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Longitudinal-strain soliton focusing in a narrowing nonlinearly elastic rod
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The evolution of a longitudinal-strain solitary wate soliton is studied theoretically and in experiments in
a nonlinearly elastic tapered rod. Amplificatigiocusing of the soliton is predicted and observed in the rod
with decreasing cross section. An asymmetric soliton deformation when focused is observed. An approach is
developed to obtain analytical relationships between longitudinal and shear nonlinear strains, and an
asymptotic solution to the problem is found, accurately satisfying the boundary conditions on the lateral rod’s
surface. The explicit relationship is obtained for the soliton amplitude dependence upon the cross section
radius’ variations of the nonlinearly elastic rod. An allowed interval of soliton velocities is shown to exist that
is dependent on elasticity. It was proved in experiments that the elastic strain soliton is not absorbed even at
distances much greater than the typical linear dissipation length for linear waves in polystyrene.
[S0163-182698)10309-0

[. INTRODUCTION mension of the problem using the waveguide geometry, the
wave solution class, and an appropriate type of nonlinearly
This paper is devoted to the theoretical and experimentatlastic material. In particular, the simplest “single-mode”
description of the propagation and amplification of the strairmodel for a cylindrical elastic isotropic rod is based on the
solitary wave(soliton) in a cylindrical nonlinearly elastic rod following physical assumptionsabout displacements and
with varying cross section. We call it an inhomogeneous rodstrains inside the rod: The curvature of a cross section after
in the following for convenience, while the rod with a per- deformation is negligible, and the Poisson effect is taken into
manent cross section will be called the homogeneous one.account. Then the so-called plane cross section hypothesis is
Solitons in fluids were observed and generated manwssumed to be valid for the displacements along the rod axis
times; see, e.g., Refs. 1 and 2. It was the most surprising fac, u(x,r,t)=U(x,t), while the shear displacememsgx,r ,t)
however, that despite an almost similar description Ofyre determined by longitudinal strains by means of the Love

stresses in fluids and solidsee, e.g., some fundamental relationshipw=— »rU . .1% Herer is the radial coordinate
books~®) longitudinal-strain solitons have not been observed

governed by the nonlinear Sclidinger equation were widely Refs. 11 13. and 14
considered; another famous soliton in a solid, being modeled Tﬁe r,estri,ction of .the approach mentioned above is that
as a ball chain, was found by Frenkel and Kontorova in 193é%he boundary conditions on a free lateral surface were not

and became useful for crystalline lattice models. However X
4 properly taken into account when these hypotheses were for-

there must be a soliton in solids in the form of a nonlinear lated. Di bstituti f th : . h
long quasistationary localized strain wave, propagating eithef?t/ated. Direct substitution of these assumptions into the

along an interfacginternal solitary wavior inside a wave- conditions of the absence of both normal a_\nd tangential
guide (a density soliton stresses at the Iateral surfaqe do_es _not result in zero stresses.

The soliton propagates without change of shape in a uni- Generally speaking, the identity is not required because
form rod while its shape will vary in the presence of inho- &an asymptotic solution is assumed; however, the boundary
mogeneities. In the last case amplification or focusing mayondition failure indicates the possible neglect of several
occur; in other words, the soliton amplitude will increase,terms of the same order, which cannot be recovered from
while its width will decrease simultaneously. Then the local-these hypotheses. As a result the changing of the functional
ized area of plasticity and even fracture of a waveguide mayorm of a model nonlinear wave equation may appear or, at
happen to appear, which can be of practical importance. least, its coefficients may happen to vary. Therefore a refine-

The complete description of a three-dimensiodD)  ment is required to the modeling of strain waves in a rod,
nonlinear wave in a continuum is a difficult problem, which with the boundary conditions on the lateral surface being
is why initial 3D problems are usually reduced to the 1Dtaken into account.
form in order to clarify the simplest but qualitatively new A successful experimental generation of a strain soliton in
analytical solutions. Very often the linearization of a prob- a rod with varying cross section has not been mentioned up
lem was done; however, it turns out to be unsatisfactory fromo now. Nevertheless, the strain soliton has been generated
the genuine physical point of view, because the ratio of and observed in a uniform homogeneous nonlinearly elastic
finite deformation and its linear part is determined by a dis+od, using an experimental setup described in Refs. 15 and
placement gradient and its variation in time; see, e.g., Refdl6, and it revives interest in calculating and observing the
5-9. strain soliton focusing in solids.

