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Longitudinal-strain soliton focusing in a narrowing nonlinearly elastic rod

A. M. Samsonov, G. V. Dreiden, A. V. Porubov, and I. V. Semenova
A. F. Ioffe Physical Technical Institute of the Russian Academy of Sciences, St. Petersburg 194021, Russia

~Received 23 June 1997; revised manuscript received 23 October 1997!

The evolution of a longitudinal-strain solitary wave~a soliton! is studied theoretically and in experiments in
a nonlinearly elastic tapered rod. Amplification~focusing! of the soliton is predicted and observed in the rod
with decreasing cross section. An asymmetric soliton deformation when focused is observed. An approach is
developed to obtain analytical relationships between longitudinal and shear nonlinear strains, and an
asymptotic solution to the problem is found, accurately satisfying the boundary conditions on the lateral rod’s
surface. The explicit relationship is obtained for the soliton amplitude dependence upon the cross section
radius’ variations of the nonlinearly elastic rod. An allowed interval of soliton velocities is shown to exist that
is dependent on elasticity. It was proved in experiments that the elastic strain soliton is not absorbed even at
distances much greater than the typical linear dissipation length for linear waves in polystyrene.
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I. INTRODUCTION

This paper is devoted to the theoretical and experime
description of the propagation and amplification of the str
solitary wave~soliton! in a cylindrical nonlinearly elastic rod
with varying cross section. We call it an inhomogeneous
in the following for convenience, while the rod with a pe
manent cross section will be called the homogeneous on

Solitons in fluids were observed and generated m
times; see, e.g., Refs. 1 and 2. It was the most surprising
however, that despite an almost similar description
stresses in fluids and solids~see, e.g., some fundament
books3–5! longitudinal-strain solitons have not been observ
in nonlinearly elastic waveguides. Envelope solitary wav
governed by the nonlinear Schro¨dinger equation were widely
considered; another famous soliton in a solid, being mode
as a ball chain, was found by Frenkel and Kontorova in 19
and became useful for crystalline lattice models. Howev
there must be a soliton in solids in the form of a nonline
long quasistationary localized strain wave, propagating eit
along an interface~internal solitary wave! or inside a wave-
guide ~a density soliton!.

The soliton propagates without change of shape in a
form rod while its shape will vary in the presence of inh
mogeneities. In the last case amplification or focusing m
occur; in other words, the soliton amplitude will increas
while its width will decrease simultaneously. Then the loc
ized area of plasticity and even fracture of a waveguide m
happen to appear, which can be of practical importance.

The complete description of a three-dimensional~3D!
nonlinear wave in a continuum is a difficult problem, whic
is why initial 3D problems are usually reduced to the 1
form in order to clarify the simplest but qualitatively ne
analytical solutions. Very often the linearization of a prob
lem was done; however, it turns out to be unsatisfactory fr
the genuine physical point of view, because the ratio o
finite deformation and its linear part is determined by a d
placement gradient and its variation in time; see, e.g., R
5–9.

Dealing with nonlinear elasticity, one can reduce the
570163-1829/98/57~10!/5778~10!/$15.00
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mension of the problem using the waveguide geometry,
wave solution class, and an appropriate type of nonlinea
elastic material. In particular, the simplest ‘‘single-mode
model7 for a cylindrical elastic isotropic rod is based on th
following physical assumptionsabout displacements an
strains inside the rod: The curvature of a cross section a
deformation is negligible, and the Poisson effect is taken i
account. Then the so-called plane cross section hypothes
assumed to be valid for the displacements along the rod
x, u(x,r ,t)5U(x,t), while the shear displacementsw(x,r ,t)
are determined by longitudinal strains by means of the Lo
relationshipw52nrU x .10 Herer is the radial coordinate,t
is time, andn is the Poisson coefficient. This model has be
used recently for the nonlinear strain wave theory in a rod
Refs. 11, 13, and 14.

The restriction of the approach mentioned above is t
the boundary conditions on a free lateral surface were
properly taken into account when these hypotheses were
mulated. Direct substitution of these assumptions into
conditions of the absence of both normal and tangen
stresses at the lateral surface does not result in zero stre

Generally speaking, the identity is not required beca
an asymptotic solution is assumed; however, the bound
condition failure indicates the possible neglect of seve
terms of the same order, which cannot be recovered fr
these hypotheses. As a result the changing of the functio
form of a model nonlinear wave equation may appear or
least, its coefficients may happen to vary. Therefore a refi
ment is required to the modeling of strain waves in a ro
with the boundary conditions on the lateral surface be
taken into account.

A successful experimental generation of a strain soliton
a rod with varying cross section has not been mentioned
to now. Nevertheless, the strain soliton has been gener
and observed in a uniform homogeneous nonlinearly ela
rod, using an experimental setup described in Refs. 15
16, and it revives interest in calculating and observing
strain soliton focusing in solids.

