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The quantum-rotors model can be regarded as an effective model for the low-temperature behavior of the
guantum Heisenberg antiferromagnets. Here, we considedienensional model in the spherical approxima-
tion confined to a general geometry of the folrfi @ x 9 X LZ (L-linear space size and,-temporal sizp
and subjected to periodic boundary conditions. Due to the remarkable opportunity it offers for rigorous study
of finite-size effects at arbitrary dimensionality this model may play the same role in quantum critical phe-
nomena as the popular Berlin-Kac spherical model in classical critical phenomena. Close to the zero-
temperature quantum critical point, the ideas of finite-size scaling are utilized to the fullest extent for studying
the critical behavior of the model. For different dimensionsdi<3 and 0<d’'=<d a detailed analysis, in
terms of the special functions of classical mathematics, for the susceptibility and the equation of state is given.
Particular attention is paid to the two-dimensional c4S€163-182€08)03209-3

I. INTRODUCTION ods. The most famous model for discussing these properties
is the quantum nonlineaP(n) sigma mode(QNLoM).5~1°
In recent years there has been a renewed inerastthe Recently an equivalence between the @MILin the limit

theory of zero-temperature quantum phase transitions initin—co and a quantum version of the spherical model or more
ated in 1976 by Hertz's quantum dynamic renormalizationprecisely the “spherical-quantum-rotors” modéSQRM)
groug’ for itinerant ferromagnets. Distinctively from was announcet: The SQRM is an interesting model in its
temperature-driven critical phenomena, these phase trangiwn. Due to the remarkable opportunity it offers for rigorous
tions occur at zero temperature as a function of some nonsyydy of finite-size effects at arbitrary dimensionality SQRM
thermal control parametdor a competition between differ- may play the same role in quantum critical phenomena as the

ent param((jatehrs dlescr|b|][;g the basic m;[eractlon of rEh‘Eopular Berlin-Kac spherical model in classical critical phe-
system, and the relevant fluctuations are of quantum rathe omena. The last one became a touchstone for various scal-

than thermal nature. ing hypotheses and source of new ideas in the general theory

It is well known from the theory of C““‘?‘?" phenomena Pf finite-size scaling(see, for example, Refs. 12-19, and
that for the temperature-driven phase transitions quantum ef- . . S
references therejn Let us note that an increasing interest

fects are unimportant near critical points wip>0. It could ) . ) . .
P b b> related with the spherical approximatidor largen limit)

be expected, however, that at rather snfall compared to A . o
characteristic excitation in the systgtemperature, the lead- generating tractable models in quantum critical phenomena

ing T dependence of all observables is specified by the prog?@S Peen observed in the last few years 2

erties of the zero-temperature critical points, which take N Ref. 11, the critical exponents for the zero-temperature
place in quantum systems. The dimensional crossover ruf@uantum fixed point and the finite-temperature classical one
asserts that the critical singularities of such a quantum sy<2S @ function of dimensionality was obtained. What remains
tem atT=0 with dimensionalityd are formally equivalentto Peyond the scope of Ref. 11 is to study in an exact manner
those of a classical system with dimensionatity z (z is the the scalmg properties (_)f the model in dlfferent regions of the
dynamical critical exponenand critical temperaturg,>0. ~ Phase diagram including thguantum critical regionas a
This makes it possible to investigate low-temperature effectgmcuon. ‘?f th‘? d|men§|onallty of the system. In the context
(considering an effective system withinfinite space and of t'he f|n!te—3|ze scaling theory both casé9: The mﬁmt;a
finite time dimensionsin the framework of the theory of d-dlmen5|onall/ quantum system at low t'empt'aratuwé'xLT _
finite-size scaling(FSS. The idea of this theory has been [L,~(fi/kgT)"* is the finite size in the imaginary time di-
applied to explore the low-temperature regime in quantun’feCt'On] and (ii) the finite system confined to the geometry
systemsg(see Refs. 57 when the properties of the thermo- L9 ¢" x %% x L% (L-linear space sizeare of crucial interest.
dynamic observables in tHmite-temperature quantum criti- Earlier a class of exactly solvable lattice models intended
cal region have been the main focus of interest. The veryto study the displacive structural phase transition have been
guantum critical regionwas introduced and studied by intensively considered in both finite-size and bulk
Chakravartyet al® using the renormalization-group meth- geometry’®=2° The main feature of these models is that the
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real anharmonic interaction is substituted with its quantunthe Hamiltonian(2.1) do not describe quantum Heisenberg-
mean spherical approximation reducing the problem to amirac spins but quantum rotors as it was pointed out in Ref.
exactly solvable one. We expect that the analytical techniqué1.
proposed below will apply to these models too. Under periodic boundary conditions, E@.2) takes the

In this paper a detailed theory of the scaling properties oform
the SQRM with nearest-neighbor interaction is presented.

The plan of the paper is as follows: we start with a brief A 1
review of the model and the basic equation for the quantum 1=+ i
. o S " 2N
spherical field in the case of periodic boundary conditions \/¢+22 (1-cogy)
(Sec. 1. Since we would like to exploit the ideas of the FSS = el

theory, the bulk system in the low-temperature region is con-
sidered like an effectived+ 1)-dimensional classical sys- A

tem with one finite(tempora) dimension. This is done to XCO“(E\/qHZizl (1-cogy)
enable contact to be made with other results based on the -
spherical-type approximation, e.g., in the framework of th

spherical model and the QNIM in the limit n—« (Sec. is the normalized

quantum parametes, T/J is the normal-
lll). In Sec. IV we consider the FSS form of the SpherIC""Ilzed temperatureh= H/J is the normalized magnetic field,
field equatlon for the system confined to the general 9e0My_ 5 t/). andé= u/J—2d is the shifted spherical field.
etry L"¢ x? X L. This equation turns out to allow for |5 Eq. (2.3 the vectorg is a collective symbol, which has
analytic studies of the finite-size and low-temperature asfg, L; odd integers the components:
ymptotes for differentd andd’. Special attention is laid on
the two-dimensional system. The remainder of the paper 27N, 27Ny Li—1 Li—1
contains the details of the calculations: Appendixes A, B. ( RO L—] n; e[ 12 AR 12

1 d

2
2.3

+?,

&where we have introduced the following notatiohs: /g/J

Il THE MODEL A previous direct analyst$ of Eq. (2.3 in the thermody-

The model we will consider here describes a magneti®tamic limit shows that there can be no long-range order at
ordering due to the interaction of quantum spins. This has théinite temperature, fod<2 (in accordance with the Mermin-
following form:!! Wagner theorem Ford>2 one can find long-range order at

finite temperature up to a critical temperattye\). Here we

1 shall consider the low-temperature region ford<3.
:Eg; 2 18,8+ —E - HZ Sy,
//’
(2.2 Ill. THE INFINITE SYSTEM
whereS, are spin operators at sit€, the operator$®, are In the thermodynamic limit thel-dimensional sum over

