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Influence of external field on spin reorientation transitions in uniaxial ferromagnets.
I. General analysis for bulk and thin-film systems
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Max-Planck-Institut fu Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
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A general phenomenological discussion of spin reorientation transi®R$’s) is given which contributes
to the understanding of both bulk and thin-film behavior in applied fields. The two principal field configura-
tions (parallel and perpendicular to the crystallographic axis of symrheirg considered. In contrast to
spontaneous SRT'’s, only two phases compete when an external magnetic field is applied, a canted and a
field-aligned one. The complete stability analysis leads to a basic phase diagram which encompasses both
configurations at once. The coexistence of phases is seen to persist even with the field and is described
quantitatively. The practical implications of the analysis for temperature-driven and thickness-driven SRT's are
carefully considered.S0163-182608)07709-1

[. INTRODUCTION insights into the possible generic types of reorientational be-
havior on very general grounds. The discussion has been
The study of spin reorientation transitiof8RT’s) in bulk  carried out for spontaneous, temperature-driven SRT’s in the
ferromagnetic materials has a long historyand is still very ~ bulk and has subsequently been generalized to the treatment
intensive for materials involving rare-earth ions which bring0f spontaneous thickness-_or temperature-driven SRT’s in
about large bulk anisotropidsOver the last few years, the ultrathin ferromagnetic film$.One of the purposes of this
phenomenon has been of increasing fundamental and techtudy is to show how far one can extend this anisotropy-
nological interest in the context of thin ferromagnetic filffns, SPace representation when an external field is applied to a
In both bulk and thin films one findspontaneouseori- system ofuniaxial magnetocrystallme anisotropy. _It turns
entations in the absence of an external field. The competin ut that each level of generality of treatment has its natural

effects are the different contributions to the anisotropy free;nig?ebslfes dsionth\‘/”‘\}eth(i')r :1:2?';3 dc:gggr;ﬂz orr]ovgree;;fi?tgs#sn?r:s
energy: anisotropies of different orders and origins. In the - X prob :
. systems ofcubic symmetry in an external field which has

Qttracted more attention and has a higher symmetry of pos-

t_ransmons(;z_thetewperatu.rbelwhllehFhlckr(;esls-dr;]yer:.rlansr_rh sible orientations of the easy ax&$we are ultimately inter-
tions are additionally possible in thin and ultrathin films. The ogtaq jn SRT’s in ultrathin films where a uniaxial contribu-

strong thickness dependence of anisotropy in the latter sy§jon que to the lowering of symmetry at interfat&and/or
tems originates from the characteristic contribution of |nter—|arge uniaxial straird is typically found.
faces. Altogether, the availability of a second tuning param- The structure of the paper is as follows. In Sec. Il we
eter beside temperature makes the Situation with the SRT’ﬁresent the phenomenologica' mode| for uniform rotation
in thin films much richer and, at the same time, much moreyhich encompasses very generally both bulk and thin-film
complicated. systems with anisotropy of up to second order in a constant
The application of anagnetic fieldntroduces a new com- external field. To make the discussion self-contained, a brief
petitor via the unidirectional Zeeman term. The spontaneousummary of the most important features from the spontane-
SRT'’s are strongly modified and rather complicated magneeus(zero-field case is giver:>’ In addition, a short descrip-
tization processes may occur under variation of field. In theion is given for the simpler case when no higher-order an-
phenomenological treatment of homogeneous rotation osotropy is present
magnetization, one has to examine the free enthalpy of the In Sec. Ill we proceed with the stability analysis of the
system which is the sum of the anisotropy energies and theelevant free enthalpy in a most general form by identifying
Zeeman energy. In view of the extensive literature over a&he natural dimensionless parameters for the two major ori-
long period of time, it would then seem that all features andentations of the external field, one parallel and one perpen-
predictions of the phenomenological approach to SRT’s havdicular to the symmetry axis. Here, one detects for both field
by now been completely elucidated. We intend to show thabrientations a singular point in the relevant phase diagram
this is not the case and that there are important features of thvehich is delineated as a result of the stability analysis. In
SRT'’s in the presence of a field which can be treated on &oth cases, the singular point is the merging point of the
more general ground and can shed light on some un-noticetlirves which bound region of coexistence of phasdhe

aspects. region has its genesis in the underlying zero-field coexist-
A rather useful representation of the behavior of any sysence phenomenon.
tem with anisotropy has been introduced very recehiijre It is impossible to discuss all work related to the problem

anisotropy-flow concept allows one, in principle, to monitor but some papers have to be mentioned here as bearing more
the evolution of the system in its anisotropy space. One gaingirect relevance to the mathematical analysis involved. Ono-
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prienko is the first who considered the problem in its dépth.