This paper will be organized as follows. A model will b
5778 © 1998 The American Physical Society
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57 5779LONGITUDINAL-STRAIN SOLITON FOCUSING IN A . . .
proposed in Sec. II to describe the propagation of a lo
nonlinear strain wave in an inhomogeneous rod. A proced
will be developed governing the analytical relations betwe
displacements and strains in a rod, under which the comp
nonlinearboundary conditions will be satisfied on the rod
free boundary with a given accuracy. It results in a nonlin
equation for the longitudinal strain waves, which will b
compared with the theory recently developed in Refs. 17
11. An analytical solution will be found for an equatio
describing the soliton amplitude variation due to the rod
homogeneity. In Sec. III a method will be proposed for e
perimental observation of the solitary wave evolution in t
inhomogeneous rod, based on the theory developed. Th
lationship will be derived, connecting the interference frin
shift and the amplitude of the longitudinal nonlinear stra
wave. Finally the pioneering experimental results concern
the solitary wave focusing in a narrowing rod are discuss
It will be shown in Sec. IV that experimental data are
good agreement with the theory.

II. THEORY OF THE LONG NONLINEAR STRAIN WAVE
PROPAGATION IN AN ELASTIC ROD
WITH VARIABLE CROSS SECTION

A. Statement of the problem

Let us consider the wave propagation problem for an i
tropic infinite nonlinearly elastic compressible rod. Introdu
ing the cylindrical Langrangian coordinate system (x,r ,w),
where x is the axis along the rod,we@0,2p#, 0<r<R(x)
<R0, R0 a constant, one can write the displacement vec
VW 5(u,w,0), if torsions can be neglected. Basic equatio
describing the nonlinear wave propagation in the initial co
figuration, are obtained from the Hamilton principle, requ
ing the variation of the actiondS to be equal to zero:

dS52pdXE
t0

t1
dtS E

2`

`

dzE
0

R

rLdr D C. ~1!

The internal integration in Eq.~1! is to be done fort5t0,
when the rod is supposed to be in the natural initial con
tions. The Langrangian density per unit volume,L, is ob-
tained as the difference of the kinetic energy densityK and
the volume density of the internal energyP at the adiabatic
deformation, i.e., the potential energy:

L5K2P5
r0

2 F S ]u

]t D
2

1S ]w

]t D 2G2P~ I k!. ~2!
g
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Here r0 is the rod material density att5t0, while I k ,
k51,2,3 are invariants of the Cauchy-Green finite deform
tion tensorC:

I 1~C!5trC, I 2~C!5@~ trC!22trC2#/2, I 3~C!5detC.
~3!

The Murnaghan approximation of the deformation energy
chosen because it is valid for a wide class of nonlinea
elastic materials:5

P5
l12m

2
I 1

222mI 21
l 12m

3
I 1

322mI1I 21nI3 . ~4!

It is equivalent to a formal expansion of a scalar in a pow
series with respect to invariants of a second-rank tensor,
tained by Landau and Rumer.18 The coefficients in Eq.~4!
depend on the second-order elastic moduli, the Lame co
cients (l, m), as well as on the third-order elastic moduli, th
Murnaghan moduli (l , m, n).

We will be aiming at the study of long nonlinear longitu
dinal strain waves~density waves!, which will require some
simplifications, namely, the relationships between longitu
nal and transversal displacementsu andw . To find them one
needs to satisfy the boundary conditions on the free lat
rod surfacer 5R(x), namely, the absence of both the norm
and tangential stresses at every moment. We introduce
small parameter«, taking into account that the waves und
study should beelasticwaves with sufficiently small magni
tudeB, B!1, as well as sufficiently long waves with lengt
L, so that the ratioR0 /L!1, whereR0 is the maximal value
of r (x) along the rod. The most important case occurs wh
both nonlinear and dispersive features arein balanceand
small enough:

«5B5S R0

L D 2

!1. ~5!

We introduceŨ[BL as a scale for displacementsu and
w, and L as a scale for the coordinate along the rod ax
while R0 is for the coordinate along the rod radius. Then t
boundary conditions of the absence of stresses at the
lateral surface are obtained in dimensionless form by eq
ing to zero the corresponding dimensionless componentsPrr
andPrx of the Piola-Kirchhoff tensorP,5 that are written in
power series of« for convenience:
~l12m!wr1l
w

R
1«Flux1

l12m1m

2
ur

21
3l16m12l 14m

2
wr

21
~l12l !

2 S 2wwr

R
1

w2

R2D G
1«2S ~l12l !uxwr1~2l 22m1n!

wux

R
1~m1m!urwxD1«3S l12l

2
ux

21
l12m1m

2
wx

2D50 ~6!

and
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mur1«S mwx1~l12m1m!urwr1~2l12m2n!ur

w

RD
1«2F ~l12m1m!uxur1S 2m2n

2 Dwwx

R
1~m1m!wxwr G1«3~m1m!uxwx50. ~7!
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The unknown functionsu and w will be expanded in a
power series of«:

u5u01«u11«2u21•••, w5w01«w11«2w21•••.
~8!

