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Field-induced ferromagnetic exchange interaction in metamagnetic transitions
of heavy-electron liquids

Hiroyuki Satoh and Fusayoshi J. Ohkawa
Department of Physics, Hokkaido University, Sapporo 060, Japan

~Received 26 June 1997!

The metamagnetic transition or crossover in CeRu2Si2 is investigated using the Hubbard model, with a
pseudogap structure of the density of states of quasiparticles phenomenologically taken into account. Local
quantum spin fluctuations are considered through mapping to the Anderson model. Intersite effects are con-
sidered by the 1/d expansion method, withd being the spatial dimensionality. There are two main driving
forces in the metamagnetic transition: a field-dependent exchange interaction and the magnetostriction or the
Kondo volume-collapse effect. The exchange interaction due to the virtual exchange of pair excitations within
the quasiparticle band changes its signs with increasing magnetization. It is antiferromagnetic in the absence of
fields and is ferromagnetic in the vicinity of the metamagnetic point. The pseudogap structure plays a critical
role in this sign change. This exchange interaction scales with the bandwidth of the quasiparticles, and the
single-parameter scaling approximately holds for the magnetization and the magnetostriction processes.
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I. INTRODUCTION

CeRu2Si2 is a heavy-electron compound with a large ele
tronic specific-heat coefficient ofg.350 mJ/mol K2.1 One
of the main features of this compound is a sharp increas
magnetization around an external field ofHM.7.7 T, when
the field is applied along thec axis of the tetragona
structure.2 Although it seems to be a crossover,3 it is conven-
tionally called a metamagnetic transition. Not only the ma
netization process but also many other physical proper
are anomalous in this field region ofHM>7.7 T. For ex-
ample, the magnetostriction is large and the molar volumV
exhibits an abrupt increase aroundHM .4,5 On the other hand
this compound has a large Gru¨neisen constant ofG[
2] ln TK /] ln V.190.6 Here, TK is the local Kondo tem-
perature and is an energy scale of local quantum spin fl
tuations. The combination of the large magnetostriction a
the large Gru¨neisen constant leads to the conclusion thatTK

decreases significantly with increasing magnetization.
Various theoretical investigations have been performe

explain the metamagnetic transition. Miyake and Kuramo7

have calculated the magnetization process using a s
phenomenological model called the duality model. Konn8

has argued that the crystal-field splitting plays a critical ro
Evans9 has argued that the anisotropy of the hybridizat
matrix plays a critical role. All of these mechanisms a
purely electronic.

On the other hand, metamagnetic transitions of the fi
order have been observed in other transition-metal all
rather thanf -electron systems. Yamada10,11 has investigated
the metamagnetic transitions in transition-metal alloys. T
effects are important according to his arguments: a ferrom
netic exchange interaction and a pseudogap structure ar
the chemical potential. It is quite easy to see that when th
two effects are large enough a metamagnetic transition ea
occurs.
570163-1829/98/57~10!/5891~9!/$15.00
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It is certain that the competition between the quenching
magnetic moments by the local quantum spin fluctuatio
and a ferromagnetic exchange interaction is a key issu
understand the magnetic transition of heavy-electron s
tems. The decrease ofTK makes the development of magn
tization easy. This magnetostriction effect should also
taken into account to explain the metamagnetic transition
CeRu2Si2. One of the authors of this paper has investiga
the metamagnetic transition by taking into account this m
netostriction effect12 and a pseudogap structure.13 However,
he assumed a phenomenological ferromagnetic exchang
teraction. The observed magnetization process of CeRu2Si2
obeys the single-parameter scaling.4 This scaling imposes a
strong restriction on a relevant ferromagnetic exchange in
action responsible for the metamagnetic transition.

The 1/d expansion method has been developed in a p
vious paper,14 with d being the spatial dimensionality. On
of the greatest advantages of this method is that the lo
quantum spin fluctuations can be properly taken into acco
in the single-site approximation~SSA!.14 Then, the 1/d ex-
pansion method is physicallya perturbative method of treat
ing intersite effects, starting from the SSA. Various physical
properties of strongly correlated electron systems have
ready been investigated by the 1/d expansion method: high
temperature superconductivity in the vicinity of the Mo
transition,14 the crossover between sinusoidal and heli
magnetic structures,15 magnetic exchange interactions
alloys,16 and the mode-mode coupling effect between s
fluctuations.17 The purpose of this paper is to investigate t
metamagnetic transition of heavy-electron liquids by the 1d
expansion method.