“conjugated” momenta(i.e., [S,,S,.]=0, [P,,P,.]=0, the momentum vectog in Eq. (2.3) changes ind integrals
and[P,,S,.]=i6,,., with A=1), the coupling constants over theq;’s in the first Brillouin zone and the equation for
J, ,=1J are between nearest neighbors offiyhe coupling  the shifted spherical fielg reads

constantg is introduced so as to measure the strength of the

quantum fluctuationgbelow it will be called quantum pa- -
rametey, H is an ordering magnetic field, and finally the dq;---
spherical fieldu is introduced so as to ensure the constraint (277 m=== o
X f i d ! + h*
> (&)=N. (2.2 e el
4

é+22, (1—cogy)+b2m?
i=1
HereN is the total number of the quantum spins located at

sites /" of a hypercubical lattice of size 3.
LiXLyX---XLyq=N and(---) denotes the standard ther- )
modynamic average taken withi. After some algebrdsee Appendix A Eq. (3.1) takes the

Many aspects of the physics of SQRM and QN in  form (1<d<3)
the limit n—oo are similar, but there is an important differ-
ence: while the last has a continuo@®n) symmetry, the 1 1 1 | (d=1)12
Hamiltonian of SQRM possesses a gloalsymmetry. As N N (47T)<d+1>/zyr 2 ¢
in the Ising model in a transverse fielthe other popular

model in the theory of quantum phase transitjoRsmil- 2 d—1 h2
tonian (2.1) is invariant under the unitary transformation +Tl)/2¢(d‘1)’zlc( 55t d)m) =
S,——S8,. An external field coupling t&, would break the (4m) ¢

7, symmetry. (3.2

Let us note that the commutation relations for the opera-
tors S, and P, together with the quadratic kinetic term in where\. is the quantum critical point and
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o
=

ent regions of the t(A\) phase diagram. Introducing the
“shifted” critical value of the quantum parameter due to the
temperature by

&
S

101 1 [t
AI(D) Ac 2m(@HDR

=1 /d—1
)\—c) F(T)|§(d—1)|,
(3.7

[where{(x) is the Rieman zeta functi¢rone has to make a
difference between the two casgs 2 “sign —" and d>2
“sign +.” In the first case (X d<2), it is possible to de-
fine thequantum critical regiorby the inequality

Universal constant y,
<
[

1

N A

1 [t -1 /d-1
<27r<d+1>’2\kc(t)) F( 2 |¢(d=)],
(3.9

=3
)
~
=

2
dimensionality d

FIG. 1. The dependence of the universal consigntipon the
dimensionalityd. The constant®=0.962 424 . . . is obtained for For 1<d<2 the functionk(»,y)~y~! and by substitu-
the two-dimensional systefsee Eq.(3.139]. tion in Eq.(3.2) we obtain forh <\ (outside of thequantum
critical region)

-1 * _
K(my)z/cl( 5 ‘1,y)=2mE_1 (ym) ™K, (2my). _[ra- g, 39
(33 (4m)928\ ’ '
Here K ,(x) is the MacDonald functionsecond modified Where
Bessel function The asymptotic forms of the functions
K1[(d—1)/2|1y] are studied in Appendix B. It is easy to S\ = i_ E
show that Eq.(3.2) may be written in alzcaling form and Ne N
consequently the correlation len ~ 4 as a solution D . oo
of thatqequai?on has the foIIowing?itzj\;ISing form: In_ Eq. (3.9 we see that the susceptibility is going to _|nf|n|ty
with power-law degree when the quantum fluctuations be-
A t\ - t\ A come important {—0*) and there is no phase transition
&= —fgi 5)\(—) , h(— } (3.9 driven by\ in the system for dimensions between 1 and 2.
t A A In the second case Rd<3), one has
In the remainder of this section we will study the effect of IT(1=d/2)] AA(t) 2l(d-2)
the temperature on the susceptibility and the equation of state ~ ° t2d=2) " (3.10
near the quantum critical fixed point. (4m)@2 A= Re()

as a solution foin less tham\. and greater than the critical
A. Zero-field susceptibility value \(t) of the quantum parameter. Here for finite tem-
After making vanished the field, from Eq.(3.2) we find  Peratures there is a phase transition driven by the quantum
that the normalized zero-field susceptibilify=¢~* on the = Parametei with critical exponent of thel-dimensional clas-
line A=\, (t—07) is given by sical spherical modely= 2/(d—2). This however is valid
only for very close values ok to A(t). For A<<A.(t) the

\2 susceptibility is infinite.
x=—t"2 (3.5 In the region where\>\ . the zero-field susceptibility is

ay? given by

whereyy is the universal solution of (4g)ldtDiz J2li-a)
X~| 57— 0\ (3.11
T[(1—d)/2]
1-d d-1
I ——]|=2K| =~y (3.6 This result is valid for evernyd between the lower and the
upper quantum critical dimensions, i.es<H<3.

The behavior of the universal constantas a function of the The important casel=2 can be solved easily and one
dimensionalityd of the system is shown in Fig. 1. gets

One can see that the low-temperature behavior of the sus- ot . oo

ceptibility increases as the inverse of the square of the tem- 124t - ™

perature above the quantum critical point. ¢ N aresin 2ex t OM[- (312
In what follows we will try to investigate Eq(3.2) for

different dimensions (£d<3) of the system and in differ- For the susceptibility, Eq.3.12) yields



57 THEORY OF A SPHERICAL-QUANTUM-ROTOBR . .. 5801

\? A\, or
th—zex - O\ (3.133

t - Blv
M=(—) fu(OAM YEhM™%).  (3.16b
for (2m/t) | AA;—1|>1 andA <\, i.e., in the renormal- A

ized classical region. For=A.=3.114 ... In Egs. (3.16 fr(x.y) and fy,(x.y) are some scaling

1 (2|2 functions, furthermorey= 2/(d—1), v=1/(d—1), B=3
= _2<_> , (3.13b and 6= (d+3)/(d—1) are the familiar bulk critical expo-
02\t nents for the ¢+ 1)-dimensional classical spherical model.
where the universal constant Equations(3.16 are direct verification of FSS hypothesis in
conjunction with classical to quantum critical dimensional
J5+1 J5—-1 crossover. They can be easily transformed into the scaling
> ) -2 In( T) =0.962424. .. form [Eq. (21)] obtained in Ref. 11, however here they are
(3.139 verified for 1<d<3 instead of 22d<3 (c.f., Ref. 11, i.e.,

) ) ) ] the noncritical case is included.
was obtained in the framework of the three-dimensional clas- Hereafter we will try to give an expncit expression of the

sical mean spherical model with one finite dimensidfi-  scaling functionf,(x,y) [x=AM2, y=(t/\)4"1M~?]
nally for (2m/t) [ N/A.—1[>1 andA>N\c, i.e., in the quan- in the neighborhood of the quantum critical fixed point. This

