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Influence of external field on spin reorientation transitions in uniaxial ferromagnets.
I. General analysis for bulk and thin-film systems

Y. T. Millev,* H. P. Oepen, and J. Kirschner
Max-Planck-Institut fu¨r Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany

~Received 18 March 1997!

A general phenomenological discussion of spin reorientation transitions~SRT’s! is given which contributes
to the understanding of both bulk and thin-film behavior in applied fields. The two principal field configura-
tions ~parallel and perpendicular to the crystallographic axis of symmetry! are considered. In contrast to
spontaneous SRT’s, only two phases compete when an external magnetic field is applied, a canted and a
field-aligned one. The complete stability analysis leads to a basic phase diagram which encompasses both
configurations at once. The coexistence of phases is seen to persist even with the field and is described
quantitatively. The practical implications of the analysis for temperature-driven and thickness-driven SRT’s are
carefully considered.@S0163-1829~98!07709-1#
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I. INTRODUCTION

The study of spin reorientation transitions~SRT’s! in bulk
ferromagnetic materials has a long history1–3 and is still very
intensive for materials involving rare-earth ions which bri
about large bulk anisotropies.4 Over the last few years, th
phenomenon has been of increasing fundamental and t
nological interest in the context of thin ferromagnetic film5

In both bulk and thin films one findsspontaneousreori-
entations in the absence of an external field. The compe
effects are the different contributions to the anisotropy f
energy: anisotropies of different orders and origins. In
bulk, the driving parameter for the spontaneous reorienta
transitions is thetemperature, while thickness-driventransi-
tions are additionally possible in thin and ultrathin films. T
strong thickness dependence of anisotropy in the latter
tems originates from the characteristic contribution of int
faces. Altogether, the availability of a second tuning para
eter beside temperature makes the situation with the SR
in thin films much richer and, at the same time, much m
complicated.

The application of amagnetic fieldintroduces a new com
petitor via the unidirectional Zeeman term. The spontane
SRT’s are strongly modified and rather complicated mag
tization processes may occur under variation of field. In
phenomenological treatment of homogeneous rotation
magnetization, one has to examine the free enthalpy of
system which is the sum of the anisotropy energies and
Zeeman energy. In view of the extensive literature ove
long period of time, it would then seem that all features a
predictions of the phenomenological approach to SRT’s h
by now been completely elucidated. We intend to show t
this is not the case and that there are important features o
SRT’s in the presence of a field which can be treated o
more general ground and can shed light on some un-not
aspects.

A rather useful representation of the behavior of any s
tem with anisotropy has been introduced very recently:6 The
anisotropy-flow concept allows one, in principle, to monit
the evolution of the system in its anisotropy space. One g
570163-1829/98/57~10!/5837~11!/$15.00
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insights into the possible generic types of reorientational
havior on very general grounds. The discussion has b
carried out for spontaneous, temperature-driven SRT’s in
bulk and has subsequently been generalized to the treat
of spontaneous thickness- or temperature-driven SRT’s
ultrathin ferromagnetic films.7 One of the purposes of thi
study is to show how far one can extend this anisotro
space representation when an external field is applied
system ofuniaxial magnetocrystalline anisotropy. It turn
out that each level of generality of treatment has its natu
variables so that their choice depends on what feature on
interested in. We do not address the problem of SRT’s
systems ofcubic symmetry in an external field which ha
attracted more attention and has a higher symmetry of p
sible orientations of the easy axes;8,9 we are ultimately inter-
ested in SRT’s in ultrathin films where a uniaxial contrib
tion due to the lowering of symmetry at interfaces10 and/or
large uniaxial strains11 is typically found.

The structure of the paper is as follows. In Sec. II w
present the phenomenological model for uniform rotat
which encompasses very generally both bulk and thin-fi
systems with anisotropy of up to second order in a cons
external field. To make the discussion self-contained, a b
summary of the most important features from the sponta
ous~zero-field! case is given.1,2,7 In addition, a short descrip
tion is given for the simpler case when no higher-order
isotropy is present.12

In Sec. III we proceed with the stability analysis of th
relevant free enthalpy in a most general form by identifyi
the natural dimensionless parameters for the two major
entations of the external field, one parallel and one perp
dicular to the symmetry axis. Here, one detects for both fi
orientations a singular point in the relevant phase diagr
which is delineated as a result of the stability analysis.
both cases, the singular point is the merging point of
curves which bounda region of coexistence of phases. The
region has its genesis in the underlying zero-field coex
ence phenomenon.

It is impossible to discuss all work related to the proble
but some papers have to be mentioned here as bearing
direct relevance to the mathematical analysis involved. O
5837 © 1998 The American Physical Society
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prienko is the first who considered the problem in its depth13

He described in detail the in-plane configuration for bu
systems. Mitseket al.14 considered the singular point i
greater detail and were able to detect interesting feature
the astroid curve1,15 which were due to the effect of highe
order anisotropy. References 16,17 also addressed t
order anisotropy in an external field~see also Refs. 18,19!.
Asti and Bolzoni17,19 emphasized the formal transformatio
between the analyses for the two field orientations and de
mined the phase boundaries by equating the energies o
competing phases, thus implementing the so-calledMaxwell
convention.20 The full-scope stability analysis, on the oth
hand, delineates the exact thermodynamic boundaries
thus also the regions of coexistence and metastability
phases whereby the magnetization processes are interp
in the perfect delay convention.20 A balanced and illuminat-
ing discussion of both approaches is given in Ref. 20.
carry out a general stability analysis for both field config
rations up to anisotropy of second order. The phase line
equal depth of coexisting minima which is important with
the Maxwell convention is also given. However, the mag
tization processes are not in the focus of this study; rat
we lay emphasis on the representations in the anisotr
space which are especially promising and will be exploi
in the context of thin films~part II, next paper!.