He described in detail the in-plane configuration for bulk
systems. Mitseket all* considered the singular point in
greater detail and were able to detect interesting features of
the astroid curvk!® which were due to the effect of higher-
order anisotropy. References 16,17 also addressed third-
order anisotropy in an external fieldee also Refs. 18,19

Asti and Bolzont”*® emphasized the formal transformations
between the analyses for the two field orientations and deter-
mined the phase boundaries by equating the energies of the
competing phases, thus implementing the so-caledwell
conventiorf® The full-scope stability analysis, on the other
hand, delineates the exact thermodynamic boundaries and
thus also the regions of coexistence and metastability of
phases whereby the magnetization processes are interpreted
in the perfect delay conventiof! A balanced and illuminat-
ing discussion of both approaches is given in Ref. 20. We
carry out a general stability analysis for both field configu-
rations up to anisotropy of second order. The phase line o

equal depth of coexisting minima which is important within g, of the system are much smaller than the rest, as in thin

the Maxwell convention is also given. However, the magnes;ms or needies. In any case, the dipolar contribution to the

tization processes are not in the focu_s of t_h|s study;_ ratheloy e rq)] anisotropy plays a central role in the context of thin-
we lay emphasis on the representations in the anlsotroz!<

hich iall - 4 will b loi m SRT’s. Anisotropies in the plane perpendicular to the
space which are especially promising and will be exploited,y;s, are neglected as irrelevant to the salient features of the
in the context of thin filmgpart Il, next paper

: ) TR SRT in the corresponding systeisee, however, the second
Section IV is devoted to the specification of the phas b g systet

: . . : o the last paragraph in the Discussion, Seg. VI
d@grams m_the more physical terms of reduced field an Once a magnetic field has been applied to the sy$Eg
ratio of the first to the second anisotropy constants. The €0p) the anisotropy energetics of the system is contained in the
existence phenomenon and the singular point are seen thalpy density32°
exist only for negative values of the second anisotropy con-
stant. The formal symmetry of the general treatment is pre- ga=fates, 2)
sented in suitable diagrams in terms of the relevant physical ] . ]
parameters. The “physical” representation leads to a certaifVheree is the Zeeman term which favors parallel alignment
liting of the degeneracy of the formal description, thus re-0f magnetic moment and external field and is thus oha
vealing the important differences between coaxially and perdirectional anisotropy typeExplicitly,

endicularly oriented fields.
P Section i// introduces a presentation in terms of the anisot- €2~ H-M=-HM,=—-HMcosj=—-zcosj. (3
ropy constants scaled against the Zeeman energy amplitudgere,H andM denote external field and saturation magne-
This representation seems to be particularly well suited to theization, respectivelyM  is the component of magnetization
investigation of thickness-driven SRT's in thin films, since it along the magnetic field, while the last equation defines the
preserves the linearity of the anisotropy flows which hasquantity z. As we neglect anisotropies in the plane perpen-

lani]

FIG. 1. The geometry of the uniaxial problem in applied mag-
etic field.

been found in the case without field. dicular ton, the magnetization vector lies always in the plane
In Sec. VI, we summarize the results and discuss prospegtetermined byr andH. We useH,, when the field is parallel
tive applications and extensions of the method. to the easy axis andH, when the field is perpendicular to
the easy axis. These two principal field configurations will
Il. THE MODEL AND ITS RELEVANT LIMITING CASES occasionally be calledoaxialandin-plane respectively. For

a general orientation of the field, the anglebetweerH and

n and# are the two relevant angular variables in the problem
(¢ together with any ofd or ¢ is just as good a choice; in
the absence of in-plane anisotropy terji$=|¢— 6|). As-
suming that in practicep can be controlled, one remains
wherea andb are the first and second anisotropy contribu-with a minimization problem for the enthalpy as a function
tions, respectively, while the angle between the direction of 6. This is the Stoner-Wohlfarth probletft,® extended to

of the axis of uniaxial anisotropy and the direction of mag-include higher-order anisotrogy.'**8

netizationM is denoted a¥ (Fig. 1). Both constants may Now then, for anarbitrary direction of the field(i.e., for
encompass contributions other than the purely magnetocrysin arbitraryg), even if the higher-order anisotropyis iden-
talline ones as, for instance, contributions due to magnetaically zero, one has to solve a general quartic equation and
elastic coupling? In both bulk and thin-film systems, there study the stability of its solutions. Equivalently, one finds a
may exist a dipolarshape anisotropy contribution to the parametric solution for the boundaries between stable and
first anisotropy constard. This is important only for small metastable states in théif,H;) plane which leads to the
ferromagnetic particles or when one or two of the dimen-so-called astroid curve!®!® A geometrical(graphical con-

We examine a uniaxial system with anisotropy free en
ergy density of the forh®

fa=a sirfd+b sinte, (1)
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aligned or conforming phag@nd a phase of canted magne-
b=0 ’ P 3 tization (canted phaseWith or without higher-order anisot-
llp=2a/M ropy, a phase with the magnetization perpendicular to a field
corresponds to a state of uncompensated torque acting on the
magnetization which is why it cannot be sustained physi-
cally.

In the absence of higher-order anisotropy, the phase dia-
gram in this presentation exhibits central symméfrig. 2)
with the projection of magnetization along the respective
field direction being equal in both cases:

in-plane

a/M
mH_ M - HA, (4)
whereH ,=2|a|/M is the so-called anisotropy fiefd %It is
useful to think about this diagram in its connection with the
underlying zero-field case, where the two possible phases
(for b=0) share equal portions of the allowed parameter
H space—x<a<+x: in-plane wins for negativea, coaxial

