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A previous scaling analysis of pressure experiments in heavy fermions is reviewed and enlarged. We show
that the critical exponents obtained from this analysis indicate that a one-parameter scaling describes these
experiments. We obtain explicitly the enhancement factors showing that these systems are indeed near criti-
cality and that the scaling approach is appropriate. The physics responsible for the one-parameter scaling and
breakdown of hyperscaling is clarified. We discuss a microscopic theory that is in agreement with the experi-
ments. The scaling theory is generalized for the case wheghtfiendcrossoverexponents are different. The
exponents governing the physical behavior along the non-Fermi-liquid trajectory are obtained for this case.
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I. INTRODUCTION

The scaling theory of heavy fermions is based on the ex-

istence of a quantum critical poid®CP which governs the
physical behavior of these systefné |t yields the following

scaling relations for the singular part of the free-energy den-

sity:

foc| 52 *F (1)

H h
Tcoh, |5|B+y’ hc ’

where thecoherence temperaturé .,,=|8|** and the char-
acteristic uniform fieldh.=|8|#. H andh are staggered and

uniform magnetic fields, respectively. The scaling properties
of relevant thermodynamic quantities, like the uniform sus-

ceptibility, xoxd?f/oh?, the thermal massmy=C/Tx
3%f19T?, for T<T,,, are obtained from Eq1). The critical

exponents obey standard scaling relations but hyperscaling ¥éhere o

X(P) B AV+ 68, ‘X_(1+A_V)‘X @
X(Pg) o B So
Then
X(P) B AV)
In X(Po) =—xlIn 14—5—O . (4)

For AV sufficiently small, or small changes of pressure from
the reference pressure, we ha\W¥ = — xyVoAP where the
compressibility is given bykg=(—1/N)(dV/dP). In the
limit that (AV/6,)<<1 we obtain

In (—P) ~Xko(Vo/8y) AP (5)
X(Po) 0 0’0 ’

modified due to the quantum character of the critical point. It~ Yo/ Ve The equation above holds if the system at the ref-

is given by 2- o= v(d+ z) wherez is the dynamic exponent
and d is the dimension of the systemThe quantity
6= (J/IW) — (J/W). measures the distance to the QGRnd

W are parameters of the Kondo lattice Hamiltonian, the cou

erence pressurB, is not too close to the quantum critical
point, otherwise the conditionA(V/&p)<<1, or equivalently
(koAPay)/(1—ay)<1 is not satisfied. Note that in E()

the coefficient ofAP depends on the critical exponent

pling between localized and conduction electrons, and th@Ssociated with the physical quantiy The validity of Eq.

bandwidth, respectively.

Il. SCALING ANALYSIS

In heavy fermions the ratioJ(W) depends on volum¥
and consequently on pressuPe Let us define the critical
volume V. as the volume at whichJ(W)=(J/W).. Con-
sider a physical quantity which close . behaves as
X(P)=A|(V—V)/V] * whereV is the volume at pressure
P. If we introduce a reference pressu?g (volumeV,) we
have

V-V,
VO_Vc

X(P
(P) ( @

X(Po)

T [V=Vo+ Vo=V X
a VO_Vc .

Defining, §=V,—V,. and AV=V—V,, where the latter

(5) for several physical quantities at and below the coherence
line has been verified for the heavy fermions CgBly
CeAl;, UPt;, and CeCyas shown in Fig. £.These materials
are located in the noncritical side/&V,) of Doniach’s
phase diagram. For Cefh reference pressure of 1.2 kbars
has been used to guarantee that this is the case, otherwise
Po=0. The collapse of the different data for a given material
on a single line, as shown in Fig. 1, implies the following
relations among the critical exponeAts2—a=wvz and
¢n,=vz. The meaning and implications of these relations
will be discussed further down. The inclination of the lines in
Fig. 1, i.e.,I'y=In[X(P)/X(Py) /AP, for different compounds
are given in Table I. From E@5) we note that the Gneisen
parametersQy=(T'y,/kg)=Xay/(ay—1) provide essen-
tially the enhancement factors due to the proximity of the
quantum phase transition. Assuming, for example, that

gives the change in volume due to the pressure change=—1 as we will discuss below, the results fax, in Table

AP=P—P,, we get
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| yield values ofay, ranging froma,,~0.97 toa,,~0.99 as
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5 T T T factor in terms of the parameters of the Kondo lattice Hamil-