Section IV is devoted to the specification of the pha
diagrams in the more physical terms of reduced field a
ratio of the first to the second anisotropy constants. The
existence phenomenon and the singular point are see
exist only for negative values of the second anisotropy c
stant. The formal symmetry of the general treatment is p
sented in suitable diagrams in terms of the relevant phys
parameters. The ‘‘physical’’ representation leads to a cer
lifting of the degeneracy of the formal description, thus
vealing the important differences between coaxially and p
pendicularly oriented fields.

Section V introduces a presentation in terms of the ani
ropy constants scaled against the Zeeman energy ampli
This representation seems to be particularly well suited to
investigation of thickness-driven SRT’s in thin films, since
preserves the linearity of the anisotropy flows which h
been found in the case without field.7

In Sec. VI, we summarize the results and discuss pros
tive applications and extensions of the method.

II. THE MODEL AND ITS RELEVANT LIMITING CASES

We examine a uniaxial system with anisotropy free e
ergy density of the form1–3

f A5a sin2u1b sin4u, ~1!

wherea andb are the first and second anisotropy contrib
tions, respectively, while the angle between the direction
of the axis of uniaxial anisotropy and the direction of ma
netizationM is denoted asu ~Fig. 1!. Both constants may
encompass contributions other than the purely magnetoc
talline ones as, for instance, contributions due to magn
elastic coupling.21 In both bulk and thin-film systems, ther
may exist a dipolar~shape! anisotropy contribution to the
first anisotropy constanta. This is important only for small
ferromagnetic particles or when one or two of the dime
of
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sions of the system are much smaller than the rest, as in
films or needles. In any case, the dipolar contribution to
overall anisotropy plays a central role in the context of th
film SRT’s. Anisotropies in the plane perpendicular to t
axisn are neglected as irrelevant to the salient features of
SRT in the corresponding system~see, however, the secon
to the last paragraph in the Discussion, Sec. VI!.

Once a magnetic field has been applied to the system~Fig.
1!, the anisotropy energetics of the system is contained in
enthalpy density1–3,20

gA5 f A1eZ , ~2!

whereeZ is the Zeeman term which favors parallel alignme
of magnetic moment and external field and is thus of auni-
directional anisotropy type. Explicitly,

eZ52H–M52HMH52HMcosc52z cosc. ~3!

Here,H andM denote external field and saturation magn
tization, respectively,MH is the component of magnetizatio
along the magnetic field, while the last equation defines
quantity z. As we neglect anisotropies in the plane perpe
dicular ton, the magnetization vector lies always in the pla
determined byn andH. We useHn when the field is parallel
to the easy axisn andHp when the field is perpendicular t
the easy axis. These two principal field configurations w
occasionally be calledcoaxialandin-plane, respectively. For
a general orientation of the field, the anglef betweenH and
n andu are the two relevant angular variables in the probl
(c together with any ofu or f is just as good a choice; in
the absence of in-plane anisotropy termsucu5uf2uu). As-
suming that in practicef can be controlled, one remain
with a minimization problem for the enthalpy as a functio
of u. This is the Stoner-Wohlfarth problem,12,15 extended to
include higher-order anisotropy.13,14,18

Now then, for anarbitrary direction of the field~i.e., for
an arbitraryf), even if the higher-order anisotropyb is iden-
tically zero, one has to solve a general quartic equation
study the stability of its solutions. Equivalently, one finds
parametric solution for the boundaries between stable
metastable states in the (Hn ,Hp) plane which leads to the
so-called astroid curve.1,15,18A geometrical~graphical! con-

FIG. 1. The geometry of the uniaxial problem in applied ma
netic field.
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57 5839INFLUENCE OF EXTERNAL FIELD . . . . I. . . .
struction is used to extract the equilibrium direction of ma
netization and to study the processes of magnetization,
to variations of field. IfbÞ0, the minimization equation to
be solved is of eighth degree, but the problem still allows
astroid type of analysis.14,18 However, the relative simplicity
of the picture is lost and the analysis has remained inc
plete.

For the problem that we are interested in, one can alw
arrange to have the field fixed in a coaxial or in-plane c
figuration with respect to the axisn. Hence, it makes sense t
study separately the cases with parallel fieldHn and with
in-plane fieldHp . Apart from the simplification achieved b
the choice of particular directions of the field, we will on
discuss solutions with 0<u<p/2 (0<cosu, sinu<1), i.e.,
we are not interested in magnetization processes under d
tion reversal of applied field in the context of this paper.

A. Limiting case of vanishing higher-order anisotropy

In the general analysis, it will soon turn out that thesign
of the second anisotropy constant bis very important. In
addition, normalization with respect tob will be required at
certain stages. It is, therefore, advisable to sort out the sim
case ofb50 for the two distinct orientations of field.

