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Influence of external fields on spin reorientation transitions in uniaxial ferromagnets.
[I. Ultrathin ferromagnetic films
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The field-dependent spin reorientation transitiBRT) in ultrathin ferromagnetic films is discussed. A rather
general treatment is presented which involves the extension of the anisotropy-flow concept to systems in an
applied magnetic field. Special features of field-induced SRT’s are deduced from the general analysis. Empha-
sis is laid on the experimental implications, whereby general features are quantitatively described which are as
characteristic as fingerprints and serve to set up a natural classification of the SRT’s in external fields. Special
attention is dedicated to resolving the substantial differences between in-field and spontaneous SRT'’s; ignoring
these differences may result in grave misinterpretations of experimental finfi8@f63-182698)07809-9

I. INTRODUCTION proved to be of sufficient generalify® It is assumed that the
surface and bulk contributions to a given anisotropy constant
In the preceding papeito be denoted as | beloyy we  are additive with the surface contribution varying as the in-
provided a detailed discussion of spin reorientation transiverse thickness (dj.

tions (SRT'9) in uniaxial systems under a field which is valid ~ With this assumption, the theoretical analysis of the
for both bulk and thin-film ferromagnets. A systematic dis- thickness-driven SRT’s is straightforward as has been shown

cussion of the zero-field SRT in ultrathin films has beenfor zero-field reorientationsOn the other hand, the analysis
given very recently’. The general phenomenologic descrip- ©f temperature-driven SRT's in both bulk and thin-film sys-
tion requires further elaboration in the thin-film context, be-1€ms is difficult to describé: Nevertheless, a general con-
cause one has to consider the influencshafpeandsurface ceptual fra,mework for both thlckne§s— .and temperature-
anisotropies. It has been recognized long ago that the conflfiven SRT's has been developed which is based on tracing
petition between these two and the bulk magnetocrystallimgIOWn the evolution driven by the relevant parameter in the

. . . L " Structured anisotropy space of the sysfém.
anisotropy underlies the SRT's in thin filmsThe competi- It must be emphasized that at a first glance the thickness

tion has a further dimension in the sense that higher-ordejenendence of anisotropy looks very similar to an aggravat-
anisotropies may also interfere significantly. The angular derng circumstance which should make the description of
pendence of the relevant thermodynamic potential with ﬁe|danisotropy-dominated phenomena such as SRT’s a very dif-
is the same for bulk and thin-film systems. However, theficyit task. However, the extra degree of freedom which is
effective anisotropy constans and b of the lowest two  pest exploited in wedge-shape geometry of the ferromagnetic
orders in thin films have an internal structure which makesiims provides for an excellent possibility to study SRT’s at
the treatment in this case more complicated. As in I, complifixed temperature and, indeed, gives the analysis of SRT's a
cations arising due to domain formation will be neglected. really new dimension. The principal goals of our study @re
The dipolar effects can be described in terms of the deto demonstrate that there exists a common basis for the
magnetization field. Assuming ideal planar geometry of theanalysis of both bulk and thin-film reorientations by homo-
interfaces, one has a demagnetizing factor af #r the  geneous rotation of magnetizatiguart I), and(ii) to explore
direction perpendicular to the surfateyhereas the factors the implications of the thickness dependence for the SRT's.
within the plane are identically zero. Recent atomic-scaleThus, a variety of interesting phenomena can be predicted
estimates of the demagnetization factors of ultrathin filmsand described in sufficient detail within the thin-film context.
can also be implemented; the deviations from the continuunThese are the subject of the present paper. The instrumentals
values are significant for thicknesses of one and two monoin the analysis will be the general representations obtained in
layers only> The important issue is that the dipolar contribu- | for coaxial and in-plane field configurations and the exten-
tion is restricted to the lowest anisotropy constant, becaussion of the anisotropy-flow scheme to SRT's with external
of symmetry considerations concerning the dipolar characteiield. Note that the scheme with field has not been used in the
of this source of anisotropy. bulk context either and there is no doubt that there it would
The very important difference from the bulk case of ailluminate better the related issues. This reverberation will
SRT is that the anisotropy constants vary with thicknessnot be pursued further in this study.
One thus has an extra “degree of freedom” in contrast to the
bulk where Fhe v_ariations qf anisotropy for a given system Il. GENERAL BACKGROUND
are almost invariably restricted to the temperature depen-
dence of the anisotropy constants. For the thickness depen- To carry out the analysis, we need to specify the structure
dence of the anisotropy constants, one needs to introducedd the anisotropy constangsandb in the expression for the
further phenomenological assumption which has beemelevant thermodynamic potentiélincluding the depen-
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dence on the thickness of the film:
ga=a sirfé+b sinf6—H-M. (1)

The angled is between the normal to the film and the direc-
tion of magnetization. The structure of the anisotropy con-
stants is made explicit by the relations

am— A+ s ) 6 7
d’ 0 L L L —t——— ]
n|[ML]
K b(n)
b= K2b+ %, (3) -2 -
whereA=—K;,+3(N,—N,)M?, K;, andK;s with i=1 or FIG. 1. Thickness dependence of the first two anisotropy con-

2 are the effective bulk and surface contributions to the magstantsa (solid curvg andb (dashed curvefor Co/Au(111). Thick-
netocrystalline anisotropy, whill, and N, are the demag- ness is given in monolayef®L) (1ML=2x10"% cm). Around
netization factors along the normal to the surface and alonghe point wherea is zero fip=5 ML), the system is stabilized by
any axis within the plane. We neglect in-plane magnetocrysthe second-order contribution. Note a change of sigrbddt a
talline anisotropies, hence, the in-plane Descartes axes c&#gher thickness.
be suitably chosen. In particular, we choosettexis as the
crossing line of the plane of the film with the plane where allanisotropies in ultrathin ferromagnetic films. Even this has
three vectordd,M and the normal to the sufacelie. Inthe  taken shape in steps. Chappert and Bruno considered a
ideal continuum cas®y,=4m, N,=N,=0.Inany case, for second-order contribution but included only the bulklike part
flat geometry which is at hand with ultrathin films of it.'® The same procedure was adopted by Gragieal’
Ny«/N,, Ny/N,<1 (see also Ref.)5 The dipolar contribu- An attempt to consideK, systematically and to determine
tion is contained in the quantity and the special notation both bulk and surface anisotropy contributions from a single
for it is justified by the fact that it is this combination of bulk set of data was made by Fritzscheal *® who used torsion
and dipolar contributions which is relevant for the analysis.oscillation magnetometry. A general analysis of spontaneous
Clearly, the dipolar effect prefers to have the magnetizatiorthickness- and temperature-driven SRT’s in ultrathin films
lying within the plane. Hence, perpendicular magnetizatioroy means of the anisotropy-flow concept was presented in
would only set in for strong enough surface anisotropy of aRef. 2, while the insights provided by this general picture
sign opposing the dipolar contribution. The surface anisotrowere very recently implement&tin the analysis of the mag-
pies defined as in Eq€2),(3) encompass the contributions of netic microstructure of ultrathin wedges of cobalt on
both interfaces which are not equal, in principle. Rather genAu(111). The determination of the surface constants was per-
erally, the anisotropies are functions of the temperature antbrmed on the basis of experimental data from scanning elec-
of the thickness of the filma=a(T,d), b=Db(T,d). In the tron microscopy with polarization analysis of the secondary
following, we assume that one works at fixed temperaturetlectrong®?! The experimental findings of Ref. 19 seem to
T<Tc; the temperature is treated as a parameter and will beepresent an unambiguous observation in ultrathin ferromag-
suppressed. However, most of the important features of theetic systems of coexistence of coaxial and in-plane phases
analysis can be used at a fixed thickness and tunable terithin a narrow range of thicknesses. Since the phenomenon
perature without modifications. of coexistence and the concommitant metastability effects

