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Influence of external fields on spin reorientation transitions in uniaxial ferromagnets.
II. Ultrathin ferromagnetic films

Y. T. Millev,* H. P. Oepen, and J. Kirschner
Max-Planck-Institut fu¨r Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany

~Received 18 March 1997!

The field-dependent spin reorientation transition~SRT! in ultrathin ferromagnetic films is discussed. A rather
general treatment is presented which involves the extension of the anisotropy-flow concept to systems in an
applied magnetic field. Special features of field-induced SRT’s are deduced from the general analysis. Empha-
sis is laid on the experimental implications, whereby general features are quantitatively described which are as
characteristic as fingerprints and serve to set up a natural classification of the SRT’s in external fields. Special
attention is dedicated to resolving the substantial differences between in-field and spontaneous SRT’s; ignoring
these differences may result in grave misinterpretations of experimental findings.@S0163-1829~98!07809-6#
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I. INTRODUCTION

In the preceding paper~to be denoted as I below!,1 we
provided a detailed discussion of spin reorientation tran
tions~SRT’s! in uniaxial systems under a field which is val
for both bulk and thin-film ferromagnets. A systematic d
cussion of the zero-field SRT in ultrathin films has be
given very recently.2 The general phenomenologic descri
tion requires further elaboration in the thin-film context, b
cause one has to consider the influence ofshapeandsurface
anisotropies. It has been recognized long ago that the c
petition between these two and the bulk magnetocrystal
anisotropy underlies the SRT’s in thin films.3 The competi-
tion has a further dimension in the sense that higher-o
anisotropies may also interfere significantly. The angular
pendence of the relevant thermodynamic potential with fi
is the same for bulk and thin-film systems. However,
effective anisotropy constantsa and b of the lowest two
orders in thin films have an internal structure which mak
the treatment in this case more complicated. As in I, com
cations arising due to domain formation will be neglected

The dipolar effects can be described in terms of the
magnetization field. Assuming ideal planar geometry of
interfaces, one has a demagnetizing factor of 4p for the
direction perpendicular to the surface,4 whereas the factors
within the plane are identically zero. Recent atomic-sc
estimates of the demagnetization factors of ultrathin fil
can also be implemented; the deviations from the continu
values are significant for thicknesses of one and two mo
layers only.5 The important issue is that the dipolar contrib
tion is restricted to the lowest anisotropy constant, beca
of symmetry considerations concerning the dipolar chara
of this source of anisotropy.6

The very important difference from the bulk case of
SRT is that the anisotropy constants vary with thickne
One thus has an extra ‘‘degree of freedom’’ in contrast to
bulk where the variations of anisotropy for a given syst
are almost invariably restricted to the temperature dep
dence of the anisotropy constants. For the thickness de
dence of the anisotropy constants, one needs to introdu
further phenomenological assumption which has b
570163-1829/98/57~10!/5848~12!/$15.00
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proved to be of sufficient generality.7–9 It is assumed that the
surface and bulk contributions to a given anisotropy cons
are additive with the surface contribution varying as the
verse thickness (1/d).

With this assumption, the theoretical analysis of t
thickness-driven SRT’s is straightforward as has been sh
for zero-field reorientations.2 On the other hand, the analys
of temperature-driven SRT’s in both bulk and thin-film sy
tems is difficult to describe.11 Nevertheless, a general con
ceptual framework for both thickness- and temperatu
driven SRT’s has been developed which is based on tra
down the evolution driven by the relevant parameter in
structured anisotropy space of the system.12

It must be emphasized that at a first glance the thickn
dependence of anisotropy looks very similar to an aggra
ing circumstance which should make the description
anisotropy-dominated phenomena such as SRT’s a very
ficult task. However, the extra degree of freedom which
best exploited in wedge-shape geometry of the ferromagn
films provides for an excellent possibility to study SRT’s
fixed temperature and, indeed, gives the analysis of SRT
really new dimension. The principal goals of our study are~i!
to demonstrate that there exists a common basis for
analysis of both bulk and thin-film reorientations by hom
geneous rotation of magnetization~part I!, and~ii ! to explore
the implications of the thickness dependence for the SR
Thus, a variety of interesting phenomena can be predic
and described in sufficient detail within the thin-film contex
These are the subject of the present paper. The instrume
in the analysis will be the general representations obtaine
I for coaxial and in-plane field configurations and the exte
sion of the anisotropy-flow scheme to SRT’s with extern
field. Note that the scheme with field has not been used in
bulk context either and there is no doubt that there it wo
illuminate better the related issues. This reverberation w
not be pursued further in this study.

II. GENERAL BACKGROUND

To carry out the analysis, we need to specify the struct
of the anisotropy constantsa andb in the expression for the
relevant thermodynamic potential13 including the depen-
5848 © 1998 The American Physical Society
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dence on the thickness of the film:

gA5a sin2u1b sin4u2H–M . ~1!

The angleu is between the normal to the film and the dire
tion of magnetization. The structure of the anisotropy co
stants is made explicit by the relations

a52D1
K1s

d
, ~2!

b5K2b1
K2s

d
, ~3!

whereD[2K1b1 1
2 (Nz2Nx)M2, Kib andKis with i 51 or

2 are the effective bulk and surface contributions to the m
netocrystalline anisotropy, whileNz and Nx are the demag-
netization factors along the normal to the surface and al
any axis within the plane. We neglect in-plane magnetocr
talline anisotropies, hence, the in-plane Descartes axes
be suitably chosen. In particular, we choose thex axis as the
crossing line of the plane of the film with the plane where
three vectorsH,M and the normal to the sufacen lie. In the
ideal continuum case,Nz54p, Nx5Ny50. In any case, for
flat geometry which is at hand with ultrathin film
Nx /Nz , Ny /Nz!1 ~see also Ref. 5!. The dipolar contribu-
tion is contained in the quantityD and the special notation
for it is justified by the fact that it is this combination of bu
and dipolar contributions which is relevant for the analys
Clearly, the dipolar effect prefers to have the magnetizat
lying within the plane. Hence, perpendicular magnetizat
would only set in for strong enough surface anisotropy o
sign opposing the dipolar contribution. The surface aniso
pies defined as in Eqs.~2!,~3! encompass the contributions o
both interfaces which are not equal, in principle. Rather g
erally, the anisotropies are functions of the temperature
of the thickness of the filma5a(T,d), b5b(T,d). In the
following, we assume that one works at fixed temperat
T!TC ; the temperature is treated as a parameter and wi
suppressed. However, most of the important features of
analysis can be used at a fixed thickness and tunable
perature without modifications.

The important issues involved in the phenomenologi
ansatz of Eqs.~2!,~3! for the structure of the anisotropy con
stants are the additivity of the bulk and surface contributio
and the assumed 1/d dependence for the thickness-depend
part of the anisotropy.14 On the technical side, the relation
~2!,~3! represent anonlinear, but tractable transformation o
the variables introduced inI to film-specific variables.

