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Field-induced ferromagnetic exchange interaction in metamagnetic transitions
of heavy-electron liquids
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The metamagnetic transition or crossover in C£&Ruis investigated using the Hubbard model, with a
pseudogap structure of the density of states of quasiparticles phenomenologically taken into account. Local
guantum spin fluctuations are considered through mapping to the Anderson model. Intersite effects are con-
sidered by the H expansion method, witd being the spatial dimensionality. There are two main driving
forces in the metamagnetic transition: a field-dependent exchange interaction and the magnetostriction or the
Kondo volume-collapse effect. The exchange interaction due to the virtual exchange of pair excitations within
the quasiparticle band changes its signs with increasing magnetization. It is antiferromagnetic in the absence of
fields and is ferromagnetic in the vicinity of the metamagnetic point. The pseudogap structure plays a critical
role in this sign change. This exchange interaction scales with the bandwidth of the quasiparticles, and the
single-parameter scaling approximately holds for the magnetization and the magnetostriction processes.
[S0163-182698)10009-7

I. INTRODUCTION It is certain that the competition between the quenching of
magnetic moments by the local quantum spin fluctuations
. . and a ferromagnetic exchange interaction is a key issue to
C_eRUZS'%'_S a heavy-ele_:c_tron compound with a Ia}rge eIeC'understand the magnetic transition of heavy-electron sys-
tronic specific-heat coefficient of=350 mJ/mol K.* One  1oms The decrease ®f, makes the development of magne-
of the main features of this compound is a sharp increase Gfzation easy. This magnetostriction effect should also be
magnetization around an external fieldtéf;=7.7 T, when  taken into account to explain the metamagnetic transition of
the field is applied along the axis of the tetragonal CeRySi,. One of the authors of this paper has investigated
structure” Although it seems to be a crossovét is conven-  the metamagnetic transition by taking into account this mag-
tionally called a metamagnetic transition. Not only the mag-netostriction effedf and a pseudogap structdreHowever,
netization process but also many other physical propertiese assumed a phenomenological ferromagnetic exchange in-
are anomalous in this field region &fy,=7.7 T. For ex- teraction. The observed magnetization process of G8Ru
ample, the magnetostriction is large and the molar volvine obeys the single-parameter scalthhis scaling imposes a
exhibits an abrupt increase aroug, . On the other hand, strong restriction on a relevant ferromagnetic exchange inter-
this compound has a large Grisen constant of'= action responsible for the metamagnetic transition.
— 0 InT¢/dIn V=190° Here, Ty is the local Kondo tem- The 18 expansion method has been developed in a pre-
perature and is an energy scale of local quantum spin fluctious paper.’ with d being the spatial dimensionality. One
tuations. The combination of the large magnetostriction an®f the greatest advantages of this method is that the local
the large Grueisen constant leads to the conclusion fhat duantum spin fluctuations can be pro&erly taken into account
decreases significantly with increasing magnetization. in the single-site approximatioSSA.™ Then, the 1d ex-

Various theoretical investigations have been performed ansion method is physically perturbative method of treat-

explain the metamagnetic transition. Miyake and Kurarhoto mr% ";tﬁir:geoff:grs]’ ftaggprgeggg ter}gc?rar;’aQO:tsér?wgyag\?é al-
have calculated the magnetization process using a semfyOP gy Y

phenomenological model called the duality model. Kdhno ready been investigated by thedléxpansion method: high-

. o . temperature superconductivity in the vicinity of the Mott
has argued that the crystal-field splitting plays a critical rOIetransition,14 the crossover between sinusoidal and helical

Evan$ has argued that the anisotropy of the hybridizationmagnetic structure¥, magnetic exchange interactions in
matrix plays a critical role. All of these mechanisms arealloysle and the mode-mode coupling effect between spin
purely electronic. fluctuations:’ The purpose of this paper is to investigate the

On the other hand, metamagnetic transitions of the firstyetamagnetic transition of heavy-electron liquids by the 1/
order have been observed in other transition-metal alloygxpansion method.