The important issues involved in the phenomenologicahave been in the focus of our general treatment of SRT’s
ansatz of Eqs(2),(3) for the structure of the anisotropy con- With external field in Ref. 1, it is instructive to have a prac-
stants are the additivity of the bulk and surface contributiongical example for the thickness dependence of the contribu-
and the assumeddtlependence for the thickness-dependentions to anisotropy coming from the different ordéfsg. 1).
part of the anisotropy On the technical side, the relations The curves foa(d) andb(d) refer to room temperature and
(2),(3) represent aonlinear, but tractable transformation of have been obtained by using the results of the analysis for
the variables introduced ihto film-specific variables. Co/Au(111).*

The inclusion of the second-order surface contribution is
byt n_atura_l, just as it is natural to include higher—order CON- |1 SYSTEMATICS OF POSSIBLE REORIENTATIONS
tributions in the bulk context. As already discussed before, IN APPLIED FIELDS
the most dramatic event at a SRT is the cancellation of the
largest anisotropy contributions, i.e., first-order bulk, first- A substantial part of the problem is to typify on general
order surface, and dipolar contributions. Obviously, in thegrounds the behavior of thin films within a certain class of
vicinity of such a point in thickness or temperature the an-experiments which involve the implementation of an external
isotropy behavior of the system is stabilized and dominatedield. Some peculiarities will be discussed which can be ob-
by the first nonvanishing contribution and this is the secondserved in thin films when their thickness is held constant,
order one, no matter how small it might appear against eacthile the constant magnetic field may assume different mag-
of the principal competitors taken separatelfHowever, it  nitudes. Due to the thickness dependence @ndb [Egs.
is only recently that one has thought about the importancé€?),(3) and Fig. 1, the condition of constant thickness means
and the practical possibility to consider higher-orderthat the ratior=a/b is constant as well. Hence, the experi-



5850 Y. T. MILLEV, H. P. OEPEN, AND J. KIRSCHNER 57

oo Y
/ /////// 9% 1.0 -
/ RS /. 0.8 I
/ - Ve . - 1
///// / i I
conforming S s 0.6 |
s A1 \= :
. = 04l Xi

| |
02| |
’ !

0.0 . I R 1 A 1 1 .

0.2 0.4 0.6 0.8 1.0

H

n

FIG. 3. Reversible continuous magnetization processfed
along the left dotted path in Fig. 2. A coaxial field is considered, but
the curve is representative for both configurations and thicknesses
corresponding to <—2 orr>0. Field is normalized as in Fig. 2.
Magnetization starts from zero Bf, =0, since the stable spontane-

. ) ! ) ous phase at<—2 is in-plane. At the field strength marked by a

FIG. 2. Phase dlagram_fdJ>O._Both field configurations are dashed vertical line, a discontinuity of the first derivative occurs. At
envisaged in the same pldt,, andH, stand for in-plane and the  that field strength the vertical line in Fig. 2 —3) traverses the

vertical field configuration, respectively. The abscissar {sl) phase boundary. This crossover points are denotex| dsf. also
=a/b. For a given thickness,=const. The ordinate is the applied gec. v and Figs. @), 9(b)].

field normalized against the critical fieldc=8|b|/M. The dotted

lines indicate the field variation for films of constant thickness be-

longing to definite generic regimes in the phase diagrams and typif)%ain field strength, the magnetization becomes aligned with
the two distinct regimes of variation dfl,, at fixed thickness e extérnal field. This point corresponds precisely to the
[(@ r<—2 orr>0, (b) —2<r<0]. The corresponding magneti- "educed field where the phase boundary is crossed by the

zations are given in Figs. 3 and 4. vertical line in Fig. 2. From Fig. 3 it is obvious that the
transition is continuous, while the first derivative has a dis-
continuity. It is natural to denote such special poifisids)
crossover pointgfields). Generally, films of thicknesses be-
longing tor regimes of caséa) exhibit only one phase tran-
sition in each of both field geometries. This behavior indi-
cates that the value corresponds to a unique phase in zero

mental situation is best represented in thevs r diagram,
already given in I. Following the classification with respect
to the sign ob in zero field? we have to distinguish between
the following situations

field.
A. Systems with a canted reorientation transition In the second case; 2<r <0, a “true” canted magneti-
in zero field (b>0) zation is found in zero field. Without the field, the canting
Figure 2 is similar to the plot shown in Fig(8 of I. angle varies along the abscissa withetween vertical align-

Investigating the behavior of a film of constant thickness inment atr =0 to in-plane alignment of magnetization rat
magnetic fields of different magnitude is equivalent to run-—2. Switching on the external field causes in both field con-
ning along a vertical line through the plot. The film thicknessfigurations a further magnetization tilting towards the direc-
determines the value af where the line is located. The up- tion of the field. This is shown in Fig. 4 for the dotted line at
per half of the diagram represents the situation with a magr = —1 in the phase diagraiig. 2) for the case of in-plane
netic field applied parallel to the film plane, while the lower field orientation. A magnetization profile such as the one in
half gives the experimental situation for a field along theFig. 4 can be found for the case of a vertically applied field.
surface normal. Two generic situations can be distinguished:lence, in both field configurations a phase boundary appears
(@ r<—2orr>0 and(b) —2<r<Q0. which corresponds to the locus of points where the magne-
In the first case, starting from thieaxis (no field applieg, ~ tization orientation becomes collinear with the field direc-
it is obvious that within the given ranges the coaxial ( tion. The transition is once again continuous, while the first
>0) or the in-plane phase € —2) is stable, respectively. derviative is discontinuous. The appearance of two phase
Switching on the field stabilizes the conforming phase, whileboundariesione per field configurationmplies values ofr
a gradual tilt of magnetization appears when the field direcfor which a “true” SRT via the canted phase is found in zero
tion is perpendicular to the direction of spontaneous magnefield. The ratio of the field strengths at the phase boundaries
tization. Without loss of generality, we discuss as represencorrelates directly with the value of and can be used to
tative for this generic class a film with= —3. The applied determiner as a function of film thickness.
field is such that the system runs along the dotted line in Fig.
2(a). Figure 3 shows the magnetization component along the
field direction when the field strength is varied in the con-
figuration with the field parallel to the film normal. Upon
increasing the field, the magnetization tilts more and more The plot in Fig. 5 is equivalent to the plot for<0 shown
towards the direction of the applied fie{Blig. 3). At a cer- in Fig. 3(b) of I. Three different generic cases have to be

