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The quantum-rotors model can be regarded as an effective model for the low-temperature behavior of the
quantum Heisenberg antiferromagnets. Here, we consider ad-dimensional model in the spherical approxima-

tion confined to a general geometry of the formLd2d83`d83Lt
z (L-linear space size andLt-temporal size!

and subjected to periodic boundary conditions. Due to the remarkable opportunity it offers for rigorous study
of finite-size effects at arbitrary dimensionality this model may play the same role in quantum critical phe-
nomena as the popular Berlin-Kac spherical model in classical critical phenomena. Close to the zero-
temperature quantum critical point, the ideas of finite-size scaling are utilized to the fullest extent for studying
the critical behavior of the model. For different dimensions 1,d,3 and 0<d8<d a detailed analysis, in
terms of the special functions of classical mathematics, for the susceptibility and the equation of state is given.
Particular attention is paid to the two-dimensional case.@S0163-1829~98!03209-3#
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I. INTRODUCTION

In recent years there has been a renewed interest1–3 in the
theory of zero-temperature quantum phase transitions i
ated in 1976 by Hertz’s quantum dynamic renormalizat
group4 for itinerant ferromagnets. Distinctively from
temperature-driven critical phenomena, these phase tra
tions occur at zero temperature as a function of some n
thermal control parameter~or a competition between differ
ent parameters describing the basic interaction of
system!, and the relevant fluctuations are of quantum rat
than thermal nature.

It is well known from the theory of critical phenomen
that for the temperature-driven phase transitions quantum
fects are unimportant near critical points withTc.0. It could
be expected, however, that at rather small~as compared to
characteristic excitation in the system! temperature, the lead
ing T dependence of all observables is specified by the p
erties of the zero-temperature critical points, which ta
place in quantum systems. The dimensional crossover
asserts that the critical singularities of such a quantum
tem atT50 with dimensionalityd are formally equivalent to
those of a classical system with dimensionalityd1z (z is the
dynamical critical exponent! and critical temperatureTc.0.
This makes it possible to investigate low-temperature effe
~considering an effective system withd infinite space andz
finite time dimensions! in the framework of the theory o
finite-size scaling~FSS!. The idea of this theory has bee
applied to explore the low-temperature regime in quant
systems~see Refs. 5–7!, when the properties of the thermo
dynamic observables in thefinite-temperature quantum criti
cal region have been the main focus of interest. The ve
quantum critical regionwas introduced and studied b
Chakravartyet al.5 using the renormalization-group meth
570163-1829/98/57~10!/5798~14!/$15.00
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ods. The most famous model for discussing these prope
is the quantum nonlinearO(n) sigma model~QNLsM!.5–10

Recently an equivalence between the QNLsM in the limit
n→` and a quantum version of the spherical model or m
precisely the ‘‘spherical-quantum-rotors’’ model~SQRM!
was announced.11 The SQRM is an interesting model in it
own. Due to the remarkable opportunity it offers for rigoro
study of finite-size effects at arbitrary dimensionality SQR
may play the same role in quantum critical phenomena as
popular Berlin-Kac spherical model in classical critical ph
nomena. The last one became a touchstone for various
ing hypotheses and source of new ideas in the general th
of finite-size scaling~see, for example, Refs. 12–19, an
references therein!. Let us note that an increasing intere
related with the spherical approximation~or large-n limit !
generating tractable models in quantum critical phenom
has been observed in the last few years.11,20–25

In Ref. 11, the critical exponents for the zero-temperat
quantum fixed point and the finite-temperature classical
as a function of dimensionality was obtained. What rema
beyond the scope of Ref. 11 is to study in an exact man
the scaling properties of the model in different regions of
phase diagram including thequantum critical regionas a
function of the dimensionality of the system. In the conte
of the finite-size scaling theory both cases:~i! The infinite
d-dimensional quantum system at low temperatures`d3Lt

z

@Lt;(\/kBT)1/z is the finite size in the imaginary time di
rection# and ~ii ! the finite system confined to the geomet
Ld2d83`d83Lt

z (L-linear space size!, are of crucial interest.
Earlier a class of exactly solvable lattice models intend

to study the displacive structural phase transition have b
intensively considered in both finite-size and bu
geometry.26–29 The main feature of these models is that t
5798 © 1998 The American Physical Society
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57 5799THEORY OF A SPHERICAL-QUANTUM-ROTORS . . .
real anharmonic interaction is substituted with its quant
mean spherical approximation reducing the problem to
exactly solvable one. We expect that the analytical techni
proposed below will apply to these models too.

In this paper a detailed theory of the scaling properties
the SQRM with nearest-neighbor interaction is presen
The plan of the paper is as follows: we start with a br
review of the model and the basic equation for the quan
spherical field in the case of periodic boundary conditio
~Sec. II!. Since we would like to exploit the ideas of the FS
theory, the bulk system in the low-temperature region is c
sidered like an effective (d11)-dimensional classical sys
tem with one finite~temporal! dimension. This is done to
enable contact to be made with other results based on
spherical-type approximation, e.g., in the framework of
spherical model and the QNLsM in the limit n→` ~Sec.
III !. In Sec. IV we consider the FSS form of the spheri
field equation for the system confined to the general ge
etry Ld2d83`d83Lt

z . This equation turns out to allow fo
analytic studies of the finite-size and low-temperature
ymptotes for differentd andd8. Special attention is laid on
the two-dimensional system. The remainder of the pa
contains the details of the calculations: Appendixes A, B

II. THE MODEL

The model we will consider here describes a magn
ordering due to the interaction of quantum spins. This has
following form:11

H5
1

2
g(

l

Pl
2 2

1

2(
l l 8

Jl l 8Sl Sl 81
m

2(
l

Sl
2 2H(

l

Sl ,

~2.1!

whereSl are spin operators at sitel , the operatorsPl are
‘‘conjugated’’ momenta~i.e., @Sl ,Sl 8#50, @Pl ,Pl 8#50,
and @Pl ,Sl 8#5 id l l 8, with \51), the coupling constant
Jl ,l 85J are between nearest neighbors only,30 the coupling
constantg is introduced so as to measure the strength of
quantum fluctuations~below it will be called quantum pa
rameter!, H is an ordering magnetic field, and finally th
spherical fieldm is introduced so as to ensure the constra

(
l

^Sl
2 &5N. ~2.2!

HereN is the total number of the quantum spins located
sites ‘‘l ’’ of a hypercubical lattice of size
L13L23•••3Ld5N and ^•••& denotes the standard the
modynamic average taken withH.

Many aspects of the physics of SQRM and QNLsM in
the limit n→` are similar, but there is an important diffe
ence: while the last has a continuousO(n) symmetry, the
Hamiltonian of SQRM possesses a globalZ2 symmetry. As
in the Ising model in a transverse field~the other popular
model in the theory of quantum phase transitions! Hamil-
tonian ~2.1! is invariant under the unitary transformatio
Sl→2Sl . An external field coupling toSl would break the
Z2 symmetry.

Let us note that the commutation relations for the ope
tors Sl andPl together with the quadratic kinetic term i
n
e

f
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the Hamiltonian~2.1! do not describe quantum Heisenber
Dirac spins but quantum rotors as it was pointed out in R
11.

Under periodic boundary conditions, Eq.~2.2! takes the
form

15
l

2N(
q

1

Af12(
i 51

d

~12cosqi !