* hc CeAl tonian. For this purpose we need a relation betweRhVj
B m-f and the volume. We assume thaj(V)=(J/W)

T =(JIIW)gexp(—q[(V—V)/Vg]) where J/W), is the value
o A2 of this ratio at the reference pressiig or volumeV, andq
A Tcoh a material-dependent parametdtor sufficiently small vol-

4 ume changes we getq(l1—ay)/ay=(1—«a;) where
V% T on)/ 171 par ay=(IIW)./(IIW), and @/W).=](V,). This allows us to
O b¥5 write

89 Mbar-! Q _FV_ _Xq
v=—

kKo l—ay’ ®)
where the parametey, which relates changes in volume to
changes in the interactions, depends on the particular system.
Taking g=5, for CeRySi, (Ref. 6 and vz=1, as before,
we get an enhancement for the thermal mass of approxi-
mately 36 for this system. In this way taking different values
of q for different systems we may explain the hierarchy of
thermal masses using the same critical exponents. Note that
for CeAl; the reference pressuRg)=1.2 kbars such thah;
for this pressure is already very much reduced.
. r Let us return now to discuss the scaling relations obtained
0 5 10 15 20 from the data of Fig. 1, namely,2a=vz and ¢, =vz. It is
Pressure (kbars) easy to verify that these equations imply a simple one-
parameter scaling such thagy toemy toch o A™ Y20 T
FIG. 1. Semilogarithmic plot oK(P)/X(Py) for several physi-  whereA is the coefficient of th@? term of the resistivity. As
cal quantities, at or below,,,, as a function of pressure for dif- concerns the relations among the thermodynamic quantities
ferent heavy fermiongRef. 2. For CeAk, Po=1.2 kbars other-  they arise from a free energy obeying the simple scaling
wise P_0=0. The numbers close to the lines are their inclinatbgs form, fec| 8| "2F[ T/| 8|"2,h/| 8| "2]. This one-parameter scaling
given in Table I(also see text is reminiscent of single impurity and other phenomenologi-
cal, noncritical, approaches to the heavy-fermion problem.
shown in this table. This clearly indicates that the systemsn the former case the characteristic temperature is identified
we are considering are close to the QCP and a scaling analyith the Kondo temperature. There is, however, a fundamen-
sis is justified. tal difference between these approaches and the present scal-
Consider the case of Cegu Equation (1) yields, ing theory. Here the characteristic energy scale given by the
my=C/Tocg?f/aT?x| 5|2~ *~ 272, From the experimental re- coherence temperature.Jec| (J/W) — (J/W).| "2 vanishes at
lation 2— a= vz, we getmy *=|(Vo—V)/V|"?=(1— @)% the critical point of the Kondo lattice. Furthermore the scal-
Takingx=—1, i.e.,vz=1, as beforgsee also beloyy we ing behavior found in these heavy-fermion systems is due in
get an enhancement factOr,/ay,=1/(1— ay) for the ther- our approach to their proximity to the QCP at
mal massmy, of this material of approximately 120. (JIIW)=(JIW)., T=0H=0h=0. The vanishing ofT ., at
The data in Table | calls attention to the fact tif is  the QCP led to the predictibmnd observation of non-Fermi-
larger for CeRySi,, although this system has the smallestliquid behavior in heavy-fermion systerfs.
thermal mass of the four compourtd order to conciliate The observation of one-parameter scaling in a three-
this result with the idea of universality, i.e., that the critical dimensional {=3) critical theory with three independent
exponents are the same for a given quantity independemixponents is clearly associated here with the breakdown of
of the material, it is important to write the enhancementthe hyperscaling relation2a= v(d+z). Note that the rela-
tion 2— a= vz arising from the experimental data is the hy-
TABLE |. Grineisen parameters for different heavy fermions perscaling relation fod=0. It is not surprising then, that it
according to the relative pressure variation of several physicayields scaling properties which are formally similar to those
quantities shown in Fig. {Ref. 2. T'y, and the compressibilitx),  of a single impurity problem. Violation of hyperscaling is
are in Mbar®. The reference pressure for CgA$ Po=1.2 kbars  not uncommon in critical phenomegnand below we shall
otherwiseP,=0. The data for CeGuis taken from Ref. 5, and discuss the possible reasons it occurs here.