B. Systems with a reorientation transition via the phase
of coexistence in zero fieldb<0)
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FIG. 4. Reversible continuous magnetization processofe FIG. 6. Hysteresis fob<<0 on varying the field along the dotted

along the right dotted path in Fig. 2. In-plane field is assumed, butine atr=—3 in Fig. 5. Arrows show the direction of change of
the curve is typical for both configurations fer2<r<0. The field  applied field. Jumps in magnetization correspond to discontinuous
is normalized as in Fig. 2. A transition is marked by a vertical first-order transitions at the cross points of the chosen path with the
dashed line, labeled b, again. The first derivative is discontinu- two phase lines bounding the region of coexistence. The two points
ous. The magnetization does not vanish in zero field, since théan only be revealed if the two directions of change of field are
system evolves from the “true” zero-field canted phase. scannedX, (Xy) is a linear(nonlineay crosspoin{see Sec. V and
Figs. 9a), 9(b)].
considered in this situatiora) r<—6,r>4, (b) —6<r< . i .
—2, 0<r<4, and(c) —2<r<0. persists over a range of applle_d f|elc_i strengths._ Two phase
boundaries appear in each configuration on varying the mag-
netic field in the direction perpendicular to the spontaneous
magnetization orientatiofcf. dotted line atr=—3 in Fig.
5). Between the two crossover fields the region of coexist-
ence appears where the conforming and canted phases are
both stable and represent local minima of the free enthalpy.
It must be emphasized that the thicknesses where these field

In the first case (< —6, r>4), the scenario that can be
observed under field variation is identical to the situation
discussed as a first case for-0 above. In the second case
(—6<r<-—2, 0<r<4), remarkable deviations from the
situation withb>0 can be found as the region of coexistence

_/// b<0 effects are found belong to the thickness regime where in
- H / zero field one out of two phasdsollinear or in-plang is
P stable. The fact that coexistence shows up on field variation
gives rise to hysteresis effects. Due to the stability of both
/ the conforming and canted phases within that peculiar field
/ regime, the phases on either side persist when crossing their
boundary to the region of coexistence. The consequence is

conforming
/ that two different crossover fields appear depending on
whether the field is increased or decreased which is illus-
trated by Fig. 6. The plot shows the in-plane magnetization
component as a function of in-plane field strengthr at
—3. The canting angle increases with field. As the canted
phase is stable up to the higher crossover field, there are no
discontinuities at the lower crossover field. At the phase
boundary to the conforming phase, denoteckgsn Fig. 6,
the canted phase can no longer be sustained. The magnetiza-
tion has to turn abruptly into an in-plane orientation and this
results into a discontinuous transition. The conforming phase
is the only stable one in higher fields. When the field is
decreased, starting from within the conforming phase, the
latter is stable across the whole coexistence regime. A dis-
continuous change to canted magnetization occurs at the
phase boundaryX; in Fig. 6) to the canted phase. This
FIG. 5. Phase diagram fdr<0. Both field configurations are Pehavior causes the hysteresis shown in Fig. 6. Both cross-
“glued together” at the abscissa=alb. There are three distinct OVer fields manifest themselves as discontinuities in the com-
regimes:(a) r<—6 orr>4, (h)—6<r<—2 or 0<r<4, and(c) ponents of the thin-film magnetization. Such behavior was
—2<r<0. The first type is akin to the first type witi>0 (Fig. 2.  discussed in the context of SRT’s in bulk systeths.
For the remaining two, typical pattidotted line$ are chosen. The In the third case;-2<r <0, coexistence is found even in
situation is drastically different from the one wili>0, since the zero field. With the field, the film will manifest a very
region of coexistence is being travergefl Figs. 6 and V. strange behavior. In both field configurations it exhibits the

\
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K K
1.0 = th:j _(£K2b+5 , (5)
L K2s K2s
081 where the notations6=A/HM and «,=K,/HM(u
S 0.6 [ =1b,2b,1s,2s) have been used.
< f It is a most important recognition that the linear trajectory

2" 0.4 I - ‘% of Eq. (4) is independent of the field configuration (coaxial

. or in-plane).This means that for any given system specified
by the set of anisotropy parametdrs,} and & the corre-
sponding trajectory is rigidly bound to thex(8) frame of
reference regardless of the field configuration. What changes
0;)8 ‘ 012 from configuration to configuration is thstructure of the
_' : (a,B) space and this has been determined by the stability
H, analysis of I[cf. Figs. 3a), 3(b) therein. In other words,
placing an ultrathin film from a coaxial field configuration
with some fieldH, to an in-plane configuration with a field
H, such thafH,|=|H,|=H, we change the scenefphase

0.2 |

[
0.04

FIG. 7. Hysteresis fob<0 atr=0.5, —1, —1.5 representing
the generic case given by the dotted linerat—1 in Fig. 5. The

plots are similar in both field configuratiofi! ,(M) vs Hy(Hp)]. boundariel but do not affect the trajectory in thex(g)

Sta_rtlng from a “true _z_ero-flel_d region of coe>_<|stence brings aboptspacez.“ This is a very useful property of the discussed rep-
a discontinuous transition on increasing the field. Upon decreasmg},

the magnetization remains caught in the respective conforming state ¢ taton, especially when combined with further features
(see text which we now describe.

As noted abové? for a given systenthe slope of any
trajectory is independent of the field and equals the ratio

conforming-phase behavior. As soon as the film has beeRZS/KlS' This has an immediate important consequence.

driven into the respective conforming phase by a magnetic =5 . . : : )
field of sufficient strength, it will stay in this phase, becausecrrajectorles corresponding to different field magnitudes are

no line of instability for this conforming phase will be en- parallel to _each othe_r r_egardle_ss of the field configur_at?o_n
countered under any field variation in that field geometryThus’ continuous variation of field corresponds to an infinite

When the configuration is changed to its orthogonal, a singlfamlly of parallel trajectories of slopl,s/Kys (when § is

transition emergeg§Fig. 7) for differentr values within this ?heoonrdt'r?:tgtﬁgrd;:n;hioe:basc'is\?sn svstem the intercent with
particular interval inr. On increasing the field the magneti- ' 9 Y P

A . I~ the ordinate of any trajectory is inversely proportional to the
zation is tilted up to the crossover field where it flips to thefield in each of the field configurations. From He) it fol-
conforming phase.

