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Effects of the nearest-neighbor Coulomb interactions on the ground state
of the periodic Anderson model
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The magnetic and nonmagnetic ground states of the periodic Anderson model with Coulomb interaction
betweenf electrons on the nearest-neighbor~NN! sites are investigated using a variational method, which
gives an exact calculation of the expectation values in the limit of infinite dimensions. It is shown that for a
critical value of NN Coulomb interactions the magnetic ground state of the periodic Anderson model in the
Kondo regime is unstable. Factors in terms of the physical processes responsible for instability of the magnetic
ground state are also discussed. Our study indicates the importance of the NN Coulomb interactions for
correlated two-band models.@S0163-1829~98!03910-1#
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Over the past decade much effort has been devoted to
theoretical understanding of the ground-state properties
the heavy-fermion systems. One of the intriguing experim
tally observed phenomena in the heavy-fermion material
the variety of magnetic and nonmagnetic ground states
served in these materials.1–6 Most of the theoretical investi
gations of the magnetic properties are done on the bas
the periodic Anderson model~PAM! assuming that this
model contains the essential physics of these materials.
oretical approaches based on the slave-boson techniqu7–9

are biased towards a paramagnetic ground state, while v
tional approaches based on the Gutzwiller method are bia
towards a magnetic state. These two approaches are eq
lent in the limit of large orbital degeneracy. Recently, Re
noldset al.,10 studied the magnetic properties of the orbita
nondegenerate periodic Anderson model using a Kotliar
Ruckenstein slave-boson~KRSB! formulation of the
Gutzwiller method. In this approach the Gutzwiller appro
mation is reproduced at the saddle point forT50. They
found that a magnetic instability exists in the entire Kon
regime and therefore, the Gutzwiller approximation is t
biased towards the magnetic ground state. The experime
evidence points to the gross inadequacy of the existing
proaches to describe the magnetic behavior of heavy fe
ons.

In addition to the on-site Coulomb interaction in thef
band, the other most important interactions which may aff
the stability of the magnetic ground state of the PAM are
on-site Coulomb interaction in the conduction band and
nearest-neighbor~NN! Coulomb interaction in thef band.
The influence of the on-site Coulomb interaction in the co
duction band was recently considered by Itai and Fazek11

using the Gutzwiller variational method. They found that th
interaction reduces the Kondo scale. The reduced Ko
scale implies that the transitions of electrons from thef band
to the conduction band and vice versa, are further restric
by the presence of the Coulomb interactions in the cond
570163-1829/98/57~10!/5961~5!/$15.00
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tion band. This would lead to further enhancement of
magnetic ordering of the ground state of the periodic And
son model. Consequently, the ground state of the perio
Anderson model with the on-site Coulomb interaction in t
conduction band would be magnetic in the entire Kondo
gime. In the presence of the NN Coulomb interaction in t
f band, all the configurations having electrons on the N
sites are energetically unfavorable and the following phys
processes would be operating:~i! f electrons can avoid NN
Coulomb repulsion by occupying next-to-nearest-neigh
sites. This process is expected to be important only whe
sufficient number of vacant sites are available.~ii ! Electrons
from the f band may go to the Fermi level, whereby the
take advantage of the hybridization interaction to delocali
~iii ! The spin-flip process in thef band through the hybrid-
ization interaction would also lead to energy gain. All the
processes would affect the magnetic ordering of the gro
state of the PAM. The purpose of this paper is to investig
the influence of the NN Coulomb interaction in thef band,
on the magnetic instability of the ground state of the PAM
the Kondo regime. To the best of our knowledge, this is
first study of the influence of the NN Coulomb interaction
the ground-state properties of the PAM.

We consider the extended periodic Anderson model gi
by

H5(
k,s

ekdks
† dks1(

i ,s
Efn̂f is1V(

i ,s
~dis

† f is1H.c.!

1
U

2(
i ,s

nf isnf i 2s1G (
^ i j &ss8

nf isnf j s8 , ~1!

wherenf is5 f is
† f is , i and j are site indices andk are the

wave vectors. The first four terms constitute the stand
PAM and the last term in the Hamiltonian corresponds to
Coulomb interaction betweenf electrons on the NN sites
(^ i j & in the last term denotes that the sum is taken over
5961 © 1998 The American Physical Society
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sites only. The total density of electron
n5(( isnf is1ndis)/N, whereN is the total number of lat-
tice sites, is taken to be 1,n,2, so that there are enoug
electrons to fill at least thef levels, and thed-band filling is
variable up to half filling.