The inclusion of the second-order surface contribution
but natural, just as it is natural to include higher-order co
tributions in the bulk context. As already discussed befo2

the most dramatic event at a SRT is the cancellation of
largest anisotropy contributions, i.e., first-order bulk, fir
order surface, and dipolar contributions. Obviously, in t
vicinity of such a point in thickness or temperature the a
isotropy behavior of the system is stabilized and domina
by the first nonvanishing contribution and this is the seco
order one, no matter how small it might appear against e
of the principal competitors taken separately.15 However, it
is only recently that one has thought about the importa
and the practical possibility to consider higher-ord
-
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anisotropies in ultrathin ferromagnetic films. Even this h
taken shape in steps. Chappert and Bruno considere
second-order contribution but included only the bulklike p
of it.16 The same procedure was adopted by Grolieret al.17

An attempt to considerK2s systematically and to determin
both bulk and surface anisotropy contributions from a sin
set of data was made by Fritzscheet al.18 who used torsion
oscillation magnetometry. A general analysis of spontane
thickness- and temperature-driven SRT’s in ultrathin film
by means of the anisotropy-flow concept was presented
Ref. 2, while the insights provided by this general pictu
were very recently implemented19 in the analysis of the mag
netic microstructure of ultrathin wedges of cobalt o
Au~111!. The determination of the surface constants was p
formed on the basis of experimental data from scanning e
tron microscopy with polarization analysis of the second
electrons.20,21 The experimental findings of Ref. 19 seem
represent an unambiguous observation in ultrathin ferrom
netic systems of coexistence of coaxial and in-plane pha
within a narrow range of thicknesses. Since the phenome
of coexistence and the concommitant metastability effe
have been in the focus of our general treatment of SR
with external field in Ref. 1, it is instructive to have a pra
tical example for the thickness dependence of the contr
tions to anisotropy coming from the different orders~Fig. 1!.
The curves fora(d) andb(d) refer to room temperature an
have been obtained by using the results of the analysis
Co/Au~111!.19

III. SYSTEMATICS OF POSSIBLE REORIENTATIONS
IN APPLIED FIELDS

A substantial part of the problem is to typify on gener
grounds the behavior of thin films within a certain class
experiments which involve the implementation of an exter
field. Some peculiarities will be discussed which can be
served in thin films when their thickness is held consta
while the constant magnetic field may assume different m
nitudes. Due to the thickness dependence ofa and b @Eqs.
~2!,~3! and Fig. 1#, the condition of constant thickness mea
that the ratior 5a/b is constant as well. Hence, the expe

FIG. 1. Thickness dependence of the first two anisotropy c
stantsa ~solid curve! andb ~dashed curve! for Co/Au~111!. Thick-
ness is given in monolayers~ML ! (1ML5231028 cm!. Around
the point wherea is zero (n055 ML), the system is stabilized by
the second-order contribution. Note a change of sign ofb at a
higher thickness.
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5850 57Y. T. MILLEV, H. P. OEPEN, AND J. KIRSCHNER
mental situation is best represented in theH̄ vs r diagram,
already given in I. Following the classification with respe
to the sign ofb in zero field,2 we have to distinguish betwee
the following situations

A. Systems with a canted reorientation transition
in zero field „b>0…

Figure 2 is similar to the plot shown in Fig. 3~a! of I.
Investigating the behavior of a film of constant thickness
magnetic fields of different magnitude is equivalent to ru
ning along a vertical line through the plot. The film thickne
determines the value ofr where the line is located. The up
per half of the diagram represents the situation with a m
netic field applied parallel to the film plane, while the low
half gives the experimental situation for a field along t
surface normal. Two generic situations can be distinguish
~a! r ,22 or r .0 and~b! 22,r ,0.

In the first case, starting from ther axis~no field applied!,
it is obvious that within the given ranges the coaxialr
.0) or the in-plane phase (r ,22) is stable, respectively
Switching on the field stabilizes the conforming phase, wh
a gradual tilt of magnetization appears when the field dir
tion is perpendicular to the direction of spontaneous mag
tization. Without loss of generality, we discuss as repres
tative for this generic class a film withr 523. The applied
field is such that the system runs along the dotted line in F
2~a!. Figure 3 shows the magnetization component along
field direction when the field strength is varied in the co
figuration with the field parallel to the film normal. Upo
increasing the field, the magnetization tilts more and m
towards the direction of the applied field~Fig. 3!. At a cer-

FIG. 2. Phase diagram forb.0. Both field configurations are

envisaged in the same plot.H̄p and H̄n stand for in-plane and the
vertical field configuration, respectively. The abscissa isr (d)
5a/b. For a given thickness,r 5const. The ordinate is the applie
field normalized against the critical fieldHC58ubu/M . The dotted
lines indicate the field variation for films of constant thickness
longing to definite generic regimes in the phase diagrams and ty
the two distinct regimes of variation ofMH at fixed thickness
@~a! r ,22 or r .0, ~b! 22,r ,0#. The corresponding magnet
zations are given in Figs. 3 and 4.
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tain field strength, the magnetization becomes aligned w
the external field. This point corresponds precisely to
reduced field where the phase boundary is crossed by
vertical line in Fig. 2. From Fig. 3 it is obvious that th
transition is continuous, while the first derivative has a d
continuity. It is natural to denote such special points~fields!
crossover points~fields!. Generally, films of thicknesses be
longing tor regimes of case~a! exhibit only one phase tran
sition in each of both field geometries. This behavior in
cates that ther value corresponds to a unique phase in z
field.

In the second case,22,r ,0, a ‘‘true’’ canted magneti-
zation is found in zero field. Without the field, the cantin
angle varies along the abscissa withr between vertical align-
ment atr 50 to in-plane alignment of magnetization atr 5
22. Switching on the external field causes in both field co
figurations a further magnetization tilting towards the dire
tion of the field. This is shown in Fig. 4 for the dotted line
r 521 in the phase diagram~Fig. 2! for the case of in-plane
field orientation. A magnetization profile such as the one
Fig. 4 can be found for the case of a vertically applied fie
Hence, in both field configurations a phase boundary app
which corresponds to the locus of points where the mag
tization orientation becomes collinear with the field dire
tion. The transition is once again continuous, while the fi
derviative is discontinuous. The appearance of two ph
boundaries~one per field configuration! implies values ofr
for which a ‘‘true’’ SRT via the canted phase is found in ze
field. The ratio of the field strengths at the phase bounda
correlates directly with the value ofr and can be used to
determiner as a function of film thickness.

B. Systems with a reorientation transition via the phase
of coexistence in zero field„b<0…

The plot in Fig. 5 is equivalent to the plot forb,0 shown
in Fig. 3~b! of I. Three different generic cases have to

-
fy

FIG. 3. Reversible continuous magnetization process forb.0
along the left dotted path in Fig. 2. A coaxial field is considered,
the curve is representative for both configurations and thickne
corresponding tor ,22 or r .0. Field is normalized as in Fig. 2

Magnetization starts from zero atH̄n50, since the stable spontane
ous phase atr ,22 is in-plane. At the field strength marked by
dashed vertical line, a discontinuity of the first derivative occurs.
that field strength the vertical line in Fig. 2 (r 523) traverses the
phase boundary. This crossover points are denoted asXL @cf. also
Sec. V and Figs. 9~a!, 9~b!#.
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considered in this situation:~a! r ,26, r .4, ~b! 26,r ,
22, 0,r ,4, and~c! 22,r ,0.