rather thanf-electron systems. Yamatid' has investigated

the metamagnetic transitions in transition-metal alloys. Two

effects are important according to his arguments: a ferromag- Il. FORMULATION
netic exchange interaction and a pseudogap structure around
the chemical potential. It is quite easy to see that when these
two effects are large enough a metamagnetic transition easily One of the simplest effective Hamiltonians for heavy-
occurs. electron liquids is the periodic Anderson model. A gap or a

A. Model
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pseudogap structure of the density of states is inherent in this . o A(e)
model because of the hybridization between an almost dis- L(ien)=— j de ——

. . - T ) len—e
persionlessf band and conduction bands. This pseudogap
structure can be taken into account even within the Hubbardnd
model when a phenomenological density of states is used.
Then, we start with the Hubbard model dndimensions:

(2.6

Ae)= 3 V(2o tu-edk). (2.7

T 1 te ¢t . N
HH:; tiifiofiot EUZ fioficfi—ofi-o- (21  Because the Hubbard model is symmetrical, it follows that

A(e)=A(—¢).
Here,f, andf;, are creation and annihilation operatorsfof _ The self-energy of the MAM is expanded so that
electrons with spino at siteR;, respectively. The transfer 3 (ie,)=3o+[1— dnlie,+ -+ . The dispersion relation

integralst;; include dimensional factors to retain the model of quasiparticles is given bg(k)=[E(K) —&]/$.,, where
nontrivial in the larged limit; for example,t;;=O(1/\d) for  he relation ofu—s;—3.=0 for the symmetrical model has

nearest nt_eigh_b0l1§.The density of states of unrenormalized peen ysed. The density of states of the quasiparticles is given
electrons is given by by

1
pole)= g 3 Se—E(k) @2 P ()= D 8 EkN=Fupo( B tep). (28

with N being the number of unit cells and(k) The coherent part of Eq2.3) is written as

=3;t;e " (R=R)_In this paper, it is assumed thag(e)

has a camel-back structure arouns ¢, with e;=t;; being (©1

a band center. It is also assumed for the sake of simplicity G, (ieq k)= = m 2.9

that the system is symmetrical so thag(e;+e)=po(e; $m &0

—e¢) ande;—u=—U/2, with u being the chemical poten- The corresponding coherent part of E.5) is given by

tial. It follows that= (! f; ),=1, where(:--),; means the

statistical average for the Hamiltonig®.1). We will confine BO(ig,)= 1

our study toT=0 K and the larged limit (d— +0). 7Y Bien—L9e,)’
The single-particle Green function is written as

(2.10

with

1
Gy(ien.k)="

- 2.3
ientu—E(K)—2,(ien)

L(C)(isn):z;misn_

o * -1
2 J ae (5)} . (211
_ b > ien—§
in the wave-number representation. HeXg(ie,) is the ir-
reducible single-site self-energy function. The multisite self- B. Electron-lattice interaction
energy vanishes in the largelimit. The Green function in
the site _kr(eRpris)entation is written  asRjj,(iep)
=(1N)Z, e Ri"RIG (ie,,k). Calculating the single-site ~ _
self-energy is reduced to solving a mapped Anderson model [Xs(+10)J7—0 «=1hkgTk. (2.12
(MAM): wherey(i w)) is the spin susceptibility of the MANt* In the
largeU region, there exists another small paramesgy,
Ha= >, eo(K)Cl ot >, eeflf, =kgTk/U, in addition to 1d. Becausesc=10* in
ko o CeRuySi,, only leading-order or zeroth-order termssp are
considered in this paper.