Dealing with nonlinear elasticity, one can reduce the di- This paper will be organized as follows. A model will be
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proposed in Sec. Il to describe the propagation of a longlere p, is the rod material density at=ty, while Iy,
nonlinear strain wave in an inhomogeneous rod. A procedurk=1,2,3 are invariants of the Cauchy-Green finite deforma-
will be developed governing the analytical relations betweenion tensorC:

displacements and strains in a rod, under which the complete

nonlinearboundary conditions will be satisfied on the rod’'s | (c)=trC, 1,(C)=[(trC)2—trC2]/2, 14(C)=de(C.

free boundary with a given accuracy. It results in a nonlinear 3
equation for the longitudinal strain waves, which will be

compared with the theory recently developed in Refs. 17 andhe Murnaghan approximation of the deformation energy is

11. An analytical solution will be found for an equation, chosen because it is valid for a wide class of nonlinearly
describing the soliton amplitude variation due to the rod in-elastic materialg:

homogeneity. In Sec. lll a method will be proposed for ex-

perimental observation of the solitary wave evolution in the N+2u [+2m

inhomogeneous rod, based on the theory developed. The re- [I= I§—2M|2+ —If—ZmI1I2+nI3. (4)
lationship will be derived, connecting the interference fringe 2 3

shift and the amplitude of the longitudinal nonlinear strain . . . . .
gt is equivalent to a formal expansion of a scalar in a power

wave. Finally the pioneering experimental results concernin eries With respect to invariants of a second-rank tensor. ob
the solitary wave focusing in a narrowing rod are discussed; . €S Wi Sp invanants N ) Sor, 00-

It will be shown in Sec. IV that experimental data are in
good agreement with the theory.

tained by Landau and Rum& The coefficients in Eq(4)
depend on the second-order elastic moduli, the Lame coeffi-
cients (\, u), as well as on the third-order elastic moduli, the
Murnaghan modulil; m, n).

We will be aiming at the study of long nonlinear longitu-
dinal strain wavegdensity wavel which will require some
simplifications, namely, the relationships between longitudi-
A. Statement of the problem nal and transversal displacemeuntandw . To find them one

Let us consider the wave propagation problem for an iSO_needs to satisfy the boundary conditions on the free lateral

tropic infinite nonlinearly elastic compressible rod. Introduc- rod surfaca - R(x), namely, the absence of both_the normal
ing the cylindrical Langrangian coordinate systeryr(e), and tangential stresses at every moment. We introduce the
wherex is the axis along the rodpe[0,27r], O<r<R(X) small parameteg, ta_kmg into a_ccount_that the waves un<_jer
<Ry, Ry a constant, one can write the displacement vecto tudy should belasticwaves with sufficiently small magni-

N , . ) ) udeB, B<1, as well as sufficiently long waves with length
V=(u,w,0), if torsions can be neglected. Basic equations

L, so that the ratidR,/L <1, whereR; is the maximal value

describing the nonlinear wave propagation in the initial con-y¢ r(x) along the rod. The most important case occurs when

figuration, are obtained fro_m the Hamilton principle, requir- p i nonlinear and dispersive features arebalanceand
ing the variation of the actioaS to be equal to zero: small enough:

tq o R 2
5S=2w5(ft0dt( fﬁwdzJ'O rLdr ) 1 8:5=<&) <1. (5)

The internal integration in EqJ) is to be done fort=t,,

when the rod is supposed to be in the natural initial condi- We introduceU=BL as a scale for displacementsand
tions. The Langrangian density per unit volumg&,is ob- w, andL as a scale for the coordinate along the rod axis,
tained as the difference of the kinetic energy denkitgand  while R, is for the coordinate along the rod radius. Then the
the volume density of the internal enerflyat the adiabatic boundary conditions of the absence of stresses at the free

Il. THEORY OF THE LONG NONLINEAR STRAIN WAVE
PROPAGATION IN AN ELASTIC ROD
WITH VARIABLE CROSS SECTION

deformation, i.e., the potential energy: lateral surface are obtained in dimensionless form by equat-
5 5 ing to zero the corresponding dimensionless comporents
Ju ow iola-Ki 5 i i
L=K—TI= Po| [ oY + 22 =1y, 2 and P,y of_the Piola Klrchho.ff tensoP,” that are written in
2|\ at at power series of for convenience:

N+2u+m , 3N+6u+2i+4m (A +2) 2ww, w2

Auy+ > uy+ > wy + > \ R +§

w
()\+2,U,)Wr+)\§+8

A+21 . N+2p+m
5 uZ+ 5 Wf():O (6)

5 WUy 3
+e (N +2D)uw, + (21 —2m+n)?+(,u+m)urwx +e

and
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w
,uuﬁ—e( MWyt (N+2u+ m)urwr+(2)\+2m—n)ur§)

+e? (N +2p+m)uyu, + + (u+m)ww, |+ e3(u+m)u,w,=0. 7

2 R

2m—n>wwx

The unknown functionss andw will be expanded in a strain energyll. Substituting expansion®) into the formu-
power series of: las for K andIl, one can find, respectively,