" wins for positivea; the border point is simplya=0. With

FIG. 2. Phase diagram for uniaxial ferromagnet in external field the field, this point gives birth to the respective borderlines in
Only first-order anisotropy contributions are considered. Both fieldFig. 2. Coaxial H,) or in-plane H,) field boosts the zero-
configurations are given in one plot. Upper half-plane: in-plane fieldfield phase of the same name, while the other competitor
configuration Hp,); lower half-plane: coaxial field orientation,). phase is disfavored by the applied torque and is modified to
The phase boundaries occur at magnitudes of the applied field equalcanted phase of a relatively small domain of stability. The
to the anisotropy fieldd o= 2|a|/M. SRT occurs between these two phases upon variation of
some physical parameter such as temperature for bulk and

struction is used to extract the equilibrium direction of mag-thin-film systems or thickness for the latter. The field is as-
netization and to study the processes of magnetization, dusymed constant in magnitude and direction.

to variations of field. Ifb=# 0, the minimization equation to
be solved is of eighth degree, but the problem still allows an
astroid type of analysi¥"'® However, the relative simplicity

of the picture is lost and the analysis has remained incom- Similar heuristic projection onto the simpler spontaneous
plete. case is useful with the more complicated diagrams to be

For the problem that we are interested in, one can a|Way§ncountered _belovy. Whem#_o, the reference zero-field case
arrange to have the field fixed in a coaxial or in-plane condS best described in the anisotropy space of the system, i.e.,

figuration with respect to the axis Hence, it makes sense to in the plane &,b).° Due to the higher-order anisotropy con-
study separately the cases with parallel fielg and with tr|bqt_|on, three staple spontaneous phasss arfz possible, the
in-plane fieldH,, . Apart from the simplification achieved by additional one being aspontaneouslyor "true” canted

the choice of particular directions of the field, we will only Phase. The coaxial phase is absolutely stable &or0,
discuss solutions with € 6<m/2 (0<cosf, sin¢<1), i.e.,, &> b, the in-plane phase is so fdr<0, b<—a, the

we are not interested in magnetization processes under direg@nted one sets in fa<0, b>—a. The most interesting

tion reversal of applied field in the context of this paper.  f€ature is thecoexistence of phasegith easy-axis and easy-
plane orientations of magnetization far-0, b<—a/2. The

anisotropy-flow concept allows one, in principle, to follow
the trajectory of the system under variation of the driving

In the general analysis, it will soon turn out that $ign  parameter and to detect the possible SRT’s when the system
of the second anisotropy constantib very important. In  crosses over to a phase of greater relative stability in the
addition, normalization with respect towill be required at  anisotropy spac®’ One of the important issues of this paper
certain stages. Itis, therefore, advisable to sort out the simplig to explain in detail how and to what extent the coexistence
case ofb=0 for the two distinct orientations of field. phenomenon projects itself onto the physical situation with

With b=0, the minimization procedure is pretty transpar-an applied field, whereby a certain generalization of the
ent. One requires thatg, /d6=0, d°ga/dé*=0. The results  anisotropy-flow concept appears both useful and inevitable.
are summarized in Fig. 2. Note that in this figure we have

vertical

H "=-2a/ M

B. Limiting case of zero applied field

A. Limiting case of vanishing higher-order anisotropy

founq it more instructive and compact to present both field IIl. GENERAL STABILITY ANALYSIS

configurations in the same plot, whgreby the up@ewer) WITH UP TO SECOND-ORDER ANISOTROPY

half—p'lane refers to the |n-plar‘(eoa>_<|a) configuration, re- CONTRIBUTIONS IN APPLIED FIELD

spectively. An important feature which holds throughout the

analysis with applied field is thanly two phasesf different As discussed in the preceding section, the different phases

orientations of magnetization may occur. In the two configu-are to be distinguished by the corresponding equilibrium ori-
rations we are going to consider, these are invariably a phasmtations of the magnetization vectbt. These are to be
of magnetization collinear with the field directioffield- found and classified by examining the enthalpy density
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ga=a sifé+b siff6—MH cog 6— ¢). (5) the amplitude of the Zeeman energy, is most suitable for the

N _ extension of the anisotropy-flow concept introduced in stud-
The necessary condition for the existence of extrema ofes on spontaneous SRTPS.

ga(0) is Let us now discuss the canted-phase solution forcthe
axial configuration. We define dimensionless ratmsndq

d
—ga=(a+2b sirfh)sin 26+ MH sin(6— ¢)=0. (6) &5 follows?*

de
. L - . z HM
The sufficient condition for an extremum to be a minimum is p=—|1+ b/ q=-— YT E(b#O). (10
d?ga/d6?=0 (7)  The inverse transformation ta(b) for a givenz is a=(p

+1)z/2q, b=—2z/4q. Denoting with x, the normalized

projection of magnetization along the fieltH,, X,

=M,/M=cosé, one can use the freedom in fixing the zero

A. Magnetization parallel to the field direction and the scale of energy in order to cast the angular-dependent
(field-aligned or conforming solution) part of the enthalpga(6;p,q) as

For both coaxial $=0) and in-plane $=m/2) field

configurations, Eq(6) always has a solution corresponding ga—(a+b)

to magnetization pointing along the applied fielfield- 4|b|

aligned or conforming solutionMathematically, this is seen

in the factoring out of si or cosé in Eq. (6). The simple

solutions bring about simple stability conditions as well. By sin 6-(x3+px,+q)=0, (X,=cosfe[0,1]). (12)

Eq. (7), in the coaxial configuration the conforming phase is

stable for We have already discussed the field-aligriednforming
solution sind=0 (6=0) and its stability in the previous sub-

z+2a=0=H=H,,=—2a/M=0, (8)  section. The canted-phase solution has to be found by solv-

ing the cubic and testing for stability. The cubicis its

while in the in-plane configuration the conforming phase isreduced fornwith the ratiosp andq defined as above which

at the points determined by solving E&).