3cothS l

2t
Af12(

i 51

d

~12cosqi !D 1
h2

f2
, ~2.3!

where we have introduced the following notations:l5 Ag/J
is the normalized quantum parameter,t5 T/J is the normal-
ized temperature,h5 H/J is the normalized magnetic field
b5 2pt/l, andf5 m/J22d is the shifted spherical field.

In Eq. ~2.3! the vectorq is a collective symbol, which has
for L j odd integers the components:

H 2pn1

L1
,•••,

2pnd

Ld
J , njPH 2

L j21

2
,•••,

L j21

2 J .

A previous direct analysis11 of Eq. ~2.3! in the thermody-
namic limit shows that there can be no long-range orde
finite temperature, ford<2 ~in accordance with the Mermin
Wagner theorem!. For d.2 one can find long-range order a
finite temperature up to a critical temperaturetc(l). Here we
shall consider the low-temperature region for 1,d,3.

III. THE INFINITE SYSTEM

In the thermodynamic limit thed-dimensional sum over
the momentum vectorq in Eq. ~2.3! changes ind integrals
over theqi ’s in the first Brillouin zone and the equation fo
the shifted spherical fieldf reads

15
t

~2p!d (
m52`

` E
2p

p

dq1•••

3E
2p

p

dqd

1

f12(
i 51

d

~12cosqi !1b2m2

1
h2

f2
.

~3.1!

After some algebra~see Appendix A!, Eq. ~3.1! takes the
form (1,d,3)

1

l
2

1

lc
52

1

~4p!~d11!/2UGS 12d

2 D Uf~d21!/2

1
2

~4p!~d11!/2
f~d21!/2KS d21

2
,

l

2t
f1/2D1

h2

f2
,

~3.2!

wherelc is the quantum critical point and
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K~n,y![K1S d21

2 U1,yD52 (
m51

`

~ym!2nKn~2my!.

~3.3!

Here Kn(x) is the MacDonald function~second modified
Bessel function!. The asymptotic forms of the function
K1@(d21)/2u1,y# are studied in Appendix B. It is easy t
show that Eq.~3.2! may be written in a scaling form an
consequently the correlation lengthj5f21/2, as a solution
of that equation has the following scaling form:

j5
l

t
f jH dlS t

l D 21/n

, hS t

l D 2D/nJ . ~3.4!

In the remainder of this section we will study the effect
the temperature on the susceptibility and the equation of s
near the quantum critical fixed point.

A. Zero-field susceptibility

After making vanished the fieldh, from Eq.~3.2! we find
that the normalized zero-field susceptibilityx5f21 on the
line l5lc (t→01) is given by

x5
lc

2

4y0
2

t22, ~3.5!

wherey0 is the universal solution of

UGS 12d

2 D U52KS d21

2
,yD . ~3.6!

The behavior of the universal constanty0 as a function of the
dimensionalityd of the system is shown in Fig. 1.

One can see that the low-temperature behavior of the
ceptibility increases as the inverse of the square of the t
perature above the quantum critical point.

In what follows we will try to investigate Eq.~3.2! for
different dimensions (1,d,3) of the system and in differ

FIG. 1. The dependence of the universal constanty0 upon the
dimensionalityd. The constantQ50.962 424 . . . is obtained fo
the two-dimensional system@see Eq.~3.13c!#.
te

s-
-

ent regions of the (t,l) phase diagram. Introducing th
‘‘shifted’’ critical value of the quantum parameter due to th
temperature by

1

lc
7~ t !

'
1

lc
7

1

2p~d11!/2S t

lc
D d21

GS d21

2 D uz~d21!u,

~3.7!

@wherez(x) is the Rieman zeta function# one has to make a
difference between the two casesd,2 ‘‘sign 2 ’’ and d.2
‘‘sign 1.’’ In the first case (1,d,2), it is possible to de-
fine thequantum critical regionby the inequality

U1l 2
1

lc
U! 1

2p~d11!/2S t

lc~ t ! D
d21

GS d21

2 D uz~d21!u.

~3.8!

For 1,d,2 the functionK(n,y);y21 and by substitu-
tion in Eq.~3.2! we obtain forl,lc ~outside of thequantum
critical region!

x'F uG~12 d/2!u

~4p!d/2dl
G 2/~d22!

t2/~d22!, ~3.9!

where

dl5
1

lc
2

1

l
.

In Eq. ~3.9! we see that the susceptibility is going to infini
with power-law degree when the quantum fluctuations
come important (t→01) and there is no phase transitio
driven byl in the system for dimensions between 1 and

In the second case (2,d,3), one has

x'F uG~12 d/2!u

~4p!d/2

llc~ t !

l2lc~ t !G 2/~d22!

t2/~d22!, ~3.10!

as a solution forl less thanlc and greater than the critica
value lc(t) of the quantum parameter. Here for finite tem
peratures there is a phase transition driven by the quan
parameterl with critical exponent of thed-dimensional clas-
sical spherical modelg5 2/(d22). This however is valid
only for very close values ofl to l(t). For l,lc(t) the
susceptibility is infinite.

In the region wherel.lc the zero-field susceptibility is
given by

x'F ~4p!~d11!/2

G@~12d!/2#
dlG2/~12d!

. ~3.11!

This result is valid for everyd between the lower and th
upper quantum critical dimensions, i.e., 1,d,3.

The important cased52 can be solved easily and on
gets

f1/25
2t

l
arcsinhH 1

2
expF2pl

t
dlG J . ~3.12!

For the susceptibility, Eq.~3.12! yields
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x'
l2

t2
expS 2

4plc

t
dl D ~3.13a!

for (2p/t) u l/lc21u@1 andl,lc , i.e., in the renormal-
ized classical region. Forl5lc53.1114 . . .

x5
1

Q2S lc

t D 2

, ~3.13b!

where the universal constant

Q52y052 lnSA511

2 D 522 lnSA521

2 D 50.962 424 . . .

~3.13c!

was obtained in the framework of the three-dimensional c
sical mean spherical model with one finite dimension.12 Fi-
nally for (2p/t) u l/lc21u@1 andl.lc , i.e., in the quan-
tum disordered region:

x'@4pdl#22H 11
2t

plcdl
expF4plc

t
dlG J .

~3.13d!

The first term of Eq.~3.13d! is a particular case of Eq.~3.11!
for d52.

From Eqs.~3.13! one can transparently see the differe
behaviors ofx(T) in three regions:~a! renormalized classica
region with exponentially divergence asT→0, ~b! quantum
critical region with x(T);T22 and crossover lines
T;ul2lcu, and ~c! quantum disordered region wit
temperature-independent susceptibility~up to exponentially
small corrections! as T→0. The above results~3.12! and
~3.13! coincide in form with those obtained in Refs. 6,8 f
the two-dimensional QNLsM in the n→` limit. The only
differences are that~i! in Eq. ~3.12! the temperature is scale
by l, and ~ii ! the critical valuelc is given by Eq.~A13!,
while for the QNLsM it depends upon the regularizatio
scheme.

B. Equation of state

The equation of state of the model Hamiltonian~2.1! near
the quantum critical point is obtained after substituting
shifted spherical fieldf by the magnetizationM through the
relation

M5
h

f
, ~3.14!

in Eq. ~3.2!, which allows us to write the equation of state
a scaling form

2
dl

M1/b
1~4p!2~d11!/2F h

MdG 1/gH UGS 12d

2 DU
22KFd21

2
,
l

2SMn/b

t D S h

MdD bG J 51. ~3.15!