26 Mbar-1

references therein. One-parameter scaling can also result from the constraints
imposed by the Fermi-liquid behavior below the coher-

Compound Ly Ko Qy =Tvlkg  ay=Vol/V, ence temperature. Let us assume that the entropy of the local

CeAl; 89 517 a1 0.976 moments, of total angular momentunh, for T>T.c9h,.

c . S(T>Tcon) =NKgIn(2J+1) goes into that of the Fermi liquid

eRySi, 171 0.95 180 0.994 hich d | below T d i . by S(T

UPt, 26 048 54 0.981 whic evelops below T, and is given by §(

TC0 . _ .
CeCy 133 11 121 0.992 <Teon =J,®dTC(T)/T with C(T)=m;T. Equating both
entropies we find mT’locTcoh, which in turn implies
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2— a=vz. This argumeritrelies on the existence of a single — r r r . r T 1
characteristic temperature in the noncritical side of the phase
diagram which is not necessarily always the case, as will be
seen below®

Free Energy

I1l. MICROSCOPIC MODEL
T0<<Tco

. . . h
We now discuss a model of nearly antiferromagnetic

Fermi liquid' which describes the results of the pressure
experiments analyzed above. We start with the expression M
for the singular part of the free-energy density of a nearly
antiferromagnetic Fermi liquid due to spin fluctuatids*

: Localized Model

1 > I mx°(q,
f=—=> f dw coth Bw/2)tan ! _Himy(qe) ,
™7 Jo 1—1Rex’%(q,0) 5 ) )
7) : Nearly Antiferromagnetic
where Fermi Liquid
X(Q+0,0)=xq(1-ag’~bw?+icw) 8) g1
for q<Q andw<1. At zero temperature we get :
[] M 1 A 1 A 1 M
1 " Ly mCo 0 1 2 3 4 5
f=—=> f dwtan? XQ . (9 (q &)
79 Jo 1-lxo(l-ag’—bw?) ¢

FIG. 2. The free energy in the Fermi-liquid regime, at a fixed

temperatureT (< T, for the localized and nearly antiferromag-

= ] netic models as a function of the distance to the critical point,
1 ( )

located at (.£) "'=0. For (@.&) 1>2 the free energies of both
140282+ |4](wé?)?

This can be rewritten as
1 > 1
f=——] dgq| dotan”
m models nearly coincide and consequently have the same scaling
behavior.

where the correlation lengtf=| | " and the distance to the
QCP,6=1—1xq. The correlation length exponent assume
the mean-fieldor Gaussiapvalue, v=1/2 and the dynamic

e_xponent,z=2, typical of antiferromagnetic spin fluctug-_ Again neglecting the-dependent contribution we obtain,
tions. All constants have been taken equal to 1. In the limif.,\"Fq (12), the thermodynamic properties of the localized
5ﬁ0, a change. of variable yields the_ scahng prop_ertles othodel. FOXTE2<1, i.e., w.£7<1 we may write tanly~y.
this model. We find | §|*(9*2 whered is the dimension of _ _ _
the system, with additional scaling corrections due to thd"urthermore we takéw.=kgT, in which case the constraint
term [ 8| (w&%)2. From Eq.(1), with F[0,0,0]=const we ob- @c£"<1 implies T<Tcorx| 5™ In this regime the free en-
tain the generalized hyperscaling relation; 2= »(d+z).! ~ €rgy exhibits Fermi-liquid behavior and is given by,
Let us consider the case of localized spin fluctuatidns, * — (4/3)ma3g(1/2)T?£%, where g(y)=[jdxxcothx. The

Stor X.= BwJ2=1/2 andg.¢ very large, as close to the criti-
cal point.

i.e., we neglect the; dependence of°(q,»). We get breakdown of the scale invariant form, E4.3) and conse-
quently of hyperscaling is due to the neglect of thdepen-
1 & dence. The thermal mass is given by
foc—J dotan ! — 3 (11
7 1+]6l(wé?) mk=— 3%t/ gT2=mQ,(13)qié%x| 8| **=s| "1 (14)

Now for §—0, we findf«|8|*?, with scaling corrections. In _ o . .y
this case, from Eq(1), we obtain 2- = vz and hyperscal- and diverges at the transitiomy, is a noncritical constant,

ing is violated due to the neglect of tigedependence of°. which depends on local parameters and, linearlygaf?