X

®:2y0:2 In(

tum disordered region: may be performed, in the cas#X)Vh/ M<1, with the use
ot A\ of the asymptotic form of(»,y) to get the following result
~ -2 c for the scaling functiond+2):
x~[4mo\]" %1+ - exp[ n 5)4 . g q4#2)
(3.139 B (4r)972 . d-1
The first term of Eq(3.13d is a particular case of E¢3.11) fr(x,y)= '(1-d/2) y 7| 1+x+ 27T(d+1)/2F 2
for d=2.
From Egs.(3.13 one can transparently see the different 2/(d~2)
behaviors ofy(T) in three regionsta) renormalized classical X{(d-1)y (3.1
region with exponentially divergence ds-0, (b) quantum

critical region with x(T)~T 2 and crossover lines
T~|N=X\¢, and (c) quantum disordered region with
temperature-independent susceptibilitp to exponentially
small correctionsas T—0. The above result§3.12 and 1 1+x\12

(3.13 coincide in form with those obtained in Refs. 6,8 for fr(X,y)=4y? arcsinhz—ex;{ 277—” . (3.18
the two-dimensional QN&M in the n—oo limit. The only y

differences are thdt) in Eqg. (3.12 the temperature is scaled At x=0 andy>1 (fixed low temperature anti—0"),
by N, and (ii) the critical value\. is given by Eq.(A13), Eq. (3.18 reduces to

while for the QNLoM it depends upon the regularization
scheme.

For the special casg¢=2 the scaling function is given by
the expression

4
fh(O,y)%yzex;( 7) (3.19

i o In the regionx<—1, and fory<1 (fixed weak field and
The equation of state of the model Hamiltoni@il) near —.0") the corresponding scaling function is

the quantum critical point is obtained after substituting the

B. Equation of state

shifted spherical field) by the magnetizatioM through the ) X+ 1
relation fr(X,y)=y exp( 4WT), (3.20
h i - — <
M= E (3.14 and in regionx>—1 andy<<1 we have
1+x
in Eq. (3.2), which allows us to write the equation of state in  f,(X,y)~167%(x+1)? 1+ R ex;{ —4777

a scaling form

(3.29

2N (dt1)2 h [ 1-d This identifies the zero-temperatung=0) form of the scal-
h MUB +(4m) /WS I T2 ing function(3.21) with those of the three-dimensional clas-
sical spherical model.
d—1 A MYB\[ h\f
2K sl e =1 31y IV. SYSTEM CONFINED TO A FINITE GEOMETRY

We conclude that near the quantum critical point Ey15 When the m:fjﬁl Hagpiltonia@.l) Is co,nfined to the gen-
may be written in general forms as eral geometry. "% X% XL, with 0=d’=<d, Eq.(2.3) of
the spherical fieldp takes the form(for derivational details
h=M%f (BAM™YE (/)Y M~ YF), (3.168  see Appendix A
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_ (d-1)/2 [(d—1)/2]) (see Ref. 32 In the case under consideration
1 1 1-d ¢ : | -
N= }\——(477-)*(‘”1”2 T\ —— pld- D2y R the Epstein zeta function has only a simple pold’at 2 and
¢ (27) may be analytically continued for<8d’ <2 to give a mean-

ing to Eq.(4.2) for d' <2 as well. It is hard to investigate the
> ' K(d,l),2[¢1’2{()\m/t)2+(L|I|)2}1’2]+h_2 sum appearing in Eq(4.3. The anisotropy of the sum
miaa’) [GYAMI)2+(LII)ZHE-D2 2" 12124 41212+ (Mt)2m? is an additional problem.
(4.1) That is why we will try to solve it asymptotically, consider-
ing different regimes of the temperature, depending on
where whetherL < N\ /t or L> X\ /t, which will be called, respec-
tively, the very low-temperature regime and the low-
temperature regime.

and the primed summation indicates that the vector with
componentsn=1,=1,=-.-=14_4=0 is excluded.

_ /12 2 2 1/2
N=1+15+- - +15_4)

1. Low-temperature regime., /t<<L

In this case after some algebra the resulting expression is
A. Shift of the critical quantum parameter

The FSS theoryfor a review, see Ref. 3lsserts, for the 1 1 1 t |9t (d-1
= | Tl )¢d=1)
tL

temperature-driven phase transition, that the phase transition A, A, 254d+D72

occurring in the system at the thermodynamic limit persists,

if the dimensiond’ of infinite sizes is greater than the lower t p2-d (d )
I(

iti ' ' ' — r--1
critical dimension of the system. In this case the value of the N a2 |2

>

critical temperatureT(c) at which some thermodynamic d-d’)

functions exhibit a singularity is shifted t®.(L) critical t |42 1-d2 © ) di2-1
temperature for a system confined to the general geometry + _) ! (I_)
L9"9"x 9" when the system is infinite id’ dimensions Mo T ooy mez ]

and finite in d—d’)-dimensions. In the case when the num- t

ber of infinite dimensions is less than the lower critical di- de,zl(qu)\—me). (4.4

mension, there is no phase transition in the system and the tL

singularities of the thermodynamic functions are altered. The ] ) )

critical temperaturd (=) in this case is shifted to a pseud- ~_1he first term of the rhs of Eq(4.4) is the shift of the

ocritical temperature, corresponding to the center of thé&fitical quantum parametdsee Eq.(3.7)] due to the pres-

rounding of the singularities of the thermodynamic func-&nce of the quantum effects in the system. The second term

tions, holding in the thermodynamic limit. is a correctlon _resu_ltlng from _the fln!te sizes. It is Jus_t the
In our quantum case, having in mind that we have conshift due thelf|r_1|te—5|ze effects in tlledimensional spherical

sidered the low-temperature behavior of mo@&) in the model® multiplied by the temperature scaled to the quantum

context of the FSS theory, it is convenient to choose thdarameter. Here thed¢-d’)-fold sum may be continued

quantum parametev as a critical instead of the temperature a@nalytically beyond its domain of convergence with respect

t and to consider our system confined to the geometry d andd’ (which is 2<d’<d). The last term is exponen-