We conclude that near the quantum critical point Eq.~3.15!
may be written in general forms as

h5Md f h„dlM21/b,~ t/l!1/nM21/b
…, ~3.16a!
s-

t

e

or

M5S t

l D 2b/n

fM~dlM21/b,hM2d!. ~3.16b!

In Eqs. ~3.16! f h(x,y) and fM(x,y) are some scaling
functions, furthermoreg5 2/(d21), n5 1/(d21), b5 1

2

and d5 (d13)/(d21) are the familiar bulk critical expo-
nents for the (d11)-dimensional classical spherical mode
Equations~3.16! are direct verification of FSS hypothesis
conjunction with classical to quantum critical dimension
crossover. They can be easily transformed into the sca
form @Eq. ~21!# obtained in Ref. 11, however here they a
verified for 1,d,3 instead of 2,d,3 ~c.f., Ref. 11!, i.e.,
the noncritical case is included.

Hereafter we will try to give an explicit expression of th
scaling function f h(x,y) @x[dlM22, y[(t/l)d21M22]
in the neighborhood of the quantum critical fixed point. Th
may be performed, in the case (t/l)Ah/M!1, with the use
of the asymptotic form ofK(n,y) to get the following result
for the scaling function (dÞ2):

f h~x,y!5H ~4p!d/2

G~12 d/2!
y2nF11x1

1

2p~d11!/2
GS d21

2 D
3z~d21!yG J 2/~d22!

. ~3.17!

For the special cased52 the scaling function is given by
the expression

f h~x,y!54y2Farcsinh
1

2
expS 2p

11x

y D G2

. ~3.18!

At x50 and y@1 ~fixed low temperature andh→01),
Eq. ~3.18! reduces to

f h~0,y!'y2expS 4p

y D . ~3.19!

In the regionx,21, and fory!1 ~fixed weak field andt
→01) the corresponding scaling function is

f h~x,y!'y2expS 4p
x11

y D , ~3.20!

and in regionx.21 andy!1 we have

f h~x,y!'16p2~x11!2F11
y

p~11x!
expS 24p

11x

y D G .
~3.21!

This identifies the zero-temperature (y50) form of the scal-
ing function~3.21! with those of the three-dimensional cla
sical spherical model.

IV. SYSTEM CONFINED TO A FINITE GEOMETRY

When the model Hamiltonian~2.1! is confined to the gen-
eral geometryLd2d83`d83Lt , with 0<d8<d, Eq. ~2.3! of
the spherical fieldf takes the form~for derivational details
see Appendix A!
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1

l
5

1

lc
2~4p!2~d11!/2UGS 12d

2 D Uf~d21!/21
f~d21!/2

~2p!~d11!/2

3 (
m,l~d2d8!

8
K ~d21!/2@f1/2$~lm/t !21~Lu lu!2%1/2#

@f1/2$~lm/t !21~Lu lu!2%1/2#~d21!/2
1

h2

f2
,

~4.1!

where

u lu5~ l 1
21 l 2

21•••1 l d2d8
2

!1/2

and the primed summation indicates that the vector w
componentsm5 l 15 l 25•••5 l d2d850 is excluded.

A. Shift of the critical quantum parameter

The FSS theory~for a review, see Ref. 31! asserts, for the
temperature-driven phase transition, that the phase trans
occurring in the system at the thermodynamic limit persis
if the dimensiond8 of infinite sizes is greater than the lowe
critical dimension of the system. In this case the value of
critical temperatureTc(`) at which some thermodynami
functions exhibit a singularity is shifted toTc(L) critical
temperature for a system confined to the general geom
Ld2d83`d8, when the system is infinite ind8 dimensions
and finite in (d2d8)-dimensions. In the case when the num
ber of infinite dimensions is less than the lower critical
mension, there is no phase transition in the system and
singularities of the thermodynamic functions are altered. T
critical temperatureTc(`) in this case is shifted to a pseud
ocritical temperature, corresponding to the center of
rounding of the singularities of the thermodynamic fun
tions, holding in the thermodynamic limit.

In our quantum case, having in mind that we have c
sidered the low-temperature behavior of model~2.1! in the
context of the FSS theory, it is convenient to choose
quantum parameterl as a critical instead of the temperatu
t and to consider our system confined to the geome
Ld2d83`d83Lt . So the shifted critical quantum paramet
lc(t,L)[l tL is obtained by settingf50 in Eq. ~4.1!. This
gives

1

l tL
2

1

lc
5

G[ ~d21!/2]

4p~d11!/2 ( 8
m,l~d2d8!

@~l tLm/t !2

1~Lu lu!2#~12d!/2. ~4.2!

The sum in the right-hand side~rhs! of Eq. ~4.2! is con-
vergent ford8.2, however it can be expressed in terms
the Epstein zeta function

ZU0
0
UFL2l21S l

t D
2

m2;d21G5 ( 8
m,l~d2d8!

FL2l2

1S l

t D
2

m2G ~12d!/2

,

~4.3!

which can be regarded as the generalized (d2d811)-
dimensional analog of the Riemann zeta functi
h

on
,

e

try

-

he
e

e
-

-

e

y

f

z@(d21)/2#) ~see Ref. 32!. In the case under consideratio
the Epstein zeta function has only a simple pole atd852 and
may be analytically continued for 0<d8,2 to give a mean-
ing to Eq.~4.2! for d8,2 as well. It is hard to investigate th
sum appearing in Eq.~4.3!. The anisotropy of the sum
L2l 1

21•••1L2l d2d8
2

1(l/t)2m2 is an additional problem.
That is why we will try to solve it asymptotically, conside
ing different regimes of the temperature, depending
whetherL! l tL /t or L@ l tL /t, which will be called, respec-
tively, the very low-temperature regime and the low
temperature regime.

1. Low-temperature regimel tL /t!L

In this case after some algebra the resulting expressio

1

l tL
2

1

lc
5

1

2p~d11!/2 S t

l tL
D d21

GS d21

2 D z~d21!

1
t

l tL

L22d

4pd/2
GS d

2
21D ( 8

l~d2d8!

u lu22d

1S t

l tL
D d/2L12d/2

p (
l~d2d8!

8 (
m51

` S m

u lu D
d/221

3Kd/2 21S 2p
t

l tL
Lmu lu D . ~4.4!

The first term of the rhs of Eq.~4.4! is the shift of the
critical quantum parameter@see Eq.~3.7!# due to the pres-
ence of the quantum effects in the system. The second t
is a correction resulting from the finite sizes. It is just t
shift due the finite-size effects in thed-dimensional spherica
model19 multiplied by the temperature scaled to the quant
parameter. Here the (d2d8)-fold sum may be continued
analytically beyond its domain of convergence with resp
to d andd8 ~which is 2,d8,d). The last term is exponen
tially small in the considered limit, i.e.,l tL /t!L.

In the borderline cased52, Eq. ~4.4! reduces to

1

l tL
2

1

lc
5

t

2pl tL
H B01gE1 ln

tL

2l tL
J , ~4.5!

wheregE50.577 . . . is theEuler constant andB0 is a con-
stant depending on the dimensionalityd2d8: in the case of
strip geometry (d851) B052 ln2p, and in the fully finite
geometry case (d850) B052 ln@G(1/4)#2/2Ap. Let us note
that in the rhs of Eq.~4.5! exponentially small corrections
are omitted.