As a corollary, the field variation allows a general classi—IOWS that
fication of the properties of ferromagnetic films when con- « (Ko K1) A+K 1
sidering the crossover fields which can be observed. In addi- 2 5t kg =18 b~ (6)
tion, the type of phase transition offers an immediate Kis HM H

opportunity to carry out a classification according to the SignFor H—0, the intercept and the trajectory itself go to infinity

o b e, e Sylelcs can b e 5 g 9SEIh aconsance win he remark i |t h zero-ign-
y taneoug case cannot be “observed” in this presentation. For

variation of the film thickness. H—oo, the intercept goes to zero from above or below de-
pending on the sign of the intercept. As with tslepecom-
IV. THE ANISOTROPY-FLOW CONCEPT mented on above, thggn of the intercept is independent of
FOR ULTRATHIN FILMS IN APPLIED FIELD the magnetic field. Hence, for a given system the sign of the
intercept and the slope are invariants of this representation

An important part of our general presentation of the prOb'and do not depend on the magnitude of the applied field for
lem of SRT's in ultrathin films with field is discussed in the o 0> 20 in-plane o PP

prsisetﬂt Stf](.:t'l?n' Wf follow _the _r;[i(_)cedu][e oft_Ref.IZ and elimi- In the discussed physical context thickness-driven flows,
nate the thickness 1o remain withiaear functional ConNec- e |inear, are bound to connect definite initial; ( 3;) and

.t'cin getwetehn the f'rztl and seco;:d r?nlsot:gpy contsfér\'t\sebl final (af,B;) states corresponding to certain initial ) and
Introguce e varial E.Esa("g) which aré the most suttable g, (d¢) thicknesses. That is, each trajectory is, in fact, a
ones fo_r th_e description of the thlcknegs-drlven E.in'SOt.rOp%egment of a line whose slope and sign of intercept are in-
flows with field[Egs. (29),(30) in 1]. The linear relationship sensitive to field variations. By virtue of the definition of the

ggm:aig?gnag'S;ggf%’hgozr‘gﬁﬂ;'Z;Ot":mee(:tidt:&;” c?ril ttrT uantitiesa and 8, both initial and final states are inversely
9 plitude. roportional toH, i.e., a;(H),Bi(H),as(H),B(H)~1H.

appearance Consequently, the set of initial states and the set of final
states are two lines going into the origin fidr— .

The behavior of an ultrathin film can now be described for
any magnitude of field by the following construction which
we choose to discuss for the vertical field configuration with-
or out any loss of generalityFig. 8. Consider the anisotropy

K2s
— 5+ Kop
Kis

K2
,8=—Sa+
Kis

(4)
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) variable(applied field which are still held under control and
| B coaxial can be systematized by projecting the anisotropy-dominated

Ay physics of the SRT onto the suitably choseng) space.

B 1}
! /A V. CROSSOVER THICKNESSES FOR SPIN

canted B conforming REORIENTATION TRANSITIONS
Y l IN APPLIED FIELDS

A. Defining equations

e 1 1 . . .

2 1 o _ A crossover thlckn_ess is naturall_y deflne_d as correspond-
ing to the border point where a given trajectory crosses a
given phase borderline. We have presented evidence that the

canted (a,pB) diagram with its linear trajectories is best suited for a

general analysis of thickness-driven SRT’s. It appears self-
suggestingFigs. 9a), 9(b)] to classify the possible scenarios
for the evolution of the system according to the number of

I//(oexistence% crossover thicknesses which go together with a given linear
S s trajectory. Thus, there afeur typical trajectories for each of

FIG. 8. Anisotropy-flow constructioricoaxial field configura- th€ two configurations. The types are distinguished by zero,
tion). The thickness-driven trajectories are linear between initialON€; two, or three cross points of the relevant trajectory with
(A,) and final 8,) states. Hollow arrows: increase df Black the phase porderllmes. The case O_f no cross points Is !rr-el-
arrows: increase of applied field. For a given system, slope and sigvant to a discussion of SRT’s. In Fig. 9, the trajectories join
of intercept are invariants. Bea®A (OB) corresponds to constant initial (&) and final () states belonging to different phases
initial (final) thickness in different fields. Segmengs,B,} are  in the diagram. Examples are given for classes of trajectory
isolines of constant field under variation of thickness. with different numbers of cross points. The arrows indicate

the increment of thickness as a driving paramétdtor the
space and assume that all information for the initial and finatletermination of the crossover thicknesses at the given cross-
states is known. These are then represented by two pointsyer it suffices to notice that these are deduced from only
say,A, andB,, in the (o, 8) plane. For definitenes#,, is  two distinct conditions, a linear one for a cross point of a
chosen to correspond to the smaller thickness. Draw th&ajectory with the linear phase boundary and a nonlinear one
beamOA. All initial states which differ only by the magni- for a cross point with the nonlinear boundary. We denote
tude ofH lie alongOA,; the greater the field, the closer to the generically the cross pointX(pointg of the first and second
origin the initial state is. All points alon@A correspond to types asX, and Xy, respectively [ for linear, N for non-
the sameinitial thicknessd;. Draw the beanmOB. All final linear).
states lie along it and correspond to gwmefinal thickness For thecoaxial field configuration, the defining equation
d; . The trajectory described by the system under variation ofor the crossover thicknesk corresponding to a cross point
thickness(thickness-driven anisotropy flows the line con-  of the typeX, is [cf. Eq.(32) in I]:
nectingA,, andB,, for the initially chosen fieldH,. For any
other magnitude of field, sa¥,, the trajectory is given by a a(d)=— } @
segment parallel té\,B,, as the slope&,s/K s is indepen- L 2’
dent of the field. Starting off at, say,,, one obtains imme-
diately the corresponding end poirB,. Furthermore,
OA,/OA,=0B,/OB,=H,/H;. The arrows on the beams
OA andOB in Fig. 8 correspond to initial and final states in 3
ever larger fields. The origin is the asymptotic point where a(dy)= —ZB(dN)+§[,B(dN)]1’3. (8)
the field is so stronginfinitely strong that the difference in
thickness between the staf@s} and the statef8} no longer For thein-planefield configurationd, for X, is defined
matters. by Eq(37) in

All this information can be concisely summarized by the
claim that the isolines of constant thickness are represented 1
by the family of beams flowing into the origin with increas- a(d)+28(d)=7, 9)
ing field, while the isolines of constant field are given by the
family of parallel segment§A B, }. These are the possible while dy for Xy is given by Eq.(39) of part |
thickness-driven trajectorie§ he representation can thus be
used in various ways as a predictive tool in accordance with
the information given and/or required. In particular, one can
easily delineate the region where the system is allowed to
evolve and determine under what conditions, if at all, a re- For a given system specified by the values of the material
gion of coexistence would be traversed or just invaded. Alparameter ,(x=1b,2b,1s,2s) and M and by virtue of
together, on comparison with the zero-field casee ob- the Ansaze (2),(3), all of the above equations, when solved
serves a greater variety of possibilities due to the additiondior d, or dy, give the experimentally very importafield

while dy, for a cross point of the typX, is found by Eq(34)
inl as

8 3 —
Bldy) + 5a%(ch) =0. (10



5854 Y. T. MILLEV, H. P. OEPEN, AND J. KIRSCHNER 57
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<0

K in-plane

canted K,

~ .
~ _coaxial
~ ~

(a) 0 Heross H

in-plane

~ .
~ _coaxial

(b) 0 Heross H

FIG. 10. Plot of 1d, vs field forK,s>0. The crossover thick-
nesses are given for coaxial and in-plane magnetization orientation.
(a) demonstrates the impact ondl(in-plane) of varyingK,, at
K,s=0, while (b) illustrates the influence df,¢ atK,,=0. In the
in-plane configuration, the change of the intercept upon variation of
Kop is Al3=|2K,, /K, (a); for the case of(b) this is Al,=
[2A7(K 15+ 2K,g) |- At a certain fieldH . os, given in Eq.(15), it is
S possible to obtain the same crossing thickness in both field configu-

