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ac currents in a vortex state of layered superconductors
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The ac properties of layered superconductors in the vortex state for the parallel orientation of the external
magnetic fieldB are examined. We find that due to an intrinsic Josephson effect the ac characteristics depend
on the kind of the steady-state fluxon structure. Both the collective mideand the ac penetration depth
)\ﬁ‘c(w,B) are affected by the magnetic field in an anomalous way, because of the reactive properties of the
vortex state’s environmenfS0163-18208)04801-2

I. INTRODUCTION ductorg, and on the nature af-axis transport as well. The
contribution of the interference components into total ac cur-
In recent years the electromagnetic properties of metaient and the frequency dependence of all components were

oxide superconductorsS| have received considerable atten- explored forS in the recent Eapézr within an interlayer tun-
tion. An increased interest to this issue has been prompted Blgling model. It was showfi that the transverse collective
observation of the low-lying collective mode mpolarized ~Mode observed in experimehtSis determined by the bal-
experiments3 made on single crystal samples. A phenom-ance between different components of the electric current

enological theory of this phenomenum was proposed in Refd{n€ quasiparticle, Josephson, and two interference compo-
4,5. It was emphasiz&d that the layered structure of metal nents. The calculations performed in Ref. 12 were related,

oxides caused a huge anisotropy of normal transport which igg;’;?r\]’;r'ﬁte? di sg?nccigcatunl?eedllré% mgdilelt?ci?eslﬁnrﬁz O]::?ena%:g
metalliclike within theab planes while it is essentially non- ' PP 9 Y

. : o : mixed state having a complex structure also affecting the
metalll_c and reduc_ed in the direction. Accordlng to Refs. Josephson component of the totahxis transport, the ac
4,5, this nonmetallic character of tleeaxis transport as well

) ! roperties of layered superconductd®C’s) at B#0 is a
as the Josephson nature of the coupling between the adjac Etr:er of interegt P d )
Cu-O planes is responsible for the low-lying collective oscil- :

. ) ) In this paper, solving the system of nonlinear equations
lations with t_he frequ.e.ncﬁpSsA,Tc (A IS the €nergy 9an - oy the interlayer phase difference, we analyze the effect of
value andT. is the critical temperatuje Since the intrinsic

3 h ffect ol K le in the f i £ th dc magnetic fieldB#0 on ac properties of a layered super-
osepnson €flect plays a key roie in the tormation ot & ,nqctor in the vortex state, for a parallel orientation of the

collective r_"oa‘z?é the mode itself SQ,I%UId be affected by a dg;q magnetic fieldso-called fluxon lattick We would like to
rr}agnegc f'ﬁl d Actually., t?ekr?odh.' r|]or('jed|cts dsupprehssmn account for the contribution from all the aforementioned
of {25 Dy the dc magnetic field, which depends on the Magdtomponents of electric ac current at finite temperatures. We

n'.ttl:]de and t():le?[t_]atlon otf lthe ‘magnetic Tr?ucitlon Vf(ﬁ)rt will show that asB increases, the frequency of the transverse
Wi rese%:o 0 the crystal axis, 1.e., on e ype of VOMeX,q e ctive model) ;¢ is depressed. In Sec. I, we formulate
structure’™" Nevertheless, when calculating the ac proper

i the simplified bh logical 510 N the main assumptions of the model and basic equations,
s, the Simpiified pnenomenoiogical approdcioperales pjje in sec. 11l we compute the distribution of supercurrent
with a few assumptions which are not evident for the men

tioned N v th 48kook int tth ‘and of local dc field in the fluxon structure. We also calculate
loned case. Namely, the motetook Into account the qua- -y, - gisyribution of the in-plane supercurrejlt over the
siparticle and Jose_phson_compone_n_ts of the total mterlayesrtack In Sec. IV, we present results of numerical calcula-
ac current only, while basically, at finite temperatures and Nons of ©,(B) and examine the ac penetration depth along
a finite magnetic field, the so-called interference : . . .

g the ¢ axis Af{w,B) (at fixed frequencigs which shows

components can be important as well. Besides, in the " _ ) .
model*® the frequency dependence of the ac Josephsoﬂu'te remarkable features due to reactive properties of mixed

component was neglected while the quasiparticle Componel\?\éate' For comparison, we compute the same characteristics

was assumed to obey the Ohm law. These assumptions, ho r an unconventional layered superconductor.

ever, are not well consistent with a general picture of ac
transport in weakly coupled systems becaug$e) must be
dependent on details of the low-energy electron spectrum The ac properties of layered superconductors in mixed
[which apparently is the case in the metal oxide superconstate are explored here considering the system as a stack of