Note that in this local theory the exponemt=1 as for the Within the same Fermi-liquid regime, foll <Tc,
nearly antiferromagnetic Fermi liquid. the free energy given by Eq12) can bezcaICLZJIate(()j and
For T#0 the relevant expression of the singular part ofthe thermal mass is given bymy ==d"f/9T==my[1
the free-energy density is given by —(gcé) " “tan *(qcé)]. In this case the thermal mass in-

creases but does not diverge as the system approaches the

de . (% q2&? critical point!? The second term in this expression fn#’I is
foc—Tf dqf dxcothx tan™*| xT¢* 1_ﬁ , the universal scaling contribution, i.e., independent of the
+a%¢ cutoff for g.é—o. It is proportional to& 1|82 since
12 moeq..
which can be written in the form The free energies in the Fermi-liquid regime<£T..) as

s a function of the distance to the QCP, for the localized and
foc| 8| AR T/T o] (13 nearly antiferromagnetitNAF) models are shown in Fig. 2.
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Notice that forg.£<1/2, they nearly coincide. This can
be seen directly, expanding)' to obtain, my(qg.£<1)
~mY,(1/3)g2£?=mk [see Eq.(14)]. Then, in this regime
the scaling properties of both models are the samd they
yield similar results, for example, for the relative pressure
variation of the thermal massy+(Pg)/m(P).

For the resistivity in the local approximation we fifid

NFL
Neel Line

T =Id2/3
N

tilde exponents

™~

__ bpo ™ x?

= dx > > .
Te2o (T8 -1)(1—e T8 (1+x?)

For Té&<l, e, T<Tn=E%=|68"", we get,
p(T<Teon =po(m23)(TITeon? and for higher tempera-
turesp(T> Tegn) = pol /2) (T/ Teor) 26

As concerns the magnetic field the experimental relation
¢n= vz implies that the characteristic fielg | 5|2, In fact,
in the local approach, the uniform magnetic figldsimply
adds to the frequency a precession téfithen atT=0

p (19

T =1l

coh )

Antiferro

- Fermi liquid
L q
QCP 8

(16) FIG. 3. Phase diagram of a nearly antiferromagnetics@stem,

with the shift exponenty=2/3 and the crossover exponert=1.

and xo(T=0)= azf/ahzoc|5|*”z with vz=1. This yields a Thetilde (therma) exponents determine the critical behavior on the
diverging or enhanced uniform susceptibility but this resultNeéel line. In this case ofy<1, the non-Fermi-liquid trajectory is
ceases to be valid sufficiently close to the critical pointtangent to the quantum critical point and the thermal exponents
(9c8>1). besides those associated with the QCP are required to characterize

fx%f do tan [ (w+h) ]

It is clear from the results above that the theory of anti-the physical behavior along this ling=0,T—0).

ferromagnetic local spin fluctuations, with a single character

istic energy scale, Teonx|d]"%, such that f(T=0)
| 8= Teon, My 8] ™**=Tegh, xo(T=0)| 8]~ "*=Tcg,

and p(T<T.)=AT? with A=T_2 correctly describes the

pressure experiments we analyzed before. Furthermore

this approach the crossover exponermt=1. This provided
the motivation for assuming this value for in the calcula-
tion of the enhancement factors in Sec. Il of this paper.

The theory of localized antiferromagnetic paramagnons
can be summarized in the scaling form of the free energy,

foc| 8|"2F[T/] 8]"4,h/| 8]"*] with vz=1. Although this is in

agreement with the pressure experiments in a region of th

phase diagram, forJ(W)>(J/W)., T<T.,, as the sys-
tems get closer to the critical point angé—oo the full g

y=27/(d+z—2)=2/3#vz=113181% |n this case a more
general scaling form for the free energy is required to de-
scribe the complex critical behavior in the neighborhood of
the QCPY It is given by

foc| (T[>~ “F[t],

T
|8(T)|

(17)
with
8(T)=8(T=0)—T™.

dependence of the dynamic susceptibility must be taken intdhe singularities along the N line, | 5(T)|=0, are de-
account. The local theory also does not describe the nongcriped by a new set dfide exponentse, v, etc., different