I . . ) rations ifb>0.
FIG. 9. Classification of possible scenarios for thickness-driven

evolution according to the number of crossover poXtsf possible d for the in-ol fi ion by th . .
trajectories with phase boundari@bustrated for the in-plane con- trated for the in-plane configuration by the trajectdry in

figuration. For a system with a SRT, one, two, or three crossovelF'g' 9_(b)' A line and a segment can only cross at_ a Sl_ngle
points are possible(7) is an initial (final) point of a trajectory  POINt if at all, hence, only one of the crossover points is of
corresponding to a smalleiarge thickness.X,(Xy) are cross the linear type X.). d, is given by Eq.(9). The remaining
points with a linearnonlineay boundary.(a) Regimes withoneor ~ tWo cross points are of the nonlinear typ¢,) and are de-
two cross points(b) Regime withthree crossover points, two of hoted in Fig. 10 as{y; and Xy, in the order of increasing
which are of theXy, type. This regime is very peculiar and can only thickness. The corresponding crossover thicknedggsand
be realized with a starting point within the region of coexistence.dy, obey the cubic Eq(10). That is to say, for specific
Note a suitable change of scale {6rin panel(b). systems whose linear trajectories do have two nonlinear
cross points the relevant cubic equation has two physically
dependencef the crossover thicknesses in both field con-relevant solutionsly; anddy,. This regime can be realized
figurations. As emphasized above, tthes and dy’s come  only with starting points within the region of coexistence. Its
from the solution of a linear or nonlinedcubic equation, existence implies an anomalously large second-order surface
respectively. The explicit solutions of the arising cubics arecontribution, since the typical slope of a prospective trajec-
difficult to handle analytically; in any case, they are given bytory as the one given in Fig.(9) is large.
the formulas in the Appendix of | which apply for the re-  Formally, the above considerations about the location of
duced form of any cubic. On the contrary, theear cross- the X points may be summarized in a description by means
over thicknessed, (coaxia) andd, (in-plane as defined in  of plane analytic geometry of the points where a cuithe
Egs.(7) and(9) are both simple and informative. We discuss trajectory crosses two other curvdthe phase boundarigs
their practical significance and some self-suggesting applicahe types of all curves being known. The fact that two of the
tions in the next section. curves involved are straight lines facilitates the analysis and,
Let us comment briefly on the possibility tireecross- together with the explicitAnsaze for the 18 dependence,
over points existing for both field configurations and illus- leads to tractable equations for the crossover thicknesses.

-6

-8

-10 .
(b)
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However, the concept would work qualitatively even if the the individual higher-order contributions upon the graph for
trajectory and/or the borderlines are given by more complexX/d, (in-plane, we consider switchind<,, or K, on and
expressions or are implicit. This is the case one encountersst.
with the temperature-driven trajectories for bulk anisotropy |f b=K,=0, the intercepts #f(in-plane and

: H H A ; 26 . . . . .
which are given by implicit expressionZ°the same should 1/q,(coaxia) are identical and the slopes have opposite signs
be eféPlGlJCted for temperature-driven SRT’s in ultrathin(rig, 10). The very existence of only one crossover thickness
films.”*" Furthermore, geometrically possible points wherejy zero field is consistent with the model of the first-order

trajectories aréangentto borderlines can be expected 10 give SRT that should be expected if higher-order anisotropies are
rise to peculiar behavior detectable in experiments on SRT $yeglected.

By inspection of our phase diagrams, there is a whole family b ; ; ;

of physical trajeqtories tangent to the cubic parabola. Thezez\,/v(ljtgg?ggtzgrci):g[ ';Igojtq :%]); \(/:vﬁ;lsglzegf l?\gtlzggucﬂrfpared

consequences will not be pursued further here. to the former case wittb=0. The intercept, however, is

modified. It becomes larggsmalley for negative(positive

signs ofK,,. Again the dependence of the zero-field value
By Egs. (7) and (9) implemented together with than-  1/d, (in-plane on the sign ofK,, is consistent with the

saze (2),(3), one finds for the two principal field configura- behavior which one should expect for a spontaneous SRT.

B. Field dependence of the linear crossover thicknes$

tions that For K,,>0, the phase boundary between “true” canted and
in-plane magnetization appears at higher thicknesses than the
; i | _ M i . boundary separating “true” canted from vertical phagfes
coaxial; H+ ; (11 . . ;
di 2K1s Kis K.1s>0). As the slope is unaffected by the inclusionkof;, ,
one obtains three parallel lines which typify the effect of an
1 M A—-2K i
in-plane:— = H 2b 12 arb|trary.nc.)nz'ero value df,, S . .
d. |2(Kist+2Ky) K1t 2K The similarity to the zero-field case is not held up if one

. . ) . takes the coaxial behavior into consideration. Obviously, de-
with A defined after Eq(3). Thus, in both cases d/ is pending on the sign dk,,, one can identify either a cross-

proportional toH. Consequently, the d/ vs H plots would : : - L
be linear with the specified slopes and intercepts. Note tha:{1 gv\?;ig;]e :Lle?nf/ir(g(e)a;rlgisgvderlttih(ilgkrr::;r;eesrrﬁnsI;ﬁ;;r}rom
the overall sign of the slope depends crucially on the signs o ch other. Films with negafivé,; will never exhibit cross-

the surface constants. The intercepts are identified as tHe? hick hich ‘dentical in both field .
zero-field characteristic thicknesses of Ref. 2. It is suitable t&VE' thicknesses which are identical in both field geometries

introduce the notatiody=d, (H=0), hence, at some field st_rengtlhi_cross. For positive val_ues_ oKz_b,
there always exists a field strendth,,ssat which identical
do(coaxia)=K /A, (13) crossover thicknesses can be observed in the different con-
. figurations. In particular, folK,,=0 this field strength is
while zero.