1 1,
=Sgn(—Q)Xn| A+ 5PXnt %] (1D

The extremal Eq(6) assumes the form

stable for automatically means that these are the natural parameters for
the mathematical solution of the problém.
z—2a-4b=0=H=Hjp,=(2a+4b)/M=0. (9 With the in-plane configuration, the problem can be for-

Ha, and H,, are anisotropy field? In contrast to the mally given precisely the same appearance by defiRiaagd

above-discussed case with a lowest-order anisotropy contri® as

bution only, one finds two different anisotropy fields for the P=a/2b, Q=—z/4b=—HM/4b. (13)
different field configurations. As will be discussed in the ’

next section, two distinct anisotropy fields can indeed beThe transformation back to a(b) is given by a=

detected for a particular range of values of the ratib. —zP/2Q, b=—-2/4Q. Denoting with x, the normalized
projection of magnetization along the in-plane fiéld, x,
B. Magnetization tilted with respect to the field direction =M,/M=sin 6, one finds that
(canted-phase solutioh 9 1 1
A
The following general remarks have to be made before W=SQW—Q)Xp Q+5Px+ ZXS) (14

proceeding with the solution which corresponds to the canted
phase in both configurations of field. There #teeeparam-  and this is formally the same object as in Ehjl) above. The
eters of the dimension of energy density in Eg). for the  same is true for the appearance of the extremal equation
direction-dependent part of the enthalpy. These are the amwhich is now
plitude of the Zeeman energg=HM and the first and sec-
ond anisotropy constangsandb. From the physical point of cos O(x3+Px,+Q)=0, (X,=sin #<[0,1]). (15
view, only two independent ratios are relevant. This can be ] ) ] ] ]
easily recognized in the freedom of choice to measure the Thus, the coaxial and in-plane configurations of the field
enthalpy in units of any one from amorag b, andz. Be-  ¢an be discussed simultaneously, since the angular parts of
sides, one is always free to define the zero of the enthalpy vil1e duly normalized enthalpies are identical as are the mini-
shifting by a quantity which is angle independéht. mization equations for the magnetization components along
In the following, we examine three different dimension- the applied field. Moreover, the same formal identity holds
less pairs. The first of these, the variabfeandg, allows a  for the sufficient condition for the canted-phase extremum to
straightforward mathematical description for the cantedPe aminimum. _Maklrzlg use gf the cubic to reduce the powers
phase solution of Eq6) simultaneouslyfor both field con-  Of X in the conditiond®g,/d¢°=0, one finds that the canted-
figurations. The second pair=a/b andH=H/H, where phase solution is stable whenever it holds true that
Hc is a certain critical field, allows the interpretation of the <
mathematical results in more conventional terms, while the aftp.a.x(p.q)J=0, (16
third pair, a=a/HM, B=Db/HM, based on scaling against where the functiorf(p,q) is given by the expression
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; divide the plane §,q) into four segments which come to-
Y gether at the poinT(p=—1, g=0). Unlike the zero-field
case, in applied field only two phases are possible, the con-
//// forming and the canted one. Mathematically, this is seen in
conforming/ the fact that as soon as the Zeeman terms in E.and
(15) are nonzero, one cannot factor out an additional trigo-
// nometric function (sirg or cosé) and these are the ones that
bring about the third possible phase. The conforming solu-
B . . tion (magnetization along the fields stable in the two larger
segments which appear shaded in Fig. 3. The canted-phase
solution is stable in the remaining two smaller segments. The
different regions of the two phases are connected via the
point T. Additionally, the canted phase is stable within the
curvilinear triangleD CT which belongs also to the the larger
segment on the right-hand side. In other wongghin this

triangle both canted and conforming phases coeXisalyti-
cally, the triangle is described by the conditions

)
7
conforming/

7

FIG. 3. Phase diagram for uniaxial ferromagnet in applied field =3
in the (p,q) represengtation. The mathematicaﬁy natura?pvariables max0,—p—1)=<qg< —27p3/4. (22)
(p.q) are defined in Eq410) and(13). The representation encom- Here, the competing phases correspond to two distinct local
passedothfield configurations. Lefright) half-plane corresponds  minima of the enthalpy,. One of these minima is always
to positive (negative second-order anisotroply. Coexistence of deeper except along the line of exchange of stability defined
phases is only possible for negativevithin the curvilinear triangle by the conditiong,(canted)=ga(conforming). Explicitly,

OCT, the respective minima of the free enthalpy are of equal dept - - : .
along the lineD B. The straight boundaries throughand T emerge thIS Ig)]eiso;isgﬁagydepth for both minimaotted lineOB in

from the stability condition on the conforming phase. Ber0, the
canted phase invades the domain of the conforming phase up to the 3

line OC. The tricritical pointC is the point of tangence &T with p=—— 23 for qe
the curve starting at the origin. Theaxis corresponds to the spon- 213
taneous(zero-field case, whereby the segmedfl represents the .