2. Very-low-temperature regimel/t@L

The final result in this case is given by the expression

1

l tL
2

1

lc
5

L12d

4p~d11!/2
GS d21

2 D (
l~d2d8!

8 u lu12d

1
Ld82d

2p~d811!/2
GS d821

2 D S t

l tL
D d821

z~d821!
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1
L1/21d8/22d

p S t

l tL
D ~d821!/2

3 ( 8
l~d2d8!

(
m51

` S u lu
mD ~d821!/2

K ~d821!/2

3S 2p
l tL

tL
mu lu D . ~4.6!

Here, in the rhs, the first term is the expression of the shif
the critical quantum parameter, at zero temperature,28 due to
the finite sizes of the system. This is equivalent to the shif
a (d11)-dimensional spherical model confined to the geo
etry Ld112d83`d8. The second term gives a correction d
to the quantum effects. This is the shift of critical quantu
parameter of ad8-dimensional infinite system multiplied b
the volume of a (d2d8)-dimensional hypercube. The thir
term is exponentially small in the limit of very low temper
tures. Ford851 Eq. ~4.6! yields

1

l tL
2

1

lc
5

L12d

2p H ln
l tL

2AptL
1

gE

2

1@2p~d21!/2#21GS d21

2 DC0J . ~4.7!

Here the expressions for the constantsC0 are quite compli-
cated expect for some special cases: see Refs. 33, e.g
d52, d851, one hasC05gE2 ln4p @c.f., Ref. 34, Eq.
~30.104!#.

For the cased52, d851, comparing between Eqs.~4.5!
and~4.7! one can see the crucial role~in symmetric form! of
L or l tL /t in the low-temperature regime and the very lo
temperature one, respectively.

In the other important case of a two-dimensional b
geometryd850 andd52, from Eq.~4.6! one gets~again up
to exponentially small corrections!

1

l tL
2

1

lc
'

L21

p
zS 1

2DbS 1

2D2
l tL

tL2
z~21!, ~4.8!

where

b~s!5(
l 51

`
~21! l

~2l 11!s
.

Instead of the previous case of the low-temperature
gime, here the lower quantum critical dimensiond851 is
responsible for the logarithmic dependence in Eq.~4.7!. This
is the reason for the significant difference between Eqs.~4.7!
and ~4.8!.

The obtained equations forl tL will be exploited later for
the study of the two-dimensional case.

B. Zero-field susceptibility

From Eq.~4.1! one can show@see Eqs.~A14! and~A15!#
that the correlation lengthj5f21/2 will scale like
f

f
-

for

-

j5L f j
LH dlL1/n,

tL

l
,hLD/nJ , ~4.9a!

or like

j5
l

t
f j

t H dlS t

l D 21/n

,
tL

l
,hS t

l D 2D/nJ , ~4.9b!

which suggests also that there will be some kind of interp
~competition! between the finite-size and the quantum
fects. Equations~4.9! for the finite system are a generaliz
tion of Eq. ~3.4! for the correlation length for the bulk sys
tem.

Hereafter we will try to find the behavior of the suscep
bility x5f21 as a function of the temperaturet and the size
L of the system. For simplicity, in the remainder of th
section, we will investigate the free field case (h50).

~1! For (l/t) f1/2!1, after using the asymptotic form o
the function defined in Eq.~A14b! ~see Appendix B! Eq.
~4.1! reads (d8Þ2, 1,d,3)

dl1
t

l

Ld82d

~4p!d8/2
GS 12

d8

2 Df~d822!/21
1

4p~d11!/2
GS d21

2 D
3 ( 8

m,l~d2d!
F S l

t
mD 2

1~L l!2G ~12d!/2

50. ~4.10!

Now we will examine Eq.~4.10! in different regimes oft
andL and for different geometries of the lattice:

~a! (l/t) f1/2!1 and tL/l@1: In this case Eq.~4.10!
transforms into@up to an exponentially small correction, c
Eq. ~4.4!#

05dl1
t

l

Ld82d

~4p!d8/2
GS 12

d8

2 Df~d822!/2

1
1

2p~d11!/2 S t

l D d21

GS d21

2 D z~d21!

1
t

l

L22d

4pd/2
GS d

2
21D ( 8

l~d2d!
u lu22d. ~4.11!

This equation has different types of solutions depending
whether the dimensionalityd is above or below the classica
critical dimension 2.

At l5lc and whend8,2,d,3 ~i.e., when there is no
phase transition in the system! we obtain for the zero-field
susceptibility

x5S t

lc
D 22S tL

lc
D 2~d2d8!/~22d8!

3F 2d821

p~d2d811!/2

G[ ~d21!/2]

G(12 d8/2)
z~d21!G 2/~22d8!

.

~4.12!

However for 1,d,2, Eq. ~4.11! has no solution atl5lc
obeying the initial condition (lc /t) f1/2!1.

Equation ~4.12! generalizes the bulk result~3.5! for d
close to the upper quantum critical dimension, i.e.,d53.
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At the shifted critical quantum parameterlc(t) given by
Eq. ~3.7! we get

x5L2F 2d822

p~d2d8!/2

G(d/221)

G(12 d8/2)
( 8

l~d2d8!

u lu22dG 2/~22d8!

.

~4.13!

However this solution is valid only for 3.d.2.d8, i.e.,
here again there is no phase transition in the system.

~b! (l/t) f1/2!1 and tL/l!1: In this case, Eq.~4.10!
gives @up to exponentially small corrections, c.f. with E
~4.6!#

05dl1
t

l

Ld82d

~4p!d8/2
GS 12

d8

2 Df~d822!/2

1
L12d

4p~d11!/2
GS d21

2 D ( 8
l~d2d8!

u lu12d

1
Ld82d

2p~d811!/2
GS d821

2 D S t

l D d821

z~d821!.

~4.14!

Here we find that the solutions of Eq.~4.14! depend upon
that whether the dimensionalityd8,1 or d8.1.

At l5lc and for 1,d8,2, Eq. ~4.14! has

x5L2S lc

tL D 2/~22d8!

3F 2d822

p~d2d811!/2

G[ ~d21!/2]

G(12 d8/2)
( 8

l~d2d8!

u lu12dG 2/~22d8!

~4.15!

as a solution. For 0<d8,1, however, it has no solution
obeying the initially imposed restriction (lc /t) f1/2!1.

At the shifted critical quantum parameterlc(L) given
by28

1

l
2

1

lc~L !
5

L12d

4p~d11!/2
GS d21

2 D ( 8
l~d2d8!

u lu12d,

Equation~4.14! has a solution obeying the initial conditio
(lc /t) f1/2!1 only for d8511« and in this case the sus
ceptibility behaves like

x5
1

~p«!2

lc
2

t2 F12«S gE1 ln
«

2D G2

. ~4.16!

~2! For Lf1/2!1, from Eqs.~A14! and Eq.~B9! we get
once again Eq.~4.11!. In spite of the fact that we have th
same equation as in the case (l/t) f1/2!1, the expected so
lutions for the susceptibility may be different because of
new imposed condition. Here also we will consider the t
limiting cases of low-temperature and very low-temperat
regimes.

~a! Lf1/2!1 andtL/l@1: In this case Eq.~4.10! again is
transformed into Eq.~4.11! and we obtain atl5lc the so-
lution given by Eq. ~4.12!, which is valid only for
e

e

d8,2,d,3, i.e., we have the same solution as in the p
vious case, i.e., (l/t) f1/2!1.