Now assume tha,,# 0, while K5, vanishes identically
[Fig. 10b)]. Changes in both intercept and slope result. Once

Equations(11),(12) allow a general classification of the 29ain forK,s>0 one finds a decrease of intercept as com-
field dependence of the crossover thickndss Mind that ~ Pared with the coaxial case. The slope becomes smaller com-
we have focused on systems where a thickness-driven SRIared with the casé=0. The slope becomes vanishingly
exists. This requirement is equivalent to demanding the ansmall in the limitK,s—cc which is synonymous to no SRT

isotropy flow to cross the ordinate in the zero-fiekh K.) at all. ForK,,<0, the intgrcept and thg slope increase. _As in
representation of Ref. 2. Mathematically, this means thathe former case, a crossing fiettl ossexists fork;s=0; this

K ,sA >0 which restricts the manifold of possible cases to beagain corresponds to the situation when in zero field the
considered for the coaxial configuratiditq. (11)] to a  thickness-driven trajectory traverses the “true” canted
unique generic behavior. In every situation a positive interhase.

cept is found while the variation with field strength can have As the 14, linear plots have slopes of opposite signs for
positive or negative slope depending on the sign of the surthe different field configurations, one can generally expect
face contribution to the first anisotropy constant. The abovehe existence of a crossing field with identical crossover
requirement is manifest in the existencedpf(coaxia) over  thicknesses if the intercepts fulfii the condition
a certain field range, at least. In the case of posifug  1/dy(coaxial}>1/dy(in-plane) in the case witK,;>0. Vice
corresponding to a SRT from vertical to in-plane orientationversa, whenever the last inequalities are fulfilled, the system
upon increase of thickness, the slope is negative and theill exhibit an exchange of ordering of crossover points at
crossover thickness goes to infinity as the field approachesome higher fielH .. These zero-field conditions for the
the valueH=2A/M. As already emphasized abowk, (co- crossover thicknesses are identical with those defining the
axial) in Eq. (11) is independent of the second-order anisot-boundaries of the “true” canted phadeHence, one can
ropy contributionb. We develop the discussion for positive conclude that the field dependence of the crossover thick-
K,s without loss of generality. In Fig. 10 the dashed line nesses will lead to the existence of a crossing field if a SRT
denoted as ‘“coaxial”’ represents the situation for thevia the “true” canted phase exists in the thin-film system in
vertical-field configuration. To demonstrate the influence ofzero field. From Eqgs(11),(12) one obtains

do(in-plane = (K1s+ 2K, ) /(A — 2K ). (149
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at

H, H,

H, <H; FIG. 11. Evolution of crossover thicknesses
on a wedge upon increasing the field from zero.

' / (a): systems exhibiting coexistence of phases in

zero field(bottom wedgg Panel(b): systems ex-

H, <H:

: =0 hibiting a true canted phase in zero figlmbttom
(a) coexistence coexistence wedge. The in-plane field configuration is pre-
sented to the left, the vertical one is to the rightin
H— H T each of the panels. For nonzero field, the two

competing phasegcanted and conformingare

H; > Hyos > H :
: o Hy > Heross > Hy denoted as dotted and hatched regions on the
: H, wedge. The crossover thicknesses between these
" two phases evolve as described in tsee also
AR Figs. 1@a), 10(b)]. For systems of typ&a), the
Y Hews Herns crossover thicknesses in the different configura-

tions run away upon increasing the field. For
those of typgb), the crossover thicknesses move
closer starting fromH=0, get equal atH
=Hoss and run away foH>H s

(b) true canted true canted

2(AKast KoKy hibits a SRT via the region of coexistence. To our
cross— M (Kot Koo (15 knowledge, this subtlety has never been discussed or even
s 7 h2s noticed in the existing literature despite of its importance in

avoiding confusion when experimental results on thin ferro-

On the other hand,éi;;he spontaneous SRT proceeds via the, ynetic film in applied field are interpreted. In any case, if
phase of coexistencea crossing field strength does not ex- ihe SRT and its crossover thickness are studied in a field, it is

Ist. _ _ i . necessary to take care about measuring the field dependence
Figures 10a), 10(b) are very instructive for the discussion of the Iatter(in the sense of the trend of variation with varia-
of certain classes of experiments where the thicknessjon of the field. This would make it possible to obtain the
dependent behavior is studied in applied field. The detectiofnear dependence for d/, determine whether a crossing
of a SRT by the respective crossover thickness and thfeld H.exists, and identify the relative positions of the
proper interpretation of the latter can now be effected withintercepts.
ease. The variation of thickness corresponds to running along Since the understanding of the expected shifts in the criti-
a vertical line in the plot of Fig. 10. The first nontrivial issue cal (crossoverthicknesses upon variation of the applied field
is that the crossover thicknesses which are observed in ags crucial to the correct interpretation and even setup of ex-
plied field deviate from the critical thicknesses in zero ffeld. periments on wedge-shaped magnetic films, we visualize the
The discrepancy is the stronger, the higher the field strengtigsue in Figs. 1), 11(b). The casesa) and(b) correspond
is. The complexity increases further if a film is studied whichto systems where in zero field one finds coexistence of in-
exhibits a canted spontaneous reorientation. A crossing fielglane and vertical phasé¢sase(a)] or a true canted phase
Heross €Xists in such a film as clarified above. Al [case(b)] over a certain thickness range. In-plafheft) and
=Hgoss the crossover thicknesses exchange their relativgertical (right) field configurations are envisaged in each
position. While forH<H . the situation is the same as case. Each sequence corresponds to fields of increasing
expected from the zero-field case[dg(coaxial)  strength, starting from the zero-field situation at the bottom.
<dy(in-plane); K1s>0], it is reversed above that field For systems exhibiting coexistence in zero fighiy. 11(a)],
strength. In the latter caseHEH .59, the SRT, when the crossover thicknesses separating the competing phases
judged by the position of the crossover thicknesses, exhibitaun away from each other upon increasing the field strength
the same characteristics as a system with a spontaneous ir-each configuration. For systems exhibiting the true canted
orientation via the phase of coexistence. Consequently, if thphase in zero fieldFig. 11(b)], the crossover thicknesses
crossover thicknesses are determined in a high-fieldnove closer upon field increase, become equad atH ;e
experiment® the same relation between the twig’s will [cf. Eq.(15)], and run away foH>H s Thus, the literally
always be found, that is, the coaxial field configuration giveshasiccases in Figs. 1(&), 11(b), corresponding to zero field,
a higher crossover thickne¢®r K;s>0). Inverting the ar- leave their fingerprints and predetermine the tendency of
gument, one cannot conclude fragh(in-plang/d_(coaxial)  variation of the crossover thicknesses upon an increase of the
<1 at some nonzero field that in zero field the system ex{ield in both configurations.
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It is worth pointing out that the presented relatiqid) If one considers the problem with the profiles from the
and(12) for the linear functions o (H) in both field con- other end and assumes that they can be measured together
figurations can also be used to analyze the set of anisotropyith the crossover thicknesses in experiment, one will be
constants. Two intercepts and two slopes provide four conable to deduce further useful information in a number of
ditions for the five generally unknown quantities ways. One could, e.g., find a sufficient number of indepen-
Kip, Kop, Kis, Kys, and M. For systems in which a dent relations to set up a procedure for the simultaneous
crossing as in Fig. 1@,b exists and can be experimentally determination and consistency checks of all material param-
detected at a certain field strendth, s, EQ. (15) provides eters relevant to the given SRT without recourse to data mea-
for a fifth independent condition. Further options lie with the sured outside the given experiment. Here we give a very
experimental detection ofsome of the nonlinear critical simple example for the construction of a self-consistent set
thicknesses and the consequent implementation of @ys. of relations, but postpone more elaborate developments to a
and (10). Any surplus information coming from the experi- time when reliable experimental data will be available.
mental side and leading to an overdetermined system of Consider the case of an ultrathin film in the vertical field
equations can be used as a consistency check on the whatenfiguration and assume that one has to deal with a situa-
procedure. tion specified by, say, the uppermost from among the trajec-

tories in Fig. 8 which corresponds to a simple SRT at a
C. The nonlinear crossover thicknesses crossover thicknesd, . With the expressions for the profile

