5VLv . ~5!

The filaments comprising the vortex tangle are distribu
in space in an anisotropic manner. There are two kinds
anisotropy. The first one is connected to orientations of
line elements and has been discovered in experiments on

FIG. 3. Space curve representing aj -vortex loop. The position
of the vortex line element is described by curvesj (j j ), wherej j is
the arc length,sj8(j j )5dsj (j j )/dj j is a tangent vector, the unit vec
tor along the vortex line;sj9(j j )5d2sj (j j )/dj j

2 is the local curvature
vector. Vector productionsj8(j j )3sj9(j j ) is responsible for the mu-
tual orientation of the tangent vector and the vector of curvatu
The initial point of the curve denoted by a dot is chosen as arbitr
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57 5975GAUSSIAN MODEL OF VORTEX TANGLE IN He II
attenuation of transverse~with respect to the counterflow, se
Fig. 1! and of longitudinal second sound.16 The measure of
this anisotropy can be defined with the use of the struc
parametersI i , I' introduced by Schwarz~see Ref. 13! who
confirmed the anisotropy of the vortex tangle in the nume
cal modeling. For our purposes it is more convenient to
other parametersI aa (a5x,y,z) simply connected with the
ones introduced by Schwarz. The fraction of the vortex l
elements orientated along thez axis is

K 1

VLv
(

j
E

0

L j
sjz8 ~j j !sjz8 ~j j !dj j L 512I i5I zz.. ~6!

To move further we have to discuss what we mean by
phrase ‘‘overall averaging over vortex loop configuration
Based on what has been said above, we state that the ov
averaging includes averaging over~i! the shape of each o
the loops,~ii ! the number of the loops and their lengths, a
~iii ! the initial points of each of the loops. As far as th
second and third items are concerned, unfortunately nei
experiment nor theory give any clue to the according dis
butions. To overcome this problem we accept the supposi
of full uniformity of the vortex tangle made by many inve
tigators and also confirmed in numerical simulations. B
cause of uniformity overall local averages such a
^sj a(j j )&, ^sj a(j j )sj b8 (j j )&, etc., should not depend on bo
j j and j . Therefore relation~6! is factorized as

^sjz8 ~j j !sjz8 ~j j !&K 1

VLv
(

j
E

0

L j
dj j L 5I zz

and, in combination with Eq.~5!, can be rewritten in the
local form

^sjz8 ~j j !sjz8 ~j j !&5I zz. ~7!

The essence of the performed procedure is the separatio
an overall averaging into the one over the shapes of the lo
and other averaging. Therefore accomplishing preavera
over loop lengths, over the number of loops and their ini
points, a trivial matter due to full uniformity, we are left wit
an average over the shape of some ‘‘averaged’’ loop hav
the same structure parameters as the whole vortex tan
Thus the problem is reduced to constructing a distribut
function in the space of the configuration, where the ‘‘av
aged’’ curve takes various shapes. We, however, retain
index j for consistency of presentation.

Relations analogous to Eq.~7! can be written down forx
andy components:

^sjx8 ~j j !sjx8 ~j j !&512I'5I xx , ~8!

^sjy8 ~j j !sjy8 ~j j !&512I'5I yy . ~9!

Due to usj8(j j )u51 @see Eq.~4!# parametersI xx , I yy , and
I zz obey the obvious identity

I xx1I yy1I zz51. ~10!

The second kind of anisotropy, the so-called polarizati
is connected with a mutual orientation of the tangent vec
sj8(j j ) of the filament segments and the vector of curvat
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sj9(j j ). The measure of polarizationI l has quantitatively
been introduced by Schwarz by the relation

K 1

VLv
3/2(j

E
0

L j
sj8~j j !3sj9~j j !dj j L 5I lez , ~11!

whereez stands for the unit vector in thez direction ~along
the counterflowVns). On the strength of the arguments di
cussed above, condition~11! can also be brought into th
local form

^sj8~j j !3sj9~j j !&5I lLv
1/2ez . ~12!

Though relation~11! was taken from numerical simulation
can be readily obtained from experimental data. Indeed,
combination^sj8(j j )3sj9(j j )& appears to be a positive term
in the equation for the rate of change of length of the li
element. Therefore it can be extracted by comparing
equation with the first term on the right-hand side of t
Vinen equation~1!. This procedure has been carried out
Refs. 10 and 13.

The next property of the vortex tangle concerns the m
curvature of the lines. The idea that the mean curvature
the vortex tangle should be of the order of interline spa
goes back to Hall’s work on superfluid turbulence.17 Later
this view was discussed by many authors and was rigoro
confirmed in Schwarz’s numerical simulation. He calculat
the coefficientc2

2 connecting the averaged squared curvat
with the quantityLv . In our notation this property reads

K 1

VLv
(

j
E

0

L j
sj9~j j !sj9~j j !dj j L 5c2

2Lv ~13!

or, in the local form,

^sj9~j j !sj9~j j !&5c2
2Lv . ~14!

The uniform superfluid turbulence which we are inte
ested in is realized in wide channels. More rigorously it im
plies that interline spaced5Lv

21/2 should be much smalle
than the size of channel. In this case we can disregard l
ending on surfaces and consider all lines to be closed lo
Condition of the closeness of the lines can be written as

E
0

L j
sj8dj50. ~15!

In addition we suppose that the length of each of the loop
greater than the mean radius of the curvature, as observe
Schwarz,13

L j@^usj9~j j !u&21. ~16!

Apart from the direct evidence following from Schwarz
work we can bring forward the following argument in favo
of condition ~16!. The length of the vortex filament is firs
changed due to the deterministic process of ballooning o
shrinking of the loops and, secondly, due to reconnect
processes. The reconnection can decay the loops into
smaller loops in the case of self-collision or can fuse th
into a larger loop in the case of collision with other loop
Clearly the loops collide more frequently with other loo
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5976 57SERGEY K. NEMIROVSKII
than are subjected to the self-collision. Therefore it see
plausible that long loops prevail due to the reconnection p
cesses.

The properties expressed by relations~3!–~16! are about
the extent of our knowledge concerning the vortex tan
arrangement in superfluid turbulent helium II. Followin
Schwarz we will call the quantitiesI' ,I i ~andI xx , I yy , I zz),
I l , c2 , as the structure parameters of the vortex tangle. T
depend on the temperatureT and the pressurep and do not
depend on the applied counterflow velocityVns . Numerical
values of the structure parameters as a function of temp
ture are given in the original work by Schwarz13 and in Refs.
1 and 3.

B. Other quantities of interest

The structure parameters introduced in the previous s
section convey valuable information on the vortex tangle
rangement. In addition they can serve as a basis for
evaluation of various quantities connected to the obser
physical phenomena, such as the Gorter-Mellink const
coefficients of the extraattenuation of the second sound~both
transverse and longitudinal!, drift velocity of the vortex
tangle, etc. Details of the corresponding procedure can
found in Ref. 13. However, there are many other import
characteristics of the vortex tangle which are connected w
other physical phenomena and which cannot be directly
pressed via structure parameters or a combination of th
Let us give several examples of these quantities.