The local Kondo temperaturg is defined by

+ i 2 [V(k)Cl(rf(r-i-V*(k)fjer”] Ihe volume dependence % is approximately written
WN @ as
: Tk()=Tk(0)e™™ 2.1
+§UE e 67 f . 2.4 k(X)=Tk(0)e (2.13
7 with

The three quantities qf, £;, andU for the MAM Eq. (2.4) _ _
are the same as those for the Hubbard md@8dl), respec- x=I'(v=vo)lvo, (2.14
tively. The combination ofe.(k) and V(k) is determined wherev andv, are volumes of a unit cell in the presence and
through the mapping condition oR”g(ign):éo(isn), the absence of magnetic fields and pressures, respectively. In

where this paper, the magnetostriction effect is taken into account
only through the volume dependenceTgf. As is discussed
S (e 1 2.5 in the Appendix;é,, is inversely proportional td, . Then, it
oa > = . = . . -
n S (ie)—L(iey) follows that

lentu—es—
is the Green function for the MAM, with Bon(X)=Pm(0)€X, (2.15
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p*(g;xX)=p*(e€*;0)€¥, (2.16 is equivalent tom=p=3 o(f! f,,). Eventuallym and x
are determined by Ed2.25 and
and
L(ien;x) =L (ie,€%0). (2.17 (%) =0. (2.26
m,H*

. Th i tential . . .
C. Thermodynamic potentia The thermodynamic potentidl is calculated perturba-

In ordgr to calculate magnetizatiqm gnd the molar vol- tively in terms ofp andm=m+ 2H* /U from H,, in addition
ume orx in the presence of magnetic fieltlsand pressures 4 the many-body interaction df. Instead ofQ itself, we

P, it is convenient to consider the thermodynamic potential.qsiger 6Q/dm),» , because the summation of diagrams
given by becomes easy. The Hartree terms are divided into two terms

Q=00+ Q+mH* +P*x (219 Sothat

per unit cell, where(), is the thermodynamic potential for
the lattice systemP* = (vy/I")P andH* =gugH/2, with g

being an effectivey factor andug being the Bohr magneton. ) ) o
The second term is given by Here, the first term is the Hartree term for the Hamiltonian

(2.1) and is called the normal Hartree term; the second term
is called the anomalous Hartree term. Fully renormalized

1
ZoUp'.  (2.27)

U<fiT—0'fi*0'>:U<fiJr—0'fi*0'>H_ 2

Q=— N—Bln(Tr[e IR, (219 anomalous Hartree terms are canceled by correspormling
terms fromH; because of the requiremef.22). Then, the
where8=1KkgT, N=3,fl f;,, and procedure of calculatingd{)/dm)y« , is as follows: First,
sum up all skeleton diagrams. Here, the skeleton diagrams
H'=Hy+Hz (2.20

consist of the single external poinrt/dm, anomalousm

with terms fromH,, many-bodyU lines fromHy, and unper-
turbed Green functions, but any part which belongs to the
anomalous Hartree term should be excluded. The skeleton
diagrams are divided into single-site and multisite diagrams.
When only the same site indices appear in diagrams in the

1
HZ=ZNU(m2— p?)

site representation, they are the single-site diagrams. All the
1 . " i p i hey he single-site diag All th
—é ZUm+H* =S Up|ofifi, other diagrams are the multisite diagrams. Second replace
(2.21) the unperturbed Green functions by the renormalized ones,
' Riio'S.
is a fictitious Hamiltonian. It should be noted that whans IJThe thermodynamic potentia| is described as follows:

equal top, Hz becomes the conventional Zeeman term and

H' is reduced to the Hubbard mod@.1) with the Zeeman Q(m,X;H*,P)=Qparg(x)+§(ﬁx)+AQ(ﬁx)—(H*)2/U

energy. As will be shown below, a treatment of this thermo-

dynamic potential givesn=p. +P*x. (2.28
Ferromagnetic moments along thedirection are calcu-

lated as a function ofm, p, H*, and x so that p’

