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Universality in heavy fermions

Mucio A. Continentino
Instituto de Fisica, Universidade Federal Fluminense Campus da Praia Vermelha, Nitero´i, 24.210-340 RJ, Brazil

~Received 13 November 1997!

A previous scaling analysis of pressure experiments in heavy fermions is reviewed and enlarged. We show
that the critical exponents obtained from this analysis indicate that a one-parameter scaling describes these
experiments. We obtain explicitly the enhancement factors showing that these systems are indeed near criti-
cality and that the scaling approach is appropriate. The physics responsible for the one-parameter scaling and
breakdown of hyperscaling is clarified. We discuss a microscopic theory that is in agreement with the experi-
ments. The scaling theory is generalized for the case where theshift andcrossoverexponents are different. The
exponents governing the physical behavior along the non-Fermi-liquid trajectory are obtained for this case.
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I. INTRODUCTION

The scaling theory of heavy fermions is based on the
istence of a quantum critical point~QCP! which governs the
physical behavior of these systems.1–4 It yields the following
scaling relations for the singular part of the free-energy d
sity:

f }udu22aFF T

Tcoh
,

H

udub1g
,

h

hc
G , ~1!

where thecoherence temperature, Tcoh5udunz and the char-
acteristic uniform field,hc5udufh. H andh are staggered an
uniform magnetic fields, respectively. The scaling proper
of relevant thermodynamic quantities, like the uniform su
ceptibility, x0}]2f /]h2, the thermal mass,mT5C/T}
]2f /]T2, for T!Tcoh are obtained from Eq.~1!. The critical
exponents obey standard scaling relations but hyperscalin
modified due to the quantum character of the critical poin
is given by 22a5n(d1z) wherez is the dynamic exponen
and d is the dimension of the system.2 The quantity
d5(J/W)2(J/W)c measures the distance to the QCP.J and
W are parameters of the Kondo lattice Hamiltonian, the c
pling between localized and conduction electrons, and
bandwidth, respectively.

II. SCALING ANALYSIS

In heavy fermions the ratio (J/W) depends on volumeV
and consequently on pressureP. Let us define the critica
volume Vc as the volume at which (J/W)5(J/W)c . Con-
sider a physical quantity which close toVc behaves as
X(P)5Au(V2Vc)/Vcu2x whereV is the volume at pressur
P. If we introduce a reference pressureP0 ~volumeV0) we
have

X~P!

X~P0!
5S V2Vc

V02Vc
D 2x

5S V2V01V02Vc

V02Vc
D 2x

. ~2!

Defining, d05V02Vc and DV5V2V0, where the latter
gives the change in volume due to the pressure cha
DP5P2P0, we get
570163-1829/98/57~10!/5966~6!/$15.00
-

-

s
-

is
It

-
e

ge

X~P!

X~P0!
5S DV1d0

d0
D 2x

5S 11
DV

d0
D 2x

. ~3!

Then

lnF X~P!

X~P0!G52x lnS 11
DV

d0
D . ~4!

For DV sufficiently small, or small changes of pressure fro
the reference pressure, we haveDV52k0V0DP where the
compressibility is given byk05(21/V)(]V/]P). In the
limit that (DV/d0)!1 we obtain

lnF X~P!

X~P0!G'xk0~V0 /d0!DP, ~5!

where (V0 /d0)5V0 /(V02Vc)5aV /(aV21) with aV
5V0 /Vc . The equation above holds if the system at the r
erence pressureP0 is not too close to the quantum critica
point, otherwise the condition (DV/d0)!1, or equivalently
(k0DPaV)/(12aV)!1 is not satisfied. Note that in Eq.~5!
the coefficient ofDP depends on the critical exponentx
associated with the physical quantityX. The validity of Eq.
~5! for several physical quantities at and below the cohere
line has been verified for the heavy fermions CeRu2Si2,
CeAl3, UPt3, and CeCu6 as shown in Fig. 1.2 These materials
are located in the noncritical side (V,Vc) of Doniach’s
phase diagram. For CeAl3 a reference pressure of 1.2 kba
has been used to guarantee that this is the case, othe
P050. The collapse of the different data for a given mater
on a single line, as shown in Fig. 1, implies the followin
relations among the critical exponents,2 22a5nz and
fh5nz. The meaning and implications of these relatio
will be discussed further down. The inclination of the lines
Fig. 1, i.e.,GV5 ln@X(P)/X(P0)#/DP, for different compounds
are given in Table I. From Eq.~5! we note that the Gru¨neisen
parametersVV5(GV /k0)5xaV /(aV21) provide essen-
tially the enhancement factors due to the proximity of t
quantum phase transition. Assuming, for example, t
x521 as we will discuss below, the results forVV in Table
I yield values ofaV ranging fromaV'0.97 toaV'0.99 as
5966 © 1998 The American Physical Society
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57 5967UNIVERSALITY IN HEAVY FERMIONS
shown in this table. This clearly indicates that the syste
we are considering are close to the QCP and a scaling an
sis is justified.