To study the magnetic ground state we generalize
variational method previously used to investigate the pa
magnetic regime of the PAM.12–14 The generalizations ar
carried out by distinguishing the up and down spin electr
in the variational wave function. In the previous treatme
for the paramagnetic regime of the PAM only the lower tw
spin-degenerate hybridized quasiparticle bands were con
ered, however, for the more general case of magnetism,
required to take into consideration all four hybridized qua
particle bands in the variational wave function.

To investigate the magnetic ground state, we choose
variational wave function as

ucc&5)
i

Pi ucuc&, ~2!

whereucuc&5)k,k8,s,s8
8 l ks

† uk8s8
† u0& is the uncorrelated wave

function. )8 denotes the product over all occupied stat
uks

† and l ks
† create quasiparticles in the upper and lower h

bridized bands, respectively.l ks
† 5aksdks

† 2bks f ks
† and

uks
† 5aks f ks

† 1bksdks
† . aks and bks are variational func-

tions, which denote the probability amplitude for conducti
(d) and f electrons in the various quasiparticle bands. T
quasiparticle creation operatorsl ks

† anduks
† obey the fermion

commutation rule ifaks
2 1bks

2 51. The variational functions
aks and bks differ from the choice which diagonalizes th
Hamiltonian @Eq. ~1!# in the absence of Coulomb intera
tions. Because the Coulomb interactions betweenf electrons
can renormalize the hybridization interaction betweend and
f electrons and thereby can also change the probability
plitudes. The correlation operatorPi is introduced to sup-
press those configurations in the uncorrelated state which
not energetically favorable in the presence of Coulomb in
actions. The correlation operator12–14 is given by

Pi511(
s

ssnf is2F ~12d!1(
s

ssGnf i↑nf i↓ . ~3!

The ground-state energy per site of the trial wave funct
@Eq. ~2!# is given byEg /N5^ccuH/Nucc&/^ccucc&. The ex-
act calculation of the ground state energy of the correla
wave function is not possible since the expectation val
involve an infinite product of operators and one needs
adopt some approximate scheme. In this paper we use
one-site approximation12–14 for calculation of various matrix
elements appearing in the ground-state energy per sit
ucc&. The expectation values appearing in the ground s
energy per site ofucc&, typically involve expectation value
of the type^ . . . nf isnf j s8..&uc . In the one-site approxima
tion, such expectation values are approximated by

^ . . . nf isnf j s8 . . . &uc5^ . . . &uc^nf is&uc^nf j s8&uc^ . . . &uc ,
~4!

where ^ . . . .&uc5^cucu . . . .ucuc&. Such an approximation
implies the collapse of all intersite diagrams in the posit
e
-

s
t

id-
is
-

he

.
-

e

-

re
r-

n

d
s
o
he

of
te

space~see Fig. 1!. The one-site approximation is expected
give an exact calculation of the expectation values in
limit of infinite dimensions, since as dimension increases
contribution of the intersite diagrams decreases and vani
altogether in the limit of infinite dimensions.15

Using the one-site approximation described above to
culate the expectation values appearing in the ground-s
energy of ucc& and minimizing the energy functional with
respect to the variational functionsak↑ , ak↓ , bk↑ , bk↓ by
imposing the constraintaks

2 1bks
2 51, the minimum of the

ground-state energy per site is given by

Eg

N
5

1

N(
ks

@jks
2 ^ l ks

† l ks&1jks
1 ^uks

† uks&#1(
s

msnf s1UD

1G(
s

~ I s
21I sI 2s!, ~5!

wherejks
6 describes four hybridized quasiparticle bands

jks
6 5

1

2@ ~ek1Ẽf s!6@~ek2Ẽf s!214Ṽs
2 #1/2#

and^uks
† uks&uc and^ l ks

† l ks&uc correspond to the average o
cupation of the upper (jks

1 ) and lower (jks
2 ) quasiparticle

bands.Ẽf s5Ef2ms is the renormalizedf -level energy with
the f -electron self-energyms given by

ms52
2

N
(
ks8

Ṽs8

]Ṽs8

]nf s
F ^uks8

† uks8&uc2^ l ks8
† l ks8&uc

A~ek2Ẽf s8!
214Ṽ s8

2 G
2U

]D

]nf s

2G
](s~ I s

21I sI 2s!

]nf s

. ~6!

Ṽs5VRs is the renormalized hybridization interaction an
Rs is the renormalization factor.Rs and the average doubl
occupancyD of the ground stateucc& are given by

Rs5
~12nf !