UIUO+8U1+82u2+-~-, W:WO+8W1+82W2+"'. Po ) )
(8) K=Z-(Ug+ U Uyt vUg D), (13

Substituting Eqs(8) into Egs.(6) and(7), and equating to
zero all terms of the same order ©f one can prove that the M= 1
plane cross section hypothesis is valid, however in leading )
order only:

Eu§+§u§+vEr2UXUXXX : (14)
where B=3E+2I(1-2v)3+4m(1+v)?(1—2v)+6nv?
up=U(x,t), wy=0. (9 becomes the only coefficient depending on the nonlinear
elasticity of the rod. It is easy to see that the use of truncated
expansiong8), containing only the three first terms, is suf-
ficient to write relationship$13 and 14. Substituting them

Terms of orderO(e) provide the relationship fow,; that
coincides with the Love hypothesiand proves its validity

now): into Eq. (1) and calculatingsS=0, one can obtain the fol-
N lowing nonlinear equation:
u,; =0, Wl=—2()\—+mrux=—vrux (10 02 5
*

__r 2
(v is a Poisson coefficient while the next terms lead to U R2 3X[ Ul
additional terms. Therefore faor=2,3 we find

19| 8B v 49 V2
v - 2()2 4 4
u2=§r2Uxx, w,=0, (11) vy ZPOR U= 72 xRV 5 R an}
2 2
U3:O, 1 J VC* 4 0 4
2 x| 4 RUxxx+_aX2(R Uy)
V2 3y V(1+V)+(1_2V)(1+V)
Wa=— —— — 2
37 2(3-2y) 2 E 'R U (15
7 ,

X[I(1-2v)?+2m(1+v)—nv]|ru2, (12)

wherec, is the so-called “rod” wave velocityc2 =E/p,.

_ ) Therefore additional linear dispersive terms appear in the
whereE is the Young modulus. Other terms from the seriesgquation above due to the terras and ws, resulting after

(8) for i>3 may be found in the same way; however, theyihe poundary condition fulfillment at the free lateral surface,

will be omitted here because of no influence on the finalyng we obtained eefined equatiorin comparison with one
model equation for the strain waves in the next section.  gptained in Ref. 11.

Let us consider now the rod the cross section of which

B. Longitudinal strain waves propagation varies slowly along the& axis, which is described by a func-
in an inhomogeneous rod tion R=R(yx), y<1. Introducing the notation=U,,7
The longitudinal strain waves equation can be derived us>{Cx @nd differentiating Eq(15) on x, we obtain an equa-
ing the Hamilton principle. In dimensional form it will con- tON
tain small (but finite) additional terms to the linear wave 5
i i i i . a1l 9 R
operator, which describe the influence of both the nonlinear v~ 22 Ypa B (v2)+aR‘. — bR,
ity and dispersion on the evolution oflang elasticwave. T 9X R2 dX 2E ™

The problem may be solved in a dimensionless form also by
means of an asymptotic solution in the power seriesson
introduced in the previous section. However, for applications
to physical experiments the dimensional form of the model
equation is more convenient, while the Lagrangi@may  deviating from those obtained in Ref. 11 with the dispersion
be written without higher-order nonlinear and differential term coefficientsa and b, a=—[v(1-v)]/2, b=-v/2,
terms in the relationships for kinetic enerfyand potential which are different from the corresponding coefficieats

—4bR3Rw, | =0, (16)
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=12/2, b=v?/[2(1+v)] in Ref. 11 . Two first terms here Ry 1 1 1
describe a common linear wave, the third governs the non- ﬁZW(W— 2a m
linearity, and the two following terms are responsible for the
dispersive features of a waveguide, while the last term, being 1
of the same order, looks like a dissipative one, but occurs - m s (24)
due to the cross section variation.
The uniformly valid asymptotic analysis proposed in Ref.Where
11 for the fourth-order perturbed partial differential equation
(PDE) can be used formally for solution to E@l6). To D—Ez 1 :Zi V9—5v
describe the evolution of a traveling strain waveve intro- a (1-v)’ 127 5(1-v)
?olili)?/vghe phase variabl and the slow variabl&= yx, as Taking the restrictions fow, Eq.(21), into account, we con-

clude that the expansion in the brackets on the right-hand
0.=—1, 6,=A(X). (17) side of Eq.(24) is always positive. Therefore theagnitude
T of the soliton will increase with the radius decrease. Direct
The solution to Eq(16) will be found in new variables in the integration of Eq.(24) yields
power series iny:
Rea’[v+a(2v—6/5)—a’(1-v)]*