“true” canted phase in zero field. Besides, for given anisotropiesAlong OB the conforming and the canted phase exchange

the p axis cannot be traversed without a change to the oppositSt@bility. Olt_ corresponds  to the Maxwell-convention
direction of the applied field. borderliné® in this scenario, the transition between the two

phases takes place when both minima are equally deep, i.e.,
f(p,q)=(2p+3)x3(p,q) + 3gx(p,q) + p (17) g!c_)ng the lineOB (exi\mples are g,i’ven ‘i‘n Ref. )Z(Nl_eta’lysta-
ility effects due to “overheating” or “undercooling” are
and it is understood thad(p,q) is the root of the cubic for not expected. The other alternative, the perfect-delay
the relevant field configuration. conventior® suggests that under variation of the driving pa-
The required information for the solutions of the cubic is rameter the system is trapped in the minimum from which it
given in the Appendix. We proceed with a discussion of thestarted its evolution It remains there until the minimum dis-

—3=<p=0, (20)

1
05|. (22)

results of this general stability analysis. appears complete{?° No switching to the deeper minimum
of the competing phase occurs within the region of coexist-
C. The (p,q) diagram and stability of phases ence. The canted-phase solution of the cubicxdép,q)

gvhich is the relevant one from among three real solutions
available in this regior(see the Appendijx In between the
two minima there must be a local maximum. The maximal
solution of the cubic isx,(p,q) (see the Appendix This
solution is important if the height of the barrier separating
éhe two local minima is required.

In view of the definition ofq=Q= —z/4b with z>0 and

e fact that one finds coexistence fgror Q positive, it
follows immediately thatcoexistence is only possible for
p+q+1=0. (18 negative values of the second anisotropy constfaaintC is

i . i erhaps the most interesting point in the phase diagram.
The curves starting at the origin are the relevant portions of e preciselyC is the merging point of the linB (p,q) =0

the curve, given by the equatidsee the Appendix of discontinous transitiod$ with the line p+q+1=0 of
D=p®27+q?%/4=0. (19)  continuous reorientation transitions, hence, it can be inter-
preted as dricritical point (more generally, as a multicritical
Equation(18) represents the borderline of stabilitg)(,_,  point) in the sense of the theory of phase transitions and
=0) for the conforming phase. This line and tpeaxis critical phenomena.

Since both field configurations are reduced to the sam
formalism, it is sufficient to discuss in detail either the §)
or the (P,Q) presentation, the discussion being literally valid
for the other case as well. Solving E®&) and imposing the
condition (16), one constructs the stability diagram, pre-
sented in Fig. 3. Only the lines which bear relevance to th
anisotropy problem in question have been preserved in the;1
plot. The straight line is given by the equation L



5842 Y. T. MILLEV, H. P. OEPEN, AND J. KIRSCHNER 57

7z

IV. SPECIFICATION OF THE PHASE DIAGRAMS
FOR BOTH FIELD CONFIGURATIONS
IN PHYSICAL TERMS

In this chapter, we deduce the field—anisotropy diagram:
in the form of two-dimensional plots for both field orienta-
tions studied. The translation of the general mathematice
results presented in Fig. 3 is formally effected by the inverse
transformations to the anisotropy variables. They have bee
given above.

The existence of the critical poi@ in the (p,q) diagram
provides the opportunity for a suitable physical scaling of the
guantities involved. Sincg(Q¢,) =2, one finds that in both
field configurations the critical fielthc is given by>1418

Hc=8|b|/M, (23)

while, with p.(Pg) = — 3, the relation between the first and @
second anisotropy constants at the critical point ais
=4b (b<0) for the coaxial configuration anda=
—6b (b<0) for the in-plane configuration. The results can
be suitably presented on a single diagram for both field con
figurations in close correspondence with the choice of axe
in Fig. 2. In Fig. 4a) one finds the diagram for positive
second anisotropy constarti 0), while Fig. 4b) presents
the case with negativb. The proper units arél,=H,/H¢
=H,M/8Jb| or H,=H,/Hc=H M/8|b| for the ordinate
axes andr=a/b for the abscissa. The upper parts of both
diagrams refer to the in-plane field configuration, the lower
ones concern the coaxial configuration. Due to the effect o
higher-order anisotropy, the diagrams are substantially dif
ferent from that of Fig. 2. The general feature which is pre-
served from thdo=0 case of Fig. 2 is that the conforming
phases dominate the larger portions of the diagram, while th
canted phase occupies much smaller areas. Besides, this p
sentation preserves the formal central symmetry of the dia
grams for each of the signs &f the center of symmetry,
however, is shifted to =—1. Thus, the very presence of
higher-order anisotropy modifies significantly the structure
of the phase diagram. (b)

A. Positive higher-order anisotropy [b>0, Fig. 4)] FIG. 4. Phase diagrams in physical terms. Field values are nor-

borderline between conforming and canted phases is give?Fissa ig=a/b. Bothfield configurations are depicted in the same
by H.= —r/4 and thus traverses the origin. In the in-plane plot (upper half-plane for in-plane, lower half-plane for coaxial field
n— : -