For the first example we take the average vorticity of
superfluid velocity V(r ) and its Fourier transformVk .
These quantities may have nonzero values and should
taken into account when more complicated flows than a o
dimensional counterflow are considered. They have to
introduced as the following averages:

V~r !5K k̃(
j

R dsjd@r2sj~j j !#L ~17!

and

Vk5K k̃

~2p!3/2E d3re2 ikr(
j

R dsjd@r2sj~j j !#L
5K k̃

~2p!3/2(j
R dsje

2 iksj ~j j !L , ~18!

where k̃ is the quantum of circulation. The closest examp
of the flow of the superfluid component with a nonzero a
eraged vorticity created by a set of vortex lines is the cas
rotating He II. In this case the superfluid component sim
lates ~in average! the solid-body rotation, and the averag
vorticity is just the areal density of the vortex lines mul
plied by k̃ as follows from relation~17!.

Another quantity which influences the hydrodynam
properties of the superfluid turbulence is mean superfl
velocity created by vortex tanglevs

V(r …. It is obtained by
averaging the Biot-Savart law

vs
V~r !5K k̃

4p(
j
E

0

L j sj8~j j !3@r2sj~j j !#

ur2sj~j j !u3
dj j L . ~19!
s
-
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Accordingly, the full momentumPV of the additional super-
fluid motion connected to the presence of the vortex tangl

PV5rsE vs
V~r …d3r. ~20!

With the direct use of relations~19!,~20! a problem typical
for vortex flows is encountered. The integral in relation~20!
diverges for both small and largeur2sj (j j )u ~see, e.g., Refs
18, 19!. Therefore the question of the averaged velocity or
the full momentum generated by vortices cannot be resol
in a straightforward way. On the other hand, it is known th
in many respects the so-called Lamb impulse plays the
of momentum. In general the Lamb impulse density is d
fined as

JV5
rs

2VE r3v~r !d3r, ~21!

wherev(r … is the distribution@microscopical, not average
V„r …# of the vorticity. For the singular distribution of th
vorticity, viz., for chaotic vortex filaments, Eq.~21! can be
rewritten as

JV5K rsk̃

2V(
j
E

0

L j
sj~j j !3sj8~j j !dj j L . ~22!

The following paper15 is devoted the study of the quantit
JV .

Due to the interaction between vortices, the vortex tan
should display some kind of elasticity. As a result it is e
pected that the long-range interaction between different v
tex lines element will lead to macroscopic modes such
waves of the vortex line density i.e., three-dimensional~3D!
analogs of the Tkachenko waves.1 The measure of elasticity
is determined by the energy of the interaction. The energy
the vortex tangle is defined by the average

E5 K 1

2E rsvs
2d3r L

5K rsk
2

8p (
j ,i

E
0

Li E
0

L j si8~j i !sj8~j j !

usi~j i !2sj~j j !u
dj idj j L . ~23!

By use of the well-known formula

1

ur u
5E

k

4pd3k

k2
eikr , ~24!

the average energyE @Eq. ~23!# can be rewritten as

E5K rsk
2

2 (
i , j

E
k

d3k

k2

3E
0

Li E
0

L j
sj8~j i !sj8~j j !dj idj je

ik„si ~j i !2sj ~j j !…L . ~25!

For the next example, we would like to point out that t
proper entropy of the vortex tangle is

SV5kB^ lnG~$sj~j j !%!&, ~26!
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whereG($sj (j j )%) is the number of the vortex loop configu
rations~see next section!. The quantitySV enters the equa
tions of hydrodynamics of superfluid turbulence~see Refs. 3
and 8! and the knowledge of it is necessary for the corr
study of unsteady hydrodynamic processes.

Let us consider the average

A5K (
j
E

0

L j
„ṡj~j j !3sj8~j j !…dj i L , ~27!

whereṡj (j j ) is the velocity of the line element. The quanti
ṡj (j j ) is expressed~generally as a functional! via the instan-
taneous configuration of the vortex tangle$sj (j j )% with the
help of the equation of motion~see, e.g., Ref. 13!. The right-
hand side of Eq.~27! is an averaged net area swept out by
motion of the lines. The quantityA bears a manyfold physi
cal interest. For example, the equation of motion of the v
tex line can be derived from the variational principle, and
contribution of the lines into the action is proportional to t
area swept out by the moving lines~see Ref. 20!. Further-
more, thez component ofA is just the rate of the phas
slippage caused by the motion of vortex lines transvers
the counterflowVns ~see Ref. 21!. Finally, the integrand in
~Eq. 27! is the discrete variant of quantityvs3(¹3vs),
which is called the vortex force and plays a significant role
the vortex dynamics~see Ref. 19!. Of course all of the prop-
erties ofA discussed above are not independent and
listed them just to stress an importance ofA for applications.

Using the distribution function it is even possible to d
scribe dynamics of various quantitiesA($sj (j j )%) averaged
over loop configurationŝA($sj (j j )%)&. Indeed, reverting the
time dependence for the line elements positionssj (j j )
→sj (j j ,t) and using a chain rule, we can write down the ra
of change of the quantitŷA($sj (j j ,t)%)& in the form

]^A~$sj~j j ,t !%!&
]t

5K (
i
E

0

L j dA~$sj~j,t !%!

dsi~j i8,t !

]si~j i8,t !

]t
dj i8L .

~28!

Expressing the velocity of the line elementṡj (j j ) with the
help of the equation of motion13 we find that the right-hand
side of Eq. ~28! is an average of some functional of th
vortex line configuration. Thus we have obtained a rule
the calculation of the evolution of quantity^A($sj (j j ,t)%)&.
A word of caution should be given. The future distributio
function will correspond to the instantaneous picture of
vortex tangle, i.e., to the ‘‘equilibrium’’ state of the vorte
tangle. Therefore, by saying dynamics, we have in mind o
small deviations from the ‘‘equilibrium.’’ Nevertheless th
possibility to introduce macroscopic dynamics of the vor
tangle in a regular way seems to be very important.
example, while derivating of the governing equation~1! for
the evolution of the vortex line density, Vinen made a ve
important assumption that the rate of change of the vo
line densitydLv /dt is a function only of the instantaneou
value of Lv . This property was called the self-preservin
assumption. As was discussed in Ref. 3 this assumptio
justified if and only if the other characteristics of the vort
tangle other than the quantityLv(t) relax to the ‘‘equilib-
rium’’ state much faster thanLv(t) itself. The self-
t
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preserving-assumption can be confirmed or refuted by
specting relations similar to Eq.~28!.