II. FORMULATION

A. Model

One of the simplest effective Hamiltonians for heav
electron liquids is the periodic Anderson model. A gap o
5891 © 1998 The American Physical Society
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5892 57HIROYUKI SATOH AND FUSAYOSHI J. OHKAWA
pseudogap structure of the density of states is inherent in
model because of the hybridization between an almost
persionlessf band and conduction bands. This pseudog
structure can be taken into account even within the Hubb
model when a phenomenological density of states is u
Then, we start with the Hubbard model ind dimensions:

HH5(
i j s

t i j f is
† f j s1

1

2
U(

is
f is

† f is f i 2s
† f i 2s . ~2.1!

Here, f is
† and f is are creation and annihilation operators of

electrons with spins at siteRi , respectively. The transfe
integralst i j include dimensional factors to retain the mod
nontrivial in the large-d limit; for example,t i j 5O(1/Ad) for
nearest neighbors.18 The density of states of unrenormalize
electrons is given by

r0~«!5
1

N (
k

d„«2E~k!…, ~2.2!

with N being the number of unit cells andE(k)
5( j t i j e

2 ik•(Ri2Rj ). In this paper, it is assumed thatr0(«)
has a camel-back structure around«.« f , with « f[t i i being
a band center. It is also assumed for the sake of simpli
that the system is symmetrical so thatr0(« f1«)5r0(« f
2«) and« f2m52U/2, with m being the chemical poten
tial. It follows that(s^ f is

† f is&H51, where^•••&H means the
statistical average for the Hamiltonian~2.1!. We will confine
our study toT50 K and the large-d limit ( d→1`).

The single-particle Green function is written as

Gs~ i«n ,k!5
1

i«n1m2E~k!2S̃s~ i«n!
~2.3!

in the wave-number representation. Here,S̃s( i«n) is the ir-
reducible single-site self-energy function. The multisite se
energy vanishes in the large-d limit. The Green function in
the site representation is written asRi j s( i«n)
5(1/N)(ke

ik•(Ri2Rj )Gs( i«n ,k). Calculating the single-site
self-energy is reduced to solving a mapped Anderson mo
~MAM !:

HA5(
ks

«c~k!cks
† cks1(

s
« f f s

† f s

1
1

AN
(
ks

@V~k!cks
† f s1V* ~k! f s

†cks#

1
1

2
U(

s
f s

† f s f 2s
† f 2s . ~2.4!

The three quantities ofm, « f , andU for the MAM Eq. ~2.4!
are the same as those for the Hubbard model~2.1!, respec-
tively. The combination of«c(k) and V(k) is determined
through the mapping condition ofRii s( i«n)5G̃s( i«n),
where

G̃s~ i«n!5
1

i«n1m2« f2S̃s~ i«n!2L~ i«n!
~2.5!

is the Green function for the MAM, with
is
s-
p
rd
d.

l

ty

-

el

L~ i«n!5
1

p E
2`

`

d«
D~«!

i«n2«
~2.6!

and

D~«!5
p

N (
k

uV~k!u2d„«1m2«c~k!…. ~2.7!

Because the Hubbard model is symmetrical, it follows th
D(«)5D(2«).

The self-energy of the MAM is expanded so th
S̃s( i«n)5S̃01@12f̃m# i«n1••• . The dispersion relation
of quasiparticles is given byj(k)5@E(k)2« f #/f̃m , where
the relation ofm2« f2S̃050 for the symmetrical model ha
been used. The density of states of the quasiparticles is g
by

r* ~«!5
1

N (
k

d„«2j~k!…5f̃mr0~f̃m«1« f !. ~2.8!

The coherent part of Eq.~2.3! is written as

Gs
~c!~ i«n ,k!5

1

f̃m

1

i«n2j~k!
. ~2.9!