In the first case (r ,26, r.4), the scenario that can b
observed under field variation is identical to the situat
discussed as a first case forb.0 above. In the second cas
(26,r ,22, 0,r,4), remarkable deviations from th
situation withb.0 can be found as the region of coexisten

FIG. 4. Reversible continuous magnetization process forb.0
along the right dotted path in Fig. 2. In-plane field is assumed,
the curve is typical for both configurations for22,r ,0. The field
is normalized as in Fig. 2. A transition is marked by a vertic
dashed line, labeled byXL again. The first derivative is discontinu
ous. The magnetization does not vanish in zero field, since
system evolves from the ‘‘true’’ zero-field canted phase.

FIG. 5. Phase diagram forb,0. Both field configurations are
‘‘glued together’’ at the abscissar 5a/b. There are three distinc
regimes:~a! r ,26 or r .4, ~b!26,r ,22 or 0,r ,4, and~c!
22,r ,0. The first type is akin to the first type withb.0 ~Fig. 2!.
For the remaining two, typical paths~dotted lines! are chosen. The
situation is drastically different from the one withb.0, since the
region of coexistence is being traversed~cf. Figs. 6 and 7!.
persists over a range of applied field strengths. Two ph
boundaries appear in each configuration on varying the m
netic field in the direction perpendicular to the spontane
magnetization orientation~cf. dotted line atr 523 in Fig.
5!. Between the two crossover fields the region of coex
ence appears where the conforming and canted phase
both stable and represent local minima of the free entha
It must be emphasized that the thicknesses where these
effects are found belong to the thickness regime where
zero field one out of two phases~collinear or in-plane! is
stable. The fact that coexistence shows up on field varia
gives rise to hysteresis effects. Due to the stability of b
the conforming and canted phases within that peculiar fi
regime, the phases on either side persist when crossing
boundary to the region of coexistence. The consequenc
that two different crossover fields appear depending
whether the field is increased or decreased which is ill
trated by Fig. 6. The plot shows the in-plane magnetizat
component as a function of in-plane field strength atr 5
23. The canting angle increases with field. As the can
phase is stable up to the higher crossover field, there ar
discontinuities at the lower crossover field. At the pha
boundary to the conforming phase, denoted asXN in Fig. 6,
the canted phase can no longer be sustained. The magne
tion has to turn abruptly into an in-plane orientation and t
results into a discontinuous transition. The conforming ph
is the only stable one in higher fields. When the field
decreased, starting from within the conforming phase,
latter is stable across the whole coexistence regime. A
continuous change to canted magnetization occurs at
phase boundary (XL in Fig. 6! to the canted phase. Thi
behavior causes the hysteresis shown in Fig. 6. Both cr
over fields manifest themselves as discontinuities in the c
ponents of the thin-film magnetization. Such behavior w
discussed in the context of SRT’s in bulk systems.22

In the third case,22,r ,0, coexistence is found even i
zero field. With the field, the film will manifest a ver
strange behavior. In both field configurations it exhibits t

t

l

e

FIG. 6. Hysteresis forb,0 on varying the field along the dotte
line at r 523 in Fig. 5. Arrows show the direction of change o
applied field. Jumps in magnetization correspond to discontinu
first-order transitions at the cross points of the chosen path with
two phase lines bounding the region of coexistence. The two po
can only be revealed if the two directions of change of field
scanned.XL (XN) is a linear~nonlinear! crosspoint@see Sec. V and
Figs. 9~a!, 9~b!#.



ee
et
s
-
ry
g

i-
he

si
n
dd
t

ig
pr
e

b
e
m

e
p

th
th

ry
al
ed

ges

ility

n

p-
res

tio
ce.
are
n
ite

ith
he

ty

or
e-

f
the
tion
for

ws,

, a
in-
e

ly

nal

for
h
th-

u
in

sta
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conforming-phase behavior. As soon as the film has b
driven into the respective conforming phase by a magn
field of sufficient strength, it will stay in this phase, becau
no line of instability for this conforming phase will be en
countered under any field variation in that field geomet
When the configuration is changed to its orthogonal, a sin
transition emerges~Fig. 7! for different r values within this
particular interval inr . On increasing the field the magnet
zation is tilted up to the crossover field where it flips to t
conforming phase.

As a corollary, the field variation allows a general clas
fication of the properties of ferromagnetic films when co
sidering the crossover fields which can be observed. In a
tion, the type of phase transition offers an immedia
opportunity to carry out a classification according to the s
of b. Hence, the systematics can be used as a finger
characteristics of the evolution of a thin-film system und
variation of the film thickness.

IV. THE ANISOTROPY-FLOW CONCEPT
FOR ULTRATHIN FILMS IN APPLIED FIELD

An important part of our general presentation of the pro
lem of SRT’s in ultrathin films with field is discussed in th
present section. We follow the procedure of Ref. 2 and eli
nate the thickness to remain with alinear functional connec-
tion between the first and second anisotropy constants.14 We
introduce the variables (a,b) which are the most suitabl
ones for the description of the thickness-driven anisotro
flows with field @Eqs.~29!,~30! in I#. The linear relationship
between the anisotropy constants is not affected at all by
normalization against the Zeeman amplitude. It takes on
appearance

b5
k2s

k1s
a1S k2s

k1s
d1k2bD ~4!

or

FIG. 7. Hysteresis forb,0 at r 50.5, 21, 21.5 representing
the generic case given by the dotted line atr 521 in Fig. 5. The
plots are similar in both field configurations@Mn(M p) vs Hn(Hp)].
Starting from a ‘‘true’’ zero-field region of coexistence brings abo
a discontinuous transition on increasing the field. Upon decreas
the magnetization remains caught in the respective conforming
~see text!.
n
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a5
k1s

k2s
b2S k1s

k2s
k2b1d D , ~5!

where the notationsd5D/HM and km[Km /HM (m
51b,2b,1s,2s) have been used.23

It is a most important recognition that the linear trajecto
of Eq. ~4! is independent of the field configuration (coaxi
or in-plane).This means that for any given system specifi
by the set of anisotropy parameters$km% and d the corre-
sponding trajectory is rigidly bound to the (a,b) frame of
reference regardless of the field configuration. What chan
from configuration to configuration is thestructure of the
(a,b) space and this has been determined by the stab
analysis of I @cf. Figs. 3~a!, 3~b! therein#. In other words,
placing an ultrathin film from a coaxial field configuratio
with some fieldHn to an in-plane configuration with a field
Hp such thatzHnu5 zHpu5H, we change the scenery~phase
boundaries!, but do not affect the trajectory in the (a,b)
space.24 This is a very useful property of the discussed re
resentation, especially when combined with further featu
which we now describe.