Y , . . tially small in the considered limit, i.e\; /t<<L.
L9-9"x 8" x L. So the shifted critical quantum parameter " : 2 1 oL
Nc(t,L)=\,_is obtained by settingg=0 in Eq. (4.1). This In the borderline casé=2, Eq.(4.4) reduces to

gives 11t tL
— — —=-——Bg+ yg+Ing—;, 4.
1 1 T[d-12] «, , M Ao 277)\'[L[ o e 2ML] (49
e amaie 2 [Owmi
tL Me ™ m.I(d—d’) where ye=0.577 ... is theEuler constant an@, is a con-
+(L|I)y2 o, (4.2) stant depending on the dimensionality-d’: in the case of

strip geometry ¢’ =1) By=—1In27, and in the fully finite

The sum in the right-hand sidehs) of Eq. (4.2 is con-  geometry cased’ =0) Bo=—In[['(1/4)/2\/m. Let us note
vergent ford’ >2, however it can be expressed in terms ofthat in the rhs of Eq(4.5) exponentially small corrections

the Epstein zeta function are omitted.
0 A2 , 2. Very-low-temperature regimen/t>L
z’ ‘ L22+ | — m2;d—1}= > [LZIZ _ o o ,
0 t mi(d—d’) The final result in this case is given by the expression
2 J(1-d)2
N E) mz} | U N S L | ISR
t )\_ﬂ_ )\_C_ 4(d+ D)2 2 o | |
(4.3
. . Ld'*d d -1 d' -1
which can be regarded as the generalizet-¢'+1)- + : ( )(_) Z(d'—1)
dimensional analog of the Riemann zeta function 27(d 2 2\ Ny
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1/2+d’/2—d (d'=1)12 tL
N %()\L) §:Lf§[ 5)\L1’V,T,hLA/V], (4.99
tL
STt or like

Xl(d%,) mE=l (E) Kar-12 B f 5 -1 gL i £\ A Lo

f— t § )\ y)\ ’ )\ ’ ( . )
L
X 2wim|l|). (4.6 which suggests also that there will be some kind of interplay

(competition) between the finite-size and the quantum ef-

Here, in the rhs, the first term is the expression of the shift of€Cts. Equations4.9) for the finite system are a generaliza-
the critical quantum parameter, at zero temperattidzie to tion of Eq. (3.4) for the correlation length for the bulk sys-
the finite sizes of the system. This is equivalent to the shift ofém. , , ) .
a (d+ 1)-dimensional spherical model confined to the geom- _ _Hereafte_rlwe will try to find the behavior of the suscepti-
etry Ld+1-d' w08’ The second term gives a correction dueb|||ty x= ¢~ as a function of the temperaturend the size

to the quantum effects. This is the shift of critical quantumL of the system. For simplicity, in the remainder of this

A . NP - section, we will investigate the free field cade<0).
parameter of al’-dimensional infinite system multiplied by 12 . ;
the volume of a ¢—d")-dimensional hypercube. The third () For (A\ /1) o<1, after using the asymptotic form of

term is exponentially small in the limit of very low tempera- 'Elzlel)flﬁggggndId:leneld<|g<E3q(Al4b) (see Appendix B Eq.
tures. Ford’=1 Eq. (4.6) yields ' ' )

1 1 Li-d Y 5)\_,_1:1" 1_d_, ¢(d’72)/2+ 1 r d-1
St e e N (47)0 72 2 a2 |\ 2
ML A 27 | 2@l 2
’ A \2 (1-d)/2
d—1 X > [(—m +(|_|)2} =0. (4.10
+[2md- D21 . )Co . @7 m,I(d—d) t

Now we will examine Eq(4.10 in different regimes of
Here the expressions for the consta@tsare quite compli- andL and for different geometries of the lattice:
cated expect for some special cases: see Refs. 33, e.g., for (@ (\/t) ¢¥><1 andtL/\>1: In this case Eq(4.10
d=2, d’'=1, one hasCy=ve—Indw [c.f., Ref. 34, Eq. transforms intdup to an exponentially small correction, cf.
(30.109]. Eq. (4.9)]

For the casel=2, d’' =1, comparing between Eqét.5 )
and(4.7) one can see the crucial ral| symmetric form of t Ld-d d’ @ 22
L or A, /t in the low-temperature regime and the very low- 0=oN+ N (47T—)d’/2F T2 ¢
temperature one, respectively.

In the other important case of a two-dimensional bloc 1 t\d-1 /qd—1
geometryd’ =0 andd=2, from Eq.(4.6) one getgagain up (X) F(T) {(d—1)

+ (d+1)/2
to exponentially small corrections 2

11 L7Y (1) (1) A +££r(9—1) > e (4.12)
~ e = Tt e d/2 — '
P g(Z)B(z) TR hantt 2 hd
This equation has different types of solutions depending on
where whether the dimensionality is above or below the classical
critical dimension 2.
c(=1) At A=\, and whend’'<2<d<3 (i.e., when there is no
B(s)zE —_— phase transition in the syst¢me obtain for the zero-field
=1 (21+1)° susceptibility
Instead of the previous case of the low-temperature re- t | ~2/tL\Ad-dD(2=d")
gime, here the lower quantum critical dimensidh=1 is X:<)\—C) ()\—C)

responsible for the logarithmic dependence in @q7). This

Ent(;](edfrg)ason for the significant difference between E43) od' -1 Il(d—1)/2] o) 2/(2—d")
The obtained equations far, will be exploited later for 74TV T(1-d'/2)
the study of the two-dimensional case. (4.12

However for 1<d<2, Eq.(4.11) has no solution ak =\
obeying the initial conditionX/t) ¢X?<1.

From Eg.(4.1) one can showsee Eqs(Al4) and(A15)] Equation (4.12 generalizes the bulk resu(8.5 for d
that the correlation length= ¢~ will scale like close to the upper quantum critical dimension, ide=3.

B. Zero-field susceptibility
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At the shifted critical quantum parameteg(t) given by
Eq. (3.7) we get
29'-2 (dr2-1) o,
742 T (11— d'12)d-a)

2

x=L J1j2-¢

r«z—d’)

(4.13

However this solution is valid only for 3d>2>d’, i.e.,
here again there is no phase transition in the system.

(b) (N /1) p¥?<1 andtL/N<1: In this case, Eq(4.10
gives [up to exponentially small corrections, c.f. with Eq.
(4.6)]

Ld/—d d’
= - _ 2|l -2
iy
Li-d (d—l)
+ r > e
4(d+ D)2 2 )
Ld'*d . d -1 t d -1 "
+2ﬂ_(d’+l)/2 2 N {(d'—1).

(4.14)

Here we find that the solutions of E(¢.14) depend upon
that whether the dimensionality <1 ord’>1.
At A=\, and for 1<d’'<2, Eq.(4.19 has

)\C 2/(2—d")

tL

X:L%

2972 Td-1)/2] «, -

JRER I I'(1—d'/2)d—a"

lz/(zd’)

(4.195

as a solution. For &d’'<1, however, it has no solution
obeying the initially imposed restrictior\{/t) ¢X?<1.
At the shifted critical quantum parameter(L) given

by*®

1 1 Li-d (

3 r d-1
N A(L)  ggd+Dr2

2

2/

I(d—d’)

|||1—d’

Equation(4.14) has a solution obeying the initial condition
(Ao /t) ¢¥?<1 only ford’=1+¢ and in this case the sus-
ceptibility behaves like

1 A2 2

=———1-¢
X (me)? t?

&€

(2) For L¢?<1, from Egs.(A14) and Eq.(B9) we get
once again Eq4.11). In spite of the fact that we have the
same equation as in the case/t) ¢1><1, the expected so-

lutions for the susceptibility may be different because of the
new imposed condition. Here also we will consider the two

limiting cases of low-temperature and very low-temperatur
regimes.