The corresponding coherent part of Eq.~2.5! is given by

G̃s
~c!~ i«n!5

1

f̃mi«n2L ~c!~ i«n!
, ~2.10!

with

L ~c!~ i«n!5f̃mi«n2F 1

f̃m
E

2`

`

dj
r* ~j!

i«n2jG21

. ~2.11!

B. Electron-lattice interaction

The local Kondo temperatureTK is defined by

@ x̃ s~1 i0!#T50 K[1/kBTK , ~2.12!

wherex̃ s( iv l) is the spin susceptibility of the MAM.14 In the
large-U region, there exists another small parameter,sK
[kBTK /U, in addition to 1/d. Because sK.1024 in
CeRu2Si2, only leading-order or zeroth-order terms insK are
considered in this paper.

The volume dependence ofTK is approximately written
as12

TK~x!5TK~0!e2x ~2.13!

with

x5G~v2v0!/v0 , ~2.14!

wherev andv0 are volumes of a unit cell in the presence a
the absence of magnetic fields and pressures, respective
this paper, the magnetostriction effect is taken into acco
only through the volume dependence ofTK . As is discussed
in the Appendix,f̃m is inversely proportional toTK . Then, it
follows that

f̃m~x!5f̃m~0!ex, ~2.15!
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r* ~«;x!5r* ~«ex;0!ex, ~2.16!

and

L ~c!~ i«n ;x!5L ~c!~ i«nex;0!. ~2.17!

C. Thermodynamic potential

In order to calculate magnetizationm and the molar vol-
ume orx in the presence of magnetic fieldsH and pressures
P, it is convenient to consider the thermodynamic poten
given by

V5V01V f1mH* 1P* x ~2.18!

per unit cell, whereV0 is the thermodynamic potential fo
the lattice system,P* 5(v0 /G)P andH* 5gmBH/2, with g
being an effectiveg factor andmB being the Bohr magneton
The second term is given by

V f52
1

Nb
ln~Tr@e2b~H82mN!# !, ~2.19!

whereb51/kBT, N5( is f is
† f is , and

H85HH1HZ ~2.20!

with

HZ5
1

4
NU~m22p2!

2(
is

S 1

2
Um1H* 2

1

2
UpDs f is

† f is

~2.21!

is a fictitious Hamiltonian. It should be noted that whenm is
equal top, HZ becomes the conventional Zeeman term a
H8 is reduced to the Hubbard model~2.1! with the Zeeman
energy. As will be shown below, a treatment of this therm
dynamic potential givesm5p.

Ferromagnetic moments along thez direction are calcu-
lated as a function ofm, p, H* , and x so that p8
5(ss^ f is

† f is&. Here,^•••& means the statistical average f
the HamiltonianH8. We require that

p85p. ~2.22!

Becausep8 is a function ofm, p, H* , andx, this equation
definesp as a function ofm, H* , andx. Then, it is easy to
see that

S ]V

]p D
m,H* ,x

52
1

2
U~p2p8!50 ~2.23!

and

S ]V

]mD
H* ,x

5
1

2
U~m2p8!1H* . ~2.24!

Hence the condition of

S ]V

]mD
H* ,x

5H* ~2.25!
l

d

-

is equivalent tom5p5(ss^ f is
† f is&. Eventually m and x

are determined by Eq.~2.25! and

S ]V

]x D
m,H*

50. ~2.26!

The thermodynamic potentialV is calculated perturba
tively in terms ofp andm̄[m12H* /U fromHZ in addition
to the many-body interaction ofU. Instead ofV itself, we
consider (]V/]m)H* ,x because the summation of diagram
becomes easy. The Hartree terms are divided into two te
so that

U^ f i 2s
† f i 2s&5U^ f i 2s

† f i 2s&H2
1

2
sUp8. ~2.27!

Here, the first term is the Hartree term for the Hamiltoni
~2.1! and is called the normal Hartree term; the second te
is called the anomalous Hartree term. Fully renormaliz
anomalous Hartree terms are canceled by correspondinp
terms fromHZ because of the requirement~2.22!. Then, the
procedure of calculating (]V/]m)H* ,x is as follows: First,
sum up all skeleton diagrams. Here, the skeleton diagr
consist of the single external point]/]m, anomalousm̄
terms fromHZ , many-bodyU lines fromHH , and unper-
turbed Green functions, but any part which belongs to
anomalous Hartree term should be excluded. The skele
diagrams are divided into single-site and multisite diagram
When only the same site indices appear in diagrams in
site representation, they are the single-site diagrams. All
other diagrams are the multisite diagrams. Second rep
the unperturbed Green functions by the renormalized on
Ri j s’s.