At l5lc(t), we formally obtain Eq.~4.13! which, how-
ever, may be considered as a solution only in the neighb
hood of the lower classical critical dimensiond52. For the
cylindric geometry (d851 andd521«) we get

x5
L2

~p«!2F12
«

2
~gE2 ln4p!G2

. ~4.17!

This result is contained in Eq.~30.109! of Ref. 34 in the
large-n-limit case for the NLQsM.

In the case of slab geometryd2d851 (d521«,d8
511«) instead of Eq.~4.17! we obtain

x5
L2

~p«!2
@12«~gE2 ln2!2« ln«#2. ~4.18!

In the case of a bloc geometry (d521« andd850) we
find the following behavior for the susceptibility

x5
L2

2p«F12
«

4S gE2 ln
[G(1/4)]4

4p2 D G 2

. ~4.19!

For the case of ‘‘quasibloc geometry’’ (d521« and
d85«) we get

x5
L2

2p«F12
«

4S 2gE1 ln
p«

2
22 ln

@G~1/4!#2

2Ap
D G 2

.

~4.20!

The appearance of« in the denominator in formulas~4.16!–
~4.20! signalizes that the scaling in its simple form will fa
at «50.

~b! Lf1/2!1 andtL/l!1: Here we find that Eq.~4.14! is
valid, and it has Eq.~4.15! as a solution atl5lc and for
0<d8,1. For 1,d8,2 the susceptibility is given by

x5S lc

2t D
2F 2

p1/2

G@~d821!/2#

G~12 d8/2!
z~d821!G 2/~22d8!

.

~4.21!

At the shifted critical pointlc(L), for the susceptibility
we obtain Eq.~4.21! under the restriction 2.d8.1, which
guarantees the positiveness of the quantity under bracke

Whenl,lc for 1,d,3 andd8,2, i.e., when there is
no phase transition in the system, we obtain

x5F ~4p!d8/2

G~12 d8/2!
S 1

l

lc
D G 2/~22d8!

t22/~22d8!L2~d2d8!/~22d8!.

~4.22!

If d8.2 there is a phase transition in the system at
shifted value of the critical quantum parameterl tL ~the shift
in this case is due to the quantum and finite-size effects! and
Eq. ~4.10! transforms to

12
l

l tL
5t

Ld82d

~4p!d/2
G~12 d8/2!f~d822!/2, ~4.23!

which has the following solutions:
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x5H F ~4p!d8/2

G~12 d8/2!
S 12

l

l tL
D G 2/~22d8!

t22/~22d8!L2~d2d8!/~22d8!, l.l tL

`, l<l tL.

~4.24!
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Let us notice that Eqs.~4.22! and ~4.24! are the finite-size
forms, for the susceptibility, of Eqs.~3.9! and~3.10!, respec-
tively, found for the bulk system.

C. Two-dimensional case

The two-dimensional case needs special treatment
cause of its physical reasonability and the increasing inte
in the context of the quantum critical phenomena.5–10 From
Eq. ~4.1! for d52 and in the absence of a magnetic fie
h50 we get

dl5
f1/2

4p
2

1

4p (
m,l~22d8!

8

expF2f1/2S l2

t2
m21L2l2D 1/2G

@~l2/t2! m21L2l2#1/2
.

~4.25!

Introducing the scaling functionsYt
d85 (l/t) f1/2 and

YL
d85Lf1/2, where the superscriptd8 denotes the number o

infinite dimensions in the system, and the scaling varia
a5 tL/l, it is easy to write Eq.~4.25! in the scaling forms
given in Eqs.~A14! and~A15!. The solutions of the obtaine
scaling equations will depend on the number of the infin
dimensions in the system. Here we will consider the t
most important particular cases: strip geometryd851 and
bloc geometryd850. Our analysis will be confined to th
study of the behavior of the scaling functions at the criti
value of the quantum parameterlc , and at the shifted critica
quantum parameterl tL ~see Sec. IV A!. It is difficult to solve
Eq. ~4.25! by using an analytic approach; that is why we w
give a numerical treatment of the problem. It is, howev
possible to consider the two limits:a@1, i.e., the low-
temperature regime anda!1, i.e., the very low-temperatur
regime.

Strip geometry(d851): In this case in the rhs of Eq
~4.25! we have a twofold sum which permits a numeric
analysis of the geometry under consideration. Figure
graphs the variation of the scaling functionsYt

1 and YL
1

against the variablea at l5lc . This shows that for com-
paratively small value of the scaling variablea;5 the finite-
size behavior@see the curve of the functionYt

1(a)] merges in
the low-temperature bulk one, while the behavior ofYL

1(a)
shows that for relatively not very low temperatures (a; 1

5,
L-fixed! the system simulates the behavior of a thre
dimensional classical spherical model with one finite dim
sion. The mathematical reasons for this are the exponent
small values of the corrections, as we will show below.

Bloc geometry(d850): In this case the threefold sum i
the rhs of Eq.~4.25! is not an obstacle to analyzing it nu
merically. Forl5lc the behavior of the scaling function
YL

0(a) andYt
0(a) is presented in Fig. 2. They have the sam
e-
st

le

e
o

l

,

l
2

-
-
lly

qualitative behavior as in the strip geometry, the only diffe
ence is the appearance of a universal number fort50, i.e.,
V, instead of the constantQ as a consequence of the asym
metry of the sum in the low-temperature and the very lo
temperature regimes.

Now, let us consider analytically Eq.~4.25!. To this end,
we will first fix the quantum parameter at its critical valu
lc . For arbitrary values of the number of infinite dimensio
d8, in the low-temperature regime(a@1), Eq.~4.25! can be
transformed into@up to small correctionsO(e22pa)]

dl5
1

2pl
ln2 sinh

l

2t
f1/22

1

2pl (
l~22d8!

8 K0~Lf1/2u lu!.

~4.26!

For l5lc Eq. ~4.26! has the solution

x21/2'
t

lc
Q1~22d8!A2p

5QS t

Llc
D 1/2

expS 2
tL

lc
Q D ,

~4.27!

i.e., the finite-size corrections to the bulk behavior are ex
nentially small.

In the very low-temperature regime(a!1), Eq. ~4.25!
reads@up toO(e22p/a)]

dl5
f1/2

4p
2

L21

4p (
l~22d8!

8
exp~2Lf1/2u lu!

u lu

FIG. 2. The effects of the finite-size geometry on the bulk b
havior of f1/2 for the two-dimensional case atl5lc . The super-

scriptd8 in YL
d85Lf1/2 andYt

d85 (lc /t) f1/2 indicates the number
of infinite dimensions in the system. The scaling variab
a5 tL/lc . The universal numbers areQ50.962 424 . . . @see Eq.
~3.13c!# andV51.511 955 . . . .
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2
Ld822

p~d811!/2S 2
l

t D ~12d8!/2

(
m51

`

K ~d821!/2S l

t
f1/2mD ,

~4.28!

which has the solutions

x21/2'
1

L
Q1A2p

5QS Llc

t D 1/2

expS 2
lc

tL
Q D ~4.29!

for d851, and

x21/2'
1

L
V1

1

LH 1

2V
1

V

2 ( 8
l~2!