As noted above,23 for a given systemthe slope of any
trajectory is independent of the field and equals the ra
K2s /K1s. This has an immediate important consequen
Trajectories corresponding to different field magnitudes
parallel to each other regardless of the field configuratio.
Thus, continuous variation of field corresponds to an infin
family of parallel trajectories of slopeK2s /K1s ~when b is
the ordinate anda is the abscissa!.

On the other hand, for a given system the intercept w
the ordinate of any trajectory is inversely proportional to t
field in each of the field configurations. From Eq.~4! it fol-
lows that

k2s

k1s
d1k2b5

~K2s /K1s!D1K2b

HM
;

1

H
. ~6!

For H→0, the intercept and the trajectory itself go to infini
in accordance with the remark in I that the zero-field~spon-
taneous! case cannot be ‘‘observed’’ in this presentation. F
H→`, the intercept goes to zero from above or below d
pending on the sign of the intercept. As with theslopecom-
mented on above, thesign of the intercept is independent o
the magnetic field. Hence, for a given system the sign of
intercept and the slope are invariants of this representa
and do not depend on the magnitude of the applied field
either coaxial or in-plane field.

In the discussed physical context thickness-driven flo
while linear, are bound to connect definite initial (a i ,b i) and
final (a f ,b f) states corresponding to certain initial (di) and
final (df) thicknesses. That is, each trajectory is, in fact
segment of a line whose slope and sign of intercept are
sensitive to field variations. By virtue of the definition of th
quantitiesa andb, both initial and final states are inverse
proportional to H, i.e., a i(H),b i(H),a f(H),b f(H);1/H.
Consequently, the set of initial states and the set of fi
states are two lines going into the origin forH→`.

The behavior of an ultrathin film can now be described
any magnitude of field by the following construction whic
we choose to discuss for the vertical field configuration wi
out any loss of generality~Fig. 8!. Consider the anisotropy

t
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space and assume that all information for the initial and fi
states is known. These are then represented by two po
say,Am andBm in the (a,b) plane. For definiteness,Am is
chosen to correspond to the smaller thickness. Draw
beamOA. All initial states which differ only by the magni
tude ofH lie alongOA; the greater the field, the closer to th
origin the initial state is. All points alongOA correspond to
the sameinitial thicknessdi . Draw the beamOB. All final
states lie along it and correspond to thesamefinal thickness
df . The trajectory described by the system under variation
thickness~thickness-driven anisotropy flow! is the line con-
nectingAm andBm for the initially chosen fieldH1. For any
other magnitude of field, say,H2, the trajectory is given by a
segment parallel toAmBm as the slopeK2s /K1s is indepen-
dent of the field. Starting off at, say,An , one obtains imme-
diately the corresponding end pointBn . Furthermore,
OAm /OAn5OBm /OBn5H2 /H1. The arrows on the beam
OA andOB in Fig. 8 correspond to initial and final states
ever larger fields. The origin is the asymptotic point whe
the field is so strong~infinitely strong! that the difference in
thickness between the states$A% and the states$B% no longer
matters.

All this information can be concisely summarized by t
claim that the isolines of constant thickness are represe
by the family of beams flowing into the origin with increa
ing field, while the isolines of constant field are given by t
family of parallel segments$AmBm%. These are the possibl
thickness-driven trajectories. The representation can thus b
used in various ways as a predictive tool in accordance w
the information given and/or required. In particular, one c
easily delineate the region where the system is allowed
evolve and determine under what conditions, if at all, a
gion of coexistence would be traversed or just invaded.
together, on comparison with the zero-field case2 one ob-
serves a greater variety of possibilities due to the additio

FIG. 8. Anisotropy-flow construction~coaxial field configura-
tion!. The thickness-driven trajectories are linear between ini
(Am) and final (Bm) states. Hollow arrows: increase ofd. Black
arrows: increase of applied field. For a given system, slope and
of intercept are invariants. BeamOA (OB) corresponds to constan
initial ~final! thickness in different fields. Segments$AmBm% are
isolines of constant field under variation of thickness.
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variable~applied field! which are still held under control an
can be systematized by projecting the anisotropy-domina
physics of the SRT onto the suitably chosen (a,b) space.

V. CROSSOVER THICKNESSES FOR SPIN
REORIENTATION TRANSITIONS

IN APPLIED FIELDS

A. Defining equations

A crossover thickness is naturally defined as correspo
ing to the border point where a given trajectory crosse
given phase borderline. We have presented evidence tha
(a,b) diagram with its linear trajectories is best suited for
general analysis of thickness-driven SRT’s. It appears s
suggesting@Figs. 9~a!, 9~b!# to classify the possible scenario
for the evolution of the system according to the number
crossover thicknesses which go together with a given lin
trajectory. Thus, there arefour typical trajectories for each o
the two configurations. The types are distinguished by ze
one, two, or three cross points of the relevant trajectory w
the phase borderlines. The case of no cross points is i
evant to a discussion of SRT’s. In Fig. 9, the trajectories j
initial ( j) and final (h) states belonging to different phase
in the diagram. Examples are given for classes of traject
with different numbers of cross points. The arrows indica
the increment of thickness as a driving parameter.25 For the
determination of the crossover thicknesses at the given cr
over it suffices to notice that these are deduced from o
two distinct conditions, a linear one for a cross point of
trajectory with the linear phase boundary and a nonlinear
for a cross point with the nonlinear boundary. We den
generically the cross points (X points! of the first and second
types asXL and XN , respectively (L for linear, N for non-
linear!.

For thecoaxial field configuration, the defining equatio
for the crossover thicknessdL corresponding to a cross poin
of the typeXL is @cf. Eq. ~32! in I#:

a~dL!52
1

2
, ~7!

while dN for a cross point of the typeXN is found by Eq.~34!
in I as

a~dN!522b~dN!1
3

2
@b~dN!#1/3. ~8!

For the in-planefield configuration,dL for XL is defined
by Eq. ~37! in I

a~dL!12b~dL!5
1

2
, ~9!

while dN for XN is given by Eq.~39! of part I

b~dN!1
8

27
a3~dN!50. ~10!

For a given system specified by the values of the mate
parametersKm(m51b,2b,1s,2s) and M and by virtue of
the Ansätze ~2!,~3!, all of the above equations, when solve
for dL or dN , give the experimentally very importantfield
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dependenceof the crossover thicknesses in both field con
figurations. As emphasized above, thedL’s and dN’s come
from the solution of a linear or nonlinear~cubic! equation,
respectively. The explicit solutions of the arising cubics a
difficult to handle analytically; in any case, they are given b
the formulas in the Appendix of I which apply for the re
duced form of any cubic. On the contrary, thelinear cross-
over thicknessesdL ~coaxial! anddL ~in-plane! as defined in
Eqs.~7! and~9! are both simple and informative. We discus
their practical significance and some self-suggesting applic
tions in the next section.