=3, 0(f] f;,). Here,(---) means the statistical average for

the HamiltonianH'. We require that

Here, the first term is the thermodynamic potential for the
paramagnetic state given by, {X)=Qq(X)+Q¢(m
=0H*=0x). Because the compressibility of CefSi re-
mains almost constant when pressures chahges assume

p’'=p. (2.22  that
Because’ is a function ofm, p, H*, andx, this equation 1.,
definesp as a function ofn, H*, andx. Then, it is easy to Qpare(X)=Qpare£0)+kBTK(0)ZX , (2.29
see that
wherek is a dimensionless compressibility. The second and
98 _ 1 "N third terms of Eq(2.28 are the magnetic single-site and the
—|  =—3U(p-p)=0 (2.23 o : i
) i 2 magnetic multisite terms, respectively. The magnetic single
and site term Q(mx) is defined so that it includesnt/4

=Um?/4+mH* +(H*)2/U. Because of this definition,
20, 1 (H*)?/U has been subtracted in E.28. For strongly cor-
(—) =-U(m—p’)+H*. (2.24 related systems, howevelit)2/U can be ignored.
IM/f 4 2 The magnetic single-site part is calculated from the fol-

Hence the condition of lowing Hamiltonian:

Q0 H' =Hp+Hy, (2.30
— |  =H* (2.25
IM/ e with
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o g

(2.31)

wherem andH* are the same as those of §§.21), andp
is given by p=3_a(f f ), with (---), standing for the
statistical average for the Hamiltonig2.30. There is an
exact one-to-one correspondence between the perturbative
series for the derivative of thermodynamic potential with re-
spect to m for the Hamiltonian (2.30 and that for
(&ﬁ/am)H* . FIG. 1._Diag_ram for AQ/dm)y« . A cross s_tands fod/ om,
AIthougH the MAM should be determined through the a_l double line with an arrow fqr the Green functi®y,,, a dgttfd
mapping condition, we approximately use results for theine for U from %z, a large circle f/f’r the self-energy pasb. ("
Anderson model with an infinitely largt) and a constant and a triangle for the vertex pak,,. The local portion ofl;
hybridization energyA(e)=A, which are obtained in the ~!2=-=la=i should be excluded.
Appendix. It is easy to see that

~ 1 ~ 1 1 -
HZ:ZU(m2—p2)—Z SUM+H* = SUp |off

éggA)(isn;nT,x)=§fTA)(isn ;n?,x)—gﬁf)(isn ;0.X)
1 «_ LUz (2:39
H*x is expanded according to the Appendix so that

Then, it follows that

oQ
am

63 Piznimx) =65 P(0:m) = 0L (M)~ Lisy+- -

aﬁ) m (2.36
iy =KgTk(X) —= (2.33
((ﬂm H* x \/1_m2 with
to leading order irsx , where Eq(A5) has been made use of.
The irreducible self-energy and the three-point vertex SA) A ™
fynctions_for the Hamiltonian (2.3_(), denoted by 02,7 (0m)=—0A ta 2 m (239
SW(ig,;mx), andX W, (is, is,+iw ;mx), respectively, g
are related with each other through the Ward-TakahasHi "
identity?° so that (1—m?)32
d Sy = 1 ~A) .= r(m)= co?((w/Z)m) (239
—3. (|sn;mx)=—§UE o'\ (ieg,ien;mx).
am o’ 03 to leading order irsy .
(2.34 For the magnetic multisite part, we consider the diagram
A magnetic part of the self-energy given by shown in Fig. 1. It gives
|
JAQ 1 J ~ _
(—) ==2 (—525,A><isn;mx>>
am H* x B epo | dm H* x
1 1 1
x{=> : ———— — ———— (239
N K [Gulien,k;x)] =83 W(ien;mx) [Gylien; )] 1= 62 M(igy;mx)

Here, the local term has been subtracted. When Eg83  to leading order irsx, with xq=— xP*/kgT«(0) being an
and(2.39 are integrated, the thermodynamic potential is ob-equilibrium value ofx in the presence of pressur@sat zero
tained so that field, andC=Qp,{0)— kBTK(O)Xg/ZK.