II. BASIC EQUATIONS
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Josephson junctions. In metal oxide single crystals, such mfield vector. When computing ac characteristics, one may
croscopic junctions are naturally formed by Cu-O superconiake into account that spatial variations|af(r)| occur on a
ducting layers separated by interstitial insulatiog norma) short scale~ ¢, (or &,) while the ¢, 4 1(X) alternates on
regions. Then the-axis electric current can be described in much longer scale-\ ; (or even\ | ). If the concentration of
terms of interlayer electron tunneling, which in stationaryimpurities and crystal lattice deffects is small, aBekB,,
case consists of the dc Josephson component only. The s(the concentartion of vortices is also smathen the total
perfluid current density can become quite inhomogeneous #irea of regions with the reduced magnitude/ofr)| is neg-

a constant magnetic field applied to the type-ll superconiigible. Practically it means that one can simply &(r)]
ductor creates a certain vortex structure inside it. The gestai: A =const. Additionally, for the far-infrared frequencies
of the mixed state taking place in these superconductors des~A, T, one may still have\seg>c, (Ao iS the wave
pends on the magnitude of the external parallel magnetifength of the ac field; and, is the c-axis lattice constaint
field B as well as on the strength of the Josephson interlayeThe last condition, indeed, is even better satisfied for the
coupling, and on the temperatuFelnitial theoretical models microwave measuremerftswhere w<<A,T.. Thus, one

for the vortex state in weakly coupled layered SC’'s werecan implement an approximation considering the ac field to
proposed in Refs. 7-10. It was shown that both, very higtbe homogeneous on the scake, . The dc magnetic field,
anisotropy and the Josephson interlayer coupling in the met&lowever, creates a vortex structure providing inhomogeneity
oxides are significant for the formation of fluxon lattf®. on the scale of intervortex distance. In many experiments
As was emphasized in the Refs. 8-10, the alternation of ththe main interest is paid to the characteristics averaged
order parameter amplitudé (r)| does not contribute essen- over the volume of samplée.g., in ¢ polarized far-infrared
tially to the total free energy, because when c axis, the  measurements;®> and moreover, in microwave experi-
vortex coregfor which, however|A(x)|#0] are localized  ment§), with the sizedampe>A3(0) and\f%0) [A20) and

in the interlayer interstitial regions. Another reason is that)\ﬁm(o) being the ac penetration depthsTat0]. The dis-

the magnitudes of coherence lengfh and ¢, (in the ¢ cyssed distinction in scales suggests that one can simplify the
direction and within theab plane, respectively are always  gescription separating the dc and ac contributions to the elec-

much smaller than the magnetic field penetration length. Th@ic current from each other. Then the totahxis current is
mentioned circumstances allow to neglect the contribution

due to|A(r)| variations when calculating averaged charac- J'z,n(t)=i(zoﬁ+j(zlﬁ(t) (4)
teristics. The equations for the order parameter follow from ' '

the free energy functioni*® describing the SC with Joseph-
son interlayer coupling in the magnetic field, or from Max- j;,lr:(t)=J dt'o, (t,t")E,(t")
well equations taking into account the Josephson relation-
ship. In this paper, the main attention is paid to the case of 3 do, (t,t')
parallel field[B| ab planeg, and the stationary “vortex” =~ 2ec f ' . Pt
part of interlayer phase differences, ., is described by a Jt
the set of extended sine-Gordon equatfols A .
) =—iEwUL(w)¢‘Zce'wt, 5
Vienn+1— F[Z SiN@nn+17 SN @127 SIN @n-1] where thec-axis dc current is assumed to be purely of Jo-
J sephson natur §°g= jeSiMenn-1(¥)], while the second ac
1 termjg,lg(t) contains four contributions coming from quasi-
- )\—25”1 enn+1=0, () particle and Josephsdiactive and reactiyecomponents of
L electric current. In this approximation, the variations of dc

wheren=0---N denotes the index of layeN is the number current in fact are fully determined by the interlayer phase
of layers in the crystalh,=yc, , y=\, /\| is the anisot- difference cpnynﬂ()g) [which fc_>r a pinned flugon structure
ropy ratio, and\, and\| are the static penetration depths €an be found solving the stationary E@)], while the small
along thec axis andab plane, respectively. Thus, in the &€ current can be calculated separately from a microscopic
presence of pinned vortices induced by the parallel dc magnedel- For the average over the sample acitve and reac-
netic field, the phase difference due to external weak ac fieldV® @2 components of thec-axis ac (?onductmty, one
$2.,1(t) can be considered as a small addition to the mair/rites the following general expressions:
“steady state vortex” part

Y Paltenn+1 711(0)= 0g ©) + 0105 4 ©)(COS @ 01 1)s~ Tos { @)