We gave several examples of the averages responsibl
interesting phenomena in the turbulent counterflowing He
Apart from independent interest, the study of these phen
ena can supply important information concerning the fi
structure of the vortex tangle. It is easy to see that none
the quantities introduced can be expressed via structure
rameters of the phenomenological theory of superfluid tur
lence. To evaluate them one has to have some rules to
complish averaging. We propose to do it with the help o
trial distribution function construction which is the main pu
pose of this work. Before we proceed to this procedure
have to introduce and discuss one more averaged quantit
the characteristic~or generating! functional.

C. Introduction of characteristic functional

Let us consider the following averaged quantity, the s
called characteristic functional:

W~$Pj~j j !%!5K expS i(
j
E

0

L j
Pj~j j !sj8~j j !dj j D L .

~29!

The characteristic functional is of special interest. The po
is that one is able to calculate any average depending on
vortex line configuration by using simple functional diffe
entiation. For instance the average tangent vector^sj a8 (j j )&,
the average vector of curvature^sj a9 (j j )&, or the correlation
function between the orientation of different elements of
vortex filamentŝ sj a8 (j j )sj b8 (j j )& are readily expressed via
characteristic functional according to the following rules:

^sj a8 ~j j !&5
dW

idPj
a~j j !

U
all P50

, ~30!

^sj a9 ~j j !&5
]

]j j

dW

idPj~j j !
U

all P50

, ~31!

^sj a8 ~j j !sj b8 ~j j !&5
d2W

idPj
a~j j 1!idPj

b~j j 2!
U

all P50

. ~32!

The other quantities are expressed via a characteristic f
tional in a bit more sophisticated way. For instance the F
rier transform of the averaged vorticityVk @Eq. ~18!# can be
evaluated with the help of the characteristic functional by
use of the following procedure:

Vk5(
j
E

0

L j
dj je

2 iksj ~0!
dW

idPj~j j !
U
$Pj ~j

j8!%52ku~j
j8!u~j j 2j

j8!

,

~33!

where u(j j8) is the unit stepwise function. The productio
u(j j8)u(j j2j j8) selected out points lying in range 0<j j8
<j j on the j curve. This choice assures the appearance
the correct quantityeiksj (j j ) after integration of the exponen
in relation ~29!. The quantitysj (0) is the initial point of the
j curve which is chosen to be arbitrary.



l

he

o
,

he
a

in
is
g
o
u
as
f

o
n

nt
th

b

r

o

all
tate

fi-

all
re-
o

of
3D

om

ted

n

and

Eq.

is
ry
us
d

the

d
ity
e

of

5978 57SERGEY K. NEMIROVSKII
In a similar way the mean energy^E& @Eq. ~25!# can be
calculated as

^E&5
rsk

2

2 (
i , j

E
k

d3k

k2 E0

Li E
0

L j

3dj idj je
2 ik@si ~0!2sj ~0!#

3
d2W

idPi
a~j i !idPj

a~j j !
. ~34!

Here a set of Pn(jn8) in the characteristic functiona
W($Pn(jn8)%) is again determined with the help of theu
functions

Pi~j i8!52ku~j i8!u~j i2j i8!,

Pj~j j8!52ku~j j8!u~j j2j j8!, ~35!

Pn~jn!50,nÞ i , j .

Relation ~35! implies that we choose an integrand of t
characteristic functional~29! from only points lying in the
interval from 0 toj i on thei curve and from 0 toj j on the
j curve. When evaluating the self-energy of the same lo
i 5 j , one has to distinguish pointsj i , and put them to be
e.g.,j i8 andj i9 .

Although the characteristic functional is defined via t
distribution function as some auxiliary quantity, it plays
significant independent role in stochastic theory. For
stance, in many body problems the use of a character
functional ~in this theory it is usually called a generatin
functional! allows one to get the shortened description
statistical properties in terms of the Green function and eq
tions for them. Another example would be the case of cl
sical turbulence, where one derives the master equation
the characteristic functional directly from the equation
motion of the fluid avoiding the use of a distribution functio
~see, e.g., Ref. 22!. Similarly in our work the characteristic
functional is used not only for the calculation of differe
averages but it also plays a key role in the derivation of
trial distribution function.

III. CONSTRUCTING A TRIAL DISTRIBUTION
FUNCTION OF GENERAL FORM

A. Main definitions

The averages introduced in the previous section can
calculated using a distribution functionP($sj (j j )%) in the
space of vortex loop configurations. According to the gene
prescriptions the average of any quantity^B($sj (j j )%)& de-
pending on the vortex loop configurations is

^B~$sj~j j !%!&5 (
$sj ~j j !%

B~$sj~j j !%!P~$sj~j j !%!. ~36!

HereP($sj (j j )%) is the probability of the vortex tangle t
have a particular configuration$sj (j j )%. The meaning of the
summation over all vortex loop configurations($sj (j j )%

in
formula ~36! will be clear from the further presentation.
p

-
tic

f
a-
-
or
f

e

e

al

We use the usual supposition in statistical physics that
configurations corresponding to the same macroscopic s
have equal probabilities. Thus the probabilityP($sj (j j )%) for
the vortex tangle to have a particular configuration$sj (j j )%
should be proportional to 1/Nallowed, where Nallowed is the
number of allowed configurations which is, of course, in
nite:

P~$sj~j j !%!}
1

Nallowed
. ~37!

By the term ‘‘allowed configurations’’Nallowedwe mean only
the configurations that will lead to the correct values for
average quantities known from experiment and given by
lations~3!–~16!. The following subsection will be devoted t
a detailed elaboration of the ideas given above.

B. Introduction of the constraints and the effective Lagrangian

The number of allowed configurations, or number
curves, is expressed by the path integral in space of
curves supplemented by some constraints which follow fr
conditions ~3!–~16!, or, to be precise, which will lead to
these conditions:

Nallowed}E D$sj~j j !%3constraints$sj~j j !%. ~38!

In this subsection we will introduce the constraints dicta
by conditions~3!–~16!, and modify expression~38! into a
standard and tractable form. Let us begin with condition~3!
concerning the total length of vortex lines. This conditio
implies that among the possible curves, labeled byj j , we
have to choose only curves whose lengths are fixed
equal toL j . Taking the local form of this condition~4! we
impose the corresponding constraint into the integrand of
~38! as ad function:

Nallowed
~ j ! }E Dsj~j j !3d~ usj8~j j !u21!. ~39!

Because of the absolute value ofsj8(j j ), which is a nonana-
lytical function, this expression will lead to a theory which
not tractable. We will use here a trick known from the theo
of polymer chains, where a similar problem appears. Let
divide the j vortex line into a set of discrete points an
change the path integral by production of the usual ones

E Dsj~j j !5E JDsj8~j j !→)
n
E Jd~sj ~ n11!2sjn!.

~40!