1
Q=KkgTk(x)(1—V1-m?)+kgTk(0) P (X—Xo)? D. Magnetic exchange interactions

Equation(2.25 becomes

1 1 ) S A,

3 NE In(1—G,(ien,k;x) 62 M (ie,;m,x))
eno k

m 1 (m
G S H* =kgT —_— J ’, d /' 2.4
—In(1-8,(ien:X) 65 P(ie,:mx) | +C,  (2.40 8 Tk(X) 4f0 (' x)dm’, (2.4
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whereJ(m,x) is defined by whereJo(m) does not have any expligtdependence. Equa-
tion (2.26) becomes
1 (m JAQ)
2 f J(m’,x)dm’ = — m (2.42 1
° H* x 0=kBTK(x)[—(1—\/1—m2)+;(x—x0)ex
or
1 m m’ —
1 PAQ + 2 f dm’f dm’Jo(m”) . (2.50
— . 0 0
73(mx) ( P )H* . (2.43
. Whenm and x are calculated as functions &f* from
Because Eq(2.4]) gives Egs.(2.41) and(2.50, the specific-heat coefficient is given
b
li ( om ! (2.49 '
im = .
IH* kgTk(x)—J(0x)/4’ 1 1 1
0¥ 0 « KeTk(x)—J(0x) yH) = =722 = (——Im)
J(0x) defined by Egs(2.42 or (2.43 is nothing but the 3 N o ™
intersite exchange interaction of the Hubbard mddel. 1
The right side of Eq(2.42 is given by Eq.(2.39. The X bm(X)r(m) - =R
summation overe, in Eq. (2.39 can be divided into two [Co(+i0k;x)] = 0% ;7(0;m,x)
parts: that over |e,|>kgTk(0) and that over |g,| 1
=<2kgTk(0). According to this divisionJ(m,x) is also di- _ . 22 * .
vided into two parts: 3" kBr(m)g P (E,(0m,x):x) 259
J(m,x)=Jg+Jo(M,X). (2.45  according to the Fermi-liquid relatio.
The first termJg is the high-energy contribution. It is calcu- . APPLICATION
lated from Eq.(2.43 in the same approximation as that used
in a previous papét so thatJ= _2j4ti2]'/U- It is nothing For the phenomenological exchange interaction from the

but the superexchange interaction within the Hubbard modeVirtual exchange of high-energy spin excitations, it is as-
In an extended model, however, whether it is ferromagnetiumed thatls/[4kgT«(0)]=0.17 and this value ods does
or antiferromagnetic depends on the whole band stru¢ture. not depend orm andx. It is also assumed that the Wilson
In this paper, therefore, we tredt as a phenomenological ratio for t_he MAM to_be two. Then, the density of states at
exchange interaction. It is obvious that it scarcely depend&e Fermi level is written as
on m andx. o

The second termlo(m,x), is the low-energy contribution p*(0:X)=1/4Kkg T (X) 3.0
within the quasiparticle band. It follows from Eq&.9), from Eq.(A11l). The specific-heat coefficient at zero field is

(2.10, and(2.36 that given by y(0)=m?k3/[6kgTk(0)] from Egs. (2.51) and
(3.1). From the observed value {0)=350 mJ/mol K, T
1 fm‘] (m' xdm' =3 fo d (&Ea(s,m,x)) is evaluated so thak,(0)=239 K for CeRySi,.?* From the
4 Jo TV pralll & am observed compressibility of ab8u.95(Mbar) * together
with T, (0)=39 K, '=190 andv,=86.28 A%,>*the dimen-
X{F(E;(g,m,X),E;(g,m,X);X) sionless compressibility is evaluated so tikat2.1. How-
—F(E,(£,m,X),;X)}, (2.46 ever, we usex= 2.2 to fit a calculated magnetostriction curve
on experimental data.
with In order to reproduce the camel back structure of the den-
sity of states of the quasiparticles, we use the following phe-
1 1 nomenological model:
F(sl,sz;x)=( - — Im) o " )/E ( ), .
™ e1—L"Y(ex+10;x X (o — —
' ’ " (2.47 p*(s;X)=m{gl[D(e;cz,ca)JrD(s;—cz,c3)]
and o
+(1—c1)D(e;0,c4)], (3.2
4kBTK(X) a
Es(e.mx)=r(me+toc—— tar(—m), (2.48 =
™ 2 with £ =e/kgTk(x), and
to leading order insk. It should be noted thaf(e,e;X) 1 b
=p*(e;x). When Eqs(2.15), (2.16), and(2.17) are used, it D(x;a,b)=— —a21p% (3.3
is easy to see thallg(m,x)=e *Jo(m,0) and Jgo(m,x) ™ (x~a)
scales withT, . Then, it is described as In Eqg. (3.2, ¢4, C,, C3, andc, are dimensionless param-