~V214p2l2!23/2J 21

3expS 2V
lc

tL D ~4.30!

for d850. HereV51.511 955 . . . is a universal constant
In Sec. IV A an analytic continuation of the shift of th

critical quantum parameter ford52 was presented. It is pos
sible to consider the solutions of Eq.~4.25! at l5l tL @from
Eqs. ~4.5!, ~4.7!, and ~4.8!# and for different geometries. In
this case the scaling functionsYt

1 , YL
1 , Yt

0, and YL
0 are

graphed in Fig. 3. Ford851 again we see that a symmet
between the two limitsa!1 anda@1 take place, since the
scaling functionsYt

1 and YL
1 are limited by the universa

constantJ. The asymmetric cased850 has two different
constantsS t and SL , limiting the solutions ofYt

0 and YL
1

from above.
The constantsJ, S t and SL are obtained from the

asymptotic analysis~with respect toa) of Eq. ~4.25! for
l5l tL . In the limit a@1 for arbitrary values ofd8 we get
@from Eq. ~4.26!#

B01gE1 ln
Lf1/2

2
5 (

l~22d8!

8 K0~Lf1/2u lu!, ~4.31!

FIG. 3. The same as in Fig. 2 but forl5l tL and a5 tL/l tL .
The universal numbers areJ57.061 132. . . , S t56.028 966 . . .
andSL54.317 795. . . .
where the equation ofl tL from Eq. ~4.5! is used. Equation
~4.31! has the solutions

Lx21/25H J for d851,

SL for d850,
~4.32!

where the universal numbersJ57.061 132 . . . and
SL54.317 795 . . . are the solutions of the scaling equat
~4.31! for d851 andd850, respectively.

In the opposite limita!1, for d851, we get from Eqs.
~4.7! and ~4.28! the equation

gE1 ln
l tLf1/2

4pt
52 (

m51

`

K0S l tL

t
f1/2mD , ~4.33!

which has

l tL

t
x21/25J, ~4.34!

as a universal solution. Ford850 we have

S l tL

t
f1/226DexpS l tL

t
f1/2D2

l tL

t
f1/22650 ~4.35!

obtained from Eqs.~4.8! and~4.28!, where we have used th
identity ~B11!.

From Eq.~4.35! we obtain the universal result

l tL

t
x21/25S t56.028 966. . . . ~4.36!

We finally conclude that if we takel5lc the scaling

functions Yt
d8 and YL

d8 have similar qualitative behavio
weakly depending on the geometry~i.e., blocd850 or strip
d851) of the system. However, for a given geometry o
distinguishes quite different quantitative behavior of the sc
ing functions depending on whether the quantum param
l is fixed at its critical value, i.e.,l5lc , or takes ‘‘run-
ning’’ valuesl tL obtained from the ‘‘shift equations’’~4.5!,
~4.7!, or ~4.8!.

D. Equation of state

The equation of state of the model Hamiltonian~2.1! for
dimensionalities 1,d,3 is given by@see Eqs.~3.14! and
~4.1!#

05dl2~4p!2~d11!/2UGS 12d

2 D US h

MD ~d21!/2

1
~h/M!~d21!/2

~2p!~d11!/2

3 (
m,l~d2d8!

8
K ~d21!/2$~h/M!1/2@~lm/t !21~Lu lu!2#1/2%

$~h/M!1/2@~lm/t !21~Lu lu!2#1/2%~d21!/2

1M2. ~4.37!

It is straightforward to write this equation in a similar form
as in Eq.~A14! or Eq. ~A15!, i.e.,
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h5Md f h
LH dlM21/b,

tL

l
,L21/nM21/bJ , ~4.38a!

or

h5Md f h
t H dlM21/b,

tL

l
,S t

l D 1/n

M21/bJ . ~4.38b!

Equations~4.38! are generalizations of Eqs.~3.16! in the
case of systems confined to a finite geometry. The app
ance of an additional variabletL/l is a consequence of th
fact that the system under consideration may be regarde
an ‘‘hyperparallelepiped’’~in not necessary a Euclidea
space! of linear sizeL in d2d8 directions and of linear size
Lt in one direction with periodic boundary conditions.

V. SUMMARY AND DISCUSSION

Since exact solvability is a rare event in statistic
physics,35 the model under consideration yields a conspi
ous possibility to investigate the interplay of quantum a
classical fluctuations as a function of the dimensionalityd,
the external fieldh, and the geometry of the system in a
exact manner. Equations of the type~3.1! are specific for a
closed-form approximation~in thed-dimensional case! in the
theory of phase transitions. They reflect the availability
spherical constraints11,20–22 or self-consistent equations26–29

and so generate similar critical behavior for various phys
phenomena. The central role of this type of equations can
confirmed by a more sophisticated large-n limit analysis.6

For this reason it is not a surprise that the bulk lo
temperature properties, of the SQRM~see Sec. III! are simi-
lar to those obtained by saddle-point calculation for the Q
sM; the main analytical model in the theory of quantu
critical phenomena. An attractive feature of the pres
model is the lattice formulation, which seems to be mo
transparent in the finite-size case, since no ultraviolet re
larization is necessary and there are no ambiguities ass
ated with taking the continuum limit.

The discussion of the obtained results in Sec. III, serve
a basis for the further FSS investigations. Identifying t
temperature, which governs the crossover between the
sical and the quantum fluctuations as an additional temp
dimension one makes possible the use of the methods of
theory in a very effective way.

A quantum analog of the Privman-Fisher hypothesis36 for
the FSS in the presence of a magnetic fieldh was shown to
be consistent with exact results obtained in Secs. III,
~3.4!, and IV, Eq. ~4.9!. We mention that in the case o
geometryLd2d83`d83Lt the scaling functions depend o
hLD/n or hLt

D/n and on the shape factorL/Lt which provides
different regimes: low-temperature (L@Lt) and very low-
temperature (L!Lt). The analogy between the model~2.1!
and the QNLsM in the large-n limit was already noticed.
The external field dependence of the thermodynamics of
last model has been studied in Ref. 7. The key elemen
this treatment is the specific orientation of the magnetic fi
to facilitate a simple large-n limit. In particular, for the case
when h couples to a ‘‘conserved charge’’ the equality b
tween the scaling dimensions of the field and the tempera
was obtained.7 A phenomenological study of the nonline
r-
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field dependence of a system, without having a total c
served charge, has been presented in Ref. 37. These phe
enological ideas are illustrated in the framework of the co
crete model~2.1!. Let us note an important difference i
symmetry between the model~2.1! with its discreteZ2 sym-
metry and theO(n) symmetry of the basic rotors model.

In Sec. IV A the shift of the critical quantum parameterl
as a consequence of the quantum and finite-size effec
obtained. In comparison with the classical case~for details
see Ref. 19, and references therein! here the problem is
rather complicated by the presence of the two finite char
teristic lengthsL andLt . We observe a competition betwee
finite-size and quantum effects which reflects the appeara
of the two regimes: low-temperature and very low
temperature. The behavior of the shift is analyzed in so
actual cases of concrete geometries, e.g., strip and bloc

In the parameter space~temperaturet and quantum pa-
rameterl), where quantum zero-point fluctuations are r
evant, there are three distinct regions named ‘‘renormali
classical,’’ ‘‘quantum critical,’’ and ‘‘quantum disordered.’
The existence of these regions in conjunction with both
gimes: low-temperature and very low-temperature, is an
trinsic feature of the physics near the quantum critical po
and makes the model a useful tool for the exploration of
qualitative behavior of a large class of systems.