(@) L %<1 andtL/\>1: In this case Eq4.10 again is
transformed into Eq(4.11) and we obtain ak =\ the so-
lution given by Eq. (4.12, which is valid only for
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d’'<2<d<3, i.e., we have the same solution as in the pre-
vious case, i.e.,N/t) ¢¥?<1.

At A=£(t), we formally obtain Eq(4.13 which, how-
ever, may be considered as a solution only in the neighbor-
hood of the lower classical critical dimensids=2. For the
cylindric geometry ¢’ =1 andd=2+¢) we get

L2 2

X= 1—;(7E—|n477) (4.1

(me)?

This result is contained in Eq30.109 of Ref. 34 in the
largen-limit case for the NL@M.

In the case of slab geometrg—d’'=1 (d=2+¢,d’
=1+¢) instead of Eq(4.17) we obtain

2

X= [1—e(ye—In2)—¢lne]?. (4.18
(me)?
In the case of a bloc geometrd€2+¢ andd’'=0) we

find the following behavior for the susceptibility

€ [T(1/4)]*
1- Z ’yE—h'IT

L2 2

- 2Te

X (4.19

For the case of “quasibloc geometry’d&2+¢ and
d’'=¢) we get

L2 I 2|[1“(1/4)]2 2
X=ome| A\ Ve AT

(4.20

The appearance af in the denominator in formulagt.16—
(4.20 signalizes that the scaling in its simple form will fail
ate=0.

(b) L¢p*2<1 andtL/N<1: Here we find that Eq4.14) is
valid, and it has Eq(4.19 as a solution ah =\, and for
0=<d’'<1. For 1<d’ <2 the susceptibility is given by

el
[
(4.21

At the shifted critical point\ (L), for the susceptibility
we obtain Eq.(4.21) under the restriction 2d’>1, which
guarantees the positiveness of the quantity under brackets.

When\ <\, for 1<d<3 andd’'<2, i.e., when there is
no phase transition in the system, we obtain

A)
1)\C
( |'22

If d’>2 there is a phase transition in the system at the
shifted value of the critical quantum parameier (the shift

2 T[(d'-1)/2]

d' -1
w2 T(1-d'/2) £ )

r«zd')

2/(2—d")
t—2(2=d") 2(d—d")/(2—d")

(47T)d'/2 (
I(1-d'/2)

in this case is due to the quantum and finite-size effeuts
Eq. (4.10 transforms to

d’'—d

t——T(1-d'/2) ¥ 27,

(47T)d/2 (423)

A

which has the following solutions:
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2/(2—d")
t—2(2-d) 2d=d)/2-d") N>\

(4m)*"2 ( x)
- 1__
r'1-d'/2) AL

o, A<\

X= (4.24

Let us notice that Eq94.22 and (4.24 are the finite-size qualitative behavior as in the strip geometry, the only differ-
forms, for the susceptibility, of Eq$3.9) and(3.10), respec- ence is the appearance of a universal numbet 00, i.e.,
tively, found for the bulk system. ), instead of the constaf? as a consequence of the asym-
metry of the sum in the low-temperature and the very low-
temperature regimes.

Now, let us consider analytically E¢4.25. To this end,

The two-dimensional case needs special treatment beve will first fix the quantum parameter at its critical value
cause of its physical reasonability and the increasing interest. . For arbitrary values of the number of infinite dimensions
in the context of the quantum critical phenomé&n¥. From d’, in thelow-temperature regiméa>1), Eq.(4.25 can be
Eq. (4.1 for d=2 and in the absence of a magnetic field transformed intdup to small Correction§(e*2"’a)]

=0 we get

C. Two-dimensional case

1 A 1
— H 1/2_ ! 1/2]
1o S\ PN In2 smhz—t ¢ P, > " Ko(LeMl)).

A2 1(2—d")
b2 1 exg — ¢*? t—2m2+L2I2 (4.26
MN=m——— > . For A=\, Eq. (4.26 has the solution
AT ATnieley [ M LA i
(4.25 b 27 t |12 tL
X TR 02 Vgl oA TR0
Introducing the scaling functionsy® = (A/t) X2 and ¢ ¢ ¢
g g functionsy;y = (\/t) ¢*° an (4.27

d' (172 ;
YL =L ¢ where the superscript’ denotes the number of o e finite-size corrections to the bulk behavior are expo-
infinite dimensions in the system, and the scaling Va”abl%entially small.

a=tL/\, it is easy to write Eq(4.25 in the scaling forms In the very low-temperature regiméa<1), Eq. (4.29
given in Eqs(Al14) and(A15). The solutions of the obtained reads[up to O(e~273)]

scaling equations will depend on the number of the infinite

dimensions in the system. Here we will consider the two % L7t . exp—LoYl))

most important particular cases: strip geomedfy=1 and ON= e
bloc geometryd’=0. Our analysis will be confined to the
study of the behavior of the scaling functions at the critical
value of the quantum parametey, and at the shifted critical
guantum parametey;, (see Sec. IV A ltis difficult to solve

Eq. (4.295 by using an analytic approach; that is why we will
give a numerical treatment of the problem. It is, however,
possible to consider the two limita>1, i.e., the low-
temperature regime arak<1, i.e., the very low-temperature
regime.

Strip geometry(d’=1): In this case in the rhs of Eq.
(4.25 we have a twofold sum which permits a numerical
analysis of the geometry under consideration. Figure 2
graphs the variation of the scaling functioh§ and Y;
against the variabla at A=\A.. This shows that for com-
paratively small value of the scaling variatale-5 the finite-
size behaviofsee the curve of the functio{f(a)] merges in
the low-temperature bulk one, while the behaviorY@Ka)
shows that for relatively not very low temperatures~(z, 0 ‘ T
L-fixed) the system simulates the behavior of a three- Scaling variable a
dimensional classical spherical model with one finite dimen-
sion. The mathematical reasons for this are the exponentially FIG. 2. The effects of the finite-size geometry on the bulk be-
small values of the corrections, as we will show below. havior of ¢ for the two-dimensional case at=\.. The super-

Bloc geometry(d’=0): In this case the threefold sum in scriptd’ in Y¢' =L ¢ 2 andY?' = (A, /t) ¢*2indicates the number
the rhs of Eq.(4.29 is not an obstacle to analyzing it nuU- of infinite dimensions in the system. The scaling variable
merically. ForA =\, the behavior of the scaling functions a=tL/\.. The universal numbers a@=0.962 424 . . .[see Eq.
Y2(a) andY?(a) is presented in Fig. 2. They have the same(3.139] and2=1.511955. . . .

47T|(27d;) 1]

Scaling funclions

10
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Scaling funclions

5
Scaling variable a

FIG. 3. The same as in Fig. 2 but far=\,_ anda= tL/\;_.
The universal numbers arfg=7.061 132 .., 3,=6.028 966. . .
andy, =4.317795. ..