_ _ ] ] as found in the Appendix of I, one easily finds an asymptotic
These could be seen in experiment only if the trajectoryaypression fod>d, , i.e., for the far-end tail of the profile.
crosses over between the two phases via the region of coexyig expression is best cast in the form

istence. If this is the case and thg’s are taken as experi-

mentally measurable quantities, Eq8) and (10) provide 1 1
additional conditions binding together the unknown material o Ui g s (19
parameters listed in the previous paragraph. "
with uy;=—2(Ks+2Kys)/H andv;=2A/H . On the other
VI. MAGNETIZATION PROFILES IN AN ULTRATHIN hand, by Eq(11),
SYSTEM WITH A SPIN-REORIENTATION 1
TRANSITION d_Lzqu +u, (20)

The magnetization profiley is defined as the normalized )
component of magnetization along the direction of a giverWith u;=—M/2K;5 andv,=A/K;5. From the two linear

constant field: plots (19) and (20) one derives four independent conditions
(two slopes and two interceptsfor four quantities
My M cog6—¢) (K1s,K25:M,A). The simple procedure illustrates how the
mszz Tzcos{ 0— ). (16) information inherent to the shape of the profffesan be
used to complete the required set of independent relations.
Hence, with a vertical fieldH,, we have¢=0 and Although for this configuration the crossover thicknegss
sensitive to first-order contributions only, the details of the
m,=my(coaxia) = cos 6, (17)  shape help uncover the higher-order anisotropy contributions

as might have been expected on intuitive physical grounds.
while with an in-plane fielcH,, we have¢ = 7/2 and
VII. FIELD vs THICKNESS PHASE DIAGRAM
m,=my(in-plang =sin 6. (18 . )
The (H,d) representation of the phase diagram of a sys-
In other words, the profiles thus defined are nothing>put tem undergoing a SRT is of most direct relevance. At the
andx, as defined in I. Consequently, the profiles are exhaussame time, it is connected with the largest loss of generality,
tively described by the solutions to the cubic given in thesince one has to assign definite values for quite a number of
Appendix of I. The regions of relevance for each particularmaterial parameters. Reasonable modelling is still possible
solution have already been given in Figs. 3 and 4 of Ref. 1with the help of the foregoing discussion. The general strat-
When this knowledge is combined with the linearity of the egy to be pursued is also clear enough: One takes the defin-
thickness-driven trajectories in the/(3) space, the profiles ing equations for the borderlines from any of the different
can be straightforwardly generated for any given system, i.erepresentations given above and in I. In the g) represen-
for any given set of material parameters. We have alreadsation, for instance, one starts with Ed3),(8) for the co-
given examples of profile&f. Figs. 3, 4, and 6 aboye axial configuration or with Eqg9),(10) for the in-plane con-
Rather generally, any profil@,(d) or m,(d) that encom-  figurations. The parameters are expressed[&t,a(d)] and
passes a SRT would consist of a plateau of unit height whicl8[H,b(d)]. Every single equation defining a given phase
corresponds to the portion of the thickness-driven trajectorypoundary is solved fod =H(d) or ford=d(H) with the set
belonging to the conforming phase and a portion of mono-of material constants as parameters. By inspection of the
tonic variation withd. The crossover between the two re- relevant equations, the linear boundaries remain linear and
gimes corresponds precisely to the crossover between thibe nonlinear ones remain nonlinear.
conforming and canted phases and takes place at the cross-Apart from the important differences, the appearance of a
over thicknessl, or dy. particular H,d) diagram is quite similar to a corresponding
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(ﬁ, r) diagram, hence, we do not present illustrative pibts. thickness-driven flows in the anisotropy space of the system
Still, we find it important to give the expressions for the has been extended to account for the influence of the Zeeman

coordinatesd: and H¢ of the tricritical point in H,d) co-
ordinates. These are

Kis— 4K
coaxial:dc=ﬁ, (2D
2b
8 Ap+4Ky,

M ap-1 (22
Kis+ 6K
in—planedczAlsTKzs, (23
— 6Ky
8 Ap+ KZb
Ho="M T6pr1 - 29

Here, we have introduced the ratio= xys/ k1= Kog/Kyg

unidirectional contribution. A simple and natural representa-
tion has been found which preserves the linear character of
the anisotropy flows even for systems under field. When
combined with the results of the stability analysis for the
allowed phases, the concept provides an astonishingly lucid
description of all aspects of a possible SRT. In particular,
one is able to specify generic trajectories which cross one,
two, or three phase boundaries. These cross points corre-
spond to certain crossover thicknesses which are exhaus-
tively described. Very generally, they are of two types, linear
(d,) and nonlineardy), depending on the type of borderline
which is being crossed by the linear trajectory. The condi-
tions under which these points can be observed and the con-
commitant peculiarities in the behavior of the films have
been discussed analytically and illustrated diagrammatically.
The possibility for three crossover pointhicknessescan

be realized in a system which starts its thickness-driven evo-

which is nothing but the slope of the linear trajectories deqytion from within the region of coexistence.

fined above in Eq(5).

VIll. SUMMARY

We have presented a detailed quantitative discussion
the influence of applied magnetic field on the characteristic
of SRT'’s in thin ferromagnetic films. The two major con-
figurations of vertical and in-plane directions of field have
been treated on equal footing. Suitable representations of t
problem have been developed. They allow to trace in an
desired detail the various ways in which the field effects ca
be detected and described with variation of thickness at co
stant field or with variation of field at constant thickness. The
phase diagrams in both field configurations exhibit a regio
of coexistence of canted and conforming phases for negati
values of the second-order contributidm<(0). The experi-
mental view point was taken in demonstrating how the
implementation of magnetic field and its variation can imme-
diately tell on the behavior of the system in zero field. One
can thus unambiguously identify the type of SRT as well as
the signs of the different anisotropy contributions and thei

ratio.

V

The field dependence of the linear crossover thickigss
is especially informative and sheds light on aspects which
have remained unnoticed despite of their importance for the
(}orrect interpretation of SRT’s in films under field. In par-
icular, we have demonstrated that any applied field causes a
shift of the critical thickness for a SRT. Thed]/vs H plots
are linear and when examinaimultaneouslyfor both field

in-film behavior under a field. It gives the experimentalist
he opportunity to determine at least four out of five inde-

:}:ﬁonfigurations provide for insights into, and overview on,

r{gendent thin-film parameters related to anisotropy.

On the basis of this analysis, we have suggested different

ays of how to perform experimental studies to the purpose

f the determination of the complete set of relevant anisot-
ropy parameters whose interplay underlies the specific way
for a SRT in an applied field to show up. In particular,
simple schemes are suggested for extracting the required sets
of data from the shape of the magnetization profiles or from
the calculated dependences for the crossover thicknésses

randdN.