¢n,n+1(t):¢n,n+1+¢ﬁ,cn+1(t)- (2) ><<Sin (Pn,n+l>31 (6)

The ac partp2® . ,(t) itself is determined from the Joseph-
nn+1

. , = cos + +
son relationship o o(w) 0'J<os,£w)< >Q"n,n+1>s a'qp,l(w) O'Jos,iw)
X(sin @Pn,n+1/s» (7)

t
ﬁ,cn+1(t)=2€dbf dtE,(t), (3  where gy w) is the part of ac conductivity related to the
contribution from quasiparticle tunneling;,s { ) is the ac
where dy=c, is the averaged thickness of the interstitial Josephson componeat,s { w) is the so-called interference
regions, ande,(t) is the ¢ axis component of the electric component(which is due to the interference between the
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2 . . . . . . Ill. DISTRIBUTION OF dc SUPERCURRENT
‘ IN THE FLUXON LATTICE

When a steady state vortex structure is created by the
external magnetic field=(0,B,,0), the supercurrent density
becomes quite inhomogeneous inside the sample causing an
alternation of average Josephson energy versus the field
strength. In a stack of Josephson junctions, in the presence of
fluxon lattice, basically one can not assume that the averaged
dc supercurrent [the Josephson part of which is
*(singnn+1)sl Is equal to zero. It means therefore that there
is a dependence of ac characteristics on the configuration of

s s s s s s vortex lattice. Here we shall not conduct any general classi-
05 1 15 2 25 3 35 fication of fluxon structures, leaving the detailed delineation
frequency/gap for elsewhere. Instead we concentrate our attention on calcu-
lating (sin ¢, ,+1)s from a particular solution of Eq1), using
FIG. 1. The components of ac conductivity BltA,=0.4. appropriate boundary conditions at the edges of the unit cell.
The influence of the constant magnetic field on the ac prop-

superfluid and quasiparticle tunneling, and provides the corfrties is apparent already from E@), which contains the
tribution to the electric current cosg, .1, See, e.g., Ref. actors(sin ¢nn1)s, and(coseyy. 1) (the last one is related
11), ogpi(@) is the so-called quasiparticle “extractive” to the Josephson enengyn order to determine those aver-

component(this component is related to the tunneling “ex- age§'<sl'n‘Pn,fi+1_>s' and(COS‘Pn’n;l?ES’ oge Eas to.lmpllement a
traction” of quasiparticles and( . . . )s means the averaging particular solution pn,n+1(x), of E. (1). Equation(1) must

over the volume of sample. One can perform the calculatior‘?lISO be completed by the condition which fixes the positions

of components of the ac conductivity in the linear responsé)]c the vortices. Usually it is assumed that in a paraliel dc

A L . e . magnetic field, the centers of vortices form a triangular
approximation within the tunneling model, similarly as it

. - lattice 1° the parameters of which are determined by the con-
was done, €.g. i Refs. 11,12. For certainity we use an Ofjition that the magnetic flux i®, per vortex. This kind of
dinary assumption that the normal statb-plane electron 55 mption is apparent, e.g., for the lattice formed by Abri-
transport is metalliclike while the-axis transport has an yssoy vortices. However, in the marginally anisotropic and
“incoherent” tunneling nature(i.e., the tunneling matrix noplinear layered system, such as a metal oxide single crys-
element' T, does not depend on electron momentpm ta|, the above guess must better be verified by extensive di-
Tpp =T=cons}, and that superconductivity in tieeb planes  rect calculations. Unfortunately, any analytical solution of
can be described within the BCS approximation. Then theEq. (1) can be obtained only in limiting casésee, i.e., Ref.
normalized tunneling conductivityr, (o, T)/o y (o,n iS  10), which have very modest practical utility. Therefore we
the c-axis normal-state conductivityin fact is a universal find a steady state solution numerically. A numerical ap-
function which depends only on the symmetry of supeconproach was used before by authors of Ref. 15, but they con-
ducting order parameteX(p) as well as on the normalized sidered mostly nonstationary states while the results were
parametersT: olAg andt=T/T,, T,=2A,/3.5, andA, is repc_)r_ted fpr a stack of onl\W=5 junctions, which is not
the maximum magnitude af(p) at T=0 . For illustration, sufficient in our case. Here we solve Hq) for a stack .Of
we plot the functionso;es {w) (curve A), oq,,(w) (curve ]',\I_SO E]oslfpr;;o_n fggcpor(s:ye also %eg]ormeﬂ calc;ljlanons
B), ogp(®) (curve Q, ando s { ) (curve D in Fig. 1 for or a stack o= junctions, and they show tneé same

y tendencies Then we would like to use the found solution for
thed,2-,2 symmetry ofa(p). From formulas6) and(7) one the calculation of aforementioned factafsin )s and
can infer that due to the factor§cose,,+1)s and Pnnt1/s