The thermodynamic potential is described as follows:

V~m,x;H* ,P!5Vpara~x!1Ṽ~m̄,x!1DV~m̄,x!2~H* !2/U

1P* x. ~2.28!

Here, the first term is the thermodynamic potential for t
paramagnetic state given byVpara(x)5V0(x)1V f(m
50,H* 50,x). Because the compressibility of CeRu2Si2 re-
mains almost constant when pressures change,19 we assume
that

Vpara~x!5Vpara~0!1kBTK~0!
1

2k
x2, ~2.29!

wherek is a dimensionless compressibility. The second a
third terms of Eq.~2.28! are the magnetic single-site and th
magnetic multisite terms, respectively. The magnetic sing
site term Ṽ(m̄,x) is defined so that it includesUm̄2/4
5Um2/41mH* 1(H* )2/U. Because of this definition
(H* )2/U has been subtracted in Eq.~2.28!. For strongly cor-
related systems, however, (H* )2/U can be ignored.

The magnetic single-site part is calculated from the f
lowing Hamiltonian:

H̃85HA1H̃Z , ~2.30!

with
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H̃Z5
1

4
U~m22 p̃ 2!2(

s
S 1

2
Um1H* 2

1

2
U p̃ Ds f s

† f s ,

~2.31!

wherem andH* are the same as those of Eq.~2.21!, and p̃

is given by p̃5(ss^ f s
† f s&A , with ^•••&A standing for the

statistical average for the Hamiltonian~2.30!. There is an
exact one-to-one correspondence between the perturb
series for the derivative of thermodynamic potential with
spect to m for the Hamiltonian ~2.30! and that for
(]Ṽ/]m)H* ,x .

Although the MAM should be determined through th
mapping condition, we approximately use results for
Anderson model with an infinitely largeU and a constan
hybridization energyD(«)5D, which are obtained in the
Appendix. It is easy to see that

S ]Ṽ

]mD
H* ,x

5
1

2
Um1H* 2

1

2
U p̃. ~2.32!

Then, it follows that

S ]Ṽ

]mD
H* ,x

5kBTK~x!
m

A12m2
~2.33!

to leading order insK , where Eq.~A5! has been made use o
The irreducible self-energy and the three-point ver

functions for the Hamiltonian ~2.30!, denoted by
S̃s

(A)( i«n ;m̄,x), andl̃ ss8
(A) ( i«n ,i«n1 iv l ;m̄,x), respectively,

are related with each other through the Ward-Takaha
identity20 so that

]

]m̄
S̃s

~A!~ i«n ;m̄,x!52
1

2
U(

s8
s8 l̃ s8s

~A!
~ i«n ,i«n ;m̄,x!.

~2.34!

A magnetic part of the self-energy given by
b

ive
-

e

x

hi

dS̃s
~A!~ i«n ;m̄,x!5S̃s

~A!~ i«n ;m̄,x!2S̃s
~A!~ i«n ;0,x!

~2.35!

is expanded according to the Appendix so that

dS̃s
~A!~ i«n ;m̄,x!5dS̃s

~A!~0;m̄!2f̃m~x!@r ~m!21# i«n1•••
~2.36!

with

dS̃s
~A!~0;m̄!52sD tanS p

2
mD ~2.37!

and

r ~m!5
~12m2!3/2

cos2„~p/2!m…

~2.38!

to leading order insK .
For the magnetic multisite part, we consider the diagr

shown in Fig. 1. It gives

FIG. 1. Diagram for (]DV/]m)H* ,x . A cross stands for]/]m,
a double line with an arrow for the Green functionRi j s , a dotted
line for U from HZ , a large circle for the self-energy partdS̃s

(A)

and a triangle for the vertex partl̃ s8s
(A) . The local portion ofl 1

5 l 25•••5 l n5 i should be excluded.
S ]DV

]m
D

H* ,x

5
1

b
(
«ns

S ]

]m
dS̃s

~A!~ i«n ;m̄,x!D
H* ,x

3H 1

N
(

k

1

@Gs~ i«n ,k;x!#212dS̃s
~A!~ i«n ;m̄,x!