A
@~12nf 2s!~11ss!1dnf 2s~11s2s!#,

D5d2~12nf !nf↑nf↓ /A,

I s5nf s@(11ss
21nf 2s„d22(11ss)2

…#(12nf)/A with A
5(12nf)1(12d2)nf↑nf↓ . The density off electronsnf s
is given by

nf s5
1

N(
k

@bks
2 ^ l ks

† l ks&uc1aks
2 ^uks

† uks&uc#. ~7!

The weight factorsbks
2 andaks

2 for f electrons with spins
in the lower and upper quasiparticle bands, respectively,
given by

FIG. 1. The collapse of intersite diagrams in the one-site
proximation.
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aks5
2~ek1Ẽf s!1@~ek2Ẽf s!214Ṽ s

2 #1/2

A2@~ek2Ẽf s!214Ṽs
2#1/4

,

bks5
~ek1Ẽf s!1@~ek2Ẽf s!214Ṽs

2 #1/2

A2@~ek2Ẽf s!214Ṽs
2#1/4

. ~8!

The minimization of the ground-state energy with respec
d yield the following implicit equation ford:

U
]D

]d
52

2

N
(
ks8

Ṽs8

]Ṽs8

]d F ^uks8
† uks8&uc2^ l ks8

† l ks8&uc

A~ek2Ẽf s8!
214Ṽ s8

2 G
2G

](s~ I s
21I sI 2s!

]d
. ~9!

At zero temperatures, we can replace the distribut
function for the lower and upper quasiparticle bands by u
step functions; ^ l ks

† l ks&uc5Q(2jks
2 1n) and ^uks

† uks&uc

5Q(2jks
1 1n). HereQ is the unit step function, andn is

the Fermi level.n is determined by fixing the density of th
total number of electrons per site,n5(sns . At zero tem-
peraturesns is given by the following expression:

ns5
1

N(
k

@Q~2jks
2 1n!1Q~2jks

1 1n!#. ~10!

Before embarking on the numerical calculations it wou
be instructive to compare our approach for the perio
Anderson model with the KRSB reformulation of th
Gutzwiller method.10 We note that the ground-state ener
of our variational wave function in the one-site approxim
tion and the ground-state energy derived from the KR
approach have different expressions for the effective hyb
ization interaction and the average double occupancy of
ground state. The average double occupancy in the one
approximation and the Gutzwiller approximation are giv
by D and dg ~say!, respectively. If we scaleD→dg in the
expression for the effective hybridization (Ṽs) in our ap-
proach, we find that it reduces to the corresponding exp
sion for the effective hybridization in the KRSB metho
This further implies that thef -electron self-energy (ms), and
the average occupation of thef orbitals in both the ap-
proaches also become the same; thereby the KRSB gro
state energy functional and the one-site ground-state en
functional are the same under the scaling of average do
occupancy of the ground state. Furthermore, since both
approaches search for the minimum of the ground-state
ergy in the same physical parameter space, they must
the same results at the point of minimum. The equivalenc
the two seemingly different variational methods is surpr
ing. To understand this equivalence, we reanalyze
Gutzwiller variational wave function. The Gutzwiller wav
function has a long history, dating back to the work
Gutzwiller in the 1960’s. The Gutzwiller wave function16,17

is given by ucg&5gD̂uco& . Recently, Gebhard18,19 showed
that it is more convenient to work with the following form
for the Gutzwiller wave function:
o

n
it

c
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gy
le

he
n-
ve
of
-
e

f

ucgk&5gK̂uf0&, ~11!

where ufo& is an arbitrary normalized one-particle produ
wave function andK̂5D̂2( ism isnf is , wherem is are the
explicit functions ofg and the local occupation off orbitals,
nf is5^founf isufo&. uco& and ufo& are connected by
uco&5g( ism isnf isufo&. For the magnetic case the correlat
gK̂ can be written as ) iQi with Qi511xnf i↑nf i↓
2(sysnf is , x andys are variational parameters which d
pend on the average occupation of thef orbitals. With the
redefinition of the parametersx andys , the correlation op-
eratorsQi and Pi @Eq. ~3!# are the same. Therefore, th
Gutzwiller-Gebhard correlatorgK̂ in the Gutzwiller approxi-
mation and our correlator) i Pi in one-site approximation
describe the same physics. It is interesting to note that
Gutzwiller approximation gives the exact calculation of t
matrix elements in the limit of infinite dimensions and giv
identical results as obtained by the one-site approximat
Obviously, one-site approximation is much more physica
transparent and operationally simpler than the Gutzwiller
proximation.