With b50, the minimization procedure is pretty transpa
ent. One requires thatdgA /du50, d2gA /du2>0. The results
are summarized in Fig. 2. Note that in this figure we ha
found it more instructive and compact to present both fi
configurations in the same plot, whereby the upper~lower!
half-plane refers to the in-plane~coaxial! configuration, re-
spectively. An important feature which holds throughout t
analysis with applied field is thatonly two phasesof different
orientations of magnetization may occur. In the two config
rations we are going to consider, these are invariably a ph
of magnetization collinear with the field direction~field-

FIG. 2. Phase diagram for uniaxial ferromagnet in external fie
Only first-order anisotropy contributions are considered. Both fi
configurations are given in one plot. Upper half-plane: in-plane fi
configuration (Hp); lower half-plane: coaxial field orientation (Hn).
The phase boundaries occur at magnitudes of the applied field e
to the anisotropy fieldHA52uau/M .
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aligned or conforming phase! and a phase of canted magn
tization ~canted phase!. With or without higher-order anisot
ropy, a phase with the magnetization perpendicular to a fi
corresponds to a state of uncompensated torque acting o
magnetization which is why it cannot be sustained phy
cally.

In the absence of higher-order anisotropy, the phase
gram in this presentation exhibits central symmetry~Fig. 2!
with the projection of magnetization along the respect
field direction being equal in both cases:

mH5
MH

M
5

H

HA
, ~4!

whereHA52uau/M is the so-called anisotropy field.2,3,20It is
useful to think about this diagram in its connection with t
underlying zero-field case, where the two possible pha
~for b50) share equal portions of the allowed parame
space2`,a,1`: in-plane wins for negativea, coaxial
wins for positivea; the border point is simplya50. With
the field, this point gives birth to the respective borderlines
Fig. 2. Coaxial (Hn) or in-plane (Hp) field boosts the zero-
field phase of the same name, while the other compet
phase is disfavored by the applied torque and is modified
a canted phase of a relatively small domain of stability. T
SRT occurs between these two phases upon variation
some physical parameter such as temperature for bulk
thin-film systems or thickness for the latter. The field is a
sumed constant in magnitude and direction.

B. Limiting case of zero applied field

Similar heuristic projection onto the simpler spontaneo
case is useful with the more complicated diagrams to
encountered below. WhenbÞ0, the reference zero-field cas
is best described in the anisotropy space of the system,
in the plane (a,b).6 Due to the higher-order anisotropy con
tribution, three stable spontaneous phases are possible
additional one being aspontaneouslyor ‘‘true’’ canted
phase. The coaxial phase is absolutely stable fora.0,
a.2b, the in-plane phase is so forb,0, b,2a, the
canted one sets in fora,0, b.2a. The most interesting
feature is thecoexistence of phaseswith easy-axis and easy
plane orientations of magnetization fora.0, b,2a/2. The
anisotropy-flow concept allows one, in principle, to follo
the trajectory of the system under variation of the drivi
parameter and to detect the possible SRT’s when the sys
crosses over to a phase of greater relative stability in
anisotropy space.6,7 One of the important issues of this pap
is to explain in detail how and to what extent the coexisten
phenomenon projects itself onto the physical situation w
an applied field, whereby a certain generalization of
anisotropy-flow concept appears both useful and inevitab

III. GENERAL STABILITY ANALYSIS
WITH UP TO SECOND-ORDER ANISOTROPY

CONTRIBUTIONS IN APPLIED FIELD

As discussed in the preceding section, the different pha
are to be distinguished by the corresponding equilibrium o
entations of the magnetization vectorM . These are to be
found and classified by examining the enthalpy density

.
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gA5a sin2u1b sin4u2MH cos~u2f!. ~5!

The necessary condition for the existence of extrema
gA(u) is

d

du
gA5~a12b sin2u!sin 2u1MH sin~u2f!50. ~6!

The sufficient condition for an extremum to be a minimum

d2gA /du2>0 ~7!

at the points determined by solving Eq.~6!.

A. Magnetization parallel to the field direction
„field-aligned or conforming solution…

For both coaxial (f50) and in-plane (f5p/2) field
configurations, Eq.~6! always has a solution correspondin
to magnetization pointing along the applied field~field-
aligned or conforming solution!. Mathematically, this is seen
in the factoring out of sinu or cosu in Eq. ~6!. The simple
solutions bring about simple stability conditions as well. B
Eq. ~7!, in the coaxial configuration the conforming phase
stable for

z12a>0⇒H>HA1522a/M>0, ~8!

while in the in-plane configuration the conforming phase
stable for

z22a24b>0⇒H>HA25~2a14b!/M>0. ~9!

HA1 and HA2 are anisotropy fields.22 In contrast to the
above-discussed case with a lowest-order anisotropy co
bution only, one finds two different anisotropy fields for th
different field configurations. As will be discussed in th
next section, two distinct anisotropy fields can indeed
detected for a particular range of values of the ratioa/b.