Here J is a Jacobian corresponding to the change from
variablesj (j j ) to the derivativesj8(j j ). The explicit shape of
the JacobianJ is not significant since it is usually cancelle
against the one in the normalizing factor for the probabil
P@sj (j j )# in Eq. ~37!. Then the integration for each of th
links sj (n11)2sjn5 Ln in relation ~40! should be accom-
plished with the delta function constraintsd(uLnu21) corre-
sponding to the fixed length of the link. In the theory
polymer chains they offer to relax rigorous conditionu lnu
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5 l n and to replace it by using the smeared-out~Gaussian!
distribution of the link length with the same value of th
integral ~see, e.g., Ref. 23!

E d3lnd~ u lnu2 l n!⇒E d3lnS 4

Ap l n
D e2 ln

2/ l n
2
. ~41!

Parameterl n here, the so-called effective bond length, is us
ally established in experiment. Gathering contributions fr
all links and coming back to the continuous case

)
n

e2 ln
2/a2

5e2(n~sjn112sjn!2/a2⇒e2l1E
0

L j

usj8u
2dj j ~42!

one obtains that the number of configurationsNallowed
( j ) of the

j vortex loop supplemented with constraintd(usj8(j j )u21)
can be written

Nallowed
~ j ! }E JDsj~j j !3e2 l1E

0

L j

usj8u
2dj j . ~43!

Here the JacobianJ differs from the one used in Eq.~40!,
however, this has no effect because of the remark made
Eq. ~40!. The quantityl1 is a parameter of our theory whic
will be determined later. Before we move further it is wor
discussing the sense of the fulfilled procedure once more
for the theory of a polymer, the introduction of the Gauss
chains instead of real polymers does not significantly in
ence most of the important physical applications~see Ref.
23!. One can say that a loss of some rigorousness is an
ceptable sacrifice for the obvious simplicity. This conclusi
concerns our model to a greater extent than polymer the
Indeed, the choice of the arc lengthj j as a label for the
vortex filament was a question of convenience. The sa
treatment might be applied to another label, say, the
length j j̃ at some moment of time. While the lines are
motion, some parts of the curve shrink whereas other p
stretch. Therefore the real value ofusj8(j j )u does not have to
be equal to unity exactly, but should be smeared-out.

Returning to relation~43! we conclude that the use of th
constraint~4! leads to the familiar form for the number o
allowed configurations of thej loop as a path integral ove
all configurations with weight proportional to exp(2*Lj )
where the effective Lagrangian is determined by

E Lj5l1E
0

L j
usj8u2dj j . ~44!

Using formula ~37! we conclude that the probabilit
Pj@sj (j j )# for the j loop to have configurationsj (j j ) is the
Wiener distribution~see Ref. 23!

Pj@sj~j j !#5Nj expS 2l1E
0

L j
usj8u2dj j D , ~45!

whereNj is the corresponding normalizing factor.
In a similar way we can account for other loops so the f

Lagrangian corresponding to the constraintusj8(j j )u51 is de-
termined by

E L5l1(
j
E

0

L j
usj8u2dj j . ~46!
-

ter

s
n
-

c-

y.

e
rc

ts

l

The constantl1 was factored out of the sum, otherwise th
average would depend on indexj which would contradict the
supposition of full uniformity.

The next constraint to be discussed is connected to
curvature of the lines. It is known that though the resulti
curve averaged according to Eq.~45! has a correct lengthL j ,
it is not smooth, but wiggly at each point as schematica
depicted in Fig. 4. Indeed the distance between pointssj (j j 1)
and sj (j j 2) of the curve is expressed by the relation~see,
e.g., Ref. 23!

^usj~j j 1!2sj~j j 2!u&5A~j j 12j j 2!/l1 ~47!

nonanalytical whenj j 1→j j 2. In other words, the averag
curve^sj (j j )& does not even have a first derivative. To ma
it smooth we have to introduce into the effective Lagrang
Lj a term with a second derivative and, further, in order
make it have finite curvature we have to introduce a te
with a third derivative, etc.,

E Lj5l1E
0

L j
usj8u2dj j1l2E

0

L j
usj9u2dj j

1l3E
0

L j
usj98u2dj j1••• . ~48!

The effective Lagrangian~48! is isotropic, therefore it
will give an isotropic distribution of the line which is wrong
To improve the situation we have to impose that the coe
cientsl be matrices~so far diagonal!. For instance, relation
~44! should be changed by the following expression:

l1xE
0

L j
sjx8 sjx8 dj j1l1yE

0

L j
sjy8 sjy8 dj j1l1zE

0

L j
sjz8 sjz8 dj j

5E
0

L j
sj a8 Labsj b8 dj j . ~49!

The next step is to take into account the polarization
the vortex tangle. To have a nonzero value for the avera
polarity we have to add nondiagonal terms into the ma
Lab. The according correction to the Lagrangian is

FIG. 4. Schematic picture of the curve averaged with wei
exp(2l1*0

Ljusj8u2dj j ). Although the averaging was performed ov
smooth lines, the resulting curve is a fractal object with a kink
each point.
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E dLj5lpE
0

L j
~sj83sj9!zdj j . ~50!

The indexz implies that we have to take only thez coordi-
nate in the vector productionsj83sj9 .

Finally, since the effective Lagrangian includes deriv
tives of different orders (sj8 , sj9 , andsj98) it is convenient to
perform the one-dimensional Fourier transform alongj j :

sj~j j !5(
k

sj~k!eikj j ,k52pn/L j . ~51!

Because of the closure condition~15!

1

L j
E

0

L j
sj8dj j5sj8~k!uk5050 ~52!

the zero harmonic of derivativesj8(j j ) is zero, therefore we
will further exclude harmonick50 in the summation in 1D
Fourier space. Correspondingly, evaluation of the path in
gral in thek representation should be accomplished acco
ing to the following rule:

E D$sj~k!%5)
j

)
kÞ0

E dsj~k!. ~53!

Further we will use both sides of this relation interchang
ably.

Summarizing everything concerning the effective L
grangian and using relation~37! it can be inferred that prob
ability P($sj (k)%) that the vortex tangle has the particul
configuration$sj (k)% is

P~$sj~k!%!5N expS 2 (
kÞ0
L~$sj~k!%! D , ~54!

whereN is overall normalization.
The density of LagrangianL$sj (k)% in k space is24

L$sj~k!%5(
j S sjx~k!

sjy~k!

sjz~k!
D S Lxx~k! Lxy~k! Lxz~k!

Lyx~k! Lyy~k! Lyz~k!

Lzx~k! Lzy~k! Lzz~k!
D

3S sjx~2k!

sjy~2k!

sjz~2k!
D . ~55!

The diagonal terms of the matrixLab have the following
structure:

Laa5l1ak21l2ak41l3ak61•••,a5x,y,z. ~56!