Ld'-2 [ )\\@-dhe = N
_ i A
7T(d’+1)/2<2t) 2:1 Kiar-1| T M,

(4.28

which has the solutions

2L\
12T @~ c
X ®+ 5®( t

1/2 )\C
) ex;{—ﬁ(i)) (4.29

ford’'=1, and
1 11 Q -1
-12__ — il Dl N 2 212\ —3/2
X LQ+L[ZQ+2% (Q%+47212) ]
Q)\C 4.3
xXexp — T (4.30
for d’=0. HereQQ=1.511955. .. is a universal constant.

In Sec. IV A an analytic continuation of the shift of the
critical quantum parameter far=2 was presented. It is pos-

sible to consider the solutions of E@.25 at A =\, [from
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where the equation of;, from Eq. (4.5 is used. Equation
(4.3)) has the solutions

T E ford'= 4s

X |3, for d'= (4.32
where the universal numbersg=7.061132... and
3, =4.317795... are the solutions of the scaling equation

(4.37) for d’'=1 andd’ =0, respectively.
In the opposite limita<1, ford'=1, we get from Egs.
(4.7) and (4.28 the equation

1/2

Z: (ttLqﬁl/Zm), (4.33

vet+ In
which has

Mo —12_ =

t =

(4.39

as a universal solution. Fa' =0 we have

(AtLd)uz 6) F{ ¢1/2) MLd)l/z 6=0 (4.35

obtained from Eqs(4.8) and(4.28, where we have used the
identity (B11).
From Eg.(4.35 we obtain the universal result

AL

TX—1/2:2t=6.028 966 . .. (4.36

We finally conclude that if we taka =\. the scaling

functions Y?' and Y‘L" have similar qualitative behavior
weakly depending on the geometfiiye., blocd’ =0 or strip

=1) of the system. However, for a given geometry one
distinguishes quite different quantitative behavior of the scal-
ing functions depending on whether the quantum parameter
\ is fixed at its critical value, i.e\=\., or takes “run-
ning” values\,, obtained from the “shift equations(4.5),
(4.7), or (4.8).

D. Equation of state

The equation of state of the model Hamiltonighl) for

Egs.(4.5), (4.7), and (4.8)] and for different geometries. In dimensionalities £ d<3 is given by[see Eqs(3.14 and

this case the scaling functiong!, Y{, Y?, and Y? are
graphed in Fig. 3. Fod' =

scaling functionsY{ and Y[ are limited by the universal
constant®. The asymmetric casd’=0 has two different
constantsy,; and X, , limiting the solutions on? and Yﬁ
from above.

The constantsg, 3; and X, are obtained from the
asymptotic analysigwith respect toa) of Eq. (4.25 for
A=Ay . In the limit a>1 for arbitrary values ofli’ we get
[from Eq.(4.26)]

1/2

2

> Ko(La¥l)),

I(2—d")

Bo+ ’)’E+|n

(4.31

1 again we see that a symmetry
between the two limita<1 anda>1 take place, since the

(4.9]

0=0ON—(4m)~(@+D2

1—d h (d-1)/2
deallEy

(h/M)(dfl)IZ
(zw)(d+l)/2
o K-yl (MY (nmit) 2+ (LI 21Y3
{(h/ MM (Am/t)2+ (L[1])2]V3 a2
(4.37)

It is straightforward to write this equation in a similar form
as in Eq.(A14) or Eq.(Al15), i.e.,

m,I(d—d")

+ M?.
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tL field dependence of a system, without having a total con-
h=M‘$f,';[ 5)\M‘1’B,Y,L‘1’VM_1/B], (4.383  served charge, has been presented in Ref. 37. These phenom-
enological ideas are illustrated in the framework of the con-
or crete model(2.1). Let us note an important difference in
symmetry between the modé.1) with its discreteZ, sym-
metry and theD(n) symmetry of the basic rotors model.
In Sec. IV A the shift of the critical quantum parameker
as a consequence of the quantum and finite-size effects is
Equations(4.38 are generalizations of Eq63.16) in the  obtained. In comparison with the classical céfe details
case of systems confined to a finite geometry. The appeasee Ref. 19, and references theyehrere the problem is
ance of an additional variabld/\ is a consequence of the rather complicated by the presence of the two finite charac-
fact that the system under consideration may be regarded &aristic lengthd andL ,. We observe a competition between
an “hyperparallelepiped”(in not necessary a Euclidean finite-size and quantum effects which reflects the appearance
space of linear sizel. in d—d’ directions and of linear size of the two regimes: low-temperature and very low-

t

1lv
—) M”ﬁ]. (4.380

AN

tL
thﬁfL[(stl’ﬂ,—,

L, in one direction with periodic boundary conditions. temperature. The behavior of the shift is analyzed in some
actual cases of concrete geometries, e.g., strip and bloc.
V. SUMMARY AND DISCUSSION In the parameter spadéemperature and quantum pa-

rameter\), where quantum zero-point fluctuations are rel-

Since exact solvability is a rare event in statisticalevant, there are three distinct regions named “renormalized
physics® the model under consideration yields a conspicu-classical,” “quantum critical,” and “quantum disordered.”
ous possibility to investigate the interplay of quantum andThe existence of these regions in conjunction with both re-
classical fluctuations as a function of the dimensionality gimes: low-temperature and very low-temperature, is an in-
the external fielch, and the geometry of the system in an trinsic feature of the physics near the quantum critical point
exact manner. Equations of the ty(1) are specific for a and makes the model a useful tool for the exploration of the
closed-form approximatiofin thed-dimensional cagenthe  qualitative behavior of a large class of systems.
theory of phase transitions. They reflect the availability of In Sec. IV B the susceptibilityor the correlation lengih
spherical constraint§?>~*2or self-consistent equatiof’s?®  is calculated and the critical behavior of the system in dif-
and so generate similar critical behavior for various physicaferent regimes and geometries is analyzed. We have studied
phenomena. The central role of this type of equations can bthe model(2.1) via ¢ expansion in order to illustrate the
confirmed by a more sophisticated langdimit analysis® effects of the dimensionality on the existence and proper-
For this reason it is not a surprise that the bulk low-ties of the ordered phase. An indicative example is given by
temperature properties, of the SQRBke Sec. Illare simi-  Egs.(4.17 and(4.18, while the former is knowr{see Ref.
lar to those obtained by saddle-point calculation for the QNL34), the last one is quite different and new. These shows that
oM; the main analytical model in the theory of quantum one must be accurate in taking the limit=0". The relation
critical phenomena. An attractive feature of the presenvith the QNLoM in the n—c<o limit may serve as an illus-
model is the lattice formulation, which seems to be moretration of Stanley’s arguments of the relevance of the spheri-
transparent in the finite-size case, since no ultraviolet regueal approximations in the quantum case. Let us note, how-
larization is necessary and there are no ambiguities assoakver, that the use of such arguments needs an additional
ated with taking the continuum limit. more subtle treatment in the finite-size case.