Although our variational formalism is valid for arbitrar
dimension and dispersion of the conduction-electron ba
for simplicity we assume a conduction band with a const
density of statesr(ek)51/2W lying in the energy interval
2W<ek<W. 2W is the conduction-electron bandwidth. W
have also taken the infinite-U limit, since at U5` the
ground state of the PAM is strongly magnetic with a ma
mum value of total magnetization.10 This is an ideal limit to
investigate the instability of the magnetic ground state in
presence of the nearest-neighbor Coulomb interactions
our formalism this limit is affected by puttingd50 through-
out i.e., by projecting out all the doubly occupied sites. T
total magnetization,m5(ssns for different values of
nearest-neighbor interactionG, the bare hybridizationV, and
the total electron densityn, is calculated numerically by
solving Eqs.~6!, ~7!, and~10! self-consistently form↑ , m↓ ,
nf↑ , nf↓ , and n. The numerical solution of the self
consistent equations have more than one solution co
sponding to strong magnetism, weak magnetism, and p
magnetism. The relevant solution is the one with the low
ground-state energy. In the numerical calculations we to
the conduction-electron bandwidth, 2W520 eV and thef
level, Ef521.5 eV below the middle of the conductio
band. We have taken this particular choice of parameter
ues for reasons of comparison with the earlier work of R
nolds et al.10 in the absence of nearest-neighbor Coulom
interaction between thef electrons.

In Fig. 2, we have plotted the total magnetization as
function of the NN Coulomb interactionG, for the total den-
sity of electrons,n51.95 andn51.9. For G/uEf u50, the
ground state is strongly ferromagnetic with total magneti
tion, m50.96 for n51.95 andm50.94 for n51.9. With
increasing value ofG the magnetization decreases up to
critical value ofG, where we see a crossover from stro
ferromagnetism to weak ferromagnetism with total magn
zation m522n and then from weak ferromagnetism
paramagnetism. Figure 3 shows the magnetic phase diag
of the extended periodic Anderson model.

In Fig. 4 we have plotted the hybridized quasipartic
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bandsjks
6 for strongly ferromagnetic (G/uEf u50), weakly

ferromagnetic (G/uEf u52), and paramagnetic (G/uEf u55.6)
ground states. We find that due to the renormalization of
hybridization interaction and thef -electron energy there is
redistribution of the density of states and to accommod
the redistribution of density of states the Fermi level a
moves to keep the total density of electrons fixed. For
strongly magnetic ground state the Fermi level lies in
lower down-spin hybridized band(jk↓

2 ) and the upper up-spin
hybridized band(jk↑

1 ). The lower up-spin hybridized ban
(jk↑

2 ) is completely full. At a critical value ofG/uEf u all the
electrons in the upper hybridized up-spin band are tra
ferred to the lower hybridized down-spin band. Then we
a crossover from a strongly ferromagnetic to a weakly fer
magnetic ground state. In the weakly ferromagnetic grou
state, the lower hybridized up-spin band is completely f
with total density of up-spin electrons,n↑51, therefore the
total magnetization,m5n↑2(n2n↑)522n. The total mag-
netization remains unchanged in the entire weak ferrom
netic regime till the Fermi level also lies in the lower hybri
ized up-spin band. To understand the magnitude of jump
the magnetization at the point of crossover from strong
romagnetism to weak ferromagnetism and then ano
crossover from weak ferromagnetism to paramagnetism
would be instructive to calculate the density of statesrs

6(v)
of hybridized bands,jks

6 . It is given by

rs
6~v!5(

k
d~v2jks

6 !5(
i

d~v2xi !U]jks
6

]ek
U

ek5xi

21

,

~12!

wherexi ’s are the roots ofv2jks
6 50. At a given energyv,

the density of states is proportional to the slope of the

FIG. 2. The total magnetization as a function of the Coulo
repulsion betweenf electrons on the nearest-neighbor sites. H
we have taken the on-site Coulomb interaction to be infinitely la
and bare hybridization,V51.

FIG. 3. Magnetic phase diagram of extended periodic Ander
model.
e

te
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bridized bands atv. The crossover from strong to weak fe
romagnetism is due to shift of the Fermi level from the upp
hybridized up-spin band with larger density of states to
lower hybridized down-spin band with smaller density
states, resulting in a large decrease in the number of up-
electrons. In the crossover from weak ferromagnetism to
paramagnetism, the change of the Fermi level in the low
hybridized up-spin band to the lower degenerate up-
down-spin bands accompanies a relatively weaker chang
the density of states.