ACKNOWLEDGMENTS

The proposed systematics of possible SRT’s builds upon
the relevance and sign of the second-order anisotropy contri- Expert technical assistance by A. Kroder is gratefully ac-
bution and reveals the intrinsic connection of the spontaneknowledged. Y.M. acknowledges support from the Max
ous SRT’'s with those under field. The method of thePlanck Society and participation in Contract No. NEB60.

“On leave from the CPCS Lab, Institute of Solid State Physics,6E. F. BertautMagnetism edited by G. Rado and H. SufAca-

Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria.

demic, New York, 1968 Vol. lll, Chap. 7, pp. 351-194.

1Y. T. Millev, H. P. Oepen, and J. Kirschner, preceding paper, ’M. N. Barber, inPhase Transitions and Critical Phenomereal-

Phys. Rev. B57, 5837(1998.
2y. Millev and J. Kirschner, Phys. Rev. B4, 4137 (1996. A

factor of 2 is misplaced in Eq22), namely, the brackets in the

denominator should enclos&2,+ K, .

3U. Gradmann, Ann. PhygLeipzig) 17, 91(1966; U. Gradmann

and J. Miller, Phys. Status Solid27, 313 (1968.
4This factor is unity in SI.

5H. J. G. Draaisma and W. J. M. de Jonge, J. Appl. PB¢s3610

ited by C. Domb and J. L. Lebowit@cademic, London, 1983
pp. 145-266.

8U. Gradmann, irHandbook of Magnetic Materialsdited by K.
H. J. Buschow(North-Holland, Amsterdam, 1993 Vol. 7,
Chap. 1;Ultrathin Magnetic Structures, ledited by J. A. C.
Bland and B. Heinrici{Springer, Berlin, 1994

°D. S. Chuang, C. A. Ballentine, and R. C. O’'Handley, Phys. Rev.
B 49, 15 084(1994.

(1988; B. Heinrich, S. T. Purcell, J. R. Dutcher, K. B. Urquhart, 10y, Millev, IEEE Trans. Magn32, 4573(1996.

J. F. Cochran, and A. S. Arrott, Phys. Rev38 12 879(1988);
P. Jensen, Ann. Phy§_eipzig) 6, 317 (1997).

11p_J. Jensen and K. H. Bennemann, Phys. Re%2B16 012
(1995; Solid State Communl00, 585(1996; A. Moschel and



57 INFLUENCE OF EXTERNAL FIELDS ... . 1. ...

5859

K. D. Usadel, Phys. Rev. B1, 16 111(1999; A. Hucht, A.
Moschel, and K. D. Usadel, J. Magn. Magn. Mat&A8 32

G. Asti, in Ferromagnetic Materialsedited by K. H. J. Bus-

chow and E. WohlfartliElsevier, Amsterdam, 1990Vol. 3, pp.
(1995; A. Hucht and K. D. Usadelpid. 156, 423(1996; A. B. 398-464; S. Nieber and H. Kroniher, Phys. Status Solidi B
Macisaac, J. P. Whitehead, K. De’Bell, and P. H. Poole, Phys. 165 503(1991).
Rev. Lett.77, 739(1996. 23Since ks k15=K,s/K 1, it is only the uniformity of notations

2This anisotropy-flow concept was proposed within an analysis of that justifies the seemingly superfluous form given in the text. It
the temperature variation of bulk single-ion anisotropy, where a  should not disguise the fact that the slope of the linear trajecto-
rather general theoretical description valid for a whole class of ries is given, even with field, by the plain ratio of the surface
untrivial theories was developgdee Y. Millev and M. Fhnle, constants. For Co/Al11) (Ref. 19, one finds that this ratio is a
Phys. Rev. B51, 2937(1995; 52, 4336(1995]. Even there, the small quantity ¢-7/40 for annealed wedgesy —1/5 for as-
temperature dependence is not explicitly known and can be best grown wedgepswhich is why the thickness-trajectory of the sys-
described within a certain parametric approach. tem in the anisotropy space is rather flat. The same feature ob-

13, D. Landau and E. M. LifshitzElectrodynamics of Continuous
Media (Pergamon, Oxford, 1960Chap. 4 and 5.
1t must be noted that the latter is not a universally valid law. From

the point of view of the anisotropy-flow concept, the linear char-

acter of the thickness-driven trajectories describing the evolution
of the system in the suitably defined anisotropy space is not
affected even with an arbitrary thickness dependence, provided

that it is of the same functional form fdroth anisotropy orders
(see Refs. 2 and 10
50ne cannot exclude the possibility that a criticality of higher or-

der arises in some system, i.e., that both the first and second
anisotropy contributions vanish at the same point. The first non-

vanishing contribution would then be the third-order one in

viously holds for the same system in applied field.

247 further step to an exhaustive description would be to attempt an

analytic description of the phase diagram in theg) represen-
tation for any orientation of the applied field and not only for
¢ =0 (coaxia) or ¢= /2 (in-plang (¢ is the angle betweeH
andn). Pictorially, one has the first and the last pages in a book
whose pages are labeled by, say, equidisggstfrom within the
interval [ 0,7/2]. For a given system in a field of fixed magni-
tude the trajectory in thea|,8) space can be engraved on the
cover and will be valid for every single page. More formally, an
explicit analytic description should allow one to trace the con-
tinuous transformation of the borderlines under the variation of
direction ofH (¢ €[0,7/2]) at a fixed magnitudél.

close analogy with multicritical phenomena in the theory of 25An alternative convention for “initial” and “final” in the present

phase transitions.

16C. Chappert and P. Bruno, J. Appl. Phd, 5736 (1988.

17v. Grolier, J. Ferre, A. Maziewski, E. Stepanowicz, and D. Re-
nard, J. Appl. Phys73, 5939(1993.

context would be to always take thmnforming stateas the
initial state. This would, however, introduce unnecessary confu-
sion when discussing the different field configurations.

26y, Millev and M. Féahnle, IEEE Trans. MagrB2, 4743(1996.

181 Fritzsche, J. Kohlhepp, H. Elmers, and U. Gradmann, Phys?'The discussion holds true fdf;<0 with all the inequalities

Rev. B49, 15 665(1994.

reversed.

9H. P. Oepen, M. Speckmann, Y. T. Millev, and J. Kirschner, 28|n this instance, “high fields” are those of strength higher than

Phys. Rev. B65, 2752(1997); H. P. Oepen, Y. T. Millev, and J.
Kirschner, J. Appl. Phys31, 5044(1997).

20\, Speckmann, H. P. Oepen, and H. Ibach, Phys. Rev. EBtt.
2035(1995.

2'H. P. Oepen and J. Kirschner, Scanning Micrdscl (1997).

22|, G. Onoprienko, Fiz. Met. MetallovedL9, 481 (1965; A. I.
Mitsek, N. P. Kolmakova, and D. |. Sirotéid. 38, 35 (1974);

Heoss the latter is determined again by the anisotropy param-
eters as given in Eq15).

2|n this case, thesymptoticshape has been taken into consider-

ation.

30Besides, as has just been remarked, one needs all details about the

involved quantities, quite unlike the rather gener‘e_ll,r() pre-
sentation.