B. Magnetization tilted with respect to the field direction
„canted-phase solution…

The following general remarks have to be made bef
proceeding with the solution which corresponds to the can
phase in both configurations of field. There arethreeparam-
eters of the dimension of energy density in Eq.~5! for the
direction-dependent part of the enthalpy. These are the
plitude of the Zeeman energyz5HM and the first and sec
ond anisotropy constantsa andb. From the physical point of
view, only two independent ratios are relevant. This can
easily recognized in the freedom of choice to measure
enthalpy in units of any one from amonga, b, andz. Be-
sides, one is always free to define the zero of the enthalpy
shifting by a quantity which is angle independent.23

In the following, we examine three different dimensio
less pairs. The first of these, the variablesp andq, allows a
straightforward mathematical description for the cant
phase solution of Eq.~6! simultaneouslyfor both field con-
figurations. The second pair,r 5a/b and H̄5H/HC , where
HC is a certain critical field, allows the interpretation of th
mathematical results in more conventional terms, while
third pair, a5a/HM , b5b/HM , based on scaling agains
f

s

ri-

e

e
d

m-

e
e

ia

-

e

the amplitude of the Zeeman energy, is most suitable for
extension of the anisotropy-flow concept introduced in st
ies on spontaneous SRT’s.6,7

Let us now discuss the canted-phase solution for theco-
axial configuration. We define dimensionless ratiosp andq
as follows:24

p52S 11
a

2bD , q52
z

4b
52

HM

4b
~bÞ0!. ~10!

The inverse transformation to (a,b) for a givenz is a5(p
11)z/2q, b52z/4q. Denoting with xn the normalized
projection of magnetization along the fieldHn , xn
5Mn /M5cosu, one can use the freedom in fixing the ze
and the scale of energy in order to cast the angular-depen
part of the enthalpygA(u;p,q) as

gA2~a1b!

4ubu
5sgn~2q!xnS q1

1

2
pxn1

1

4
xn

3D . ~11!

The extremal Eq.~6! assumes the form

sin u•~xn
31pxn1q!50, ~xn5cosuP@0,1# !. ~12!

We have already discussed the field-aligned~conforming!
solution sinu50 (u50) and its stability in the previous sub
section. The canted-phase solution has to be found by s
ing the cubic and testing for stability. The cubic isin its
reduced formwith the ratiosp andq defined as above which
automatically means that these are the natural parameter
the mathematical solution of the problem.25

With the in-plane configuration, the problem can be fo
mally given precisely the same appearance by definingP and
Q as

P5a/2b, Q52z/4b52HM /4b. ~13!

The transformation back to (a,b) is given by a5
2zP/2Q, b52z/4Q. Denoting with xp the normalized
projection of magnetization along the in-plane fieldHp , xp
5M p /M5sinu, one finds that

gA

4ubu
5sgn~2Q!xpS Q1

1

2
Pxp1

1

4
xp

3D ~14!

and this is formally the same object as in Eq.~11! above. The
same is true for the appearance of the extremal equa
which is now

cosu~xp
31Pxp1Q!50, ~xp5sin uP@0,1# !. ~15!

Thus, the coaxial and in-plane configurations of the fie
can be discussed simultaneously, since the angular par
the duly normalized enthalpies are identical as are the m
mization equations for the magnetization components al
the applied field. Moreover, the same formal identity ho
for the sufficient condition for the canted-phase extremum
be a minimum. Making use of the cubic to reduce the pow
of x in the conditiond2gA /du2>0, one finds that the canted
phase solution is stable whenever it holds true that

q f@p,q,x~p,q!#<0, ~16!

where the functionf (p,q) is given by the expression
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f ~p,q!5~2p13!x2~p,q!13qx~p,q!1p ~17!

and it is understood thatx(p,q) is the root of the cubic for
the relevant field configuration.

The required information for the solutions of the cubic
given in the Appendix. We proceed with a discussion of
results of this general stability analysis.

C. The „p,q… diagram and stability of phases

Since both field configurations are reduced to the sa
formalism, it is sufficient to discuss in detail either the (p,q)
or the (P,Q) presentation, the discussion being literally va
for the other case as well. Solving Eq.~6! and imposing the
condition ~16!, one constructs the stability diagram, pr
sented in Fig. 3. Only the lines which bear relevance to
anisotropy problem in question have been preserved in
plot. The straight line is given by the equation

p1q1150. ~18!

The curves starting at the origin are the relevant portions
the curve, given by the equation~see the Appendix!

D[p3/271q2/450. ~19!

Equation~18! represents the borderline of stability (gAux519
50) for the conforming phase. This line and thep axis

FIG. 3. Phase diagram for uniaxial ferromagnet in applied fi
in the (p,q) representation. The mathematically natural variab
(p,q) are defined in Eqs.~10! and~13!. The representation encom
passesbothfield configurations. Left~right! half-plane corresponds
to positive ~negative! second-order anisotropyb. Coexistence of
phases is only possible for negativeb within the curvilinear triangle
OCT; the respective minima of the free enthalpy are of equal de
along the lineOB. The straight boundaries throughB andT emerge
from the stability condition on the conforming phase. Forb,0, the
canted phase invades the domain of the conforming phase up t
line OC. The tricritical pointC is the point of tangence ofBT with
the curve starting at the origin. Thep axis corresponds to the spon
taneous~zero-field! case, whereby the segmentOT represents the
‘‘true’’ canted phase in zero field. Besides, for given anisotrop
the p axis cannot be traversed without a change to the oppo
direction of the applied field.
e