Substituting Eq(18) into Eq. (16) gives in leading order of
vy the well-known solitary wave solutiofi‘strain soliton”)
for vy,

Routine analysis of the functionsy, Eq. (19), and vy
shows that the distortion of the wave shape takes place apart
from the amplitude variation. When the bell-shaped soliton

3E propagates along the narrowing rod, its front side becomes
vo=—acosh 2{k(X)[ 0— 5(X)]}, (19 steeper while the back one becomes smoother. Vice versa,
B the front side of the solitary wave, moving along the expand-
depending upon the varying parameter=«(X), «>0, ing rod, becomes smoother, while the back one steeper. The

while A andk are expressed through it: equation for the determination of an extremum of a deriva-
tive Uoxs
1 a(l+a
AP=—— Kk?= { ) : (20 Rx

1+« 4R7a(1+a)—b] )’ﬁ“‘{k(l_’)’ao,x)""ykx[e_ Oo(X) JHtanRk[ 6— 6o(X)]}
Both A and k will be real in Eq.(20) for most standard -0 26)
elastic materialghaving the Poisson coefficiemt>0) if the '
value of the functionr is inside an interval: shows that for wave propagation along the narrowing rod

(Rx<<0) the extremum is achieved far— 6y(X)>0, while

in an extending rod Ry>0) for an inverse sign. Then the
soliton accelerates in a narrowing rod and decelerates in the
. ) . expanding one in comparison with the same soliton moving
Then the type of the strain way#9) (compressive or tensile along a uniform(homogeneoysrod.

one is_ defined only by the signlolf the nonlinear coefficient The exact formulag20) and(25) may be easily simplified

B, which depends on the elasticity of the rod material, reyg analyze the wave parameter variations. The range of the

spectively. N _ strain wave amplitude change has to be restricted by a physi-
Note that the use of the coefficieat b values, defined ¢ condition of the strain’s elasticity:

previously in Ref. 11, results in another interval for

v
o<a<——:. (21
1-v

|VI+2C,—1|<e,, (27)
14
a>0 or —l<a<- ——, (22 wheree, is the yield point of a material, and for most of
(1+v) 319

elastic materials its value lies in the interval f6- 103
which prescribed the possibility of the existence both com-Thereforea will have to be small enough, and the following

pressive and tensile waves for each sigrBof approximations follow from Eq920) and (25):

Let us study a distortion of the solitary strain wave due to
the “geometrical” inhomogeneity considered. The following ) a a Ro\?
differential equation fora arises from the secular term ab- A=1, k zm’ @ | R/ (28)

sence condition in orded(y):

- - Th_e most important feature of the next order as_ymptot?c
(Ir‘R a ) N 4bk°R°A (IN2R*a?AK)L =0,  (23) solution is in the appearance of a plateau, propagating behind
2KA3 5 X the soliton(19) with much less velocity. The difference in

x the values ofa and b calculated in the framework of two
which after use of Eq920) is reduced to a nonlinear first- theories results in a quantitative deviation in the plateau am-
order ordinary differential equatiof©DE) for an amplitude plitude value. However, it is of ord€d( y); hence its change
variation, will be small also in comparison with the value obtained in
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Ref. 17. This deviation seems unlikely to be detected by TABLE I. Type of solitary waves that are dependent on the
means of the equipment used in our experiments, and thigonlinearity coefficien, the Poisson coefficient, and the veloc-

part of solution is omitted here. ity interval V?/c% .
212
Ill. EXPERIMENTAL OBSERVATION Wave type B v Ve
A. Experimental method Compr_ession <0 >0 1, 1/(1-v))
i ) Extension >0 >0 1, 1(1-v))
It is well known that optical methods are preferable tocqmpression ~0 <0 (1)
sﬂde the transparent qptlca}l phase mhomo_geneltles. TheY, tension ~0 <0 ©, 1/(1-1))
allow one not only to visualize mhomogenelty but a@lso tOCompression <0 <0 (1, =)
determine its parameters, and on the other side, being con: .
. . ' -~ Extension <0 <0 O, 1/(1-v))
tactless, they do not introduce any disturbances in an object
under study; see Ref. 20. All optical methods record the
changes of the refractive index in an object, when studying )
the optically transparent phase inhomogeneities. Shadowgra- V_>1 (32
phy is more convenient to record a considerable refractive c2