From the definition of the nondiagonal part of the Lagran
ian ~50! and from the assumed symmetry in the plainx,y it
follows that

Lxy5~ ik!3lp ,Lyx52~ ik!3lp . ~57!

Expressions~54!–~57! determine the probability of the
allowed vortex loop configuration of the most general fo
satisfying all the known properties of the vortex tangle. Th
they can be considered to be the trial distribution funct
which we were looking for. Of course to use this functio
-

-
-

-

-

s

one has to specify all of the parametersl and cancel the
uncertainty in the expansion~56!. The most convenient way
to do this is to calculate the characteristic functional a
study its properties to specify an explicit form of the param
eters entering the trial distribution function. The followin
section is devoted to this procedure.

IV. CONSTRUCTION OF THE CHARACTERISTIC
FUNCTIONAL

A. Calculation of the characteristic functional in k space

Our first step is to calculate the characteristic function
defined by relation~29!. It is convenient to do so ink space.
In k space the characteristic functional can be obtained
accomplishing a 1D Fourier transform~51! in Eq. ~29!:

W~$Pj~k!%!5K expS i(
j

(
kÞ0

L jPj~k!sj8~2k! D L .

~58!

The various averages are readily obtained using this de
tion. For instance, the averaged values of the tangent ve
~30! and of the vector of curvature~31! can be evaluated
with the use of the following rules:

^sj a8 ~j j !&5 (
kÞ0

e2 ikj j
dW

iL jdPj
a~k!

U
all P~k!50

, ~59!

^sj a9 ~j j !&5 (
kÞ0

~2 ik!e2 ikj j
dW

iL jdPj
a~k!

U
all P~k!50

.

~60!

Likewise the two point correlation function@relation~32!# is
expressed via the characteristic functional ink space as fol-
lows:

^sj a8 ~j j !sj b8 ~j j !&

5 (
k1 , k2Þ0

e2 ik1j j 1e2 ik2j j 2

3
d2W

iL jdPj
a~k1!iL jdPj

b~k2!
U

all P„k…50

. ~61!

To calculate the characteristic functional in thek space
@relation ~58!# we employ the trial distribution function in-
troduced in the previous section. Using relations~54!–~57!
one can rewrite expression~58! in the following form:

W~$Pj~k!%!5NE JD$sj~k!%

3expF2(
j

(
kÞ0

sj a~k!Lab~k!sj b~2k!G
3expXi(

j
(
kÞ0

H L j

1

2
@Pj~k!sj8~2k!

1Pj~2k!sj8~k!#J C, ~62!
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where

N5H E JDsj~k!expS 2(
j

(
kÞ0

sj
a~k!Lab~k!sj

b~2k! D J 21

is the overall normalization.
The right-hand side of relation~62! is evaluated by the

standard ‘‘full square procedure’’ expressed by identity

E )
k

dzkexpF2(
nm

znAnmzm* 1(
n

~znun* 1zn* un!G
5expS 2(

nm
unAnm

21un* D * E )
k

dzk

3expS 2(
nm

znAnmzm* D . ~63!

The integral in Eq.~63! is taken over a set of complex var
ableszk , *dzk5*dRezkdImzk . The matrixAnm is supposed
to be the Hermitian, and the matrixAnm

21 is inverse to the
matrix Anm . Using this rule for each of the Fourier harmo
ics in Eq.~62! we get

W~$Pj~k!%!5expS 2(
j

(
kÞ0

L j
2Pj

a~k!Nab~k!Pj
b~2k! D ,

~64!

where the matrixNab(k) is equal to 1/4k2@Lab(k)#21. El-
ements of both the matrixNab(k) and the matrixLab(k) do
not depend on indexj , otherwise the local averages wou
depend onj which contradicts the full uniformity suppos
tion.

The second step in realizing the scheme outlined at
end of Sec. III B is to study general properties of the ch
acteristic functional~64! issuing from method it has bee
built. Before doing it let us connect the matrixNab(k) ~so
far not determined explicitly! with the characteristics of the
vortex tangle expressed by formulas~3!–~16!. The functional
derivatives entering relations~59!–~61! as applied to the
characteristic functional~64! are evaluated according to th
following rules:

dW

iL jdPj
a~k!

5
L

i
2Nan~k1!Pj

n~2k1!

3expS 2(
j

(
kÞ0

L j
2Pj

m~k!Nmn~k!Pj
n~2k! D .

~65!

Here it has been taken into account thatNmn(k) is the Her-
mitian matrixNan(k)5Nna(2k) . Likewise the second de
rivative is
e
-

d2W

iL jdPj
a~k1!iL jdPj

b~k2!

5$2Nab~k1!d2k1 ,k2
24Nan~k1!Pj

n~2k1!Nbg~k2!

3Pj
g~2k2!%

3expF2(
j

(
kÞ0

L j
2Pj

m~k!Nmn~k!Pj
n~2k!G . ~66!

Using Eqs.~65! and~66! in relations~59!–~ 61! we conclude
that

^sj a8 ~j j 1!sj b8 ~j j 2!&5 (
k1Þ0

e2 ik1~j j 12j j 2!2Nab~k1!, ~67!

hence the averaged squared tangent vector^sj a8 (j j )sj a8 (j j )& is
just

^sj a8 ~j j !sj a8 ~j j !&5 (
kÞ0

2Naa~k!. ~68!

Accordingly, the averaged squared vector of curvat
^sj a9 (j j )sj a9 (j j )& is

^sj a9 ~j j !sj a9 ~j j !&5 (
kÞ0

2k2Naa~k!. ~69!

Note that formulas~68! and ~69! are valid both for each of
the componentsa and for the sum overa. As far as the
average polarization of the vortex tangle is concerned i
expressed via the matrixNab(k) as follows:

^~sjx8 sjy9 2sjy8 sjx9 !&

5 (
k1 ,k2Þ0

e2 i ~k11k2!j j

3@~ ik2!Nxy~k1!d2k1 ,k2
2~ ik2!Nyx~k2!d2k1 ,k2

#.

~70!

By constructing the nondiagonal elements of the Hermit
matrix Lxy(k) andLyx(k) are odd functions of argumentk.
It is obvious that the inverse matrixNab(k) satisfies the
same conditions. Therefore

Nyx~k!5Nxy~2k!52Nxy~k!. ~71!

Using this chain of relations we finally arrive at

^~sjx8 sjy9 2sjy8 sjx9 !&5 (
kÞ0

2~ ik!Nxy~k!. ~72!

B. Trial form of the matrix Nab
„k…

Inspecting the method of constructing a trial distributi
function as well as the way of deriving a characteristic fun
tional we can deduce some very general properties of
matrix Nab(k): ~i! the matrix Nab(k)5Nba(2k) is the
Hermitian one;~ii ! the diagonal terms ofNaa(k) should be
even functions of k; ~iii ! the nondiagonal terms
Nxy(k),Nxy(k) should be odd functions ofk; ~iv! to guar-
antee the existence of any^sj

(n)(j j )sj
(n)(j j )& for any n one
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has to require that the elements of matrixNab(k) decrease
faster than any power functionkn12.