e

e
e

f

divide the plane (p,q) into four segments which come to
gether at the pointT(p521, q50). Unlike the zero-field
case, in applied field only two phases are possible, the c
forming and the canted one. Mathematically, this is seen
the fact that as soon as the Zeeman terms in Eqs.~12! and
~15! are nonzero, one cannot factor out an additional trig
nometric function (sinu or cosu) and these are the ones th
bring about the third possible phase. The conforming so
tion ~magnetization along the field! is stable in the two larger
segments which appear shaded in Fig. 3. The canted-p
solution is stable in the remaining two smaller segments. T
different regions of the two phases are connected via
point T. Additionally, the canted phase is stable within t
curvilinear triangleOCT which belongs also to the the large
segment on the right-hand side. In other words,within this
triangle both canted and conforming phases coexist. Analyti-
cally, the triangle is described by the conditions

23<p<0, ~20!

max~0,2p21!<q<A227p3/4. ~21!

Here, the competing phases correspond to two distinct lo
minima of the enthalpygA . One of these minima is alway
deeper except along the line of exchange of stability defi
by the conditiongA(canted)5gA(conforming). Explicitly,
the line of equal depth for both minima~dotted lineOB in
Fig. 3! is given by

p52
3

21/3
q2/3 for qPF0,

1

2G . ~22!

Along OB the conforming and the canted phase excha
stability. It corresponds to the Maxwell-conventio
borderline20: in this scenario, the transition between the tw
phases takes place when both minima are equally deep,
along the lineOB ~examples are given in Ref. 20!. Metasta-
bility effects due to ‘‘overheating’’ or ‘‘undercooling’’ are
not expected. The other alternative, the perfect-de
convention,20 suggests that under variation of the driving p
rameter the system is trapped in the minimum from which
started its evolution It remains there until the minimum d
appears completely.7,20 No switching to the deeper minimum
of the competing phase occurs within the region of coex
ence. The canted-phase solution of the cubic isx3(p,q)
which is the relevant one from among three real solutio
available in this region~see the Appendix!. In between the
two minima there must be a local maximum. The maxim
solution of the cubic isx2(p,q) ~see the Appendix!. This
solution is important if the height of the barrier separati
the two local minima is required.

In view of the definition ofq5Q52z/4b with z.0 and
the fact that one finds coexistence forq or Q positive, it
follows immediately thatcoexistence is only possible fo
negative values of the second anisotropy constant. PointC is
perhaps the most interesting point in the phase diagr
More precisely,C is the merging point of the lineD(p,q)50
of discontinous transitions13 with the line p1q1150 of
continuous reorientation transitions, hence, it can be in
preted as atricritical point ~more generally, as a multicritica
point! in the sense of the theory of phase transitions a
critical phenomena.1
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IV. SPECIFICATION OF THE PHASE DIAGRAMS
FOR BOTH FIELD CONFIGURATIONS

IN PHYSICAL TERMS

In this chapter, we deduce the field–anisotropy diagra
in the form of two-dimensional plots for both field orient
tions studied. The translation of the general mathemat
results presented in Fig. 3 is formally effected by the inve
transformations to the anisotropy variables. They have b
given above.

The existence of the critical pointC in the (p,q) diagram
provides the opportunity for a suitable physical scaling of
quantities involved. Sinceqcr(Qcr)52, one finds that in both
field configurations the critical fieldHC is given by13,14,18

HC58ubu/M , ~23!

while, with pcr(Pcr)523, the relation between the first an
second anisotropy constants at the critical point isa
54b (b,0) for the coaxial configuration anda5
26b (b,0) for the in-plane configuration. The results c
be suitably presented on a single diagram for both field c
figurations in close correspondence with the choice of a
in Fig. 2. In Fig. 4~a! one finds the diagram for positiv
second anisotropy constant (b.0), while Fig. 4~b! presents
the case with negativeb. The proper units areH̄n[Hn /HC

5HnM /8ubu or H̄p[Hp /HC5HpM /8ubu for the ordinate
axes andr[a/b for the abscissa. The upper parts of bo
diagrams refer to the in-plane field configuration, the low
ones concern the coaxial configuration. Due to the effec
higher-order anisotropy, the diagrams are substantially
ferent from that of Fig. 2. The general feature which is p
served from theb50 case of Fig. 2 is that the conformin
phases dominate the larger portions of the diagram, while
canted phase occupies much smaller areas. Besides, this
sentation preserves the formal central symmetry of the
grams for each of the signs ofb; the center of symmetry
however, is shifted tor 521. Thus, the very presence o
higher-order anisotropy modifies significantly the structu
of the phase diagram.