. . . L configuration. (a) Positive second-order anisotropy>*0). Due to
con_ﬂguratlor[upper part of Fig. @], the borderline is given the presence of nonzetm the simple picture of Fig. 2b(=0) is

by Hp:(2+ r/a. 1fH,= szo, the diagram collapses onto substantially modified. As soon as field is applied, only two com-
the abscissa which describes the case of spontaneous SRp&itors survivecanted and conformingWith b positive, only one
(H=0): in-plane for O<b<—a/2, canted withb>—a/2  phase boundary exists for each field configuratitn. Negative
>0, and coaxial fora>0, b>0. It is only along the ab- second-order anisotropyp&0). The possible regions of coexist-
scissazero field that a monotonic anisotropy flow driven by ence of phases are within the curvilinear triangles, whereby the
thickness, temperature, or some other parameter wouldotation of Fig. 3 has been preserved for the most interesting points
traversetwo border points. As soon as the field is applied andin the diagram. The extent to which the spontane@eso-field

as long as the second constanis positive, any monotonic Coexistence phenomendthe segment <[ —2,0] on the abscissa
trajectory cannot have more than one cross point in a giveRrojects itself onto the problem with field is clearly seen in the
field configuration. Hence, peculiarities are to be expecte@ffsPring curvilinear triangles stemming from this segment.

only at a unique point in the phase diagram for a fixed field
configuration. In other words, each of the spontaneous cross
points gives rise to a single phase borderline in the corre- As mentioned at the beginning of this paper, coexistence
sponding field configuration. of phases in applied field is only possible withnagative

B. Negative higher-order anisotropy (b<0)
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second-order anisotropy contribution. This is demonstratedomenologicgl anisotropies go through zero at different
in Fig. 4b). Once again, the abscissa corresponds to theemperature®’

zero-field case with spontaneous coexistence of coaxial and In the representation of Figs. 3 and 4 it is hard to follow
in-plane phases fds<—a/2, a>0. The borderlines of sta- the evolution of the system i goes to zero, although it

b|||ty for the Conforming phases are given b_ynzr/zl, and would still be pOSSible to prEdiCt where the system would

gp: —(2+1)/4 for the coaxial and in-plane configurations re-emerge after the change of s further difficulty with

of the field, respectively. The regions of coexistence are ent_racmg-down trajectories in the anisotropy space lies with

closed between these two lines. the abscissa. and the “ﬁge nonlinear character of the representation even if the field
.= (2+1)%2216  with coa;(ial field o'r g — is held fixed. In particular, this means that the variation of
n— p—

Nro - , , , . the parameter would reflect neither the variation @f, nor
(—r)*%y216 with in-plane field. Analytically, in coaxial {hat ofh. This would require a further straining of the physi-
field coexistence is found within the region cal intuition even if the corresponding variation for eactaof
andb is known separately.

On the other hand, in the general analysis of the enthalpy
_ in Sec. Il we mentioned that three self-suggesting possible
max 0 /4)<H,=<(2+r)%% 216, (25 choices of proper units of energy are at hand which opens up
while with in-plane field the coexistence region is defined byghui ?ﬁ:s;i?lsl,lttycggs ﬁi“ggtgﬁa;% :c’:;”rnzé \;V;agi\&%gg r::g(tj
bring new insights. Here we discuss the third possibility,
scaling against the amplitude=HM of the Zeeman energy.
_ Very generally, it disposes of the difficulties described

max0,— (2+r)/4]<H,<(-r)%¥¥216. (270 above. In fact, this representation is an extension of the
anisotropy-space representation of the spontanénemo-

Altogether, in this representation one can recognize bothield) case of SRT’s and of the related general concept of
the form and the extent to which the coexistence phenomanisotropy flows:’3! We develop now the formal relations
enon is held up in the presence of an applied field. Then this variant which are valid for both bulk and ultrathin
critical values of field and anisotropy beyond which there issystems. Its advantages will be exploited in the following
no coexistence are given dy=1 and —2<r<4 or —6  paper in the context of SRT's in thin films.
<r=0 for the coaxial or in-plane configurations, respec- One defines
tively. Note that in order to find coexistence it is only nec-

—-2<r=<0, (29

—2<r=<0, (26)

essary, but not sufficient, to hate< 1 or a value ofr within a=alz=alHM, (28)
the specified limits. The exact description of the coexistence
regions is given by the pairs of equatiof®4),(25 and B=Dbl/z=b/HM. (29

(26),(27) which bind together the values of both quantities.

The primed letters in Fig.(®) denote the same characteristic 10 0btain an exhaustivea(8) diagram, one has to do but
points as in Fig. 3. very little. First, the critical lines in Figs. 3 and 4 have to be

transformed to the new independent variablesg). Sec-
ond, the relevant solutions of the minimization problem have
to be assigned to the various regions of the representation.
For either coaxial or in-plane configurations, a suitable start-
ing point is the respectivep(q) representation.

V. STABILITY DIAGRAMS IN AN ALTERNATIVE
REPRESENTATION: SCALING AGAINST THE ZEEMAN
AMPLITUDE

Combining the information contained in Figs(a# and
4(b) one can get the complete description of the phase dia- A. Coaxial field configuration (H=H,)
gram with field for the coaxial or in-plane configurations for
any sign ofb. A certain difficulty can be recognized. If the
second constanth approaches zero under the variation of
some driving parameter other than the field, the correspond-
ing point in the phase diagrams in Figs. 3 and 4 would tend p=-(1+al2p), q=-1/45. (30
to infinity.”*?” A zero point of the second anisotropy con- The inverse transformation is given by
stantb in the ferromagnetic regime is not an abstract possi-