2
1

@G̃s~ i«n ;x!#212dS̃s
~A!~ i«n ;m̄,x!

J . ~2.39!
Here, the local term has been subtracted. When Eqs.~2.33!
and~2.39! are integrated, the thermodynamic potential is o
tained so that

V5kBTK(x)(12A12m2)1kBTK(0)
1

2k
(x2x0)2

2
1

b (
«ns

H 1

N (
k

ln„12Gs( i«n ,k;x)dS̃s
~A!( i«n ;m,x)…

2 ln(12G̃s( i«n ;x)dS̃s
(A)( i«n ;m,x)…J 1C, ~2.40!
-
to leading order insK , with x052kP* /kBTK(0) being an
equilibrium value ofx in the presence of pressuresP at zero
field, andC5Vpara(0)2kBTK(0)x0

2/2k.

D. Magnetic exchange interactions

Equation~2.25! becomes

H* 5kBTK~x!
m

A12m2
2

1

4 E
0

m

J~m8,x!dm8, ~2.41!
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whereJ(m,x) is defined by

1

4 E
0

m

J~m8,x!dm852S ]DV

]m D
H* ,x

~2.42!

or

1

4
J~m,x!52S ]2DV

]m2 D
H* ,x

. ~2.43!

Because Eq.~2.41! gives

lim
H*→0

S ]m

]H* D
x

5
1

kBTK~x!2J~0,x!/4
, ~2.44!

J(0,x) defined by Eqs.~2.42! or ~2.43! is nothing but the
intersite exchange interaction of the Hubbard model.14

The right side of Eq.~2.42! is given by Eq.~2.39!. The
summation over«n in Eq. ~2.39! can be divided into two
parts: that over u«nu@kBTK(0) and that over u«nu
&2kBTK(0). According to this division,J(m,x) is also di-
vided into two parts:

J~m,x!5Js1JQ~m,x!. ~2.45!

The first termJs is the high-energy contribution. It is calcu
lated from Eq.~2.43! in the same approximation as that us
in a previous paper21 so thatJs52( j4t i j

2 /U. It is nothing
but the superexchange interaction within the Hubbard mo
In an extended model, however, whether it is ferromagn
or antiferromagnetic depends on the whole band structu16

In this paper, therefore, we treatJs as a phenomenologica
exchange interaction. It is obvious that it scarcely depe
on m andx.

The second term,JQ(m,x), is the low-energy contribution
within the quasiparticle band. It follows from Eqs.~2.9!,
~2.10!, and~2.36! that

1

4 E
0

m

JQ~m8,x!dm85(
s

E
2`

0

d«S ]Es~«,m,x!

]m D
3$F„Es~«,m,x!,Es~«,m,x!;x…

2F„Es~«,m,x!,«;x…%, ~2.46!

with

F~«1 ,«2 ;x!5S 2
1

p
ImD 1

«12L ~c!~«21 i0;x!/f̃m~x!
,

~2.47!

and

Es~«,m,x!5r ~m!«1s
4kBTK~x!

p
tanS p

2
mD , ~2.48!

to leading order insK . It should be noted thatF(«,«;x)
5r* («;x). When Eqs.~2.15!, ~2.16!, and~2.17! are used, it
is easy to see thatJQ(m,x)5e2xJQ(m,0) and JQ(m,x)
scales withTK . Then, it is described as

JQ~m,x![kBTK~x! J̄Q~m!, ~2.49!
l.
ic
.

s

whereJ̄Q(m) does not have any explictx dependence. Equa
tion ~2.26! becomes

05kBTK~x!H 2~12A12m2!1
1

k
~x2x0!ex

1
1

4 E
0

m

dm8E
0

m8
dm9 J̄Q~m9!J . ~2.50!

When m and x are calculated as functions ofH* from
Eqs. ~2.41! and ~2.50!, the specific-heat coefficient is give
by

g~H* !5
1

3
p2kB

2 1

N
(
ks

S 2
1

p
ImD

3f̃m~x!r ~m!
1

@Gs~1 i0,k;x!#212dS̃s
~A!~0;m,x!