Fermi-liquid behavior observed ad/W)=(J/W)., T—0.
For example, the result for the specific heat|8t=0 is
given byC=(3/2)Nkg, i.e., that of a classical gas bf free

particles. Sufficiently close to the QCP it is then necessary Qose to the

consider they dependence 0f°(Q+ q,w). Taking this into

account we obtain the universal contribution for the free en-<

ergy at the QCP f[5=0]T*22 in agreement with Eq.
(13), and the specific heat/T(6=0)xg?f/gT2xTY? for
d=3, z=2 with yz=1131814

IV. GENERALIZED SCALING

It is important to point out that the result/TeTY? at
|8]=0 which arises from the scaling form E€L3) is valid
only in the case oextended scaling.e., y=vz. Herey is
the shift exponent such that the &léemperature] | 8| ? ,
close to the QCRRef. 10 (see Fig. 3. It turns out, experi-
mentally, that =12 however theoretically, one gets,

from those associated with the zero-temperature fixed point
(the nontilde exponents The scaling functionF [ t=0]

=const andF[t—»]«t* with x=(a—a)/vz such that
critical Nel line we_obtain the correct
asymptotic behaviorf<A(T)|8(T)|?~ ¢, where the ampli-
tude A(T)=T@ 92 |t is easy to verify that in the case of
extended scaling, i.eyy= vz, the exponents associated with
the zero-temperature fixed point are sufficient to describe the
behavior along the non-Fermi-liquid trajectoryg|=0,
T—0 and one finds the previous res@, T« T(4~2/2 How-
ever in the situation here, wherg=2/3<vz=1, thetilde
exponents also play a role in determining the behavior along
this path, which is tangent to the Bleline at the quantum
multicritical point as shown in Fig. 3 We find for the specific
heat

C/TOCT(Z’;)("Z’ ¥ +vid—2)lvzy. (18)
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Assuming thermal Gaussian exponents, essentiaffyl/2, Where we used'=1/2. Consequently the effect of the ana-
we get,C/T«T% for =2/3, v=1/2 andz=2, instead of Iytic contribution is to introduce a new energy scale in the
CIT<TY2 for the case of extended scaling. The staggeredrermi-liquid region of the phase diagréthnamely T;. If
susceptibilityxo(5=0 T)ocTW/w:T*?’/Z sincey=7=112 We calculate the specific heat from the above expression for

. ) - . " v(d—2) i -
An interesting possibility has been raised by sio f[he_ free energy, we ge@/Toc|5| which of course co .
et al.1° who claimed that two-dimensional fluctuations are|nC|des with the Gaussian result. On the other hand, taking

those relevant to describe the observed critical behavior. 1t0 @ccount the field dependence of the analytiean-field
this case scaling is extended singe 2/(d+z—2)=vz=1. and Gaussian contributions, it can be easily shown that the

This approach leads t6/T(6=0)x=InT at the QCP and in order-parameter linear su_sceptibili]sy(,:(ﬁzf/o?hz)h=0with
the Fermi-lauid regme, fof <o o ) fee| O *Fo(T/Ter. V| 917" 7) s given byxo=[3] “Fa(T/Ts),

for T<T.n, Where we used the mean-field exponents,
B=1/2 andy=1. The fieldh here is that conjugated to the
order parameter.

In quantum phase transitions the relevant dimensionality We point out also that, becauserz>4, even af /=0

is deg=d+z, as is evident from the modified hyperscaling there is a characteristic fielt;,ss= J which yields the cross-
relation, 2- a=v(d+2). In the problems we have studied over from mean-field to Gaussian behavidd is the actual

above, it turns out thads>d., where,d.=4 is the upper Ccritical coupling between localized and itinerant electrdns.

critical dimension for these magnetic transitions. This is thelhe order parameten at the quantum critical point varies
reason Gaussian theories, as the self-consistent renormaliz&th the conjugated fieldh, according tomec(h/J)*.2 For
(SCR ) theory of spin fluctuation¥ provide an adequate de- small fields, i.e.h<h,ss, the mean-field contribution with
scription of the quantum critical point in nearly ferro and dwr=3 dominates, while in the opposite case the Gaussian
antiferromagnetic 8 materials'® Let us consider further im- one with 5= (d+z+2)/(d+z—-2) (Ref. 10 is dominant
plications of the fact thati+z>d.=4. Consider the expres- (in the situation of interest herd=3 andz=2 such that

sion for the singular part of thef=0 free energy,f  Jdc=7/3<Syr=3).
«|8|"9+2 Since the Gaussian exponent 1/2, whenever Finally note that the above discussion does not affect the

d+z>4, we can rewrite it asfoc| 8|2~ with «<0. In this local spin fluctuation results since, in this case The0 free
case an analytic expansion of the free energy close to th@nergy is moresingular than the analytic contribution, at
critical point, such thatfe| 8|2, will always dominate the least forvz<2.