Consider the case of CeCu6. Equation ~1! yields,
mT5C/T}]2f /]T2}udu22a22nz. From the experimental re
lation 22a5nz, we getmT

21}u(V02Vc)/Vcunz5(12aV)nz.
Taking x521, i.e., nz51, as before~see also below!, we
get an enhancement factorVV /aV51/(12aV) for the ther-
mal mass,mT , of this material of approximately 120.

The data in Table I calls attention to the fact thatVV is
larger for CeRu2Si2, although this system has the smalle
thermal mass of the four compounds.5 In order to conciliate
this result with the idea of universality, i.e., that the critic
exponents are the same for a given quantity indepen
of the material, it is important to write the enhanceme

FIG. 1. Semilogarithmic plot ofX(P)/X(P0) for several physi-
cal quantities, at or belowTcoh, as a function of pressure for dif
ferent heavy fermions~Ref. 2!. For CeAl3, P051.2 kbars other-
wiseP050. The numbers close to the lines are their inclinationsGV

given in Table I~also see text!.

TABLE I. Grüneisen parameters for different heavy fermio
according to the relative pressure variation of several phys
quantities shown in Fig. 1~Ref. 2!. GV and the compressibilityk0

are in Mbar21. The reference pressure for CeAl3 is P051.2 kbars
otherwiseP050. The data for CeCu6 is taken from Ref. 5, and
references therein.

Compound GV k0 VV 5 GV/k0 aV5V0 /Vc

CeAl3 89 2.17 41 0.976
CeRu2Si2 171 0.95 180 0.994
UPt3 26 0.48 54 0.981
CeCu6 133 1.1 121 0.992
s
ly-

t

l
nt
t

factor in terms of the parameters of the Kondo lattice Ham
tonian. For this purpose we need a relation between (J/W)
and the volume. We assume thatj (V)5(J/W)
5(J/W)0exp~2q@(V2V0)/V0#) where (J/W)0 is the value
of this ratio at the reference pressureP0 or volumeV0 andq
a material-dependent parameter.6 For sufficiently small vol-
ume changes we getq(12aV)/aV5(12aJ) where
aJ5(J/W)c /(J/W)0 and (J/W)c5 j (Vc). This allows us to
write

VV5
GV

k0
5

2xq

12aJ
, ~6!

where the parameterq, which relates changes in volume t
changes in the interactions, depends on the particular sys
Taking q55, for CeRu2Si2 ~Ref. 6! and nz51, as before,
we get an enhancement for the thermal mass of appr
mately 36 for this system. In this way taking different valu
of q for different systems we may explain the hierarchy
thermal masses using the same critical exponents. Note
for CeAl3 the reference pressureP051.2 kbars such thatmT
for this pressure is already very much reduced.

Let us return now to discuss the scaling relations obtai
from the data of Fig. 1, namely, 22a5nz andfh5nz. It is
easy to verify that these equations imply a simple o
parameter scaling such thatx0

21}mT
21}hc}A21/2}Tcoh,

whereA is the coefficient of theT2 term of the resistivity. As
concerns the relations among the thermodynamic quant
they arise from a free energy obeying the simple scal
form, f }udunzF@T/udunz,h/udunz#. This one-parameter scalin
is reminiscent of single impurity and other phenomenolo
cal, noncritical, approaches to the heavy-fermion proble5

In the former case the characteristic temperature is identi
with the Kondo temperature. There is, however, a fundam
tal difference between these approaches and the present
ing theory. Here the characteristic energy scale given by
coherence temperature Tcoh}u(J/W)2(J/W)cunz vanishes at
the critical point of the Kondo lattice. Furthermore the sc
ing behavior found in these heavy-fermion systems is due
our approach to their proximity to the QCP
(J/W)5(J/W)c ,T50,H50,h50. The vanishing ofTcoh at
the QCP led to the prediction7 and observation of non-Fermi
liquid behavior in heavy-fermion systems.8

The observation of one-parameter scaling in a thr
dimensional (d53) critical theory with three independen
exponents is clearly associated here with the breakdow
the hyperscaling relation 22a5n(d1z). Note that the rela-
tion 22a5nz arising from the experimental data is the h
perscaling relation ford50. It is not surprising then, that i
yields scaling properties which are formally similar to tho
of a single impurity problem. Violation of hyperscaling
not uncommon in critical phenomena3 and below we shall
discuss the possible reasons it occurs here.