index gradient, for example, caused by strong shock wave *

propagation. It was shown theoretically in our case that @bviously, forv>0 the existence of subsoni¥/€c, ) com-
strain soliton is a propagating long density wave of smallpressive solitons is impossible for any elastic material pa-
amplitude. Interferometry is the most appropriate for therameter values, while supersonic solitons may propagate,
study of such waves because it allows one to observe arfaving the velocity only from the intervéB1) for most elas-
measure with sufficient accuracy even small refractive indexic materials. Therefore generation of compressive solitary
variations. strain waves requires an initial pulse generatianshock
Holographic interferometry, used in our experiments, hasvave, but a weak one to satisfy the limitati(2¥7)] with the
several advantages in comparison with conventional opticatelocity from the interval31). The “allowed” velocities for
interferometry. In particular, limitations on the optical qual- the generation of compressiver tensilg soliton in materials
ity are considerably lower because wave fronts to be comwith »<<0 are shown in Table I.
pared pass through the same optical path. For this reason To check that the excited strain wave possesses indeed the
both waves are distortetb the same exterand possible soliton feature to conserve its shape, it is necessary to follow
defects in the optical elements and experimental cell do ndh observations its propagation along an extended elastic
affect the resulting interference pattern. waveguide. However, the more absorbing is a waveguide
However, the choice of an optical recording method al-material for linear elastic waves; the much shorter distance is
lows one to study, in general, only elastic materials, whichto be sufficient to detect the constant shape wave propaga-
are transparent for the given light wave length. The approaction.
must be modified for an opaque material investigation. Based on the results of the analysis presented above the
Let us estimate the parameters of the initial pulse frontransparent polystyrene SD-3 has been chosen as an appro-
which the strain soliton may be formed. Strain solitary wavesriate material for waveguide manufacturing. The elastic
cannot propagate with arbitrary velocity, and below we shallproperties of it are given by a set of parametets0.35, 8
show the existence of an “allowed” velocity interval, be- =—6x10'° N/m?, and ¢, =1.8x10°® m/s; see Ref. 19.
yond which the propagation of strain solitons is not possiblePolystyrene absorbs well both linear and shock elastic waves
(in contrast to our previous modEiwhere the “dead zone” and it is widely used as an acoustic power absorber; see Refs.
of velocities was found, inside which the soliton cannot21 and 22.
propagate For a homogeneou@niform) rod the solution Shown in Fig. 1 is the optical scheme of the experimental
(19 in the leading order problem for the longitudinal strain setup used to generate and observe the strain solitons. The
wave U, has the form

3 7 8 9

6
—

3Ea

4
U= cosh 2ko(x= V1), (29) 2 E(\A

while the soliton parameters depend on velocity as follows: /

V2 (V2—c5 V2
a=——1, = . (30
c2 9 20R2C2[C2 —(1- vV
One can see that the velociychosen to be positive should
satisfy the inequalities at 1#2v>0, 1
1
V2
1<C—2< 1—p (31)
*

FIG. 1. Experimental setup for laser generation and optical ob-
while at —1<»<0, servation of strain solitons.
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FIG. 2. Shock wave generation in water due to laser beam evaporation of metallic film(&rgetl shock wave propagation near the
rod (b).

apparatus consists of a device to produce the initial shockuch a shock wavésee Fig. 2 exhibits a very narrow com-
wave, a holographic interferometer for the recording of apressive are€0.1-0.2um wide) followed by a considerable
wave pattern, a synchronizer, and a laser radiation energwrefaction aregl mm wide of small amplitude. The param-
meter. eters of this shock wave satisfy the conditions required for
In our experiments the strain soliton was formed from anstrain soliton generatiolf. The proximity of wave imped-
initial shock wave, produced by action of tlig-switched ance values for water and polystyrene allows us to enter the
ruby laser(1) (pulse duration is 1520 ns) on the metallic wave energy into the rod without considerable losses of
film target (10), placed in the water cell nearby the input power at the liquid/solid interface.
edge of the rod6). The laser pulse power density was mea-
sured by the energy metét2) and was kept constafequal

to 2.3x10° W/cn?) during the experiment in order to avoid _
any inelastic strains in the material. The soliton parameters were calculated based on the data

A second ruby lasef2) has been used for the hologram of the holographic interferograms Qb_tained. Note that the in-
recording. The shutters of both lasers were synchronized byj@rferometrlc pattern does not eXhlblt a standgrd bgll-shaped
multichannel generator of delayed pulses, which allowed ugnage of a shallow water soliton since the strain soliton is, in
to record a wave pattern at a required time moment with théact, alongitudinal density wave in a solid. _ _
accuracy of order £2x10°® s. The light beam from the The sqhton amplltude can be f:alcula'ted using the inter-
laser(2) (the beam diameter was 1.5 mmvas expanded by ference fr-mge shifAk measured in th_e m'gerferogram. Let
a telescopic systeit8) up to a diameter equal to 50 mm, and _2h be a (j|stance pgssed by the recording Ilght across the rod,
then it was divided into the object and reference beams by he- Precisely the distance between two longitudinal cutoffs.
wedge(4). Passed through the wedge, the object beam waBefore the deformation the phase variatibe; of the light
directed to the water celb) and to the rod6) immersed in  Wave having length\ is caused by the laser light propaga-
it. The central rod section was projected onto the holograntion along the distance—2h through the water and the
plane (9) by a lens(8), and the hologram of the focused distance & through the rodwhereq is the distance between
image was recorded. the cell walls:

The first exposure of the hologram was carried out by the
pulse from the lase(2) in the absence of a pulse from the
laser(1), and so the hologram of undisturbed wavegui@e
was recorded. The second exposure was made by a laser

pulse synchronized with the prescribed stage of the wave paren  andn, are the refraction indices of water and the
propagation. Observations were made in the transversal disagtic material before deformation, respectively. After the
rection, and two cutoffs were made parallel to the rod axis ifyeformation the refraction index value of the rod changes to

order to make transparent the central part of the rod. The “\oreover, the distances, which light passes through the

carrier fringes on interferograms, obtained due to the recon:J4 and water vary due to the deformation of the rod. As a
struction of doubly exposed holograms, occurred due t0 thgag it \we obtain the formula for the magnitude of the light
wedge (7) turn between the exposures. The longitudinal,, . o phase variation ¢,:

strain wave patterns were recorded at various distances from

the input edge of the rod, which was attained by the cell A

displacement along the axis of wave propagation. No(q—2h—2Ah)+n,(2h+2Ah)= —Ad,. (34
Recently in Ref. 23 we have reported the study of a shock 2m

wave produced in water by the laser explosive evaporation of

a metallic film target immersed in water. It was shown that Evidently, the interference fringe shitk is defined as

B. Experimental data processing

A
no(q—2h)+2hnl=ZA¢1. (33
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FIG. 4. Schematic of the rod with variable cross sections and
cutoffs.

beyond the central area of observation is not precisely per-
pendicular to the laser beam, i.e., not transparent, and there-
fore reflects the light.

The wave pattern in Fig. 3 is complicated. On the inter-
ferogram one can see the shock wé#e, propagating along
the rod, the remainder of the original shock wais, mov-
ing in a surrounding liquid and lagging behind the wde
due to the difference in velocities in solid and in water. The
FIG. 3. Interferogram of the strain wave pattern near the inputparts of waveD) in water behind and ahead of the transpar-

.
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edge of the rod. ent rod appear due to observation in the direction transversal
to the wave propagation. Moreover, a second shock WBye
Adr—Ady of a complex shape enters the rod also. This wave arises due
Ak= —on (35  to the partial refraction of the initial shock wave from the

input edge and from the film target, respectively. The bound-
The new value of the refraction index of the deformed rod 2"y conical wavesP) are observed also in a surrounding
n,, is caused by the local density variation: liquid, arising due to Poisson’s expansion of the rod lateral
surface when the compressive wave propagates inside it. The
wave location detectioli‘which and where”) was done by
, (36)  means of velocity measurements of all of them using doubly
exposed schlieren photography; see Ref. 20.

which can be easily obtained following the Lorenz-Lorentz The choice of the rod’s cross section variation is caused

formulal? On the other side, one can obtain the densm)3 ItW?] reasons. flrstﬂwe were g;t0|ng£[rc]) obtserve al%eometg—
variation from the solution of a static linear problem on cal inhomogeneity influence just on the strain soliton, an

uniaxial compressiofor tension (see Ref. band as a result ;econd the experimental setup Ilmltathns shoulq be t?‘ke”
the following relationship is valid: into account. Measurements of the soliton amplitude in a

homogeneous rod resulted in an estimation of the parameter
£=0(10"3). When the inhomogeneity parametgiis cho-
ap_ U,(2v—1). (37)  sen to bey<g, then the possible variation of the initial rod
radius Ro=5 mm) at the distance 100 mm along the axis
will be of order 0.1 mm or 2% from the initial value. The
estimation of the amplitude change in this case by means of
an approximation28) shows that such a magnitude corre-
(39) sponds to the oscillations of the observed solitary wave
front.1® So it seems hardly possible to detect such a deviation
using our experimental setup. Therefore the inhomogeneity
The amplitude is determined by the maximal fringe shiftparameter should be chosengse .
value. Derivation of Eq(38) shows that the length of the It has to be noted, however, that a nonstationary process
solitary pulse may be directly determined from the interfero-takes place in experiments in contrast to a quasistationary
gram as the length of the fringe perturbation between twgrocess governed by the asymptotic solution obtained above.
undisturbed areas. When y>¢ the inhomogeneity will change the initial pulse

Ap nz_nl
P - nl_ 1

Then we get finally from Eq(35)

AAK
2h[(ny—1)(1-2v)+v(n;—ng)]"

U=

C. Observation of the soliton evolution ——
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above and below the central fringe area are cylindrical
“caps” along the rod; see Fig. 4. - %

Black rectangular frame&s well as the gray frames in
Figs. 5 and 6 beloysurrounded the fringe pattern inside a  FIG. 5. Interferogram of the strain soliton in the nonlinearly
rod appear due to the fact that the lateral surface of a rodlastic rod recorded at the end of the uniform cross section interval.