o eters. Because there exists a restriction of(Bd), all of ¢,
Jo(m,x)=KgTk(X) Jg(m), (2.49 c,, C3, andc, are not independent of each other. Among
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N Ol C, =014
- 02 |
X constant volume
0 L 1 1 1 1 S— | 0 1 L 1 [ 1 1
0 1 2 3 0 0.2 0.4 0.6
€/ kgTg(X) H* | kg Tx (0)
FIG. 2. Density of statep* (e;x) multiplied by kgTx(x) for FIG. 4. Magnetizatiom as a function oH* /kgT¢(0). Experi-
variouscy . mental datdare shown by dots.

them,c,=0.80 andcs=0.28 are assumed in this paper; only given by Eq.(2.51) with observed dat& The enhancement

c, is treated as a variable parameter. of y(H*) in the transition region agrees with the observed
Figure 2 shows* (&;x) for three cases of,: c;=0.14, enhancement. o _ _
0.17, and 0.20. Figure 3 shov@(m) for the three cases of In the presence of pressures, it is convenient to rewWijite

c,. This exchange interaction is not rigid whenchanges; it 25 Tk(X)=Tk(xo)e 00) in Egs.(2.41) and(2.49. Figure

is antiferromagnetic for smath, while it becomes ferromag- ¢ Shows the magnetization curves foy=0.14 and forP

netic around the metamagnetic transition region. When =0, 1 kbar, and 2 kbars. The values B{(x)/Tk(0) are

increases, the density of states goes upward and downwafg20 and 1.43 foP=1kbar and 2 kbars, respectively. The

for each spin component with a slight change of the bandSNgle-parameter scaling approxmriltely holds fxor the magne-

width occurring. When the peaks in the density of states lidiZalion process. Becausex{Xo)e"=(X—Xo)e y for |x

around the chemical potential, the exchange interaclign —Xo| <1, it follows from Eq.(2.50 that (x—xo)e’® is also

reaches its maximum value. This tendency is quite physicaPProximately scaled in such a way that

when there is a sharp peak around the chemical potential in a

broad spectrum, in general, ferromagnetic instability occurs (X—X0)€*0=i(H* €70). (3.9

rather than antiferromagnetic instability. ] ) ) ] )
Figures 4 and 5 show the magnetization and the magné[h's scallrjg relatllon Eas_ already bgen obtained by using ther-

tostriction curves in the absence of pressures for each valu#odynamic relation$? Figure 8, which shows the magneto-

of ¢,. Experimental daf? are also plotted in Figs. 4 and 5, Striction curves forc,;=0.14 and forP=0, 1 kbar, and 2

with the saturated magnetization being assumed to bkbars, confirms the single-parameter scaling.