Let us comment briefly on the possibility ofthreecross-
over points existing for both field configurations and illus

FIG. 9. Classification of possible scenarios for thickness-drive
evolution according to the number of crossover pointsX of possible
trajectories with phase boundaries~illustrated for the in-plane con-
figuration!. For a system with a SRT, one, two, or three crossov
points are possible.j(h) is an initial ~final! point of a trajectory
corresponding to a smaller~larger! thickness.XL(XN) are cross
points with a linear~nonlinear! boundary.~a! Regimes withoneor
two cross points.~b! Regime withthree crossover points, two of
which are of theXN type. This regime is very peculiar and can only
be realized with a starting point within the region of coexistenc
Note a suitable change of scale forb in panel~b!.
-

e

a-

trated for the in-plane configuration by the trajectoryjh in
Fig. 9~b!. A line and a segment can only cross at a sin
point if at all, hence, only one of the crossover points is
the linear type (XL). dL is given by Eq.~9!. The remaining
two cross points are of the nonlinear type (XN) and are de-
noted in Fig. 10 asXN1 and XN2 in the order of increasing
thickness. The corresponding crossover thicknessesdN1 and
dN2 obey the cubic Eq.~10!. That is to say, for specific
systems whose linear trajectories do have two nonlin
cross points the relevant cubic equation has two physic
relevant solutionsdN1 anddN2. This regime can be realize
only with starting points within the region of coexistence.
existence implies an anomalously large second-order sur
contribution, since the typical slope of a prospective traj
tory as the one given in Fig. 9~b! is large.

Formally, the above considerations about the location
the X points may be summarized in a description by mea
of plane analytic geometry of the points where a curve~the
trajectory! crosses two other curves~the phase boundaries!,
the types of all curves being known. The fact that two of t
curves involved are straight lines facilitates the analysis a
together with the explicitAnsätze for the 1/d dependence,
leads to tractable equations for the crossover thicknes

n

r

.

FIG. 10. Plot of 1/dL vs field for K1s.0. The crossover thick-
nesses are given for coaxial and in-plane magnetization orienta
~a! demonstrates the impact on 1/dL(in-plane) of varyingK2b at
K2s50, while ~b! illustrates the influence ofK2s at K2b50. In the
in-plane configuration, the change of the intercept upon variation
K2b is DI 15u2K2b /K1su ~a!; for the case of~b! this is DI 25
u2D/(K1s12K2s)u. At a certain fieldHcross, given in Eq.~15!, it is
possible to obtain the same crossing thickness in both field confi
rations if b.0.
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However, the concept would work qualitatively even if th
trajectory and/or the borderlines are given by more comp
expressions or are implicit. This is the case one encoun
with the temperature-driven trajectories for bulk anisotro
which are given by implicit expressions;10,26the same should
be expected for temperature-driven SRT’s in ultrath
films.10,11 Furthermore, geometrically possible points whe
trajectories aretangentto borderlines can be expected to gi
rise to peculiar behavior detectable in experiments on SR
By inspection of our phase diagrams, there is a whole fam
of physical trajectories tangent to the cubic parabola. T
consequences will not be pursued further here.

B. Field dependence of the linear crossover thicknessdL

By Eqs. ~7! and ~9! implemented together with theAn-
sätze ~2!,~3!, one finds for the two principal field configura
tions that

coaxial:
1

dL
5F2

M

2K1s
GH1

D

K1s
; ~11!

in-plane:
1

dL
5F M

2~K1s12K2s!
GH1F D22K2b

K1s12K2s
G ~12!

with D defined after Eq.~3!. Thus, in both cases 1/dL is
proportional toH. Consequently, the 1/dL vs H plots would
be linear with the specified slopes and intercepts. Note
the overall sign of the slope depends crucially on the sign
the surface constants. The intercepts are identified as
zero-field characteristic thicknesses of Ref. 2. It is suitable
introduce the notationd0[dL(H50), hence,

d0~coaxial!5K1s /D, ~13!

while

d0~ in-plane!5~K1s12K2s!/~D22K2b!. ~14!

Equations~11!,~12! allow a general classification of th
field dependence of the crossover thicknessdL . Mind that
we have focused on systems where a thickness-driven
exists. This requirement is equivalent to demanding the
isotropy flow to cross the ordinate in the zero-field (K̃12K2)
representation of Ref. 2. Mathematically, this means t
K1sD.0 which restricts the manifold of possible cases to
considered for the coaxial configuration@Eq. ~11!# to a
unique generic behavior. In every situation a positive int
cept is found while the variation with field strength can ha
positive or negative slope depending on the sign of the
face contribution to the first anisotropy constant. The ab
requirement is manifest in the existence ofdL ~coaxial! over
a certain field range, at least. In the case of positiveK1s
corresponding to a SRT from vertical to in-plane orientat
upon increase of thickness, the slope is negative and
crossover thickness goes to infinity as the field approac
the valueH52D/M . As already emphasized above,dL ~co-
axial! in Eq. ~11! is independent of the second-order anis
ropy contributionb. We develop the discussion for positiv
K1s without loss of generality. In Fig. 10 the dashed li
denoted as ‘‘coaxial’’ represents the situation for t
vertical-field configuration. To demonstrate the influence
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the individual higher-order contributions upon the graph
1/dL ~in-plane!, we consider switchingK2b or K2s on and
off.

If b5K250, the intercepts 1/d0~in-plane! and
1/d0~coaxial! are identical and the slopes have opposite si
~Fig. 10!. The very existence of only one crossover thickne
in zero field is consistent with the model of the first-ord
SRT that should be expected if higher-order anisotropies
neglected.

SwitchingK2b on @Fig. 10~a!#, while keepingK2s equal to
zero, does not bring about any change of the slope comp
to the former case withb50. The intercept, however, is
modified. It becomes larger~smaller! for negative~positive!
signs ofK2b . Again the dependence of the zero-field val
1/d0 ~in-plane! on the sign ofK2b is consistent with the
behavior which one should expect for a spontaneous S
For K2b.0, the phase boundary between ‘‘true’’ canted a
in-plane magnetization appears at higher thicknesses tha
boundary separating ‘‘true’’ canted from vertical phases~for
K1s.0). As the slope is unaffected by the inclusion ofK2b ,
one obtains three parallel lines which typify the effect of
arbitrary nonzero value ofK2b .

The similarity to the zero-field case is not held up if o
takes the coaxial behavior into consideration. Obviously,
pending on the sign ofK2b , one can identify either a cross
ing of the lines 1/d ~coaxial! and 1/d ~in-plane! or a situation
in which the inverse crossover thicknesses run away fr
each other. Films with negativeK2b will never exhibit cross-
over thicknesses which are identical in both field geomet
at some field strengthHcross. For positive values ofK2b ,
there always exists a field strengthHcross at which identical
crossover thicknesses can be observed in the different
figurations. In particular, forK2b50 this field strength is
zero.