The holographic wave pattern near the input edge of the
rod is shown in Fig. 3. The left vertical black region repre-
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TABLE II. Light path distance measurements inside the de-
formed narrowing rod.

T Distance from Diameter Light path
o ’ the input edge of the rod distancé 2
(mm) (mm) (mm)
50 10 7.75
~ 65 10 7.75
70 10 7.75
75 9.8 7.45
FIG. 6. Interferogram of the strain soliton recorded in the ta- 80 95 7.2
pered nonlinearly elastic rod. 85 9.2 70
earlier than both nonlinearity and dispersion, and the strain 90 8.9 6.8
soliton will hardly appear from an initial shock. Thus the rod 95 8.6 6.6
cross section should remain constant at the distance required 100 8.3 6.3
for soliton generation and separation, and begin to vary only 105 8.0 6.1
after it. Experiments on the soliton generation in a homoge- ' '
neous ro*é showed that a soliton appears even at the dis- 110 .7 5.8
tance of 60 mm(ca. 1R,) approximately from the input 115 7.5 5.7
edge of the rod. 120 7.1 5.4
Based on this analysis, a rod 140 mm long was made of 125 6.9 5.0

polystyrene with uniform and narrowing parts, as is shown in
Fig. 4, and two cutoffs were made on the lateral surface for

observation purposes. The rod radius decreases linearly from ) ) ) .
the valueR,=5 mm to the valueR=2.75 mm along the and record of the strain solitary wavéhe soliton inside

distance 70 mm. In this case the inhomogeneity parametdlonlinearly elastic both uniform and narrowing solid
y=0.032 is much greater than the typical soliton amplitudeVaveguidesthe rods. _ ,
~10 4 (Refs. 15 and 16for the homogeneous rod. The following arguments may confirm the observation of
Let us consider the holographic interferograms of the lonihe genuine strain solitary wave in our experiments.
gitudinal strain soliton recorded in the transition interval  First, there is no tensile area behind the observed long
from the rod with uniform cross section to its tapered part acompressive wavéhaving a length\>7R), which is a typi-
the distance 40—-90 mm from the edge of the (Bd. 5) and  cal feature of localized nonlinear waves. Tensile areas, if
in the interval 75-125 mniFig. 6), where rod is tapered. any, can be easily detected using the same apparatus: The
The diameter of the recording beam is equal to 50 mm aptringes will be shifted in the opposite direction. However,
proximately. For convenient experimental data processingieformation of the rod behind the soliton was studied in
one of the disturbed interference fringes inside the rodletail, and nothing was observed there except straight
(marked with arrowswas extracted from and placed below fringes; i.e., the rod was free of strain again after the soliton
the interferogram. Fringes in the surrounding liquid remainpropagation.
undisturbed(horizonta), which confirms that the observed  Second, even at distances exceeding dozens of rod’s radii,
wave propagates inside the rod. both the shape and the wave parameters remain permanent
The shape of the strain wave was reconstructed by means
of Eqg. (38) using the following values of parametens;
=1.33,n,=1.6, A=7x10 " m, and»=0.35. It must be v
taken into account that light passes the different distanbes 2
in different cross sections. At the interval where the cross
section remains unifornfFig. 5, we have h=2h,=7.75
x 10" 2 m, while the measured cross sections for the tapered
rod’s part are shown in Table II. 2
One can see that the maximal fringe shift on both inter-
ferograms is almost equal to the width between two neigh-
boring fringes, i.e., to one fringe width. Substituting the data
from Table Il into Eq.(38), one can calculate finally the
soliton parameters and obtain the soliton evolution in the
tapered rod; see Fig. 7. The envelope lines are drawn there
after interpolation. For convenience the compressive waves,

having a negative amplitude, are shown in the first quadrant. FIG. 7. Focusinglamplification of longitudinal strain soliton.
Two graphs of “strairv vs solitary pulse width.” are drawn after

IV. DISCUSSION AND CONSLUSIONS interpolation. Solid circles and the dashed interpolative line both
correspond to experimental data measured on a 40—60 mm interval
Thus, using the laser generator of weak shock waves angf the rod’s length; open triangles and the solid interpolative line
the holographic setup, we have made a generation, detectiotgrrespond to them on a 75 — 125 mm interval.