(singnny1)s, the ac conductivity in the vortex state may (COS@nni1)s. In this paper we implemented the following

have more complex structure compared to the zero field Casté?undary conditions. Since we are looking for the periodic

B=0. These factors determine the balance between the J§olution along thex Idirect_ion, we assumed that the local
sephson and interference parts, contributing to the total agagnetic inductiorBP(x) is a periodic function ok with
current in the system. In case of s wave pairing, according t®eriod a,=®,/Bylc, . The integer numbetl entering the
Ref. 11, atT—0, andw—0, there is a contribution from last formula was introduced to describe commensurable
0305 PNly. Then the total current consists of the Josephsogtates of the vortex latticesee, e.g., Refs. 8,9, where it was
componeritalone. However, at finit& ande (and moreover assumed that in a general case the lattice may contain the
for the d-wave pairing symmetjy this kind of assumptioh ~ Vortices not in every adjacent layer but, e.g., in evety

is not valid anymore, and one has to account for contribulayer, and ther,=®,/B,lc,) . Here we use the parameter
tions from the quasiparticle and interference procééses | to quote the junctions in the stack, in which we put fluxons
well. It is essentially important in a finite magnetic figkd ~Vvia boundary conditions. It is achieved by setting
#0 which suppresses the ac Josephsen £ ) and inter-  @nn+1(X)|x=x = for the quoted junctions. For instance,
ference 6o ;05 9 parts of total current as dc field grows up to | =2 means that we put a fluxon into each third junctitre

Ho. Henceforth we shall see thatBt-Hg (Ho=®4/\, C, ; boundary condition in this case is of kind
®,, is the flux quantumthe contribution of the quasiparticle ---00700700700---). Additionally, at the edge of the unit
and interference components even increases. cell along the a axis we have Vx¢n,n+1(X)|x:x, X =

ac conductivity
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B=0.03 .
A =0.02

index of layer

FIG. 3. The distribution of local magnetic fieBl/‘fﬁ,(x) for one
unit cell. The dashed lines show the contours for equivalent values
of B (x).

FIG. 2. The distribution of the dc supercurrent density
Sin @npn11(X) at B, =0.04 for the threa-axis unit cells in a stack of
Josephson junctions induced by the applied parallel field.

the variation of the boundary condition shifts only the phase
of a buckled chain and does not make sense in the infinite
limit. Similar buckled chains of vortices were observed by
means of the Bitter-pattern technique in Ref. 18 for a
Y ,Ba,Cu;0; single-crystal sample in a parallel magnetic
field. Though the initial interpretatidf of the experimerif

) ) - was given in terms of Abrikosov vortices considered within
Buc=By . Then we proceed the integration of Efj) alongx  the phenomenological London model, in our opinion, this
betweenx; andx,, considering it as a system of first order yjng of approack is highly controversial for the layered
differential equations. As a first step, we integrate EQ.  syperconductor with an intrinsic Josephson effect. Instead,
with ascending, and calculatepy, ,.+1(x=X). Then using,  the application of the Lawrence and Doniach model is more
@nn+1(X=X;) as a new boundary condition, together with |ogistic in this case.

Vx@nn+1(X)|x=x x = (2€c, /1)B,c we move in the 0ppo-  “Combining the Maxwell equations and the obtained solu-
site direction with descending, from x, to x,. In this way, tion, one can compute the distribution of the local dc mag-
we repeat the procedure until a stable solution is achieved. Inetic induction in our setup as

Fig. 2 we show a three-dimensional plot for the interlayer

Josephson curreff"~«sin ¢, .1 versus thex coordinate BI%C () = | A'_fo si{ (x)]dx ®)

and the index of junction, computed from the solution of Eq. y.n lo7e ) SM@nns1 '

(1) for the mentioned stack. Contrary to our expectations, here i~ is th imal t densi hile theaxi
and to results of Refs. 10,15, one can see that instead Jf '€'€Jo IS the maximal current density, while treaxis

triangular lattice the fluxons form an array of chains, Ordereocompon.ent- of the d.c sup?rggzr?{]t ‘E'G_r‘ns“y is obtained from

along thec axis and periodic along the axis. From Fig. 2, the continuity equationY[z-j;™ ~+Xx-j,])=0, as

one also can infer that the fluxons are quite spatially local- .