One-parameter scaling can also result from the constra
imposed by the Fermi-liquid behavior below the cohe
ence temperature. Let us assume that the entropy of the
moments, of total angular momentumJ, for T@Tcoh,
S(T@Tcoh)5NkBln(2J11) goes into that of the Fermi liquid
which develops below Tcoh and is given by S(T
!Tcoh)5*0

TcohdTC(T)/T with C(T)5mTT. Equating both
entropies we find mT

21}Tcoh, which in turn implies

al
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5968 57MUCIO A. CONTINENTINO
22a5nz. This argument9 relies on the existence of a sing
characteristic temperature in the noncritical side of the ph
diagram which is not necessarily always the case, as wil
seen below.10

III. MICROSCOPIC MODEL

We now discuss a model of nearly antiferromagne
Fermi liquid11 which describes the results of the pressu
experiments analyzed above. We start with the expres
for the singular part of the free-energy density of a nea
antiferromagnetic Fermi liquid due to spin fluctuations:12–14

f 52
1

p(
q
E

0

`

dv coth~bv/2!tan21F I Imx0~q,v!

12I Rex0~q,v!
G ,

~7!

where

x0~Q1q,v!5xQ~12aq22bv21 icv! ~8!

for q!Q andv!1. At zero temperature we get

f 52
1

p(
q
E

0

`

dv tan21F IxQcv

12IxQ~12aq22bv2!
G . ~9!

This can be rewritten as

f 52
1

pE dqW E dv tan21F vjz

11q2j21udu~vjz!2G , ~10!

where the correlation lengthj5udu2n and the distance to th
QCP,d512IxQ . The correlation length exponent assum
the mean-field~or Gaussian! value,n51/2 and the dynamic
exponent,z52, typical of antiferromagnetic spin fluctua
tions. All constants have been taken equal to 1. In the li
d→0, a change of variable yields the scaling properties
this model. We findf }udun(d1z), whered is the dimension of
the system, with additional scaling corrections due to
term udu(vjz)2. From Eq.~1!, with F@0,0,0#5const we ob-
tain the generalized hyperscaling relation, 22a5n(d1z).1

Let us consider the case of localized spin fluctuation11

i.e., we neglect theq dependence ofx0(q,v). We get

f }
1

pE dv tan21F vjz

11udu~vjz!2G . ~11!

Now for d→0, we find f }udunz, with scaling corrections. In
this case, from Eq.~1!, we obtain 22a5nz and hyperscal-
ing is violated due to the neglect of theq dependence ofx0.
Note that in this local theory the exponentnz51 as for the
nearly antiferromagnetic Fermi liquid.

For TÞ0 the relevant expression of the singular part
the free-energy density is given by

f }2TEqc
dqW Exc

dxcothx tan21FxTjzS 12
q2j2

11q2j2D G ,

~12!

which can be written in the form

f }udun~d1z!F@T/Tcoh# ~13!
se
e

c
e
on
y

s

it
f

e

f

for xc5bvc/251/2 andqcj very large, as close to the criti
cal point.

Again neglecting theq-dependent contribution we obtain
from Eq.~12!, the thermodynamic properties of the localize
model. ForxTjz!1, i.e.,vcj

z!1 we may write tan21y'y.

Furthermore we take\vc5kBT, in which case the constrain
vcj

z!1 implies T!Tcoh}udunz. In this regime the free en
ergy exhibits Fermi-liquid behavior and is given by,f
}2(4/3)pqc

3g(1/2)T2jz, where g(y)5*0
ydxxcothx. The

breakdown of the scale invariant form, Eq.~13! and conse-
quently of hyperscaling is due to the neglect of theq depen-
dence. The thermal mass is given by

mT
L52]2f /]T25mM

0 ~1/3!qc
2jz}udu2nz5udu21 ~14!

and diverges at the transition.mM
0 is a noncritical constant

which depends on local parameters and, linearly, onqc.
12

Within the same Fermi-liquid regime, forT!Tcoh,
the free energy given by Eq.~12! can be calculated and
the thermal mass is given by,mT