Now assume thatK2sÞ0, while K2b vanishes identically
@Fig. 10~b!#. Changes in both intercept and slope result. On
again forK2s.0 one finds a decrease of intercept as co
pared with the coaxial case. The slope becomes smaller c
pared with the caseb50. The slope becomes vanishing
small in the limitK2s→` which is synonymous to no SRT
at all. ForK2s,0, the intercept and the slope increase. As
the former case, a crossing fieldHcrossexists forK2s>0; this
again corresponds to the situation when in zero field
thickness-driven trajectory traverses the ‘‘true’’ cant
phase.

As the 1/dL linear plots have slopes of opposite signs f
the different field configurations, one can generally exp
the existence of a crossing field with identical crosso
thicknesses if the intercepts fulfil the conditio
1/d0(coaxial).1/d0(in-plane) in the case withK1s.0. Vice
versa, whenever the last inequalities are fulfilled, the sys
will exhibit an exchange of ordering of crossover points
some higher fieldHcross. These zero-field conditions for th
crossover thicknesses are identical with those defining
boundaries of the ‘‘true’’ canted phase.27 Hence, one can
conclude that the field dependence of the crossover th
nesses will lead to the existence of a crossing field if a S
via the ‘‘true’’ canted phase exists in the thin-film system
zero field. From Eqs.~11!,~12! one obtains
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FIG. 11. Evolution of crossover thicknesse
on a wedge upon increasing the field from zer
~a!: systems exhibiting coexistence of phases
zero field~bottom wedge!. Panel~b!: systems ex-
hibiting a true canted phase in zero field~bottom
wedge!. The in-plane field configuration is pre
sented to the left, the vertical one is to the right
each of the panels. For nonzero field, the tw
competing phases~canted and conforming! are
denoted as dotted and hatched regions on
wedge. The crossover thicknesses between th
two phases evolve as described in text@see also
Figs. 10~a!, 10~b!#. For systems of type~a!, the
crossover thicknesses in the different configu
tions run away upon increasing the field. F
those of type~b!, the crossover thicknesses mov
closer starting fromH50, get equal atH
5Hcross, and run away forH.Hcross.
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Hcross5
2~DK2s1K2bK1s!

M ~K1s1K2s!
. ~15!

On the other hand, if the spontaneous SRT proceeds via
phase of coexistence,2 a crossing field strength does not e
ist.

Figures 10~a!, 10~b! are very instructive for the discussio
of certain classes of experiments where the thickne
dependent behavior is studied in applied field. The detec
of a SRT by the respective crossover thickness and
proper interpretation of the latter can now be effected w
ease. The variation of thickness corresponds to running a
a vertical line in the plot of Fig. 10. The first nontrivial issu
is that the crossover thicknesses which are observed in
plied field deviate from the critical thicknesses in zero fiel2

The discrepancy is the stronger, the higher the field stren
is. The complexity increases further if a film is studied whi
exhibits a canted spontaneous reorientation. A crossing
Hcross exists in such a film as clarified above. AtH
5Hcross, the crossover thicknesses exchange their rela
position. While for H,Hcross the situation is the same a
expected from the zero-field case@d0(coaxial)
,d0(in-plane); K1s.0#, it is reversed above that fiel
strength. In the latter case (H.Hcross), the SRT, when
judged by the position of the crossover thicknesses, exh
the same characteristics as a system with a spontaneou
orientation via the phase of coexistence. Consequently, if
crossover thicknesses are determined in a high-fi
experiment,28 the same relation between the twodL’s will
always be found, that is, the coaxial field configuration giv
a higher crossover thickness~for K1s.0). Inverting the ar-
gument, one cannot conclude fromdL~in-plane!/dL(coaxial)
,1 at some nonzero field that in zero field the system
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hibits a SRT via the region of coexistence. To o
knowledge, this subtlety has never been discussed or e
noticed in the existing literature despite of its importance
avoiding confusion when experimental results on thin fer
magnetic film in applied field are interpreted. In any case
the SRT and its crossover thickness are studied in a field,
necessary to take care about measuring the field depend
of the latter~in the sense of the trend of variation with vari
tion of the field!. This would make it possible to obtain th
linear dependence for 1/dL , determine whether a crossin
field Hcross exists, and identify the relative positions of th
intercepts.

Since the understanding of the expected shifts in the c
cal ~crossover! thicknesses upon variation of the applied fie
is crucial to the correct interpretation and even setup of
periments on wedge-shaped magnetic films, we visualize
issue in Figs. 11~a!, 11~b!. The cases~a! and ~b! correspond
to systems where in zero field one finds coexistence of
plane and vertical phases@case~a!# or a true canted phas
@case~b!# over a certain thickness range. In-plane~left! and
vertical ~right! field configurations are envisaged in ea
case. Each sequence corresponds to fields of increa
strength, starting from the zero-field situation at the botto
For systems exhibiting coexistence in zero field@Fig. 11~a!#,
the crossover thicknesses separating the competing ph
run away from each other upon increasing the field stren
in each configuration. For systems exhibiting the true can
phase in zero field@Fig. 11~b!#, the crossover thicknesse
move closer upon field increase, become equal atH5Hcross
@cf. Eq.~15!#, and run away forH.Hcross. Thus, the literally
basiccases in Figs. 11~a!, 11~b!, corresponding to zero field
leave their fingerprints and predetermine the tendency
variation of the crossover thicknesses upon an increase o
field in both configurations.
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It is worth pointing out that the presented relations~11!
and ~12! for the linear functions 1/dL(H) in both field con-
figurations can also be used to analyze the set of anisot
constants. Two intercepts and two slopes provide four c
ditions for the five generally unknown quantitie
K1b , K2b , K1s , K2s , and M . For systems in which a
crossing as in Fig. 10~a,b! exists and can be experimental
detected at a certain field strengthHcross, Eq. ~15! provides
for a fifth independent condition. Further options lie with t
experimental detection of~some of! the nonlinear critical
thicknesses and the consequent implementation of Eqs~8!
and ~10!. Any surplus information coming from the exper
mental side and leading to an overdetermined system
equations can be used as a consistency check on the w
procedure.

C. The nonlinear crossover thicknesses

These could be seen in experiment only if the traject
crosses over between the two phases via the region of c
istence. If this is the case and thedN’s are taken as experi
mentally measurable quantities, Eqs.~8! and ~10! provide
additional conditions binding together the unknown mate
parameters listed in the previous paragraph.

VI. MAGNETIZATION PROFILES IN AN ULTRATHIN
SYSTEM WITH A SPIN-REORIENTATION

TRANSITION

The magnetization profilemH is defined as the normalize
component of magnetization along the direction of a giv
constant field:

mH5
MH

M
5

M cos~u2f!

M
5cos~u2f!. ~16!

Hence, with a vertical fieldHn we havef50 and

mn[mH~coaxial!5cosu, ~17!

while with an in-plane fieldHp we havef5p/2 and

mp[mH~ in-plane!5sin u. ~18!