ized and are distinguished by sharp tails with a core width iN(x)= _J SV (%) dx, 9

df;~0.7 ranging betweek; and\ ;| (for the plot we used the 0

foIIowmg_ parametersl:=1_,)\J=0.02,)§L=2, andBy=_0.Qé_1, where 5% is the first-order finite difference operator, i.e.,

we considered three unit cells to display the periodicity 0f5(1)f —(f_f /e - f. bei bi f .

the supercurrent density distributiomhe applied magnetic n=(fn—fn_y)/C,; Ty being an ar itrary “T‘C“O”- In
order to compare our results with the Bitter-pattern

. . . . 2 _
field By is expressed in units abo/(7ct), 7=5x10° at experiment?® in Fig. 3 we show the contour plot for the

_ ; 2 _
(c, =1 nm it corresponds t@,/7c; =0.4 ) then the pe- distribution of the local dc magnetic inducti(B{/‘fﬁ(x) ob-

fliﬁg (I)Dfr(t)}]jileeflzl;r)l(gr'l[hsetrgf:lzjcrteu?elog]?;r?ei)g?aitzaﬁ:x](-)/r(]l iBSV)S'()metained forB,=0.03 andl=2. The dashed lines in this plot
. ) .
what similar to that obtained, e.g., in Refs. 16,17 for asingleShOW contours for equivalent values Bt’n(x). From the

. ) : lot one can also see, that the field penetrates through the
Josephson junction. The values for penetration depths a . o U )
T ; R : . uxons in the way, which is dissimilar to that taking place
expressed here in dimensionless units, in which dkexis

lattice constant correspondsdo—2x 104 Those units are for the Abrikosov vortices, where the field penetrates via the
chosen only for the bgtter illl?s_tratio(te . the fluxon core vortex core. Figure 4 presents the three-dimensid8a)

L y for the uoe.g., L plot for the distribution of thea-axis dc supercurrent density
size in those units is= 1). Alternating the magnetic induc-

. : . ' j3(x) for the same parameters as in Fig. 2. In this plot we
tion B, and the parametdrone obtains various configura- T k

tions which correspond to local minimums of the free energyPresent only one period ir direction. From the mentioned

in the Lawrence and Doniach model, and which, howeverfigure one can see, that the chain of fluxons is reflected also
have a common feature: they are periodic and consist df Ehle jx(x) distribution, however the maximums of
buckled chains of fluxons. The buckling is determined by thdy" “(x) are replaced by minimumgwhich indeed are
sizea, of the unit cell(i.e., by the magnetic inductionThus  negative of j7(x) instead.

(2ec, /h)B,., wherex|(x,) is the left (right) edge of the
unit cell, x,=x,+a,, and the parametd. is related to the
external dc magnetic field. For the calculations we se
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B, =0.04 A=

of \ayet

mnde*

FIG. 4. The distribution of th@b-plane component of the su- B

percurrent.
FIG. 5. The dc magnetic field dependence of the factor

Departing from the above discussed solution, we calculatecos g, ., 1(x))s for the small(curve 3 and big(curve 2 samples.
average values of the factofsin ¢, n+1)s and{cosenn:1)s, '
which are necessary to obtain ac characteristics. Initially wehat shown in Fig. 2, which corresponds to a particular case
examine an illustrative limiting case of a small sample withatB,=0.04 . This evolution of the fluxon structure produces
dimensiond.,,Ly <\, ,\;. In this limit, the interlayer phase kinks in curve 2, which it is not as smooth as curve 1 for an
difference is idealized case. In the next section we use these factors to

compute the magnetic field dependence of the resonance fre-

o X :
‘Pn,n+l(x)227T¢To L_X+¢° (10) quency(Q,4(B) and the ac penetration deptf;{w,B).
(® is the magnetic fluxand one obtains a familiar Fraun- IV. THE c-AXIS COLLECTIVE OSCILLATIONS
hofer patterf for the field factors(sin ¢, n+1)s, (COS@nni1)s IN dc MAGNETIC FIELD

entering into Eqs(6) and(7) (in fact the factors are related e ahove Eqg6) and(7) for o; { @) with the calculated
to a maximal current of each interlayer junction field factors allow us to explore ac characteristics of a lay-
ered superconductor in a dc magnetic field. The most inter-

sinz - . ; _,
(SiN @ s 1)s=(COS P 1 1)s= — (11)  esting issues which are currently under discussibtf*are
z related to the collective oscillations and to the ac penetration
where depth. Here we assume that the dc magnetic field is directed
along the§/ axis while the vector of transverse ac electric
7= i B.— ®o field is along thex axis. At finite temperatures and in the
Bo L,c, case of anisotropic pairing which we would like to delineate

here, the collective mode is determifédy a balance of
different components of the electric current in conditions of
low c-axis conductivity and a relatively high dielectric con-