1.95u5 . Figure 4 also shows the constant volume magneti- 1he dimensionless compressibility is given by

zation process calculated fof=0.14. It has been confirmed

that the lattice expansion effect certainly enhances the meta- . X

magnetic transition. K(H%) =« F','Lno(a_o) X @5
Figure 6 shows the specific-heat coefficienp{&* )/ y(0) A

0.4 r
1.2 R

C,=0.14

03 1 0.17

< 0.80 o - 0.20
/é\ 02 }
|;6' 0.40 L
0.1 F
0.0 B

0 . , . \
0.40 e 0 0.2 0.4
0 0.2 0.4 0.6 H* | kg T (0)

- FIG. 5. Magnetostrictionx=1"(v—vg)/vg as a function of
FIG. 3. Exchange interactiodg(m) multiplied by 1/4. H*/kgT«(0). Experimental dafaare shown by dots.
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g 03 _
S Sl
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=~ )
3 02|
= =
el
ARt
= |
0.4 0.6 0 ' ' '
0 02 : : 0 0.2 0.4
H* / kg T (0) H*/ ki Ty (X,)

FIG. 6. Specific-heat coefficient as a functiontbf /kg T (0).

FIG. 8. Magnetostrictionx—x, multiplied by T« (0)/T«(Xo) as
Experimental daté&Ref. 25 are shown by dots. 9 0 P Y Tk(0)/Tk(Xo)

a function ofH* /kgTk(X,) for various pressures.

I{E;Pe presence of fields. It follows from the scaling relatlon(z.SD, no effects ofﬁi’,(isn ;n_1) are included. According to

the Fermi-liquid relation, the derivative susceptibility of the
K(H*) ke =1—e X0 y(H* €X0) + H* )/ (H* €%0). (3.6) Hubbard model is given by

The fact of the derivative of being large in the metamag- 983 (ie,;m)
netic region shows that the compressibility is enhanced and Xs= 2 TV pol(es) (4.2
the lattice becomes soft. v H* —0

for m=0. When the polarization of conduction electrons is

IV. DISCUSSION taken into account, the derivative susceptibility of the MAM
. ... is also given by Eq(4.2. On the other hand, when the

The magnetic part of the self-energy for the Hamiltonian,, -, ation of conduction electrons is not taken into ac-

(2.20 in the largee limit, denoted bys% ,(en;M, is di-  count, the derivative susceptibility is given by

vided into single-site and multisite terms according to the

definition in Sec. Il so that S,
- 962 P(ie,;m)

Xs= 2 B TV T

~ o~ poler). (4.3
83 (ieq:m=862W(ie,:m+ 863! (iey:m), (4.0 7

H* —0

with 55’(isn'n_1) being the multisite term. Here, we have It is reasonable to assume that a similar relation holds for

omitted the parameter. Figure 9 shows an example of the NPnzerom. This g:onsjderation implies that. there is another
multisite diagrams that do not vanish even in the ladge- s_maII parameter in this formulation, the ratio of the _poIanza—
limit. In Eq. (2.39, a part of the effects 055,08 n_1) is tion of conduction electrons .to that df electrons_ln thg _
o FATh SRR ANAN MAM. It has been assumed in this paper that this ratio is
included because the vertex correction is included. In EquaII enough and Anderson’s compensation thedfep-
proximately holds for the MAM.

08T P =0 kbar
- 1 kbar
06 2 kbar ,
O F l]]
i l l
S 0.4 |
0.2 - TJZ
5 1 I l
0 1 1 L 1 1 J 6
0 0.2 0.4 0.6 . . . .
J1#1 ,]2+1
H* kg T (X,)

FIG. 9. Example of the multisite diagrams that do not vanish
FIG. 7. Magnetizationm as a function ofH*/kgTk(xo) for ~ €evenin the larget limit. A wavy line stands folU from #,,, and
various pressures. a small circle for the one-body potentidin'2 from H; .
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The field dependence of the exchange interacfignis  energy of the Hamiltoniat2.30 measured from the Fermi
consistent with the observation by neutron-scatteringracuum energy is approximately writter®as
experiment€ that the antiferromagnetic correlations ob- A D
served at zero field are suppressed in the metamagnetic tran- ~ [ 5 o= 5
sition region. The coIIapsepF(;f the antiferromagnetig correla- Ee=er— P In A (kaTi)?+(E2)?, (A1)
tions is not a driving force of the metamagnetic transition. _ _