A. Positive higher-order anisotropy †b>0, Fig. 4„a…‡

In the coaxial configuration@lower part of Fig. 4~a!#, the
borderline between conforming and canted phases is g
by H̄n52r /4 and thus traverses the origin. In the in-plan
configuration@upper part of Fig. 4~a!#, the borderline is given
by H̄p5(21r )/4. If Hn5Hp50, the diagram collapses ont
the abscissa which describes the case of spontaneous S
(H50): in-plane for 0,b,2a/2, canted withb.2a/2
.0, and coaxial fora.0, b.0. It is only along the ab-
scissa~zero field! that a monotonic anisotropy flow driven b
thickness, temperature, or some other parameter w
traversetwo border points. As soon as the field is applied a
as long as the second constantb is positive, any monotonic
trajectory cannot have more than one cross point in a gi
field configuration. Hence, peculiarities are to be expec
only at a unique point in the phase diagram for a fixed fi
configuration. In other words, each of the spontaneous c
points gives rise to a single phase borderline in the co
sponding field configuration.
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B. Negative higher-order anisotropy„b<0…

As mentioned at the beginning of this paper, coexistenc
of phases in applied field is only possible with anegative

FIG. 4. Phase diagrams in physical terms. Field values are no
malized against the critical fieldHC defined by Eq.~23!; the ab-
scissa isr[a/b. Both field configurations are depicted in the same
plot ~upper half-plane for in-plane, lower half-plane for coaxial field
configuration!. ~a! Positive second-order anisotropy (b.0). Due to
the presence of nonzerob, the simple picture of Fig. 2 (b50) is
substantially modified. As soon as field is applied, only two com
petitors survive~canted and conforming!. With b positive, only one
phase boundary exists for each field configuration.~b! Negative
second-order anisotropy (b,0). The possible regions of coexist-
ence of phases are within the curvilinear triangles, whereby th
notation of Fig. 3 has been preserved for the most interesting poin
in the diagram. The extent to which the spontaneous~zero-field!
coexistence phenomenon~the segmentr P@22,0# on the abscissa!
projects itself onto the problem with field is clearly seen in the
offspring curvilinear triangles stemming from this segment.
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second-order anisotropy contribution. This is demonstra
in Fig. 4~b!. Once again, the abscissa corresponds to
zero-field case with spontaneous coexistence of coaxial
in-plane phases forb,2a/2, a.0. The borderlines of sta
bility for the conforming phases are given byH̄n5r /4 and
H̄p52(21r )/4 for the coaxial and in-plane configuration
of the field, respectively. The regions of coexistence are
closed between these two lines, the abscissa, and the
H̄n5(21r )3/2/A216 with coaxial field or H̄p5
(2r )3/2/A216 with in-plane field. Analytically, in coaxia
field coexistence is found within the region

22<r<0, ~24!

max~0,r /4!<H̄n<~21r !3/2/A216, ~25!

while with in-plane field the coexistence region is defined

22<r<0, ~26!

max@0,2~21r !/4#<H̄p<~2r !3/2/A216. ~27!

Altogether, in this representation one can recognize b
the form and the extent to which the coexistence phen
enon is held up in the presence of an applied field. T
critical values of field and anisotropy beyond which there
no coexistence are given byH̄51 and 22<r<4 or 26
<r<0 for the coaxial or in-plane configurations, respe
tively. Note that in order to find coexistence it is only ne
essary, but not sufficient, to haveH̄,1 or a value ofr within
the specified limits. The exact description of the coexiste
regions is given by the pairs of equations~24!,~25! and
~26!,~27! which bind together the values of both quantitie
The primed letters in Fig. 4~b! denote the same characteris
points as in Fig. 3.

V. STABILITY DIAGRAMS IN AN ALTERNATIVE
REPRESENTATION: SCALING AGAINST THE ZEEMAN

AMPLITUDE

Combining the information contained in Figs. 4~a! and
4~b! one can get the complete description of the phase
gram with field for the coaxial or in-plane configurations f
any sign ofb. A certain difficulty can be recognized. If th
second constantb approaches zero under the variation
some driving parameter other than the field, the correspo
ing point in the phase diagrams in Figs. 3 and 4 would te
to infinity.26,27 A zero point of the second anisotropy co
stantb in the ferromagnetic regime is not an abstract pos
bility as clarified in recent studies of higher-order anisot
pies in bulk and thin-film systems. For the bulk, it has be
shown that the second anisotropy constantb may change
sign.28 For ultrathin films, it has been deduced that the s
face contribution tob may have the opposite sign to that
the bulk contribution which means thatb would change sign
at some particular thickness of the film29 ~see also Fig. 1 in
part II!. In an elaborate theoretical microscopic analysis
the temperature dependence of anisotropies of ultra
films, Jensen has come across values of the microscopic
rameters for which both the first and the second overall~phe-
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nomenological! anisotropies go through zero at differe
temperatures.30

In the representation of Figs. 3 and 4 it is hard to follo
the evolution of the system ifb goes to zero, although i
would still be possible to predict where the system wou
re-emerge after the change of sign.28 A further difficulty with
tracing-down trajectories in the anisotropy space lies w
the nonlinear character of the representation even if the fi
is held fixed. In particular, this means that the variation
the parameterr would reflect neither the variation ofa, nor
that ofb. This would require a further straining of the phys
cal intuition even if the corresponding variation for each oa
andb is known separately.

On the other hand, in the general analysis of the entha
in Sec. II we mentioned that three self-suggesting poss
choices of proper units of energy are at hand which opens
the possibility of scaling againstb, a, or z. We have carried
out the first case in detail and scaling againsta does not
bring new insights. Here we discuss the third possibili
scaling against the amplitudez5HM of the Zeeman energy
Very generally, it disposes of the difficulties describ
above. In fact, this representation is an extension of
anisotropy-space representation of the spontaneous~zero-
field! case of SRT’s and of the related general concept
anisotropy flows.6,7,31 We develop now the formal relation
in this variant which are valid for both bulk and ultrath
systems. Its advantages will be exploited in the followi
paper in the context of SRT’s in thin films.