One could expect that the spatial average of the function
cog @nn+1(X)] and sifig,1(X)] over the sample calculated
from the above obtained solutidsee Fig. 2 must give, at
certain conditions, a similar pattern. Of course, for a big s-wave
sample with a size.,,L,>\, ,\;, the Fraunhofer pattern, (0,B)

generally speaking, is hardly observable, becausBgalse-
comes small, the oscillations cannot be well distinguished.
Additionally, the pattern could be spoiled due to fluxons en-
tering the junction in an irregular wayHowever, in our case
the vortex structure is formed by chains of fluxons deployed
into the sample in a collective way. In this case, because of
the regularity of the steady state solutigR . 1(X), the con-
tribution to the factors becomes oscillating as well. This kind
of oscillation is visible Fig. 5, where we compare the factors
(cosenni1)s VersusB, calculated for a small sample from
formula ( 11) (curve ) and for fluxon structures calculated
forI=1,A;=0.02,\, =2 (curve 2. In the calculations, the
sample size along tha axis was taken a&,=8\, . We
notice, that as field alternates, the regular steady state fluxon FIG. 6. 3D plot of Rée*(w,B)} for the s stack. The dc mag-
structure is modified and rearranged becoming different fronmetic field dependence &1,4(B) is evident from the contour.
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Tt-stack |l — ; . .

decrement

q“e“cy

f1e 005 01 0I5 02 025
FIG. 7. The same 3D plot as before but for thestack. magnetic field

FIG. 9. The dc field dependence of the ac field decrement

stant. The transverse dielectric function then is defined as .
Im{kqap(By)} for a big sample.

Ad7io (w,B)

w

€ ()=

€

, (13 momentun. We challenge the following stacks of Joseph-
son junctionsi(i) s stack(s-wave SG, (ii) g stack(aniso-
whereo, (w,B) is the linear response ac conductivity in the tropic s-wave, and (iii) = stack[d wave with an antiphase
lateral c-direction which is to be found from microscopic orientation ofA(p) petals in adjacent layefd. Let us note
calculations[namely from formulag6) and (7)]; €. is the that when calculating the ac characteristics for thetack,
high-frequency dielectric constant. In this paper we confineone must use a different steady state solution than for cases
ourselves to study in details the effect of the dc magnetii) and(ii). The equation for,, ;. 1(X) in caseiii) is similar
field in the homogeneous interlayer ac currett, (w,B). to Eqg. (1), but has a reversed sign of the Josephson current
The resonance frequen€l, is determined from the general contribution. To compute the function Re (w,B)} for the
condition s wave symmetry of the order paramefes stacK plotted in
Fig. 6, we used the following parameters which are ex-
Re{e (0=0p5,B)}=0 14 pressed in values of the order parameter magnitude
at an assumption that e (w=0,,B)} is small. From A0=A(T=0). Particularly, in these unitgy, =0.7 (o, is
Egs. (13) and (14) one can see thd®, depends on the dc the_ average normal state interlayer Elinneh_nlg co_nd_ucnwty
magnetic field viao, . Therefore, to determin@ ,(B), one which corresponds to the value 1@~" cm™" (this is a
has to computer, (,B), using the factor$cos ey .)s and typical magnitude ofoy, _for the sm_gle—crystal samp_les of
(SiN @nn+1)s» Which were found from the solutiogy, .+ 1(X) Laz_x_SrXCuO4 used in far infrared c-polarized
of Eq. (1) in Sec. Il. The numerical calculations of €xperiments’) and the temperatur€=0.12, e, =23. From
Re{e' (w,B)} were performed in a similar way as it was Fig. 6 one can see that thg frequency and dc magnetic field
described in Refs. 12,14, accounting for the cases of differerflependence of Re” (w,B)} is quite spectacular. The cross-

symmetry of the order parameté(p) (p is the electron ing by this function of the plane I{eﬂzO_is shown in the
figure by the contour. This contour defines the resonance

12 , , , , frequency of the collective mod@,¢(B) which in accor-
) dance with Fig. 6 is sharply depressed at the figje-0.07.
1 A 1 This sharp drop in the resonance frequency is related to the
08 | | first maximum in the Fraunhofer pattefsee Fig. 5. Then
) 0 ,(B) becomes slightly oscillating as the field grows. The
= 06 k. = ] behavior(),{(B) is saturated at fieldB,~0.3, and(2,(B)
g remains finite in these fields though evérose,,.1)s~0.
o 04 [ The finite value ofQ),(B) is caused by so-called “extrac-
o 0.2 = tive” tunneling contribution[namely, byo ;. 1in formulas
© ) (6),(7)] which was usually neglected befofsee Refs. b
0t Calculations show that similar dependeiizg(B) (although
with a smaller magnitude of the resonance frequgnales
02 place also for @ stack. As is evident from Fig. 7, the picture
04 . . . . is different for the 7 stack. There one can observe that
005 01 015 02 025 Q,4B) at small fields is decreased as well, but instead of
magnetic field saturation at8,=0.03 it turns to increase, having a maxi-