In other words, the profiles thus defined are nothing butxn
andxp as defined in I. Consequently, the profiles are exha
tively described by the solutions to the cubic given in t
Appendix of I. The regions of relevance for each particu
solution have already been given in Figs. 3 and 4 of Ref
When this knowledge is combined with the linearity of t
thickness-driven trajectories in the (a,b) space, the profiles
can be straightforwardly generated for any given system,
for any given set of material parameters. We have alre
given examples of profiles~cf. Figs. 3, 4, and 6 above!.

Rather generally, any profilemp(d) or mn(d) that encom-
passes a SRT would consist of a plateau of unit height wh
corresponds to the portion of the thickness-driven traject
belonging to the conforming phase and a portion of mo
tonic variation withd. The crossover between the two r
gimes corresponds precisely to the crossover between
conforming and canted phases and takes place at the c
over thicknessdL or dN .
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If one considers the problem with the profiles from t
other end and assumes that they can be measured tog
with the crossover thicknesses in experiment, one will
able to deduce further useful information in a number
ways. One could, e.g., find a sufficient number of indep
dent relations to set up a procedure for the simultane
determination and consistency checks of all material par
eters relevant to the given SRT without recourse to data m
sured outside the given experiment. Here we give a v
simple example for the construction of a self-consistent
of relations, but postpone more elaborate developments
time when reliable experimental data will be available.

Consider the case of an ultrathin film in the vertical fie
configuration and assume that one has to deal with a si
tion specified by, say, the uppermost from among the tra
tories in Fig. 8 which corresponds to a simple SRT a
crossover thicknessdL . With the expressions for the profil
as found in the Appendix of I, one easily finds an asympto
expression ford@dL , i.e., for the far-end tail of the profile
This expression is best cast in the form

1

mn
'u1S 1

dD1v1 ~19!

with u1522(K1s12K2s)/H andv152D/H . On the other
hand, by Eq.~11!,

1

dL
5u2H1v2 ~20!

with u252M /2K1s and v25D/K1s . From the two linear
plots ~19! and ~20! one derives four independent condition
~two slopes and two intercepts! for four quantities
(K1s ,K2s ;M ,D). The simple procedure illustrates how th
information inherent to the shape of the profiles29 can be
used to complete the required set of independent relati
Although for this configuration the crossover thicknessdL is
sensitive to first-order contributions only, the details of t
shape help uncover the higher-order anisotropy contributi
as might have been expected on intuitive physical groun

VII. FIELD vs THICKNESS PHASE DIAGRAM

The (H,d) representation of the phase diagram of a s
tem undergoing a SRT is of most direct relevance. At
same time, it is connected with the largest loss of genera
since one has to assign definite values for quite a numbe
material parameters. Reasonable modelling is still poss
with the help of the foregoing discussion. The general st
egy to be pursued is also clear enough: One takes the d
ing equations for the borderlines from any of the differe
representations given above and in I. In the (a,b) represen-
tation, for instance, one starts with Eqs.~7!,~8! for the co-
axial configuration or with Eqs.~9!,~10! for the in-plane con-
figurations. The parameters are expressed asa@H,a(d)# and
b@H,b(d)#. Every single equation defining a given pha
boundary is solved forH5H(d) or for d5d(H) with the set
of material constants as parameters. By inspection of
relevant equations, the linear boundaries remain linear
the nonlinear ones remain nonlinear.

Apart from the important differences, the appearance o
particular (H,d) diagram is quite similar to a correspondin
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(H̄,r ) diagram, hence, we do not present illustrative plots30

Still, we find it important to give the expressions for th
coordinatesdC and HC of the tricritical point in (H,d) co-
ordinates. These are

coaxial:dC5
K1s24K2s

D14K2b
, ~21!

HC5
8

M

Dr14K2b

4r21
; ~22!

in-plane:dC5
K1s16K2s

D26K2b
, ~23!

HC52
8

M

Dr1K2b

6r11
. ~24!

Here, we have introduced the ratior5k2s /k1s5K2s /K1s
which is nothing but the slope of the linear trajectories d
fined above in Eq.~5!.

VIII. SUMMARY

We have presented a detailed quantitative discussion
the influence of applied magnetic field on the characteris
of SRT’s in thin ferromagnetic films. The two major con
figurations of vertical and in-plane directions of field ha
been treated on equal footing. Suitable representations o
problem have been developed. They allow to trace in a
desired detail the various ways in which the field effects c
be detected and described with variation of thickness at c
stant field or with variation of field at constant thickness. T
phase diagrams in both field configurations exhibit a reg
of coexistence of canted and conforming phases for nega
values of the second-order contribution (b,0). The experi-
mental view point was taken in demonstrating how t
implementation of magnetic field and its variation can imm
diately tell on the behavior of the system in zero field. O
can thus unambiguously identify the type of SRT as well
the signs of the different anisotropy contributions and th
ratio.

The proposed systematics of possible SRT’s builds up
the relevance and sign of the second-order anisotropy co
bution and reveals the intrinsic connection of the sponta
ous SRT’s with those under field. The method of t
c
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thickness-driven flows in the anisotropy space of the syst
has been extended to account for the influence of the Zee
unidirectional contribution. A simple and natural represen
tion has been found which preserves the linear characte
the anisotropy flows even for systems under field. Wh
combined with the results of the stability analysis for th
allowed phases, the concept provides an astonishingly lu
description of all aspects of a possible SRT. In particul
one is able to specify generic trajectories which cross o
two, or three phase boundaries. These cross points co
spond to certain crossover thicknesses which are exh
tively described. Very generally, they are of two types, line
(dL) and nonlinear (dN), depending on the type of borderlin
which is being crossed by the linear trajectory. The con
tions under which these points can be observed and the
commitant peculiarities in the behavior of the films ha
been discussed analytically and illustrated diagrammatica
The possibility for three crossover points~thicknesses! can
be realized in a system which starts its thickness-driven e
lution from within the region of coexistence.

The field dependence of the linear crossover thicknessdL
is especially informative and sheds light on aspects wh
have remained unnoticed despite of their importance for
correct interpretation of SRT’s in films under field. In pa
ticular, we have demonstrated that any applied field caus
shift of the critical thickness for a SRT. The 1/dL vs H plots
are linear and when examinedsimultaneouslyfor both field
configurations provide for insights into, and overview o
thin-film behavior under a field. It gives the experimental
the opportunity to determine at least four out of five ind
pendent thin-film parameters related to anisotropy.

On the basis of this analysis, we have suggested diffe
ways of how to perform experimental studies to the purpo
of the determination of the complete set of relevant anis
ropy parameters whose interplay underlies the specific w
for a SRT in an applied field to show up. In particula
simple schemes are suggested for extracting the required
of data from the shape of the magnetization profiles or fro
the calculated dependences for the crossover thicknessedL
anddN .