In Sec. IV B the susceptibility~or the correlation length!
is calculated and the critical behavior of the system in d
ferent regimes and geometries is analyzed. We have stu
the model~2.1! via « expansion in order to illustrate th
effects of the dimensionalityd on the existence and prope
ties of the ordered phase. An indicative example is given
Eqs.~4.17! and ~4.18!, while the former is known~see Ref.
34!, the last one is quite different and new. These shows
one must be accurate in taking the limit«→01. The relation
with the QNLsM in the n→` limit may serve as an illus-
tration of Stanley’s arguments of the relevance of the sph
cal approximations in the quantum case. Let us note, h
ever, that the use of such arguments needs an additi
more subtle treatment in the finite-size case.

In Sec. IV C, special attention is paid to the tw
dimensional case. The two important cases of strip and b
geometries are considered. The universal constantQ given
by Eq. ~3.13c!, which characterizes the bulk system,
changed to a set of universal constants:V @see Eq.~4.30!#, J
andSL @see Eq.~4.32!#, andS t @see Eq.~4.36!#. The appear-
ance of universal constants reflects the new situation, w
there are two relevant values of the quantum parametel:
l5lc in the bulk case andl5l tL in the case of finite ge-
ometries. Due to their universality these constants may p
an important role even in studying more complicated mo
Hamiltonians. The behaviors of the scaling functions at
bulk critical quantum parameterlc and the shifted critical
quantum parameterl tL are given in Figs. 2 and 3.Lt is the
main characteristic length and the 1/L corrections are expo
nentially small in the case of low-temperature regime, a
vice versa in the case of the very low-temperature regim

The equation of state, for the system confined to the g
eral geometryLd2d83`d83Lt , is obtained in Sec. IV D.
This reflects the modifications of the scaling functions a
consequence of the finite sizes and the temperature.

It is a common wisdom that the spherical limit models a
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not free of any pathologies. So some really interesting pr
lems come if one goes beyond the spherical approximat
One can see from Eq.~2.1! that in the absence of the sphe
cal constraint~2.2!, if A[ m/41 Jd/4,0, such a system is
thermodynamically unstable, i.e., the parameterA,0 defines
the frequency of an unstable mode suggesting that an ap
priate stabilization~for example, by adding the termBSl

4 ) of
the system can again creates a gap in the spectrum.
Hamiltonians are frequently used in the theory of structu
phase transitions~see, e.g., Refs. 38, 39, and referenc
therein!. A relaxed version of the spherical constraint in co
junction with exact solvability may be obtained in this ca
by the ansatzSl

2 ⇒ 1/N (( l Sl
2 ) ~see Refs. 26–29,40!. The

model obtained in this way is a quantum counterpart of
‘‘soft’’ classical mean spherical model studied in Ref. 41
the context of the FSS theory. Strictly speaking, in order
obtain exact finite-size corrections, even this Hamiltonian
with ‘‘truncated fluctuations’’ is analytically hard tractab
despite that it belongs to thebulk universality class of the
model~2.1!. For example it is not obvious how to obtain th
corrections to the bulk result, since both the 1/L and 1/N
parts enter. That this is a nontrivial problem, even in
simplest case of the classical Husimi-Temperely spher
model, was demonstrated in Ref. 42. In the quantum c
where the situation is much more difficult, up to now this
an open problem. Certainly, if we discard the problem of
status of the approximation scheme@in the last case it is
equivalent to the well-known self-consistent phonon a
proximation ~see, e.g., Ref. 39!# then our treatment is no
restricted only to the Hamiltonian~2.1!, but it can be applied
to a wide class of finite lattice models~e.g., directly to the
anharmonic crystal model, see Refs. 26–29! and it can also
provide a methodology for seeking different quantum fini
size effects in such systems.
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APPENDIX A

In this appendix we will derive Eqs.~3.2! and~4.1! of the
shifted spherical fieldf for the model Hamiltonian~2.1!

confined to the general geometryLd2d83`d83Lt , with pe-
riodic boundary conditions, in the low-temperature regim
To achieve that, let us start with Eq.~2.3!

15Wd~f,L,t !1
h2

f2
, ~A1a!

where we have used the notation
-
n.

ro-

ch
l
s
-

e

o

e
al
e,

e

-

-

-
-
o.

.

Wd~f,L,t !5
t

N (
m52`

`

(
q

3
1

f12(
i 51

d

~12cosqi !1~2pt/l!2m2

.

~A1b!

Now if we assume that the system is infinite ind8 dimen-
sions, then we may write Eq.~A1b! in the following form:

Wd~f,L,t !5
tLd82d

~2p!d8 (
q~d2d8!

(
m52`

` E
2p

p

dd8qE
0

`

dx

3expH 2xFf12(
i

~12cosqi !

1S 2pt

l D 2

m2G J , ~A2!

To obtain the last expression use has been made of the
resentation

1

z
5E

0

`

exp~2zx!dx, ~A3!

and thatN5Ld.
Now by rearranging it is possible to write Eq.~A2! in the

following form:

Wd~f,L,t !5t (
m5`

` E
0

`

dxexpF2xH f12d1S 2pt

l D 2

m2J G
3@ I 0~2x!#d8F 1

L(
q

exp~2x cosq!Gd2d8
. ~A4!

Here I 0(x) is the modified Bessel function.
The use of Poisson summation formula

1

L (
n52 ~L21!/2

n5 ~L21!/2

GS 2pn

L D5 (
l 52`

` E
2p

p dq

2p
G~q!exp~ iqlL !,

~A5!

whereG(q) is a periodic function, allows us to continue th
sum over the wave vectorq52pn/L (nP@2L/2,L/2#) to
the rest of the real line periodically. With the aid of Eq.~A5!
we can transform Eq.~A4! into

Wd~f,L,t !5t (
m5`

` E
0

`

dxexpF2xH f12d1S 2pt

l D 2

m2J G
3@ I 0~2x!#d8F (

l 52`

`

I lL~2x!Gd2d8

. ~A6!

In order to investigate the low-temperature effects for
model Hamiltonian~2.1! we use the Jacobi identity
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(
m52`

`

exp~2um2!5S p

u D 1/2

(
m52`

`

expS 2m2
p2

u D ,

~A7!

which applied to Eq.~A6! gives

Wd~f,L,t !5lWd~f!1
l

2p1/2 ( 8
m,l~d2d8!

E
0

` dx

x1/2

3expF2x~f12d!2S l

2txD 2

m2G
3@ I 0~2x!#d8I lL~2x!, ~A8!

where we have used the formal notations

(
l~d2d8!

I lL~2x!5F(
l

I lL~2x!Gd2d8
,l25 l 1

21•••1 l d2d8
2 ,

Wd~f!5
1

2~2p!dE2p

p

dq1•••E
2p

p

dqdS f12(
i 51

d

3~12cosqi !D 21/2

. ~A9!

The prime means that the vector with compone
m5 l 15•••5 l d2d850 is omitted.

At sufficiently low temperature (l/t@1) and large
enough size (L@1), we can use the asymptotic form for th
Bessel functions12

I n~x!'
ex2n2/2x

A2px
F11

1

8x
1

9232n2

2!~8x!2
1•••G , ~A10!

in order to get after substitution in Eq.~A1a!

15lWd~f!1
lf~d21!/2

~4p!~d11!/2

3 ( 8
m,l~d2d8!