M52]2f /]T25mM
0 @1

2(qcj)21 tan21(qcj)]. In this case the thermal mass in
creases but does not diverge as the system approache
critical point.12 The second term in this expression formT

M is
the universal scaling contribution, i.e., independent of
cutoff for qcj→`. It is proportional toj21}udu1/2 since
mM

0 }qc .
The free energies in the Fermi-liquid regime (T!Tcoh) as

a function of the distance to the QCP, for the localized a
nearly antiferromagnetic~NAF! models are shown in Fig. 2

FIG. 2. The free energy in the Fermi-liquid regime, at a fix
temperatureT0!Tcoh, for the localized and nearly antiferromag
netic models as a function of the distance to the critical po
located at (qcj)2150. For (qcj)21.2 the free energies of both
models nearly coincide and consequently have the same sc
behavior.
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57 5969UNIVERSALITY IN HEAVY FERMIONS
Notice that for qcj,1/2, they nearly coincide. This ca
be seen directly, expandingmT

M to obtain, mT
M(qcj!1)

'mM
0 (1/3)qc

2j25mT
L @see Eq.~14!#. Then, in this regime15

the scaling properties of both models are the sameand they
yield similar results, for example, for the relative pressu
variation of the thermal mass,mT(P0)/mT(P).

For the resistivity in the local approximation we find16

r5
r0

TjzE0

`

dx
x2

~ex/Tjz
21!~12e2x/Tjz

!~11x2!
. ~15!

For Tjz!1, i.e., T!Tcoh5j2z5udunz, we get,
r(T!Tcoh)5r0(p2/3)(T/Tcoh)

2 and for higher tempera
turesr(T@Tcoh)5r0(p/2)(T/Tcoh).

16

As concerns the magnetic field the experimental relat
fh5nz implies that the characteristic fieldhc}udunz. In fact,
in the local approach, the uniform magnetic fieldh simply
adds to the frequency a precession term.17 Then atT50

f }
1

pE dv tan21@~v1h!jz# ~16!

and x0(T50)5]2f /]h2}udu2nz with nz51. This yields a
diverging or enhanced uniform susceptibility but this res
ceases to be valid sufficiently close to the critical po
(qcj.1).

It is clear from the results above that the theory of an
ferromagnetic local spin fluctuations, with a single charac
istic energy scale, Tcoh}udunz, such that f (T50)
}udunz5Tcoh, mT}udu2nz5Tcoh

21 , x0(T50)}udu2nz5Tcoh
21 ,

and r(T!Tcoh)5AT2 with A}Tcoh
22 correctly describes the

pressure experiments we analyzed before. Furthermor
this approach the crossover exponentnz51. This provided
the motivation for assuming this value fornz in the calcula-
tion of the enhancement factors in Sec. II of this paper.

The theory of localized antiferromagnetic paramagno
can be summarized in the scaling form of the free ener
f }udunzF@T/udunz,h/udunz# with nz51. Although this is in
agreement with the pressure experiments in a region of
phase diagram, for (J/W).(J/W)c , T<Tcoh, as the sys-
tems get closer to the critical point andqcj→` the full q
dependence of the dynamic susceptibility must be taken
account. The local theory also does not describe the n
Fermi-liquid behavior observed at (J/W)5(J/W)c , T→0.
For example, the result for the specific heat atudu50 is
given byC5(3/2)NkB , i.e., that of a classical gas ofN free
particles. Sufficiently close to the QCP it is then necessar
consider theq dependence ofx0(Q1q,v). Taking this into
account we obtain the universal contribution for the free
ergy at the QCP ,f @d50#}T(d1z)/z, in agreement with Eq
~13!, and the specific heatC/T(d50)}]2f /]T2}T1/2 for
d53, z52 with nz51.13,18,14

IV. GENERALIZED SCALING

It is important to point out that the resultC/T}T1/2 at
udu50 which arises from the scaling form Eq.~13! is valid
only in the case ofextended scaling, i.e., c5nz. Herec is
the shift exponent such that the Ne´el temperature,TN}uduc ,
close to the QCP~Ref. 10! ~see Fig. 3!. It turns out, experi-
mentally, that c51,8 however theoretically, one gets
e

n

t
t

-
r-

in

s
y,

e

to
n-

to

-

c5z/(d1z22)52/3Þnz51.13,18,14 In this case a more
general scaling form for the free energy is required to
scribe the complex critical behavior in the neighborhood
the QCP.10 It is given by10

f }ud~T!u22aFc@ t#,

t5
T

ud~T!unz
~17!

with

d~T!5d~T50!2T1/c.