In addition to these properties, the matrixNab(k) should
give the correct values of the mean tangent vec
^sj a8 (j j )sj a8 (j j )&, of the mean squared curvatu
^sj a9 (j j )sj a9 (j j )&, and of the polarization̂ (sjx8 sjy9 2sjy8 sjx9 )&.
u
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Furthermore, since only a few characteristics of the vor
tangle are known, the matrixNxy(k) should not include too
many parameters. Finally, it should be simple enough
tractable otherwise the whole method would be meaningl

As a suitable candidate satisfying all the listed propert
we propose a matrixNab(k) of the following form:
S Nxxexp~2k2j0
2! ~ ik!Nxyexp~2k2j0

2! 0

2~ ik!Nyxexp~2k2j0
2! Nyyexp~2k2j0

2! 0

0 0 Nzzexp~2k2j0
2!
D . ~73!
x

se-

a
ith

on
e

It will be shown later that quantityj0 is nothing but the
correlation length. It will also be shown thatj0 is of order of
the mean curvature, or of order of the interline space. Th
besides the above conditions~i!–~iv! one more strong sup
position that all the correlation functionŝsj a

(n)(j j 1)sj b
(m)

3(j j 2)& have the same correlation lengthj0 of the order of
the interline space is made. Some semiquantitative proo
that fact based on the consideration of kinematic relati
such ass8s950, s8s981s9s950, etc., has been given b
Schwarz.11

C. Specifying coefficientsNab in k space

The final step in constructing the characteristic functio
is to specify the coefficientsNab as well as the quantityj0 .
These five quantities can be obtained comparing relat
~68!–~72!, where matrixNab(k) is taken from Eq.~73! with
relations~3!–~16!.

Let us start with the calculation of the coefficientNxx. It
can be found from a comparison of relation~8! for the mean
x fraction of the tangent vector obtained in experiment w
relation~68! for the same quantity expressed via the char
teristic functional~64! with matrix ~73!:

I xx52NxxH (
n all

expF2n2S 2pj0

L j
D 2G21J . ~74!

Employing conditionj0!L j and changing(nall→*dn we
arrive at

Nxx5I xx

j0Ap

L j

1

~122j0Ap/L j !
. ~75!

Of course this result is valid for each of the components w
correspondingI yy ,I zz. Note that we retained the small ter
2j0Ap/L j in the denominator on the right-hand side of E
~75!. Its origin is from the closeness of the vortex lines and
plays a significant role in questions where the closenes
the vortex lines is relevant~see below!.

To specify the quantityj0 one has to use the relations fo
the average squared vector of the curvature. Comparing
~13!and ~69! and using the expression forNaa obtained
above one concludes that
s,

of
s

l

s

-

h

.
t
of

s.

c2
2Lv5

j0Ap

L j
(
n all

2n2S 2p

L j
D 2

expF2n2S 2pj0

L j
D 2G . ~76!

Changing again(n all→*dn we obtain

j0
25

1

2c2
2Lv

. ~77!

Sincec2
2 is of the order of unity~see Ref. 13!, the quantityj0

is of the order of the interline spaceLv
21/2.

Analogous calculations for polarization of the vorte
tangle~11! allow us to determine the coefficientNxy in non-
diagonal terms of matrixNab(k):

Nxy52ApI l

j0
3Lv

1/2

L j
5Ap

2

I l

L jc2
3Lv

. ~78!

An evaluation of the pre-exponent factorsNab ~75!–~78! and
of the quantityj0 in the matrixNab(k) @Eq. ~73!# completes
the calculation of the characteristic functional and con
quently of the trial distribution function.

D. The characteristic functional in j space

For many purposes it is more convenient to deal withj
representation of the characteristic functional, i.e., w
W($Pj (j j )%) @Eq. ~29!#. To obtain it we have to perform an
inverse Fourier transformation in the expressi
(kÞ0L j

2Pj
m(k)Nmn(k)Pj

n(2k) entering the exponent in th
characteristic functional~64!. The according calculations
lead to the following result:

(
kÞ0

L j
2Pj

m~k!Nmn~k!Pj
n~2k!

5E
0

L j E
0

L j
dj8dj9Pj

m~j8!Nmn~j82j9!Pj
n~j j9!, ~79!

whereNj
mn(j j82j j9) is the Fourier pretransform ofNj

mn(k)
minus zero harmonic

Nmn~j j82j j9!5(
k all

eik~j j82j j9!Nmn~k!2Nmn~k50!.

~80!
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The matrixNmn(j j82j j9) will be evaluated separately fo
diagonal and for nondiagonal terms of the matrixNab(k)
@Eq. ~73!#. Let us start with the diagonal terms which are
be obtained from

Naa~j j82j j9!5NaaH (
k all

eik~j j82j j9!expF2S 2pj0

L j
nD 2G21J .

~81!

Using again(nall→*dn one obtains

Naa~j j82j j9!5
I aa

2~122j0Ap/L !
H expF2

~j j82j j9!2

4j0
2 G

2
2j0Ap

L j
J . ~82!

As for the nondiagonal terms, similar calculations lead to
result

Nxy~j j82j j9!5
I lLv

1/2

2
~j j82j j9!expF2

~j j82j j9!2

4j0
2 G ,

Nxy52Nyx. ~83!

Because of the change(n all→*dn formulas ~82! and ~83!
do not satisfy the condition of periodicity and the closen
of the loops:

Nmn~j j82j j9!5Nmn~L j1j j82j j9!.

This disagreement can be remedied by the substitution o

Nmm~j j82j j9!→$Nmm~j j82j j9!1Nmm@L j2~j j82j j9!#%,
~84!

for diagonal~even! elements and by

Nxy~j j82j j9!→$Nxy~j j82j j9!2Nxy@L j2~j j82j j9!#%,
~85!

for nondiagonal~odd! elements. SinceNmn(j j82j j9) is a
sharply decreasing function@for (j j82j j9)>j0# this substitu-
tion does not significantly change the behavior ofNmn(j j8
2j j9) for small (j j82j j9) but improves the situation for (j j8
2j j9) .L j . We will retain hereafter the previous notatio
for redefined matrix elements for it will not lead to conf
sion.

Finally the characteristic functional inj space has the
following form:

W~$Pj~j j !%!5expS 2(
j
E

0

L j E
0

L j
Pj

m~j j8!