Gaussian contribution foé sufficiently small. The total free

V. ABOVE THE UPPER CRITICAL DIMENSION

energy, in the noncritical side of the phase diagram, below VI. CONCLUSIONS
the coherence line, can be written as a sum of an analytic . i
term and a Gaussian contribution, Our analysis of the pressure dependence of several physi-

cal quantities for different heavy fermions on a region of the
phase diagram, forJ(W)>(J/W)., T<T.y, has shown
, (190  that these systems are close to a quantum critical point and a
scaling approach is indeed appropriate. We have obtained
from the experimental data, Qraisen parameters which
where we neglepteq the temperature dependence of the any"jlléld the enhancement factors due to the proximity of the
:étrllc ?r?rttﬁjsggmﬂ;:ﬁ&eigsimgm?reI?ZnTthai f;ﬁ,ge \SSUSS'QCP..H turns out that a one-parameter scaling is suffic_ient to
ha\}é T coh ' describe the experiments in this region of the phase diagram
and this is associated with the violation of the hyperscaling

)2 ] relation. This one-parameter scaling here is different from
(20

fo=| o2+ 5[4+ 2F

|5| vZ

that of single impurity approaches where the characteristic
energy scale is identified with the Kondo temperature. In our
caseT .o, Vanishes at the quantum critical point and this leads
then, sufficiently close to the critical point and fof-z>4, g the appearance of non-Fermi-liquid behaviosat0. We
with »=1/2, we obtain have shown that a theory of localized spin fluctuations, with
vz=1, describes the pressure experiments summarized in
Fig. 1 For these experiments the q dependence of the dy-
namic susceptibility plays no rald’hysically this must be
related to the fact that the actual spectrum of spin fluctua-
which can be rewritten in the scaling form tions is nearlyq independent, at least in the relevant direc-
tions of q space, in this part of the phase diagram. This
region corresponds to the caggté<1/2 of the NAF model
' (22 since, as we have shown, the scaling properties of this and
the local model are the same in this regime. In fact the local
where the value oivr=0 in the equation above, see Ed), approach can be obtained as an expansion of the full
can be associated with the breakdown of hyperscaling fog-dependent theory of antiferromagnetic spin fluctuations for
d+z>4. The new spin-fluctuation temperature is given by g.£<1 (see, also, Ref. 35Then it holds in a regiomot too
close to the QCP but where scaling, specific to this
Te=| 8|t d-2M4 (23)  g-independent regiméone-parameter scalihgstill applies.

fi=|62+]8]"9*2§ 1+
|5|VZ

T 2
ft=|5|2+|5|V<d+Z>(W) +oen, (21)

-
f.=|6|2F T

sf
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The local theory allows for an explicit calculation of the be traced to the cutoff acting as a relevant variable.

Wilson (mr/x,) and Kadowaki-Woods A/m?2) ratios’ The purpose of a scaling theory of heavy fermions is to
which turn out to be constants, i.e., independent of the disprovide a unified description, in terms of a set of critical
tance to the critical point. exponents, not only of the non-Fermi-liquid regime but also

As the system moves closer to the critical poigi,{  of both sides of the quantum critical point. While most of the
—») we leave the limit of validity of the local theory and studies have been carried on in the noncritical side we also
the full g-dependent susceptibility must be used. In bothexpect to find scaling behavior on the ordered region of the
casesvz=1. In theqg-dependent regime a generalized scal-phase diagram, i.e., fod(W) < (J/W)., where the systems
ing theory is required to describe the complex critical behavyt T=0 have long-range magnetic order. We hope future
ior in the neighborhood of the QCP since #f@ftand cross-  studies will also include this interesting region and also a
over exponents are different for nearly antiferromagnetic 3 |arger class of materiafs.
systems. This is particularly relevant along then-Fermi-
liquid trajectorywhich is tangent to the QCP faf=2/3<1.
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