5
1

3
p2kB

2r ~m!(
s

r* „Es~0,m,x!;x… ~2.51!

according to the Fermi-liquid relation.22

III. APPLICATION

For the phenomenological exchange interaction from
virtual exchange of high-energy spin excitations, it is a
sumed thatJs /@4kBTK(0)#50.17 and this value ofJs does
not depend onm and x. It is also assumed that the Wilso
ratio for the MAM to be two. Then, the density of states
the Fermi level is written as

r* ~0;x!51/4kBTK~x! ~3.1!

from Eq. ~A11!. The specific-heat coefficient at zero field
given by g(0)5p2kB

2/@6kBTK(0)# from Eqs. ~2.51! and
~3.1!. From the observed value ofg(0).350 mJ/mol K2, TK
is evaluated so thatTK(0)539 K for CeRu2Si2.

23 From the
observed compressibility of about6 0.95(Mbar)21 together
with TK(0)539 K, G.190 andv0586.28 Å3,24 the dimen-
sionless compressibility is evaluated so thatk52.1. How-
ever, we usek52.2 to fit a calculated magnetostriction curv
on experimental data.

In order to reproduce the camel back structure of the d
sity of states of the quasiparticles, we use the following p
nomenological model:

r* ~«;x!5
1

kBTK~x! H c1

2
@D~ «̄;c2 ,c3!1D~ «̄;2c2 ,c3!#

1~12c1!D~ «̄;0,c4!J , ~3.2!

with «̄5«/kBTK(x), and

D~x;a,b!5
1

p

b

~x2a!21b2 . ~3.3!

In Eq. ~3.2!, c1 , c2 , c3 , and c4 are dimensionless param
eters. Because there exists a restriction of Eq.~3.1!, all of c1 ,
c2 , c3 , and c4 are not independent of each other. Amo
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them,c250.80 andc350.28 are assumed in this paper; on
c1 is treated as a variable parameter.

Figure 2 showsr* («;x) for three cases ofc1 : c150.14,
0.17, and 0.20. Figure 3 showsJ̄Q(m) for the three cases o
c1 . This exchange interaction is not rigid whenm changes; it
is antiferromagnetic for smallm, while it becomes ferromag
netic around the metamagnetic transition region. Whenm
increases, the density of states goes upward and down
for each spin component with a slight change of the ba
width occurring. When the peaks in the density of states
around the chemical potential, the exchange interactionJQ
reaches its maximum value. This tendency is quite physi
when there is a sharp peak around the chemical potential
broad spectrum, in general, ferromagnetic instability occ
rather than antiferromagnetic instability.

Figures 4 and 5 show the magnetization and the mag
tostriction curves in the absence of pressures for each va
of c1 . Experimental data2,5 are also plotted in Figs. 4 and 5
with the saturated magnetization being assumed to
1.95mB . Figure 4 also shows the constant volume magn
zation process calculated forc150.14. It has been confirme
that the lattice expansion effect certainly enhances the m
magnetic transition.

Figure 6 shows the specific-heat coefficientsg(H* )/g(0)

FIG. 2. Density of statesr* («;x) multiplied by kBTK(x) for
variousc1 .

FIG. 3. Exchange interactionJ̄Q(m) multiplied by 1/4.
rd
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e
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given by Eq.~2.51! with observed data.25 The enhancemen
of g(H* ) in the transition region agrees with the observ
enhancement.

In the presence of pressures, it is convenient to rewriteTK

asTK(x)5TK(x0)e2(x2x0) in Eqs.~2.41! and ~2.49!. Figure
7 shows the magnetization curves forc150.14 and forP
50, 1 kbar, and 2 kbars. The values ofTK(x0)/TK(0) are
1.20 and 1.43 forP51 kbar and 2 kbars, respectively. Th
single-parameter scaling approximately holds for the mag
tization process. Because (x2x0)ex.(x2x0)ex0 for ux
2x0u!1, it follows from Eq.~2.50! that (x2x0)ex0 is also
approximately scaled in such a way that

~x2x0!ex05c~H* ex0!. ~3.4!