K ~d21!/2$f
1/2@~l/t !2m21L2l2#1/2%

$f1/2@~l/t !2m21L2l2#1/2%~d21!/2
.

~A11!

The Watson-type integralWd(f) @see Eq.~A9!# has been
studied in considerable details;27 for 1,d,3, it can be ap-
proximated by (f!1),

Wd~f!'Wd~0!2~4p!2~d11!/2UGS 12d

2 D Uf~d21!/2,

~A12!

which leads one to conclude that at zero temperature
system exhibits a phase transition driven by the parametl
at the quantum critical point:

lc5
1

Wd~0!
. ~A13!

Finally, substituting Eq.~A12! in Eq. ~A11! we obtain Eq.
~4.1!. Equation~3.2! is obtained by settingd5d8.
s

e

It is possible to transform Eq.~4.1! in the following
equivalent forms:

Ld21dl1S hL~d13!/2

L2f
D 2

5
~Lf1/2!d21

~4p!~d11!/2FUGS 12d

2 D U
22Kl/tLS d21

2 Ud2d8

11,
Lf1/2

2 D G , ~A14a!

where

Ka~nup,y!5 ( 8
m,l~p21!

Kn~2yAl21a2m2!

~yAl21a2m2!n
,

y.0, l25 l 1
21 l 2

21•••1 l p21
2 . ~A14b!

or

S t

l D 12d

dl1F h

f S t

l D 2S l

t D ~d13!/2G2

5
~lf1/2/t !d21

~4p!~d11!/2 FUGS 12d

2 DU
22K̃tL/lS d21

2 Ud2d811,
lf1/2

2t D G , ~A15a!

where

K̃a~nup,y!5K1/a~nup;ay!

5 ( 8
m,l~p21!

Kn~2yAa2l21m2!

~yAa2l21m2!n
, y.0.

~A15b!

The functionsKa(nup;y) and K̃a(nup;y) are anisotropic
generalizations of theK function introduced in Ref. 12.

APPENDIX B

In this appendix we will sketch a way to find th
asymptotic behavior of the functionsKa(nup,y) defined in
Sec. IV @see Eq.~A14!#. They have the following form:

Ka~nup,y!5 ( 8
m,l~p21!

Kn~2yAl21a2m2!

~yAl21a2m2!n
, y.0,

~B1a!

where

l25 l 1
21 l 2

21•••1 l p21
2 . ~B1b!

By the use of the integral representation of the modifi
Bessel function

Kn~2Azt!5K2n~2Azt!5
1

2S z

t D
n/2E

0

`

x2n21e2tx2z/xdx

~B2!
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and the Jacobi identity for ap-dimensional lattice sum

(
m,l~p21!

e2~ l21a2m2!t5
1

aS p

t D p/2

(
m,l~p21!

e2p2~ l21m2/a2!/t,

~B3!

we may write Eq.~B1! as

Ka~nup,y!5
pp/2

2a
GS p

2
2n D y2p

1
p2n2p/2

2a
y22nE

0

`

dxx~1/2! p2n21e2xy2/p2

3F ( 8
m,l~p21!

e2x~ l21m2/a2!2aS p

x D p/2G . ~B4!

Let us notice that the two terms in the square brackets in
last equality cannot be integrated separately, since they
verge. Nevertheless, in order to encounter this diverge
e
i-
e,

we can transform further Eq.~B4! by adding and subtracting
the unity from exp(2xy2/p2), which enables us to write
down ~after some algebra! the result

Ka~nup,y!5
pp/2

2a
GS p

2
2n D y2p1

p2n2p/2

2a
y22nCa~pun!

2
1

2
G~2n!1

p2n2p/2

2a

G~p/2 2n!

y2n

3 ( 8
m,l~p21!

F S l21
m2

a2
1

y2

p2D n2p/2

2S l21
m2

a2 D n2p/2G , ~B5!

where
llowing

t

Ca~pun!5 lim
d→0

E
d

`

dxx~1/2! p2n21F ( 8
m,l~p21!

e2x~ l21m2/a2!2aS p

x D p/2G , ~B6a!

5 lim
d→0

H ( 8
m,l~p21!

G@p/2 2n,d~ l21 m2/a2!#

~ l21 m2/a2!n2p/2

2E
2`

`

•••E
2`

`

dmdp21l
G@p/2 2n,d~ l21 m2/a2!#

~ l21 m2/a2!n2p/2 J ~B6b!

is the Madelung-type constant andG@a,x# is the incomplete gamma function.
We see from Eq.~B5! that the shift of the critical quantum parameter is given by the Madelung-type constant~B6! instead

of the sum in Eq.~4.2!. Indeed it is possible to show that these two representations are equivalent. This may be done, fo
Ref. 33, by starting from the Jacobi identity Eq.~B3!, where we multiply the two sides bydp/22n21 and integrating overd to
obtain the key equation

Ca~pun!5 ( 8
m,l~p21!

G@p/22n,d~ l21 m2/a2!#

~ l21 m2/a2!p/22n
2

dp/22n

p/2 2n
1app/222n ( 8

m,l~p21!

G@n, p2~ l21a2m2!/d#

~ l21a2m2!n 2a
pp/2

ndn
. ~B7!

Finally from Eq.~B7! we see easily that the integration constantCa(pun) may be written in two different forms. In the firs
case we take the limitd→` and obtain

Ca~pun!5app/222nG~n! ( 8
m,l~p21!

1

~ l21a2m2!n
. ~B8!

In the other case we take the limitd→0, and then both the first and last terms in the rhs of Eq.~B7! yields Eq.~B6!.
Using a similar procedure we find, for the functionsK̃a(nup,y) defined in Eq.~A15b!, the following expression:

K̃a~nup,y!5
pp/2

2ap21
GS p

2
2n D y2p1

p2n2p/2

2ap21
y22nC̃a~pun!2 S 1

2D G~2n!1
p2n2p/2

2ap21

G~p/22n!

y2n

3 ( 8
m,l~p21!

F S l2

a2 1m21
y2

p2D n2p/2

2S l2

a2 1m2D n2p/2G . ~B9!

Here the Madelung-type constant is given by
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C̃a~pun!5 lim
d→0

E
d

`

dxx~1/2! p2n21F ( 8
m,l~p21!

e2x~ l2/a21m2!2ap21S p

x D p/2G , ~B10a!

5 lim
d→0

H ( 8
m,l~p21!

G@p/2 2n,d~ l2/a2 1m2!

~ l2/a2 1m2!n2p/2
2E

2`

`

•••E
2`

`

dmdp21l
G@p/2 2n,d~ l2/a2 1m2!#

~ l2/a2 1m2!n2p/2 J ~B10b!

5ap21pp/222nG~n! ( 8
m,l~p21!

1

~a2l21m2!n
. ~B10c!

Equations~B5! and~B9! are slight generalizations~for the anisotropic caseaÞ1) of the result obtained in Ref. 33 from on
side, and are related to the Watson-type sums proposed earlier in Ref. 13 from the other~see also Ref. 19!.

If we set in Eqs.~B5! or ~B9! d52, d850, anda51 we obtain the identity

( 8
l 1 ,l 2

exp~2yAl 1
21 l 2

2!

Al 1
21 l 2

2
5

2p

y
14zS 1

2D bS 1

2D 1y12p ( 8
l 1 ,l 2

H 1

Ay14p2~ l 1
21 l 2

2!
2

1

2pAl 1
21 l 2

2 J . ~B11!
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