The singularities along the Ne´el line, ud(T)u50, are de-
scribed by a new set oftilde exponentsã , ñ , etc., different
from those associated with the zero-temperature fixed p
~the nontilde exponents!. The scaling functionFc@ t50#

5const andFc@ t→`#}tx with x5(ã2a)/nz such that
close to the critical Ne´el line we obtain the correc
asymptotic behavior,f }A(T)ud(T)u22ã, where the ampli-
tudeA(T)5T(ã2a)/nz. It is easy to verify that in the case o
extended scaling, i.e.,c5nz, the exponents associated wi
the zero-temperature fixed point are sufficient to describe
behavior along the non-Fermi-liquid trajectory,udu50,
T→0 and one finds the previous result,C/T}T(d2z)/z. How-
ever in the situation here, wherec52/3,nz51, the tilde
exponents also play a role in determining the behavior al
this path, which is tangent to the Ne´el line at the quantum
multicritical point as shown in Fig. 3 We find for the specifi
heat

C/T}T~22ã !~nz2c!1nc~d2z!/nzc. ~18!

FIG. 3. Phase diagram of a nearly antiferromagnetic 3d system,
with the shift exponentc52/3 and the crossover exponentnz51.
The tilde ~thermal! exponents determine the critical behavior on t
Néel line. In this case ofc,1, the non-Fermi-liquid trajectory is
tangent to the quantum critical point and the thermal expone
besides those associated with the QCP are required to charac
the physical behavior along this line (udu50,T→0).
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5970 57MUCIO A. CONTINENTINO
Assuming thermal Gaussian exponents, essentiallyã51/2,
we get,C/T}T5/4 for c52/3, n51/2 andz52, instead of
C/T}T1/2 for the case of extended scaling. The stagge
susceptibilityxQ(d50,T)}T2 g̃ /c5T23/2 sinceg5 g̃51.12

An interesting possibility has been raised by Ro¨sch
et al..19 who claimed that two-dimensional fluctuations a
those relevant to describe the observed critical behavior
this case scaling is extended sincec5z/(d1z22)5nz51.
This approach leads toC/T(d50)} lnT at the QCP and in
the Fermi-liquid regime, forT!Tcoh, to mT} lnudu.

V. ABOVE THE UPPER CRITICAL DIMENSION

In quantum phase transitions the relevant dimensiona
is deff5d1z, as is evident from the modified hyperscalin
relation, 22a5n(d1z). In the problems we have studie
above, it turns out thatdeff.dc , where,dc54 is the upper
critical dimension for these magnetic transitions. This is
reason Gaussian theories, as the self-consistent renorma
~SCR! theory of spin fluctuations,12 provide an adequate de
scription of the quantum critical point in nearly ferro an
antiferromagnetic 3d materials.18 Let us consider further im-
plications of the fact thatd1z.dc54. Consider the expres
sion for the singular part of theT50 free energy, f
}udun(d1z). Since the Gaussian exponentn51/2, whenever
d1z.4, we can rewrite it as,f }udu22a with a,0. In this
case an analytic expansion of the free energy close to
critical point, such that,f }udu2, will always dominate the
Gaussian contribution ford sufficiently small. The total free
energy, in the noncritical side of the phase diagram, be
the coherence line, can be written as a sum of an ana
term and a Gaussian contribution,

f t5udu21udun~d1z!FF T

udunzG , ~19!

where we neglected the temperature dependence of the
lytic part assuming it is less singular than that of the Gau
ian. In the Fermi-liquid regime, i.e.,T!Tcoh5udunz, we
have2

f t5udu21udun~d1z!H 11S T

udunzD 2

1•••J ~20!

then, sufficiently close to the critical point and ford1z.4,
with n51/2, we obtain

f t5udu21udun~d1z!S T

udunzD 2

1•••, ~21!

which can be rewritten in the scaling form

f t5udu2FF T

Tsf
G , ~22!

where the value ofa50 in the equation above, see Eq.~1!,
can be associated with the breakdown of hyperscaling
d1z.4. The new spin-fluctuation temperature is given b

Ts f5udu12~d2z!/4, ~23!
d
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ty

e
zed

he

w
tic

na-
s-

r

where we usedn51/2. Consequently the effect of the an
lytic contribution is to introduce a new energy scale in t
Fermi-liquid region of the phase diagram,20 namelyTsf . If
we calculate the specific heat from the above expression
the free energy, we get,C/T}udun(d2z) which of course co-
incides with the Gaussian result. On the other hand, tak
into account the field dependence of the analytic~mean-field!
and Gaussian contributions, it can be easily shown that
order-parameter linear susceptibility,x05(]2f /]h2)h50 with
f }udu2F0(T/Tsf ,h/udub1g) is given byx05udu21F1(T/Tsf),
for T!Tcoh, where we used the mean-field exponen
b51/2 andg51. The fieldh here is that conjugated to th
order parameter.