mum atB,=0.07. Then(),4(B) oscillates versus8,, up to
FIG. 8. The dc field dependence of the ac field decremenBy=0.3 at which it becomes finally saturated. The evolution
Im{Kkan(By)} for a small sample with a flux quantization effect. ~ of the vortex structure under the external dc field influence
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plays an important role for the penetration of ac fields intocasegsee curves C, D, and)EThe calculations for a more
layered superconductors. This is illustrated by Figs. 8 and Qealistic case of a larger single crystal with a size
where we present the dc field dependence of ac field decre-,,L,>\, ,\; were performed at the same parameters as
ment Im{k,p(By)} [Kap is @ component of the wave vector were listed before in comments to Figs. 6 ant@e Fig. 9.
k=(k, ,Kap); Kap(By) =(w/c) e (w,B,)], which also is re-  From Fig. 9 one can infer that the oscillatory behavior of the

lated to the ac penetration deffth decrement may also take place for the larger sample as well.
This kind of oscillation is related to deployment of regular

N w,By) = 1 (15 qux_on chains i_nto th_e sample. The curves are not as smooth

| L@, By Im{Kap(By)} " as in the previous figure due to changes in topology of the

vortex structure aB, alternates. The above data suggest that

The last formulas are related to a typical idealized setup Cor’l’m{kab(By)} (and the penetration deptiof the ac electro-

sidered in Refs. 12,13 which assumes a transverse polariz : : : )
tion of the external field, and also that the wave ved&tas ?;%nﬁgﬁj wave is strongly affected by the applied dc mag

parallel to layers while ac field vectd is along thec axis.
Initially we examine an interesting limiting case of a small
sample [see formulas(11), (12) for (sing,n+1)s and
(cospyni1)sl- The results for the ac field decrement |n conclusion, we have considered ac properties of lay-
Im{kan(By)} are plotted in Fig. 8 as curves A, B, C, D, E, ered SC’s in a mixed state. We obtained that the dc magnetic
and G. Atw=0.7 [for convenience, the frequency, tempera-field affects the Josephson and interference components of
ture and energy are expressed here in units of the SC energlye ac current in presence of the pinned fluxon lattice. The
gapAg at T=0, while Im{k,,(B,)} is expressed in units of found distribution of the supercurrent density corresponds to
(Ag/c)Je.] the curves Arelated to s wave symmetry of the localized objects which can be identified as fluxons arranged
order parameter, ca$g] and B[which itself corresponds to in buckled chains being similar to the structure observed in
an anisotropicd-wave order parameteX(p), case(ii)] be- the experiment® As the field is increased, the structure
have in a similar way, while curve G stack, caséiii)] has  changes its shape, and is washed out as fluxons overlap. The
an opposite tendency. From the last mentioned curves it foltomputed s-stack frequency-field dependencies of
lows that for thew stack, the decrement may turn to an Re{e*(w,B)} indicate that the resonance collective mode
increment, becoming negative, {ky,(B,)}<0. One can ) is suppressed by the applied dc field, but remains finite
also see, that at some values of figlg, curve G crosses the due to the “extractive” contribution. However, for the

zero axis, i.e., Ifk,p(B,)} =0. It means that the ac penetra- stack,() is reduced only aB,<0.06, and then it begins to
tion depth)\iC(w,By) diverges at those points. Additionally increase. We found that the finite dc magnetic field changes
from the curves A, B, and G one can note an attenuatinghe ac current components leading to visible anomalies in the
oscillation of the decrement as field grows. This alternatiorac penetration depthﬁ“c(w,B), due to reactive properties of

is due to magnetic flux quantization in the system of stackedhe fluxon lattice’s environment. The results emphasize the
Josephson junctions. As the frequency increases up timportance of the intrinsic Josephson effect to determine the
w=1.7, the decrement diminishes for all the aforementionedc behavior of layered SC’s in a dc magnetic field.