One defines

a5a/z5a/HM , ~28!

b5b/z5b/HM . ~29!

To obtain an exhaustive (a,b) diagram, one has to do bu
very little. First, the critical lines in Figs. 3 and 4 have to b
transformed to the new independent variables (a,b). Sec-
ond, the relevant solutions of the minimization problem ha
to be assigned to the various regions of the representa
For either coaxial or in-plane configurations, a suitable st
ing point is the respective (p,q) representation.

A. Coaxial field configuration „H[Hn…

With the coaxial configuration (f50), one finds the pair
of transforming relations as

p52~11a/2b!, q521/4b. ~30!

The inverse transformation is given by

a5
~p11!

2q
, b52

1

4q
. ~31!

The important lines in the (p,q) diagram of Fig. 3 transform
according to the following relations:

p1q1150↔a52
1

2
, ~32!

p50↔a522b, ~33!
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D50↔a522b1
3

2
b1/3. ~34!

These lines provide the structure arising under the nonline
mapping of the (p,q) plane onto the (a,b) plane. The com-
plete result is presented in Fig. 5~a!. The most important line
is a521/2 which arises from the requirement of stability
for the conforming phase. The region of coexistence of bo
conforming and canted phases is shaded in the figure. The
the relevant canted-phase solution isx3 as given in the Ap-
pendix. Remarkably, to the left of the linea521/2 in Fig.
5~a!, where the canted phase is the one and only stable pha
the relevant canted solution might be any one from amon
x3 , x0, and x1 ~see the Appendix!. Adding to the listx
51 (u50) which is the coaxial solution, one finds four

FIG. 5. The (a,b) representation.a and b are the first and
second anisotropy constants scaled against the Zeeman energy.
phase diagrams for coaxial and in-plane field configurations a
given in ~a! and ~b!, respectively. The regions of coexistence are
shaded. The appropriate solutions of the cubic are indicated; th
represent the stable canted-phase solutions.
ar

h
re,

se,
g

functionally different expressions which have to be even
ally considered. It turns out that discontinuous behavior
intimately connected with the coexistence phenomenon
applied field and occurs all the way along the borderlinea
522b13b1/3/2 for a.0, b,0 with the exception of the
tricritical point. The location of the tricritical point itself is
given by

ac52
1

2
, bc52

1

8
. ~35!

B. In-plane field configuration „H[Hp…

The parametersa andb are defined in the same way as
Eqs. ~28! and ~29! by scaling against the Zeeman ener
amplitude. The transforming relations now appear even s
pler:

p5
a

2b
, q52

1

4b
. ~36!

The inverse relations are rather obvious. The structure of
(a,b) diagram is obtained by translating the relevant lin
according to the following correspondence:

p1q1150↔a5
1

2
22b, ~37!

p50↔a50, ~38!

D50↔a52
3

2
b1/3. ~39!

The result of the nonlinear transformation to the anis
ropy variables is presented in Fig. 5~b!. The line a522b
11/2 is the most important one and, as in the previous s
section, stems from the stability condition for the conformi
phase. The region of coexistence is shaded, while the c
dinates of the critical point are given by

ac5
3

4
, bc52

1

8
. ~40!

Once again, there is an underlying subgeneric structure,
vided by the subregions of the phase diagram where the
evant solutions have a different functional form. Altogeth
one encounters the same number of expressions with the
axial configuration in the preceding subsection. The fou
expression isx51 for the conforming phase. We emphasi
once again thatx is defined as the normalized compone
which is collinear with the applied field, hence, here one h
x5sin u. The remarks from the previous subsection ab
the continuity of the solutions across the borderlines ap
here as well.

As mentioned earlier, each of the possible presentati
offers some advantages. It is obvious already here that, s
as the coexistence region is concerned, the (a,b) transfor-
mation has blown up the corresponding domain in the
rameter space considerably, thus making it suitable for
ther quantitative predictions based on graphical analysis.
a disadvantage, one cannot ‘‘observe’’ the zero-field cas
this diagram, sinceH→0 implies that bothuau and ubu tend
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to infinity. Hence, the trajectories tend to infinity along t
appropriate asymptote specified by the particular experim
tal conditions. One thus loses track, diagrammatically
least, of the natural ‘‘continuity’’ extension of the coexis
ence phenomenon from the zero-field case to the case
an applied magnetic field.

The (a,b) presentation is especially useful in the tre
ment of SRT’s in ultrathin films. Because of its simplicit
such an analysis seems unavoidable in the thin-film con
where the number of relevant anisotropy parameters gr
significantly. It will be shown in the second part~see next
article! that this representation is a natural extension of
anisotropy-flow concept introduced recently and that
thickness-driven trajectories in the anisotropy space
linear.6,7,31 This presentation then provides the basis for
unified analysis of facts which otherwise appear as stron
system dependent and disconnected from each other.