This scaling relation has already been obtained by using t
modynamic relations.26 Figure 8, which shows the magneto
striction curves forc150.14 and forP50, 1 kbar, and 2
kbars, confirms the single-parameter scaling.

The dimensionless compressibility is given by

k~H* !5k lim
P→0

S ]x

]x0
D

H*
~3.5!

FIG. 4. Magnetizationm as a function ofH* /kBTK(0). Experi-
mental data2 are shown by dots.

FIG. 5. Magnetostrictionx5G(v2v0)/v0 as a function of
H* /kBTK(0). Experimental data5 are shown by dots.
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in the presence of fields. It follows from the scaling relati
that

k~H* !/k512e2x0c~H* ex0!1H* c8~H* ex0!. ~3.6!

The fact of the derivative ofc being large in the metamag
netic region shows that the compressibility is enhanced
the lattice becomes soft.

IV. DISCUSSION

The magnetic part of the self-energy for the Hamiltoni
~2.20! in the large-d limit, denoted bydS̃s(«n ;m̄), is di-
vided into single-site and multisite terms according to
definition in Sec. II so that

dS̃s~ i«n ;m̄!5dS̃s
~A!~ i«n ;m̄!1dS̃s8 ~ i«n ;m̄!, ~4.1!

with dS̃s8 ( i«n ;m̄) being the multisite term. Here, we hav
omitted the parameterx. Figure 9 shows an example of th
multisite diagrams that do not vanish even in the larged

limit. In Eq. ~2.39!, a part of the effects ofdS̃s8 ( i«n ;m̄) is
included because the vertex correction is included. In

FIG. 6. Specific-heat coefficient as a function ofH* /kBTK(0).
Experimental data~Ref. 25! are shown by dots.

FIG. 7. Magnetizationm as a function ofH* /kBTK(x0) for
various pressures.
d

e

.

~2.51!, no effects ofdS̃s8 ( i«n ;m̄) are included. According to
the Fermi-liquid relation, the derivative susceptibility of th
Hubbard model is given by

xs5(
s

F2
]dS̃s~ i«n ;m̄!

]H* G
H*→0

r0~« f ! ~4.2!

for m50. When the polarization of conduction electrons
taken into account, the derivative susceptibility of the MA
is also given by Eq.~4.2!. On the other hand, when th
polarization of conduction electrons is not taken into a
count, the derivative susceptibility is given by

x̃ s5(
s

F2
]dS̃s

~A!~ i«n ;m̄!

]H* G
H*→0

r0~« f !. ~4.3!

It is reasonable to assume that a similar relation holds
nonzerom. This consideration implies that there is anoth
small parameter in this formulation, the ratio of the polariz
tion of conduction electrons to that off electrons in the
MAM. It has been assumed in this paper that this ratio
small enough and Anderson’s compensation theorem27 ap-
proximately holds for the MAM.

FIG. 8. Magnetostrictionx2x0 multiplied by TK(0)/TK(x0) as
a function ofH* /kBTK(x0) for various pressures.

FIG. 9. Example of the multisite diagrams that do not van
even in the large-d limit. A wavy line stands forU from HH , and

a small circle for the one-body potentialUm̄/2 fromHZ .
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The field dependence of the exchange interactionJQ is
consistent with the observation by neutron-scatter
experiments28 that the antiferromagnetic correlations o
served at zero field are suppressed in the metamagnetic
sition region. The collapse of the antiferromagnetic corre
tions is not a driving force of the metamagnetic transition

A distribution of TK , which is suggested by the positiv
magnetoresistance at low field,29 has not been considered
this paper. If we take into account this effect, the molar m
netization curve will be blurred.

The results of this paper are consistent with the obser
data for the magnetization process and the magnetostric
curves. However, because the theoretical results substan
depend on parameters included in the model, it is desirab
use a more practical model such as obtained from band
culations. It is also desirable to solve the MAM se
consistently.

Our investigation has so far been restricted to the m
magnetic transitions in heavy-electron liquids. According
Yamada’s calculation,10 a pseudogap structure exists
transition-metal alloys that exhibit metamagnetic transitio
It is interesting to reexamine metamagnetic transitions
other transition-metal alloys within the theoretical fram
work of this paper. In particular, it is interesting to exami
whether or not the sign change of the exchange interactio
responsible for the transitions.