3Nmn~j j82j j9!Pj
n~j j9! D , ~86!

where the diagonal terms of matrixNmn(j j82j j9) are
e

s

Naa~j j82j j9!5
I aa

2~122j0Ap/L !
S expF2

~j j82j j9!2

4j0
2 G

1expF2
@L j2~j j82j j9!#2

4j0
2 G2

2j0Ap

L j
D ,

~87!

and the nondiagonal ones are

Nxy~j j82j j9!5
I lLv

1/2

2 S ~j j82j j9!expF2
~j j82j j9!2

4j0
2 G

2@L j2~j j82j j9!#expF2
~L j2j j82j j9!2

4j0
2 G D .

~88!

The elementNyx(j j82j j9)52Nxy(j j82j j9); the other terms
are zero.

It is easy to check that the use of the matrixNmn(j j8
2j j9) leads to correct~with accuracy up toj0 /L j ) values for
quantities^s8s8&,^s9s9&,^(s8xs9y2s8ys9x)&, etc. Indeed using
the rules for working with the characteristic function
W($Pj (j j )%) in j space described in Sec. II C one obtains

^sj a8 ~j j !sj a8 ~j j !&5
d2W

idPj
a~j j !idPj

a~j j !
U

all Pj 50

5I aa ,

~89!

^~sjx8 sjy9 2sjy8 sjx9 !&52
]

]j j 2

d2W

idPj
x~j j !idPj

y~j j 2!
U

all Pj 50, j1 5 j2

5I lLv
1/2, ~90!

^sj a9 ~j j !sj a9 ~j j !&5
]2

]j j 1]j j 2

3
d2W

idPj
a~j j !idPj

a~j j !
U

all Pj 50, j1 5 j2

5
]2

]j j 1]j j 2
expF2

~j82j9!2

4j0
2 G5

1

2j0
2

5c2
2Lv . ~91!

These expressions are in full agreement with relations~3!–
~16! making our scheme self-consistent.

V. SOME STATISTICAL PROPERTIES
OF THE VORTEX TANGLE

In this section we describe some statistical properties
the vortex tangle which emerged from the formalism dev
oped above. We restrict ourselves to the calculation of
simplest characteristics to see what the possible arrange
of the vortex tangle stemming from the trial distributio
function is. In particular we calculate the correlation functi
between orientations of different elements of the lines,
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tween the tangent vector and the vector of curvature, etc.
also calculate the average distance between different par
the loops and, correspondingly, their sizes. Using these
culations we discuss the distribution of different loops ov
their lengths.

A. Correlation functions

Let us begin with an evaluation of the correlation functi
between orientations of different elements of the line. It
immediately obtained taking the functional derivative fro
characteristic functionalW($Pj (j j )%) in j j representation
~86! and from relation~32!:

^sj a8 ~j j 1!sj a8 ~j j 2!&5
I aa

~122j0Ap/L !
S expF2

~j j 12j j 2!2

4j0
2 G

1expF2
@L j2~j j 12j j 2!#2

4j0
2 G

2
2j0Ap

L j
D . ~92!

Inspecting relation~92! one concludes that close pointsj j 1
2j j 2<j0 and points satisfying@L j2(j j 12j j 2)#<j0 are
strongly correlated~the latter condition appears because
the closeness of the loops!. Then this correlation weakens a
exp@2(jj12jj2)

2/4j0
2# turning into ad-correlated structure:

exp@2~j j 12j j 2!2/4j0
2#;2Apj0d~j j 12j j 2!. ~93!

Thus we arrive at a very important conclusion. The c
relation length of orientations of different parts of the cur
is of the order of the mean radius of curvature or, in acc
dance with Eq.~77!, of the order of the interline space. Th
view corresponds to current notions of the vortex tangle
discussed previously by Schwarz.11,13 It is worth noting that
there is a small negative correlation between distant po
due to the term22j0Ap/L j on the right-hand side of rela
tion ~92!. The origin of this term is connected with the clos
ness of the line because each of the elements of the
‘‘remembers’’ that the whole line should return to the initi
point. Discarding this effect, the correlations between rem
~along the curve,j0!j j 12j j 2) points vanish and the line
takes on a random walk structure.

The correlation between different vectors of curvatu
^sj a9 (j j 1)sj a9 (j j 2)& behaves in a similar manner. The only e
ception is that a small negative correlation disappears
cause of the differentiation overj j .

In a similar way the correlation between derivatives
different orders can be evaluated. Let us consider, e.g.,
correlation between the tangent vector and the vector of
vature^sj8

a(j j 1)sj9
a(j j 2)& . It has to be evaluated as

^sj a8 ~j j 1!sj a9 ~j j 2!&5
]

]j j 2
^sj a8 ~j j 1!sj a9 ~j j 2!&.

The interesting feature of this quantity is that it is zero wh
j j 15j j 2, then it grows reaching its maximum value at po
j j 12j j 2;j0/2, then this growth is changed with the usu
exponential decay.
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As far as the correlations between different compone
of vectorsj (j j ) and its derivatives are concerned, it follow
from a similar consideration thatxz andyz correlations are
absent. The strong correlation betweenx andy components
appears due to nonzero polarization and depends on the o
of derivatives entering the expression. If the difference
orders is an odd number then the correlation function
haves in a usual way having a maximum value in pointj j 1
2j j 250 with a subsequent exponential decay. If this diffe
ence is an even number the correlation function beha
similar to the correlation function̂sj a8 (j j 1)sj a9 (j j 2)&.

B. Average size of loops

Let us now calculate the quantitŷ(sa(j j )2sa(0))2&
~here is assumed a summation overa) which is the average
squared distance between the initial point of the curves(0)
and the pointss(j j ). Note that we deal with real distance i
the usual space~not along the curve!, therefore this consid-
eration concerns the real size of the vortex loop embedde
3D space. Note also that if one did not accomplish the su
mation overa, this quantity would describe the size of th
loop along thea axes. Using thej presentation of the char
acteristic functional~86!, the quantitŷ (sa(j j )2sa(0))2& is
rewritten as follows:

^~sa~j j !2sa~0!!2&5E
0

j j E
0

j j
dj j 1dj j 2^sj a8 ~j j 1!sj a8 ~j j 2!&

5E
0

j j E
0

j j
dj j 1dj j 2

I aa

~122j0Ap/L !

3S expF2
~j j 12j j 2!2

4j0
2 G

1expF2
@L j2~j j 12j j 2!#2

4j0
2 G

2
2j0Ap

L j
D . ~94!

For j j<j0 the exponent is close to the unit and wi
accuracy 2j0Ap/L j we conclude that the average squar
distance in thea direction is

^@sa~j j !2sa~0!#2&5j j
2I aa , ~95!

or the full distance is

^~s~j j !2s~0!!2&5j j
2 . ~96!

In the intermediate region of argumentj,j0<j j<L j
2j0, the exponent can be approximately replaced by ad
function @see relation~93!#, which together with Eq.~94!
gives the following result~with accuracy 2j0Ap/L j ):

^@sa~j j !2sa~0!#2&;2j0I aaAp~j j2j j
2/L !. ~97!