Figures 5 shows how the NN Coulomb interaction ren
malizes the average occupation of thef orbitals. In the ab-
sence of the NN Coulomb interaction the total magneti
tion, m'nf↑ . In the strongly ferromagnetic regim

e
e

n

FIG. 4. Hybridized quasiparticle bands (jks
6 ) as a function of

conduction band energy (ek) for the total density of electrons
n51.95 andV51.0. The↑ and ↓ correspond to the hybridized
up-spin band and hybridized down-spin band, respectively.
G/uEf u55.6, the hybridized band is spin degenerate.

FIG. 5. The average occupation of thef orbitalsnf s is plotted as
a function ofG/uEf u for n51.95.
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(G/uEf u,2.0), for small values ofG, up-spin electrons from
the f band are transferred to the conduction band through
hybridization interaction. With increasing values ofG, more
and more vacant sites are available and spin flip proce
through hybridization interaction becomes energetically
vorable. Therefore, we see an increase in the numbe
down-spin electrons and a decrease in the total magne
tion. The weak ferromagnetic regime is stabilized by ene
gain through the transfer of electrons from thef band to the
conduction band and by occupying next-to-nearest-neigh
f -electron sites, since there are sufficiently large number
vacant sites available in this regime.

In this paper we have investigated the magnetic and n
magnetic ground states of the extended periodic Ander
model, using a variational method based on the one-site
d
.

d
.

s

W

e

es
-
of
a-
y

or
of

n-
n
p-

proximation. We have shown through the calculation of t
magnetic phase diagram that forU5`, the nonmagnetic
ground state is stabilized above a critical value of near
neighbor Coulomb repulsion between thef electrons. The
one-site approximation used in this paper gives an exact
culation of the matrix elements in the limit of infinite dimen
sions. It will be very interesting to investigate the magne
properties of the periodic Anderson model by including t
~dimension! 21 contributions through the two-site
approximation.13 Certainly, it is desirable to extend our ca
culations to study antiferromagnetic ground states also.

S.L. thanks Conselho Nacional de Desenvolvimento
entifico e Technologico~CNPq!, Brazil for financial assis-
tance.
s.:

s-
.

1G. Aeppli and C. Broholm, inHandbook on the Physics an
Chemistry of Rare Earths, edited by K. A. Gschneider, Jr., L
Eyring, G. H. Lander, and G. R. Choppin~North-Holland, Am-
sterdam, 1994!, Vol. 19, p. 123.

2N. Grewe and F. Steglich, inHandbook on the Physics an
Chemistry of Rare Earths, edited by K. A. Gschneider, Jr. and L
Eyring ~North-Holland, Amsterdam, 1991!, Vol. 14, p. 343.

3H. R. Ott, Acta Phys. Pol. A85, 7 ~1994!.
4G. R. Stewart, Rev. Mod. Phys.56, 755 ~1984!.
5P. Fulde, Electron Correlations in Molecules and Solid

~Springer, Berlin, 1991!.
6P. A. Lee, T. M. Rice, J. W. Serene, L. J. Sham, and J.

Wilkins, Comments Solid State Phys.12, 99 ~1986!.
7N. Read and D. M. Newns, J. Phys. C16, 3273~1983!.
8N. Read and D. M. Newns, J. Phys. C16, L1055 ~1983!.
.

9P. Coleman, Phys. Rev. B29, 3035~1984!.
10A. M. Reynolds, D. M. Edwards, and A. C. Hewson, J. Phy

Condens. Matter4, 7589~1992!.
11K. Itai and P. Fazekas, cond-mat/9602029~unpublished!.
12S. Lamba and S. K. Joshi, Phys. Rev. B50, 8842~1994!.
13S. Lamba and S. K. Joshi, Phys. Rev. B52, 7972~1995!.
14S. Lamba and S. K. Joshi, Physica B223&224, 619 ~1996!.
15D. Vollhardt, in Proceeding of the International School of Phy

ics Enrico Fermi Course CXXI, edited by R. A. Broglia and J. R
Schrieffer~North-Holland, Amsterdam, 1994!, p. 31, and refer-
ences therein.

16M. C. Gutzwiller, Phys. Rev. Lett.10, 159 ~1963!.
17D. Vollhardt, Rev. Mod. Phys.56, 99 ~1984!.
18F. Gebhard, Phys. Rev. B41, 9452~1990!.
19F. Gebhard, Phys. Rev. B44, 992 ~1991!.