3




5786 SAMSONOQV, DREIDEN, PORUBOV, AND SEMENOVA 57

and do not exhibit any essential distortions in the uniformsoliton is achieved at the distances 60 and 95 mm from the
rod, as was shown recentl;that is, the nonlinear strain rod input edge, respectively. Then from the estimaiid®)
wave possesses one of the most distinctive features of a solive obtain soliton magnitudes equal to 3280 % in the
ton. The distance chosen for our observations seems to hieterval 40—90 mn{Fig. 5 and to 3.8% 10" * for the inter-
sufficiently large, because polystyrene is well known to beval 75-125 mm(Fig. 6). Therefore the soliton magnitude
an effective absorber of acoustic and shock waves. The lagtcreases 1.16 times. The estimation using the simplified for-
was confirmed by considerable decay of the shock wavenulas (28) and a length dependence of the kiR:=R,
which moved ahead of the soliton, as is shown in Figs. 5 and- y(x— 70) gives the amplification as 1.31 times, which is in
6. good agreement with the experimental data.

The enlargement of the amplitude scale allows us to visu- However, some new theoretical results cannot be checked
alize the main features of the solitary wave in the taperedtill in our experiments and require further study, namely, the
rod; see Fig. 7. All the features predicted by our theory apfollowing.
pear in experiments, namely, the increase of the amplitude, (i) In Sec. | A a refined theory was proposed to describe
the steepness of the wave front, and smoothness of its bacdie nonlinear strain waves in a rod, improved by means of a
i.e., asymmetric deformation of the bell-shaped solitonprecise fulfilment of the boundary conditions on a free lateral
Moreover, the characteristic width of the pulse shown in Fig.rod surface. The differences in the dispersive terms coeffi-
6, L;=25.2 mm, in the homogeneous part of the rod at thecients values in Eq(16) result in a variation of the value of
one-half amplitude level is visibly greater than a similarthe soliton parametek, Egs.(20). The value of I may be
value,L,=22.3 mm, in the narrowing part; hence the width considered as the “width” of a soliton. Calculations based
of the localized strain solitary pulse decreases along the tan the experimental data for a homogeneous rod show a
pered rod. 20-25% alteration in its value with respect to those found

Finally, simultaneously both an increase of the amplitudeon the basis of a previous thedty*> However, the concept
and a decrease of the widthe., the focusingare distinctive  of a soliton width is rather conventional; therefore this par-
for the nonlinear localized wave in a tapered waveguideticular deviation between the two theories is rather difficult
while the parameters of the linear strain wave are indepento confirm in our experiments.
dent and defined by the initial or boundary conditions only. (i) The upper “speed limit” was found in Sec. Il A for

The abilities of our experimental setup do not allow us tovelocities (31) of a soliton in any elastic material, and the
measure directly the soliton acceleration caused by the natallowed zone” for velocities was found to exist, outside of
rowing cross section along the rod. which neither generation nor propagation of a soliton are

However, all other details of the distortion of the wave possible. The upper value of the lini&1) was not proved in
observed(Fig. 7) compared with those theoretically pre- our experiments because the soliton amplitude corresponding
dicted for the strain soliton, Eq19), lead to the conclusion to this velocity provides an inelastic strain in polystyrene.
that both the strain soliton and its focusing were observed, (iii) The observation of the amplitude dependence upon
indeed, in our experiments. Fortunately we detected alsthe Poisson coefficient is expected to be of interest for
both a steepening of the soliton front and a simultaneougpplications found by means of the exact form(#§).
smoothening of its backFig. 7) in close correspondence  The advantages of the theoretical description proposed
with a theoretical predicition of a soliton shape variationhere are of importance for the study of periodical, particu-
when focusing. larly, cnoidal waves, because the deviation in the valuds of

Therefore, the possibility was shown to transfer elastiowill correspond to the deviation in the wave lengths, which
energy at long distances without losses even in materialsan be measured in experiments with reasonable accuracy.
having a considerable absorbtioissipation even for  Another problem for which the refined theory should be ap-
shocks. We proved in experiments that the elastic strain soliplied is wave propagation along a waveguide embedded in
ton is not absorbed even at distances much greater than t@ external medium. The theory also may be used for a soli-
standard linear dissipation length for polystyrene. Presumton focusing study in 2D waveguides, in particular, in plates.
ably it means that the nonlinear absorbtion is much less than
the linear one that does not affect the soliton; this problem
requires further analysis.

The measurement of the wave amplitude is supposed to The support of the Russian Federation Government and
be quite plausible for comparison with the theory. One carthe International Science Foundati@@rant No. R5630pis
see in Figs. 5 and 6 that the maximal amplitude of the straigratefully acknowledged.
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