Note that the quantity22j0Ap/L j was disregarded only in
the denominator of relation~94! whereas it was retained in
the numerator, where its contribution is comparable with
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one from the exponential terms. The reason for this is t
for j j larger thanj0 ~but smaller thanL j ) the vortex line has
a random walk structure and the distance between in
point sa(0) and pointsa(j j ) increases asAj j . The role of the
term 22j0Ap/L j is to force the line back to assure th
@sa(j j )2sa(0)#→0, whenj j →L j .

Relation~97! should, however, be corrected in the regi
near the end of the lineL j2j0<j j . In this region the main
contribution will appear from the second exponent in t
right-hand side of relation~94!. This contribution will prevail
the quantity (j j2j j

2/L) and the final result is

^@sa~j j !2sa~0!#2&5~L j2j j !
2,

which is obvious due to the periodicity.
Summarizing the results obtained in this subsection

conclude that the vortex loop behaves as a flexible poly
~see, e.g., Ref. 23!. The small parts of the line behave a
rodlike polymers whose lengths are exactly equal to dista
j82j9 along the curve~see Fig. 5!. At larger distances the
filament has a random walk structure with the effective bo
length of the order of the correlation lengthj0 or of the order
of the mean radius of the curvature, or of the order of int
line space. Because of the closeness condition the pure
dom walk structureusa(j j )2sa(0)u } Aj j is violated and
changes by dependence~97!. In addition, due to anisotropy
the whole average loop has a ‘‘pancake’’ form in thez di-
rection. In addition, since the vortex filaments are orientat
unlike polymer chains, there is an anisotropy related with
mutual orientation of vectorss8 ands9 . Thus the vortex loop
as a whole has nonzero polarization^*0

L jsj8(j j )3sj9(j j )dj j&,

FIG. 5. Snapshot of the ‘‘average’’ vortex loop obtained fro
the analysis of the statistical properties. Close (Dj!R) parts of the
line are separated in 3D space by distanceDj. The distant parts
(R!Dj) are separated in 3D space by the distanceA2pRDj ~with
a correction due to the closeness, see text!. As a whole the loop is
not isotropic having a ‘‘pancake’’ shape with different sizes in lo
gitudinal and transverse directions. In addition the loop has a t
average polarization̂*sj8(j j )3sj9(j j )dj j& forcing the loop to drift
along the vectorVn .
at

al

e
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e

and as a result it should have some drift velocity as well
inducing a nonzero mean superfluid velocity.

The analysis carried out above shows that the loop
lengthL j has a sizeD j;Aj0L j , therefore the volume occu
pying by thej loop is Vj;j0

3/2L j
3/2. The corresponding vor-

tex line density Lj is Lj;L j /j0
3/2L j

3/25(1/j0
2)(j0

1/2/L j
1/2)

;Lv(j0
1/2/L j

1/2). Because of the conditionj0!L j , the vortex
line densityLj of the single loop is smaller than total vorte
line densityLv . This implies that the real vortex tangle ha
to consist of many loops. Due to the lack of informatio
about the distribution of the loop lengths overj ~see Sec.
II A ! we are not able to ascertain the fine structure of
many-loop vortex tangle. This obstacle is not serious si
many physical effects are determined only by the orientat
of the line element and their polarization. In other words,
corresponding quantities are additive over the number
loops~see Sec. II B!. However, for other problems the que
tion of the distribution of loops over their lengths can
relevant. In this case it is possible to introduce some av
aged lengthL j which should be considered as a paramete
the developed approach.

VI. CONCLUSION

We now summarize the obtained results and revise
main steps of the developed approach. The main result
be formulated as follows. Based on the well-established
perimental data on the vortex tangle structure in He II
constructed a trial distribution function in the space of t
vortex loop configurations of the most general form comp
ible with these data. We assume further that a trial distri
tion function obtained in this way will enable us to calcula
various averages over vortex loop configurations. The us
the characteristic functional simplifies the calculation
these quantities.

Let us discuss once more the assumptions made w
developing the whole procedure and outline the class of
problems which can be resolved with the method of the t
distribution function. The main premise of our approach w
relation ~37! expressing that the allowed configurations co
responding to the same macroscopic state have equal p
abilities. This assumption is widely used to solve proble
of equilibrium states and it seems quite reasonable for
problem. We can refer to the work of Polyakov25 on classical
turbulence where it was noted that, ‘‘One can say that wh
Gibbs’ distributions are uniform on surfaces of fixed valu
of conserved quantities, the turbulent distributions are
cated on surfaces of constant fluxes of the correspond
quantities.’’

The next question which we would like to discuss co
cerns the constraints imposed by relations~3!–~16!. Of
course these few properties are by no means the full des
tion of the vortex tangle structure and the question
whether the trial distribution function, satisfying only a fe
selected conditions, is adequate enough to evaluate corr
other quantities. One more question is what the possible
strictions on the class of these quantities would be. We
give the following answer to these questions. Regardles
the fact that there were not many input conditions~3!–~16!,
they include almost all the requested information concern
the orientation of the vortex line elements and their cur

al
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tures. In other words these input conditions involve alm
all information concerning the first and second derivatives
functionssj (j j ), sj8(j j ), andsj9(j j ), respectively. This in turn
implies that the quantities of interest containing derivativ
of not too high order can be evaluated correctly by the use
the trial distribution function. But it also implies that expre
sions containing derivatives of higher orders can hardly
calculated correctly in this way. In any case the reliability
the according calculations will not be too high, although th
can be taken as a rough estimation. However, we do
know an example of the quantities expressed via high or
derivatives and bearing any physical interest. On the c
trary, the quantities of physical interest are expressed
derivatives of first and second order. There is a wide clas
such quantities and of the corresponding effects. A num
of examples were given in Sec. II.

The trial distribution function was derived based on
instantaneous picture of the vortex tangle and, as a co
quence, the dynamical properties~except those which dea
with the small deviation from the ‘‘equilibrium’’ state! drop
out of consideration. In particular we are not able to answ
the question of how the structure of the vortex tangle dev
ops. We are also not able to answer how it appeared.
suppose that this structure is the result of very subtle
very involved dynamical nonequilibrium processes whi
unfortunately cannot be described analytically because of
complexity of the problem. In this connection we would lik
h
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to note that attempts to describe stochastic properties of c
sical vortex filaments based on principles of the equilibriu
Boltzman’s statistics seem incorrect. In contrast, our mo
is based mainly on the experimental data, therefore it i
rather phenomenological one. It does not explain how cer
arrangements of the vortex tangle appear, instead it assig
to calculate various averages over the vortex loop configu
tions. Put another way, the developed approach can be
sidered as a convenient and simple ‘‘tool’’ for the evaluati
or estimation of various effects due to the presence of
vortex tangle in turbulent superfluid helium.
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