ACKNOWLEDGMENTS

Expert technical assistance by A. Kroder is gratefully a
knowledged. Y.M. acknowledges support from the Ma
Planck Society and participation in Contract No. NSFF560.
ev.
*On leave from the CPCS Lab, Institute of Solid State Physi
Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria.
1Y. T. Millev, H. P. Oepen, and J. Kirschner, preceding pape

Phys. Rev. B57, 5837~1998!.
2Y. Millev and J. Kirschner, Phys. Rev. B54, 4137 ~1996!. A

factor of 2 is misplaced in Eq.~22!, namely, the brackets in the
denominator should enclose 2K2b1K1b .

3U. Gradmann, Ann. Phys.~Leipzig! 17, 91 ~1966!; U. Gradmann
and J. Müller, Phys. Status Solidi27, 313 ~1968!.

4This factor is unity in SI.
5H. J. G. Draaisma and W. J. M. de Jonge, J. Appl. Phys.64, 3610

~1988!; B. Heinrich, S. T. Purcell, J. R. Dutcher, K. B. Urquhar
J. F. Cochran, and A. S. Arrott, Phys. Rev. B38, 12 879~1988!;
P. Jensen, Ann. Phys.~Leipzig! 6, 317 ~1997!.
s,

r,

,

6E. F. Bertaut,Magnetism, edited by G. Rado and H. Suhl~Aca-
demic, New York, 1963!, Vol. III, Chap. 7, pp. 351–194.

7M. N. Barber, inPhase Transitions and Critical Phenomena, ed-
ited by C. Domb and J. L. Lebowitz~Academic, London, 1983!,
pp. 145-266.

8U. Gradmann, inHandbook of Magnetic Materials, edited by K.
H. J. Buschow~North-Holland, Amsterdam, 1993!, Vol. 7,
Chap. 1;Ultrathin Magnetic Structures I, edited by J. A. C.
Bland and B. Heinrich~Springer, Berlin, 1994!.

9D. S. Chuang, C. A. Ballentine, and R. C. O’Handley, Phys. R
B 49, 15 084~1994!.

10Y. Millev, IEEE Trans. Magn.32, 4573~1996!.
11P. J. Jensen and K. H. Bennemann, Phys. Rev. B52, 16 012

~1995!; Solid State Commun.100, 585 ~1996!; A. Moschel and



y

o
e

o

be

s

om
ar
tio
n
ide

or
o
on
in
o

e

y

er
.

. It
cto-
ce

s-
ob-

t an

r

ok

i-
e
n
n-
of

fu-

an
m-

r-

ut the

57 5859INFLUENCE OF EXTERNAL FIELDS . . . . II. . . .
K. D. Usadel, Phys. Rev. B51, 16 111 ~1995!; A. Hucht, A.
Moschel, and K. D. Usadel, J. Magn. Magn. Mater.148, 32
~1995!; A. Hucht and K. D. Usadel,ibid. 156, 423~1996!; A. B.
Macisaac, J. P. Whitehead, K. De’Bell, and P. H. Poole, Ph
Rev. Lett.77, 739 ~1996!.

12This anisotropy-flow concept was proposed within an analysis
the temperature variation of bulk single-ion anisotropy, wher
rather general theoretical description valid for a whole class
untrivial theories was developed@see Y. Millev and M. Fa¨hnle,
Phys. Rev. B51, 2937~1995!; 52, 4336~1995!#. Even there, the
temperature dependence is not explicitly known and can be
described within a certain parametric approach.

13L. D. Landau and E. M. Lifshitz,Electrodynamics of Continuou
Media ~Pergamon, Oxford, 1960!, Chap. 4 and 5.

14It must be noted that the latter is not a universally valid law. Fr
the point of view of the anisotropy-flow concept, the linear ch
acter of the thickness-driven trajectories describing the evolu
of the system in the suitably defined anisotropy space is
affected even with an arbitrary thickness dependence, prov
that it is of the same functional form forboth anisotropy orders
~see Refs. 2 and 10!.

15One cannot exclude the possibility that a criticality of higher
der arises in some system, i.e., that both the first and sec
anisotropy contributions vanish at the same point. The first n
vanishing contribution would then be the third-order one
close analogy with multicritical phenomena in the theory
phase transitions.

16C. Chappert and P. Bruno, J. Appl. Phys.64, 5736~1988!.
17V. Grolier, J. Ferre, A. Maziewski, E. Stepanowicz, and D. R

nard, J. Appl. Phys.73, 5939~1993!.
18H. Fritzsche, J. Kohlhepp, H. Elmers, and U. Gradmann, Ph

Rev. B49, 15 665~1994!.
19H. P. Oepen, M. Speckmann, Y. T. Millev, and J. Kirschn

Phys. Rev. B55, 2752~1997!; H. P. Oepen, Y. T. Millev, and J
Kirschner, J. Appl. Phys.81, 5044~1997!.

20M. Speckmann, H. P. Oepen, and H. Ibach, Phys. Rev. Lett.75,
2035 ~1995!.

21H. P. Oepen and J. Kirschner, Scanning Microsc.5, 1 ~1991!.
22L. G. Onoprienko, Fiz. Met. Metalloved.19, 481 ~1965!; A. I.

Mitsek, N. P. Kolmakova, and D. I. Sirota,ibid. 38, 35 ~1974!;
s.

f
a
f

st

-
n

ot
d

-
nd
-

f

-

s.

,

G. Asti, in Ferromagnetic Materials, edited by K. H. J. Bus-
chow and E. Wohlfarth~Elsevier, Amsterdam, 1990!, Vol. 3, pp.
398–464; S. Nieber and H. Kronmu¨ller, Phys. Status Solidi B
165, 503 ~1991!.

23Sincek2s /k1s5K2s /K1s , it is only the uniformity of notations
that justifies the seemingly superfluous form given in the text
should not disguise the fact that the slope of the linear traje
ries is given, even with field, by the plain ratio of the surfa
constants. For Co/Au~111! ~Ref. 19!, one finds that this ratio is a
small quantity (27/40 for annealed wedges,'21/5 for as-
grown wedges! which is why the thickness-trajectory of the sy
tem in the anisotropy space is rather flat. The same feature
viously holds for the same system in applied field.

24A further step to an exhaustive description would be to attemp
analytic description of the phase diagram in the (a,b) represen-
tation for any orientation of the applied field and not only fo
f50 ~coaxial! or f5p/2 ~in-plane! (f is the angle betweenH
andn). Pictorially, one has the first and the last pages in a bo
whose pages are labeled by, say, equidistantf ’s from within the
interval @0,p/2#. For a given system in a field of fixed magn
tude the trajectory in the (a,b) space can be engraved on th
cover and will be valid for every single page. More formally, a
explicit analytic description should allow one to trace the co
tinuous transformation of the borderlines under the variation
direction ofH (fP@0,p/2#) at a fixed magnitudeH.

25An alternative convention for ‘‘initial’’ and ‘‘final’’ in the present
context would be to always take theconforming stateas the
initial state. This would, however, introduce unnecessary con
sion when discussing the different field configurations.
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