With the coaxial configurationg=0), one finds the pair
of transforming relations as

bility as clarified in recent studies of higher-order anisotro- (p+1) 1
pies in bulk and thin-film systems. For the bulk, it has been a= , =—— (31
shown that the second anisotropy consthninay change 29 49

sign”® For_ uItr_athin films, it has been ded_ucec_i that the SUrhe important lines in thep,q) diagram of Fig. 3 transform
face contribution td may have the opposite sign to that of according to the following relations:

the bulk contribution which means thiatwould change sign '

at some particular thickness of the ffif(see also Fig. 1 in 1
part Il). In an elaborate theoretical microscopic analysis of p+q+l=0ca=——,
the temperature dependence of anisotropies of ultrathin 2
films, Jensen has come across values of the microscopic pa-

rameters for which both the first and the second ovépdé- p=0—a=-28, (33

(32
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] functionally different expressions which have to be eventu-
X r B coaxial ally considered. It turns out that discontinuous behavior is
intimately connected with the coexistence phenomenon in
1 applied field and occurs all the way along the borderkine
X =—2B+3BY92 for >0, B<0 with the exception of the

canted conforming tricritical point. The location of the tricritical point itself is
given by

1
1 1 1 I ac=— 5 ,8C=—§. (35

B. In-plane field configuration (H=H)

conforming The parametera and g are defined in the same way as in
Egs. (28) and (29) by scaling against the Zeeman energy
amplitude. The transforming relations now appear even sim-
pler:

a 1

in-plane P= 2B’ =" 4B (36)
3 p

- The inverse relations are rather obvious. The structure of the

X1 \ (a,B) diagram is obtained by translating the relevant lines
2 X according to the following correspondence:
1
. canted p+q+1=0<—>a=§—2,8, 37)
p=0<a=0, (39
1 1 ] | 1
-6 -4 2 3
D=0—a=-3 B (39)
conforming The result of the nonlinear transformation to the anisot-
ropy variables is presented in Fig(th. The linea=—-28
+1/2 is the most important one and, as in the previous sub-
section, stems from the stability condition for the conforming
b phase. The region of coexistence is shaded, while the coor-
(b) dinates of the critical point are given by
FIG. 5. The @,B) representationa and 8 are the first and :§ Bo=— E (40)
second anisotropy constants scaled against the Zeeman energy. The ®e 4’ ¢ 8’

phase diagrams for coaxial and in-plane field configurations are ) . ) )

given in (a) and (b), respectively. The regions of coexistence are ane again, there IS an underlying SUbgene”C structure, pro-
shaded. The appropriate solutions of the cubic are indicated; theyided by the subregions of the phase diagram where the rel-
represent the stable canted-phase solutions. evant solutions have a different functional form. Altogether,

one encounters the same number of expressions with the co-
3 axial configuration in the preceding subsection. The fourth
D=0~a= —2,3+§B1’3. (34 expression ix=1 for the conforming phase. We emphasize
once again thak is defined as the normalized component
These lines provide the structure arising under the nonlineawhich is collinear with the applied field, hence, here one has
mapping of the f,q) plane onto the ¢, 8) plane. The com- x=sin 6. The remarks from the previous subsection about
plete result is presented in Figid. The most important line the continuity of the solutions across the borderlines apply
is a=—1/2 which arises from the requirement of stability here as well.
for the conforming phase. The region of coexistence of both As mentioned earlier, each of the possible presentations
conforming and canted phases is shaded in the figure. Thereffers some advantages. It is obvious already here that, so far
the relevant canted-phase solutiorxisas given in the Ap- as the coexistence region is concerned, theg) transfor-
pendix. Remarkably, to the left of the line=—1/2 in Fig.  mation has blown up the corresponding domain in the pa-
5(a), where the canted phase is the one and only stable phagemeter space considerably, thus making it suitable for fur-
the relevant canted solution might be any one from amongher quantitative predictions based on graphical analysis. As
X3, Xg, and x; (see the Appendjx Adding to the listx  a disadvantage, one cannot “observe” the zero-field case in
=1 (6=0) which is the coaxial solution, one finds four this diagram, sincél—0 implies that botj«| and|g| tend
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to infinity. Hence, the trajectories tend to infinity along the on the system in question be available, one can deduce from
appropriate asymptote specified by the particular experimerthis type of analysis the magnetization profiles along any
tal conditions. One thus loses track, diagrammatically aspecified evolutior(trajectory in the anisotropy space. For
least, of the natural “continuity” extension of the coexist- instance, one can describe the magnetization profile which
ence phenomenon from the zero-field case to the case witlhould be seen on a vertically or horizontally magnetized
an applied magnetic field. ultrathin ferromagnetic wedge in a constant external field or
The (a,B) presentation is especially useful in the treat-one can describe the canting angle in a bulk anisotropic fer-
ment of SRT’s in ultrathin films. Because of its simplicity, romagnet in the presence of field as has previously been
such an analysis seems unavoidable in the thin-film contexdone for the spontaneous SRT in bulk systems. This point
where the number of relevant anisotropy parameters growwill be elaborated in the following article.
significantly. It will be shown in the second pdgee next We have emphasized the advantages and the shortcom-
article) that this representation is a natural extension of thangs which go together with each of the different representa-
anisotropy-flow concept introduced recently and that theions with the understanding that it is the whole set of dis-
thickness-driven trajectories in the anisotropy space aréinct representations that adds up to an exhaustive
linear®"3! This presentation then provides the basis for thedescription. As an important example, one cannot treat the
unified analysis of facts which otherwise appear as stronglygero-field SRT in the ¢,8) representation, since the point

system dependent and disconnected from each other. corresponding to the zero-field case is at infinity; however, it
is precisely in this representation that the suitable linear tra-
VI. DISCUSSION AND CONCLUSIONS jectories for the thickness-driven SRT’s in ultrathin films are

recovered with field as well.