VI. DISCUSSION AND CONCLUSIONS

The analysis provided above is rather general and ap
cable to both bulk and thin-film systems exhibiting SRT’s
the presence of applied magnetic field. One of the impor
issues has been to show that no conceptual barrier e
between the phenomenological treatments of bulk and t
film systems. Even if one addresses bulk SRT’s only,
analysis provides insights and a compact exhaustive tr
ment which, to our knowledge, is not available in the lite
ture. We have elaborated three representations for the an
sis of the reorientation transition. In all of these, the m
important feature is the extinction of the third~nonconform-
ing! phase known from the zero-field case and the existe
of a restricted region of coexistence of the remaining t
competing phases, the canted and conforming ones.
treatment is carried out for both coaxial and in-plane fi
configurations. Emphasis was laid on handling a situat
where the field is held fixed and the SRT is induced
variation of some other driving parameter. Thus, fie
induced magnetization processes are not in the focus, s
they have been given enough attention and since we
mainly interested in providing a basis for a unified treatm
of SRT’s in ultrathin films. Still, all the results can be ut
lized for discussing magnetization proceses as well.

The analytically most natural representation is the (p,q)
representation. It is also thesourcerepresentation, since th
more physical ones are derived from it by mere identificat
of the relevant variables, i.e., practically by means of form
nonlinear substitutions~mappings! whereby a certain par
ticularization is unavoidable if one is to describe correc
the effect of the signs of the anisotropy constants. The st
ture of the (p,q) diagram, and hence of those deriving fro
it, is determined by stability analysis of the allowed phas
In both field configurations, these are a conforming ph
~magnetization aligned with the applied field! and a canted
phase~magnetization askew to the field!. It must be empha-
sized here that although the canted phase appears as a m
lithic piece in all of the diagrams, this is in facta nonhomo-
geneous phasein the sense that the canting angle varies
different portions of the diagram. Moreover, for a particu
trajectory of the system in the corresponding space this a
will vary along the trajectory.32 Should sufficient information
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on the system in question be available, one can deduce f
this type of analysis the magnetization profiles along a
specified evolution~trajectory! in the anisotropy space. Fo
instance, one can describe the magnetization profile wh
would be seen on a vertically or horizontally magnetiz
ultrathin ferromagnetic wedge in a constant external field
one can describe the canting angle in a bulk anisotropic
romagnet in the presence of field as has previously b
done for the spontaneous SRT in bulk systems. This p
will be elaborated in the following article.

We have emphasized the advantages and the shortc
ings which go together with each of the different represen
tions with the understanding that it is the whole set of d
tinct representations that adds up to an exhaus
description. As an important example, one cannot treat
zero-field SRT in the (a,b) representation, since the poin
corresponding to the zero-field case is at infinity; however
is precisely in this representation that the suitable linear
jectories for the thickness-driven SRT’s in ultrathin films a
recovered with field as well.

A very important application of the present general fo
malism is the study of SRT’swithin the film plane, which
have already been detected.33–36 In fact, only minute adjust-
ments are necessary to apply the whole analysis in this p
to such in-plane reorientations in external field applied
different angles within the easy plane. More generally,
gardless of the particular crystallographic symmetry, o
study is immediately applicable to all cases of bulk and th
film processes of rotation ofMW in an applied field, in the
course of whichMW remains within a given plane.

We hope that the diagrams presented here are useful
in preserving the overview and choosing the correct ‘‘wo
ing point’’ or experimental conditions for all technique
which exploit the effect of an applied field for studyin
SRT’s or, more generally, anisotropy behavior in uniax
bulk and thin-film systems. Outstanding among these are
ferromagnetic resonance,37 Brillouin light scattering,38 the
torque oscillation magnetometry,39 and the magneto-optic
Kerr effect.40
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APPENDIX

Here we present concisely the required information ab
the solutions of a general cubic equation.25 Given that the
equation has been transformed to the formx31px1q50,
the number of real solutions depends on the sign of the qu
tity D5p3/271q2/4.

For D<0, the cubic has three real roots which are su
ably cast in a trigonometric form:41

xk522R cos@F/312~k21!p/3#, k51,2,3, ~A1!

whereR5sgn(q)Aupu/3 andF5arccos(q/2R3).
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For D.0, there is a unique real solution, whereby forp
,0 the solution is of the form

xch522Rcosh~Fch/3! ~p,0!, ~A2!

with Fch5arccosh(q/2R3), while for p.0 the unique solu-
tion is

xsh522Rsinh~Fsh/3! ~p.0!, ~A3!

with Fsh5arcsinh(q/2R3).
In our problem, one imposes the additional restrictio

that~i! the real root~s! be between zero and unity, and~ii ! the
stability condition~16! be satisfied. The results are summ
rized in Fig. 3. The conforming solution~magnetization
along the field! is independent ofp and q and, therefore,
ns

a-

exists everywhere in the (p,q) plane. For this solution, re-
strictions depending onp andq arise from the stability con-
dition d2gA /du2>0 only @cf. Eqs.~8! and~9! in Sec. III A#.

The algebraic form of the solutions to the cubic is,
course, completely equivalent to the trigonometric one, bu
somewhat clumsy. Still, it might be used to represent
case withD.0 and either sign ofp compatible with the
positivity of D by a single expression, i.e., instead ofxch and
xsh from above, one might use the algebraic expression
the unique real root:

x0~D.0!5S 2
q

2
1AD D 1/3

1S 2
q

2
2AD D 1/3

. ~A4!
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