V. CONCLUSIONS

1K. Tamasaku, Y. Nakamura, and S. Uchida, Phys. Rev. Bétt. Peterson, Phys. Rev. Left3, 724 (19949; Y. Matsuda, M. B.
1455(1992. Gaifullin, K. Kumagai, K. Kadowaki, and T. Mochikubid. 75,
2C. C. Homes, T. Timusk, R. Liang, D. A. Bonn, and W. N. 4512(1999; O. K. C. Tsui, N. P. Ong, and J. B. Petersdrid.
Hardy, Phys. Rev. Lett71, 1645(1993; D. N. Basov, T. Ti- 76, 819(1996; S. Sakamoto, A. Maeda, T. Hanaguri, Y. Ko-
musk, B. Dabrowski, and J. D. Jorgensen, Phys. R&0,B511 taka, J. Shimoyama, K. Kishio, Y. Matsushita, M. Hasegawa, H.
(1994; B. Koch, M. Durrler, H. P. Geserich, Th. Wolf, G. Roth, Takei, H. lkeda, and Y. Yoshizaki, Phys. Rev.33, R14749
and G. Zachmann, ilectronic Properties of High J Super- (1996.
conductors and Related Compounddited by H. Kuzmany, M.~ 7L. J. Campbell, M. M. Doria, and V. G. Kogan, Phys. Rev38&
Mehring, and J. FinKSpringer-Verlag, Berlin, 1990 2439 (1988; S. N. Artemenko and A. N. Kruglov, Physica C
3A. M. Gerrits, A. Wittlin, V. H. M. Duyn, A. A. Menovsky, J. J. 173 126 (1992); L. N. Bulaevskii, M. Ledvij, and V. Kogan,
M. Franse, and P. J. M. van Bentum, Physic235-24Q 1117 Phys. Rev. B46, 366 (1992.
(1994; Jae H. Kim, H. S. Somal, M. T. Czyzyk, D. van der 8A. F. Volkov, Physica C192 306(1991); L. N. Bulaevskii and J.
Marel, A. Wittlin, A. M. Gerrits, V. H. M. Duijn, N. T. Hien, R. Clem, Phys. Rev. B4, 10 234(199J.
and A. A. Menovsky,bid. 247, 297 (1995. 9L. N. Bulaevskii, J. R. Clem, and L. I. Glasman, Phys. Rev&
4M. Tachiki, T. Koyama, and S. Takahashi, Phys. Re&(B7065 350(1991); J. R. Clem,ibid. 43, 7837(1991).
(1994. 0L, |. Glasman and A. E. Koshelev, PhysicalZ3 181 (1991);
5L. N. Bulaevskii, M. P. Maley, and M. Tachiki, Phys. Rev. Lett. L. I. Glasman and A. E. Koshelev, Phys. Rev.43, 2835
74, 801 (1999; L. N. Bulaevskii, V. L. Pokrovsky, and M. P. (1992); L. L. Daemen, L. N. Bulaevskii, M. P. Maley, and J. Y.
Maley, ibid. 76, 1719(1996; L. N. Bulaevskii, M. P. Maley, H. Coulter, ibid. 47, 11291 (1993; Phys. Rev. Lett.70, 1167
Safar, and D. Dominguez, Phys. Rev5B, 6634(1996. (1993.

60. K. C. Tsui, N. P. Ong, Y. Matsuda, Y. F. Yan, and J. B. 1*A. Barone and G. PaternBhysics and Application of the Joseph-



57 ac CURRENTS IN A VORTEX STATE OF LAYERBE. .. 589

son Effect{Wiley, New York, 1982.

125, E. Shafranjuk, M. Tachiki, and T. Yamashita, Phys. Re&3B
15136(1996.

135, E. Shafranjuk, M. Tachiki, and T. Yamashita, Phys. Re&5B
8425(1997.

145, E. Shafranjuk and J. Keller, Solid State Commu8. 1063
(1992); S. E. Shafranjuk and H. van Kempen, Phys. Revi9B
12 931(1994.

I5R. Kleiner, P. Miller, H. Kohlstedt, N. F. Pedersen, and S. Sakai,
Phys. Rev. B50, 3942 (1994; S. Sakai, A. V. Ustinov, H.
Kohlstedt, A. Petraglia, and N. F. Pedersdnd. 50, 12 905

(1994); S. Sakai, P. Bodin, and N. F. Pedersen, J. Appl. Phys.
73, 2411(1993.

18A. L. Fetter and M. J. Stephen, Phys. R&68 475 (1968.

173, R. Clem and M. W. Coffey, Phys. Rev. 4, 6209(1990; J. R.
Clem, M. W. Coffey, and Z. Hadpid. 44, 2732(199)).

18G. J. Dolan, F. Holtzberg, C. Feild, and T. R. Dinger, Phys. Rev.
Lett. 62, 2184(1989.

198, I. Ivlev and L. J. Campbell, Phys. Rev. B7, 14514
(1993.

20G. Rickayzen,Theory of Superconductivit§willey, New York,
1965.