We point out also that, becaused1z.4, even atudu50
there is a characteristic fieldhcross5J which yields the cross-
over from mean-field to Gaussian behavior.10 J is the actual
critical coupling between localized and itinerant electron3

The order parameterm at the quantum critical point varie
with the conjugated fieldh, according tom}(h/J)1/d.3 For
small fields, i.e.,h!hcross, the mean-field contribution with
dMF53 dominates, while in the opposite case the Gauss
one with dG5(d1z12)/(d1z22) ~Ref. 10! is dominant
~in the situation of interest hered53 and z52 such that
dG57/3,dMF53).

Finally note that the above discussion does not affect
local spin fluctuation results since, in this case theT50 free
energy is moresingular than the analytic contribution, a
least fornz,2.

VI. CONCLUSIONS

Our analysis of the pressure dependence of several ph
cal quantities for different heavy fermions on a region of t
phase diagram, for (J/W).(J/W)c , T<Tcoh, has shown
that these systems are close to a quantum critical point a
scaling approach is indeed appropriate. We have obta
from the experimental data, Gru¨neisen parameters whic
yield the enhancement factors due to the proximity of
QCP. It turns out that a one-parameter scaling is sufficien
describe the experiments in this region of the phase diag
and this is associated with the violation of the hyperscal
relation. This one-parameter scaling here is different fr
that of single impurity approaches where the characteri
energy scale is identified with the Kondo temperature. In
caseTcoh vanishes at the quantum critical point and this lea
to the appearance of non-Fermi-liquid behavior atd50. We
have shown that a theory of localized spin fluctuations, w
nz51, describes the pressure experiments summarize
Fig. 1 For these experiments the q dependence of the
namic susceptibility plays no role. Physically this must be
related to the fact that the actual spectrum of spin fluct
tions is nearlyq independent, at least in the relevant dire
tions of q space, in this part of the phase diagram. T
region corresponds to the caseqcj,1/2 of the NAF model
since, as we have shown, the scaling properties of this
the local model are the same in this regime. In fact the lo
approach can be obtained as an expansion of the
q-dependent theory of antiferromagnetic spin fluctuations
qcj!1 ~see, also, Ref. 15!. Then it holds in a region,not too
close to the QCP, but where scaling, specific to thi
q-independent regime~one-parameter scaling!, still applies.
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The local theory allows for an explicit calculation of th
Wilson (mT /x0) and Kadowaki-Woods (A/mT

2) ratios.7

which turn out to be constants, i.e., independent of the
tance to the critical point.

As the system moves closer to the critical point (qcj
→`) we leave the limit of validity of the local theory an
the full q-dependent susceptibility must be used. In bo
casesnz51. In theq-dependent regime a generalized sc
ing theory is required to describe the complex critical beh
ior in the neighborhood of the QCP since theshift and cross-
over exponents are different for nearly antiferromagneticd
systems. This is particularly relevant along thenon-Fermi-
liquid trajectorywhich is tangent to the QCP forc52/3,1.
It turns out that the exponents along this line depend on
thermal exponents characterizing the singularities on
Néel line, besides those associated with the QCP.

Although for the systems investigated the effective
mension d1z.dc , it is the local nature of the spin
fluctuation spectrum in the part of the phase diagram inv
tigated that is responsible for the breakdown of hypersca
and one-parameter scaling, observed in the experiment
the microscopic approach the violation of hyperscaling c
pin
s-

h
-
-

e
e

-

s-
g
In
n

be traced to the cutoff acting as a relevant variable.
The purpose of a scaling theory of heavy fermions is

provide a unified description, in terms of a set of critic
exponents, not only of the non-Fermi-liquid regime but a
of both sides of the quantum critical point. While most of t
studies have been carried on in the noncritical side we a
expect to find scaling behavior on the ordered region of
phase diagram, i.e., for (J/W),(J/W)c , where the systems
at T50 have long-range magnetic order. We hope futu
studies will also include this interesting region and also
larger class of materials.21
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