The discussion of the obtained results in Sec. Ill, serves as In Sec. IV C, special attention is paid to the two-
a basis for the further FSS investigations. Identifying thedimensional case. The two important cases of strip and bloc
temperature, which governs the crossover between the clageometries are considered. The universal condfamfiven
sical and the quantum fluctuations as an additional temporady Eq. (3.139, which characterizes the bulk system, is
dimension one makes possible the use of the methods of FShanged to a set of universal constafiig:see Eq(4.30], £
theory in a very effective way. andy,, [see Eq(4.32], andX, [see Eq(4.36)]. The appear-

A quantum analog of the Privman-Fisher hypoth&fisr  ance of universal constants reflects the new situation, when
the FSS in the presence of a magnetic fieldias shown to  there are two relevant values of the quantum parameter
be consistent with exact results obtained in Secs. Ill, EQx =), in the bulk case and =X\, in the case of finite ge-
(3.4), and IV, Eqg.(4.9. We mention that in the case of ometries. Due to their universality these constants may play
geometryL9~% x4 x L the scaling functions depend on an important role even in studying more complicated model
hLAY or hLé’V and on the shape factarL , which provides Hamiltonians. The behaviors of the scaling functions at the
different regimes: low-temperaturd. L) and very low- bulk critical quantum parametev, and the shifted critical
temperature (<L ,). The analogy between the mod@ll)  quantum parametex, are given in Figs. 2 and 3., is the
and the QNIoM in the largen limit was already noticed. main characteristic length and the_1¢orrections are expo-
The external field dependence of the thermodynamics of thgentially small in the case of low-temperature regime, and
last model has been studied in Ref. 7. The key element ofice versa in the case of the very low-temperature regime.
this treatment is the specific orientation of the magnetic field The equation of state, for the system confined to the gen-
to facilitate a simple large-limit. In particular, for the case eral geometryL9~9 x % XL, is obtained in Sec. IV D.
when h couples to a “conserved charge” the equality be- This reflects the modifications of the scaling functions as a
tween the scaling dimensions of the field and the temperatureonsequence of the finite sizes and the temperature.
was obtained. A phenomenological study of the nonlinear  Itis a common wisdom that the spherical limit models are
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not free of any pathologies. So some really interesting prob- *

lems come if one goes beyond the spherical approximation. Wy(¢,L,t)= = E E

One can see from E@2.1) that in the absence of the spheri- m=-= 4

cal constraint(2.2), if A= u/4+ Jd/4<0, such a system is 1
thermodynamically unstable, i.e., the paraméterO defines X q

the frequency of an unstable mode suggesting that an appro-
priate stabilizatior{for example, by adding the terBLS‘ﬁ) of

the system can again creates a gap in the spectrum. Such (Alb)
Hamiltonians are frequently used in the theory of structural

phase transitiongsee, e.g., Refs. 38, 39, and references Now if we assume that the system is infinitedh dimen-

therein. A relaxed version of the spherical constraint in con-gjons. then we may write EGALD) in the following form:
junction with exact solvability may be obtained in this case

by the ansatz52= 1/N(2,S%) (see Refs. 26—-29,40The

¢+221 (1—cogy) + (2art/\)2m?

d’—d > - w
model obtained in this way is a quantum counterpart of the  W,(¢,L,t)= tL— > > dd'qf dx
“soft” classical mean spherical model studied in Ref. 41 in (2m)¢ q(d—d’) M=7= J-m 0
the context of the FSS theory. Strictly speaking, in order to
obtain exact finite-size correctionsgeven this Hamiltonian Xexp{ —x| ¢+2>, (1—cogy)
with “truncated fluctuations” is analytically hard tractable ‘

model(2.1). For example it is not obvious how to obtain the X
corrections to the bulk result, since both thé. Hnd 1N

parts enter. That this is a nontrivial problem, even in the 0 obtain the last expression use has been made of the rep-
simplest case of the classical Husimi-Temperely Spheric%-[esentation

model, was demonstrated in Ref. 42. In the quantum case,

where the situation is much more difficult, up to now this is 1 f

despite that it belongs to thaulk universality class of the (2711)2 H
2
- : (A2)

©

an open problem. Certainly, if we discard the problem of the —= ] exp(—zx)dx, (A3)

z 0

status of the approximation scherfie the last case it is
equivalent to the well-known self-consistent phonon AP~ 1 d thatN = L
proximation (see, e.g., Ref. 39 then our treatment is not Now by rea}ranging it is possible to write EA2) in the
restricted only to the Hamiltoniaf2.1), but it can be applied following form:

to a wide class of finite lattice mode(s.g., directly to the

anharmonic crystal model, see Refs. 26)-28d it can also % 2t 2
p.rowde a mgthodology for seeking different quantum finite- Wy(o,L,t)=t 2 dxex;{ —x[ b+2d+ T) mz”
size effects in such systems. m=x= Jo
d—d’
X[1(2x)]% EE exp(2x cogy) (A4)
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12" J g2

G(qg)exp(iglL),
(A5)

n=(L-1)/2 G<27Tn)
n=-"(TC-1)12 L

APPENDIX A , o . ,
whereG(q) is a periodic function, allows us to continue the

sum over the wave vectaq=2mn/L (ne[—L/2L/2]) to
the rest of the real line periodically. With the aid of E45)
we can transform EqA4) into

In this appendix we will derive Eq$3.2) and(4.1) of the
shifted spherical field$ for the model Hamiltonian(2.1)

confined to the general geometr§~9" x o9 X L _, with pe-
riodic boundary conditions, in the low-temperature regime.

To achieve that, let us start with E(®.3 Wyl Lt)=t % fwdxex;{—x ¢+2d+(@)2m2H
o m== Jo N
he T d-d’
=Wl @ L0+ 5, (ALa) X[1o(26)]%| 2 Tu(2x) (A6)