A distribution of T, which is suggested by the positive with E;=3Um+H*—3Up and
magnetoresistance at low fieldhas not been considered in ( )
this paper. If we take into account this effect, the molar mag- m(Et— M
netization curve will be blurred. keTk= DA exp( 2A

The results of this paper are consistent with the observed ) ) )
data for the magnetization process and the magnetostrictioffith D being a half of the conduction-band width. The vol-
curves. However, because the theoretical results substantiayne dependence G is approximately given by Eq2.13
depend on parameters included in the model, it is desirable t#ith the Grineisen constant
use a more practical model such as obtained from band cal-
culations. It is also desirable to solve the MAM self- = m(p— &)
consistently. 2A

Our investigation has so far been restricted to the meta-
magnetic transitions in heavy-electron liquids. According toWhen thef level is so deep thaty—e¢)/A>1, it is likely
Yamada’'s calculatiot® a pseudogap structure exists in thatT'>1.
transition-metal alloys that exhibit metamagnetic transitions. It follows from Eq. (A1) that
It is interesting to reexamine metamagnetic transitions in

: (A2)

f9| n—Eg
—In
Uo"v A

(A3)

V=0g

other transition-metal alloys within the theoretical frame- _ JEg E,
work of this paper. In particular, it is interesting to examine p=—-= —. (A4)
whether or not the sign change of the exchange interaction is JEz V(kgTk)?+ (Ez)?

responsible for the transitions. _ L
When |Ez|/kgTx<1, Eq. (A4) becomesp=E,/kgTk.
V. SUMMARY Therefore, the definition offx by Egs. (Al) and (A2) is
consistent with the definition by E@2.12. When Eq.(A4)

The metamagnetic transition in CefQi, has been studied . ~ .
g is solved forp, we obtain

using the single-band Hubbard model by thd g&kpansion
method. The local quantum spin fluctuations have been taken N
into account through mapping to the Anderson model. Ef- ~ 2H 2kgTk(x) ~ m
fects of intersite magnetic exchange interaction have been p=m-+ u u \/m
taken into account to leading order ind1/All the higher-

order effects in d have been ignored such as the mode-The self-energy is expanded so that
mode coupling between intersite spin fluctuations.

The exchange interaction mediated by the virtual ex- iﬁfA)(ian;Hx)=§ff)(0;ax)+[1—$m(ﬁx)]isn.
change of spin excitations within the quasiparticle band re- (AB)
flects the camel back structure of the density of states, and it _ _
changes its signs and magnitudes with the variation of maghccording to the Friedel sum rufé the number of electrons
netization. It is definitely ferromagnetic around the meta-With Spin o is given by
magnetic transition point. Because its magnitude scales with

{

+0(s?). (A5)

5FE‘ETA)(O;HX)
A

the bandwidth of the quasiparticles, the magnetization and 1 ~ 11
- . =(1+top)=5——tan

the magnetostriction processes approximately obey the 2 2

single-parameter scaling. The sign change and the scaling of . - .

the exchange interaction as well as the magnetostriction efvhere the relations of;— u+X,=0 and ReL(+i0)=0 for

fect are crucial in the mechanism for the metamagnetic tranthe symmetrical model have been approximately made use of

sition proposed in this paper. Eq. (A7) gives

. (A7)
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APPENDIX: ANDERSON MODEL 1 ey o~ = 1w
IN THE LARGE- U LIMIT keTo 00 (L7 P)=20dmx) L cos| 5 p ),

In this appendix, it is assumed that/A(0)— +> and (A9)

A(e) is independent of so thatA (e)=A. The ground-state with
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o 9 . and
ps(mx)=—— 3N (0;mx). (A10)
JE,

o (MX)  @d(m,Xx ~ T
When charge fluctuations are completely suppressed, (,’im( )_ o )=(1—p2)3’2/cos’-(§ p).

(M) e (Mx)=2 is satisfied? Then, it follows from em(0X) ¢5(0X) 12

Eqg. (A9) that

Om(0X) = pm(X)=TA/AKgT(X), (A11) It should be noted thap =m=m to leading order irsy .
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