: ; : . A very important application of the present general for-
The analysis provided above is rather general and appli- ‘' "~ L . ,
cable to both bulk and thin-film systems exhibiting SRT’s in Mlism is the study of SRT'wiithin the film plane which

36 ; ;
the presence of applied magnetic field. One of the importantPaVe already been detectéd* In fact, only minute adJ!JSt'
issues has been to show that no conceptual barrier exisfaents are necessary to apply the whole analysis in this paper

between the phenomenological treatments of bulk and thint© such in-plane reorientations in external field applied at

film systems. Even if one addresses bulk SRT's only, thdlifferent angles within the easy plane. More generally, re-

analysis provides insights and a compact exhaustive treafi2rdiess of the particular crystallographic symmetry, our

ment which, to our knowledge, is not available in the litera-StUdY IS immediately applicable to all cases of bulk and thin-
ture. We have elaborated three representations for the analfflm processes of rotation d¥ in an applied field, in the

sis of the reorientation transition. In all of these, the mostcourse of whichM remains within a given plane.

important feature is the extinction of the thifidonconform- We hope that the diagrams presented here are useful tools
ing) phase known from the zero-field case and the existenci#® preserving the overview and choosing the correct “work-
of a restricted region of coexistence of the remaining twoing point” or experimental conditions for all techniques
competing phases, the canted and conforming ones. Thehich exploit the effect of an applied field for studying
treatment is carried out for both coaxial and in-plane fieldSRT's or, more generally, anisotropy behavior in uniaxial
configurations. Emphasis was laid on handling a situatioulk and thin-film systems. Outstanding among these are the
where the field is held fixed and the SRT is induced byferromagnetic resonanéé,Brillouin light scattering?® the
variation of some other driving parameter. Thus, field-torque oscillation magnetomety,and the magneto-optic
induced magnetization processes are not in the focus, sindeerr effect™

they have been given enough attention and since we are

mainly int(_arested ir_1 pr.oviding a basis for a unified treatmgnt ACKNOWLEDGMENTS
of SRT'’s in ultrathin films. Still, all the results can be uti- _ . _
lized for discussing magnetization proceses as well. Expert technical assistance by A. Kroder is gratefully ac-

The analytically most natural representation is tpeq) ~ knowledged. Y.M. acknowledges the support of the Max
representation. It is also treurcerepresentation, since the Planck Society and participation in Contract No. N8B60
more physical ones are derived from it by mere identification(Sofia.
of the relevant variables, i.e., practically by means of formal
nonlinear substitutiongmapping$ whereby a certain par- APPENDIX
ticularization is unavoidable if one is to describe correctly
the effect of the signs of the anisotropy constants. The struc- Here we present concisely the required information about
ture of the @,q) diagram, and hence of those deriving from the solutions of a general cubic equat?érGiven that the
it, is determined by stability analysis of the allowed phasesequation has been transformed to the forfs- px+q=0,

In both field configurations, these are a conforming phaséhe number of real solutions depends on the sign of the quan-
(magnetization aligned with the applied fipland a canted tity D=p327+q?/4.

phase(magnetization askew to the figldt must be empha- For D=0, the cubic has three real roots which are suit-
sized here that although the canted phase appears as a moably cast in a trigonometric fordh:

lithic piece in all of the diagrams, this is in faathonhomo-
geneous phasm the sense that the canting angle varies in
different portions of the diagram. Moreover, for a particular
trajectory of the system in the corresponding space this angle
will vary along the trajectory? Should sufficient information whereR=sgn(q) v|p|/3 and® = arccos(/2R®).

X=—2R co§ ®/3+2(k—1)7/3], k=1,2,3, (A1)
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For D>0, there is a unique real solution, whereby for
<0 the solution is of the form

Xeh= —2RcosH®/3) (p<0), (A2)
v_vith _Cbch= arccosh@/2R?), while for p>0 the unique solu-
tion is

Xsp= — 2Rsinh( @ 4(3)
with &, =arcsinh/2R5).

(p>0), (A3)
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exists everywhere in thep(q) plane. For this solution, re-
strictions depending op andq arise from the stability con-
dition d?g,/d#?=0 only [cf. Egs.(8) and(9) in Sec. Il A].

The algebraic form of the solutions to the cubic is, of
course, completely equivalent to the trigonometric one, but is
somewhat clumsy. Still, it might be used to represent the
case withD>0 and either sign op compatible with the
positivity of D by a single expression, i.e., insteadxgf and
Xgn from above, one might use the algebraic expression for

In our problem, one imposes the additional restrictiondn€ unique real root:

that(i) the real roofs) be between zero and unity, afid the

stability condition(16) be satisfied. The results are summa-

rized in Fig. 3. The conforming solutiofmagnetization
along the field is independent op and q and, therefore,

q 1/3 q 1/3
xO(D>0)=(—§+\/5) + —E—JB) . (A4)
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