V. SUMMARY

The metamagnetic transition in CeRu2Si2 has been studied
using the single-band Hubbard model by the 1/d expansion
method. The local quantum spin fluctuations have been ta
into account through mapping to the Anderson model.
fects of intersite magnetic exchange interaction have b
taken into account to leading order in 1/d. All the higher-
order effects in 1/d have been ignored such as the mod
mode coupling between intersite spin fluctuations.

The exchange interaction mediated by the virtual
change of spin excitations within the quasiparticle band
flects the camel back structure of the density of states, an
changes its signs and magnitudes with the variation of m
netization. It is definitely ferromagnetic around the me
magnetic transition point. Because its magnitude scales
the bandwidth of the quasiparticles, the magnetization
the magnetostriction processes approximately obey
single-parameter scaling. The sign change and the scalin
the exchange interaction as well as the magnetostriction
fect are crucial in the mechanism for the metamagnetic tr
sition proposed in this paper.
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APPENDIX: ANDERSON MODEL
IN THE LARGE- U LIMIT

In this appendix, it is assumed thatU/D(0)→1` and
D(«) is independent of« so thatD(«)5D. The ground-state
g
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energy of the Hamiltonian~2.30! measured from the Ferm
vacuum energy is approximately written as30

ẼG5« f2
D

p
ln

D

D
2A~kBTK!21~ ẼZ!2, ~A1!

with ẼZ5 1
2 Um1H* 2 1

2 U p̃ and

kBTK5ADD expS p~« f2m!

2D D , ~A2!

with D being a half of the conduction-band width. The vo
ume dependence ofTK is approximately given by Eq.~2.13!
with the Grüneisen constant

G5
p~m2« f !

2D Fv
]

]v
ln

m2« f

D G
v5v0

. ~A3!

When thef level is so deep that (m2« f)/D@1, it is likely
that G@1.

It follows from Eq. ~A1! that

p̃5
]ẼG

]ẼZ

5
ẼZ

A~kBTK!21~ ẼZ!2
. ~A4!

When uẼZu/kBTK!1, Eq. ~A4! becomes p̃5ẼZ /kBTK .
Therefore, the definition ofTK by Eqs. ~A1! and ~A2! is
consistent with the definition by Eq.~2.12!. When Eq.~A4!

is solved forp̃, we obtain

p̃5m1
2H*

U
2

2kBTK~x!

U

m

A12m2
1O~sK

2 !. ~A5!

The self-energy is expanded so that

S̃s
~A!~ i«n ;m̄,x!5S̃s

~A!~0;m̄,x!1@12w̃m~m̄,x!# i«n .
~A6!

According to the Friedel sum rule,31 the number of electrons
with spin s is given by

1

2
~11s p̃ !5

1

2
2

1

p
tan21S dS̃s

~A!~0;m̄,x!

D
D , ~A7!

where the relations of« f2m1S̃050 and ReL(1i0)50 for
the symmetrical model have been approximately made us
Eq. ~A7! gives

dS̃s
~A!~0;m̄,x!52sD tanS p

2
p̃ D . ~A8!

The derivative ofp̃ with respect toẼZ can be calculated
in the two ways from Eqs.~A4! and ~A7!. When these two
are compared to each other, it follows that

1

kBTK~x!
~12 p̃2!3/252w̃s~m̄,x!

1

pD
cos2S p

2
p̃ D ,

~A9!

with



e
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w̃s~m̄,x!52
]

]ẼZ

S̃s
~A!~0;m̄,x!. ~A10!

When charge fluctuations are completely suppress
w̃s(m̄,x)/w̃m(m̄,x)52 is satisfied.32 Then, it follows from
Eq. ~A9! that

w̃m~0,x!5f̃m~x!5pD/4kBTK~x!, ~A11!
oli

i,

it-

J

. L

ue
d,

and

w̃m~m̄,x!

w̃m~0,x!
5

w̃s~m̄,x!

w̃s~0,x!
5~12 p̃2!3/2Ycos2S p

2
p̃ D .

~A12!

It should be noted thatp̃5m̄5m to leading order insK .
n.
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