In order to investigate the low-temperature effects for the
where we have used the notation model Hamiltonian(2.1) we use the Jacobi identity
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0 2 w2 It is possible to transform Eq4.1) in the following
> exp(—umz):(—) > ex T) equivalent forms:
m=—o m=—x
(A7) i hL(d+3)/2 2_(L¢1/2)d—1{ 1-d
which applied to Eq(A6) gives L™ o+ L26 _(4W)(d+1>/2{ I 2
, * dx - ,
Wa(,L,t)= )\Wd(d’)"' 2 & o 1 — 2K\ | ——|d—d
N 2 L¢1/2
Xexg —x(¢+2d)— ( )mz +1, > | (Al4a
2tx
' where
X[1o(2)]%11L(2x), (A8)
where we have used the formal notations Kolpy)= S K, (2yI?+a’m?)
14 y = ’
ded’ A Y (yVI?+a?m?)”
> (@)= > 1.(2%) 12=124 .. 412
Id—d") - o ! d-d y>0, P=I{+153+---+12_,. (A14b)
1 . . d or
Wd(d)):z(zw)dfwdqlmfwdqd P22, )19 [h[t)?(n|@R2
— + —_— — J—
e (x) Mo A) (t)
x(l—cosqi)) . (A9) ()\¢1/2/t)d—1[ (1—d)
= r
. . (47T)(d+1)/2 2
The prime means that the vector with components
m=Il,=---=l4_4=0 is omitted. - — A L2
At sufficiently low temperature N/t>1) and large —2/Ctu)\<—d—d’+1, ot ” (A153)
enough sizel(>1), we can use the asymptotic form for the
Bessel function® where
X— v2/2x 2 =
1 9-32 = :
()~ L4t V2+._. . (A10) Ka(v|p.y)=Kyja(v|p;ay)
v2mx 21(8x) K, (2y\a@Zrm?)
in order to get after substitution in EGAla) :m’%ﬂ) (yVaZlPtmd)” y>0.
Mb(d—l)/z (A15b)
1=MVu(9)+ (dr1)/2 i ~ . .
(4m) The functionsKC,(v|p;y) and K4(v|p;y) are anisotropic
eneralizations of th& function introduced in Ref. 12.
L Kanel $YT VDM L2213 generalzel netion infodteed!
mid-d’)  { M (M1)Zm2+ L2202 APPENDIX B
(Al1) In this appendix we will sketch a way to find the

) asymptotic behavior of the functiori§,(»|p,y) defined in
The Watson-type integraly(¢) [see Eq(A9)] has been  ggc |v[see Eq(A14)]. They have the following form:
studied in considerable detafl§for 1<d<3, it can be ap-

proximated by ¢p<1), vl E’ K,,(Zym) .
v|p,y)= , >0,
e o[ 179)] o 2Py mi(p-1  (yyI?+a’m?)” Y
Wal §)=Wy(0) = (4m) @21 ¢< v (Bla)
(A12) where
which leads one to conclude that at zero temperature the 2124124 ... 4|2 B1b
system exhibits a phase transition driven by the parameter Tttt T ip-1e (B1b)

at the quantum critical point. By the use of the integral representation of the modified

1 Bessel function

0 (AL3) o
i K (2\/£)=K7 (2&):%(5) f X~V la—tx—2Zixgy
Finally, substituting Eq(A12) in Eq. (A11) we obtain Eq. v v 2\t 0

(4.1). Equation(3.2) is obtained by setting=d’. (B2)
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and the Jacobi identity for p-dimensional lattice sum we can transform further EqB4) by adding and subtracting
the unity from expfxy?/#?), which enables us to write
124 222 1{ m\P2 202, 2,2 f | h |
o-(P+a?mi_ = T o (2 +mPad)t down (after some algebjahe result
m,i(p-1) alt) mip 1) '
(B3) P2 72v—PI2 ,
1 = — R -p v
we may write Eq(B1) as Ka(v|p,y) el i e ren Ca(plv)
w2 (P 2v—pl2
= Trl=- -p v—p _
Kavlp.y)= 57 F(z v)y L TR E(p2 )
(=)
2 2a y21/
77_2V7p/2 o 5
+ > y—va dXX(l/Z) p— v—le—xy | mz y2 v—p/2
a 0 x > 124+ —+ =
ol2 m,i(p~1) a?  m?
4 —x(12+m?/a?) _ z
X 2 e a . (B4) 2\ v—pl2
m,I(p—1) X 2, M
s , (B5)
Let us notice that the two terms in the square brackets in the a
last equality cannot be integrated separately, since they di-
verge. Nevertheless, in order to encounter this divergencayhere
|
“ 2, 2,2 )\ P2
Ca(p| V)I lim f dxx(l/Z) pvl{ E 4 efx(l +m-/a’ )_a( _) }, (B6a)
5078 m,I(p—1) X
i . T[p/2—v,8012+ m?a?)]
= lim
s—ol mitp=1) (|2+ m2/a2)vfp/2
o o I'[p/2 —v,8(1°+ m?/a?
—J J dmd 1 Lp ( — )] (B6b)
—» —w» (|2+ mZ/az)v p/2

is the Madelung-type constant afifla,x] is the incomplete gamma function.
We see from Eq(B5) that the shift of the critical quantum parameter is given by the Madelung-type cofB&nhstead
of the sum in Eq(4.2). Indeed it is possible to show that these two representations are equivalent. This may be done, following
Ref. 33, by starting from the Jacobi identity E&3), where we multiply the two sides b=~ and integrating oves to
obtain the key equation

I'[v, 72(12+a’m?)/ 5] Pl2

C.(plv)= ' +amP?2r > a—. (B7
a(Pl¥) m,I%—l) (12+ m?/a2)Piz-v p/2—v m,I%—l) (I*+a’m?)” v6” (87

Finally from Eq.(B7) we see easily that the integration const@gfp|») may be written in two different forms. In the first
case we take the limié—o and obtain

1
c — agPl2-2 ! I B8
a(plv)=am (V)m,l(pfl) (21 a2y (B8)
In the other case we take the limit—0, and then both the first and last terms in the rhs of (Bf) yields Eq.(B6).
Using a similar procedure we find, for the functiokis(»|p,y) defined in Eq(A15b), the following expression:
_ B ,ﬂ_p/Z . p i 77_211—p/2 = 1 . 77_21/—[:)/2 F(p/z_ V)
Ka(v|p,y)= a1 27 )Y T Y Calpl¥) = | 5| F(=w)+ Ly
|2 yz v—p/2 |2 v—pl2
X ' —+m?+ = —| =z +m? B9
P { 2 Wz) 2 (B9Y)

Here the Madelung-type constant is given by
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~ “ 2,2, 2 w\ P2
Ca(ply): lim j dXX(llz)p_V_l[ 2' =x(I“/a+m )_ap—l _) ) (BlOa)
5-07 8 m,I(p—1) X
. T[p/2-v,8(1%a%+m?) (= - I[p/2 — v,8(1%a% + m?
=lim{ > Lp ( )—f f dmd1! Lp ( )] (B10b
s—ol mitp-1) (|2/a2+m2)vfp/2 e (|2/a2+m2)vfp/2
, 1
=aP IaP2m 2 (y) (B109

mip-1  (al2+m?)”’

EquationgB5) and(B9) are slight generalizatior(or the anisotropic casa+ 1) of the result obtained in Ref. 33 from one
side, and are related to the Watson-type sums proposed earlier in Ref. 13 from thé&sethalso Ref. 19
If we set in Eqs(B5) or (B9) d=2,d’=0, anda=1 we obtain the identity

,exp(—y\I2+13) 27 1) (1 1 1
Y= 4| +y+2 — B11
% VIZ+15 y THl2)Plz) Y Wgz Vy+4m2(13+13) 27 13+15 (BLY
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