Substituting Eqs.~8! into Eqs.~6! and~7!, and equating to
zero all terms of the same order of«, one can prove that the
plane cross section hypothesis is valid, however in lead
order only:

u05U~x,t !, w050. ~9!

Terms of orderO(«) provide the relationship forw1 that
coincides with the Love hypothesis~and proves its validity
now!:

u150, w152
l

2~l1m!
rU x52nrU x ~10!

(n is a Poisson coefficient!, while the next terms lead to
additional terms. Therefore fori 52,3 we find

u25
n

2
r 2Uxx , w250, ~11!

u350,

w352
n2

2~322n!
r 3Uxxx2Fn~11n!

2
1

~122n!~11n!

E

3@ l ~122n!212m~11n!2nn#G rU x
2 , ~12!

whereE is the Young modulus. Other terms from the ser
~8! for i .3 may be found in the same way; however, th
will be omitted here because of no influence on the fi
model equation for the strain waves in the next section.

B. Longitudinal strain waves propagation
in an inhomogeneous rod

The longitudinal strain waves equation can be derived
ing the Hamilton principle. In dimensional form it will con
tain small ~but finite! additional terms to the linear wav
operator, which describe the influence of both the nonline
ity and dispersion on the evolution of along elasticwave.
The problem may be solved in a dimensionless form also
means of an asymptotic solution in the power series o«
introduced in the previous section. However, for applicatio
to physical experiments the dimensional form of the mo
equation is more convenient, while the Lagrangian~2! may
be written without higher-order nonlinear and different
terms in the relationships for kinetic energyK and potential
g

s

l

s-

r-

y

s
l

l

strain energyP. Substituting expansions~8! into the formu-
las for K andP, one can find, respectively,

K5
r0

2
~Ut

21nr 2@UtUxxt1nUxt
2 # !, ~13!

P5
1

2S EUx
21

b

3
Ux

31nEr2UxUxxxD , ~14!

where b53E12l (122n)314m(11n)2(122n)16nn2

becomes the only coefficient depending on the nonlin
elasticity of the rod. It is easy to see that the use of trunca
expansions~8!, containing only the three first terms, is su
ficient to write relationships~13 and 14!. Substituting them
into Eq. ~1! and calculatingdS50, one can obtain the fol-
lowing nonlinear equation:

Utt2
c
*
2

R2

]

]x
@R2Ux#

5
1

R2

]

]xF b

2r0
R2Ux

22
n

4

]

]x
~R4Utt!1

n2

2
R4UxttG

1
1

R2

]

]xFnc
*
2

4 S R4Uxxx1
]2

]x2
~R4Ux!D G

2
nR2

4
Uxxtt , ~15!

wherec* is the so-called ‘‘rod’’ wave velocity,c
*
2 5E/r0.

Therefore additional linear dispersive terms appear in
equation above due to the termsu2 and w3, resulting after
the boundary condition fulfillment at the free lateral surfac
and we obtained arefined equationin comparison with one
obtained in Ref. 11.

Let us consider now the rod the cross section of wh
varies slowly along thex axis, which is described by a func
tion R5R(gx), g!1. Introducing the notationv5Ux ,t
5tc* and differentiating Eq.~15! on x, we obtain an equa-
tion

vtt2
]

]x

1

R2

]

]xS R2v1
bR2

2E
~v2!1aR4vtt2bR4vxx

24bR3RxvxD50, ~16!

deviating from those obtained in Ref. 11 with the dispers
term coefficientsa and b, a52@n(12n)#/2, b52n/2,
which are different from the corresponding coefficientsa
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5n2/2, b5n2/@2(11n)# in Ref. 11 . Two first terms here
describe a common linear wave, the third governs the n
linearity, and the two following terms are responsible for t
dispersive features of a waveguide, while the last term, be
of the same order, looks like a dissipative one, but occ
due to the cross section variation.

The uniformly valid asymptotic analysis proposed in R
11 for the fourth-order perturbed partial differential equati
~PDE! can be used formally for solution to Eq.~16!. To
describe the evolution of a traveling strain wavev we intro-
duce the phase variableu and the slow variableX[gx, as
follows:

ut521, ux5A~X!. ~17!

The solution to Eq.~16! will be found in new variables in the
power series ing:

v5v01gv11•••. ~18!

Substituting Eq.~18! into Eq. ~16! gives in leading order of
g the well-known solitary wave solution~‘‘strain soliton’’!
for v0,

v05
3E

b
acosh22$k~X!@u2u0~X!#%, ~19!

depending upon the varying parametera5a(X), a.0,
while A andk are expressed through it:

A25
1

11a
, k25

a~11a!

4R2@a~11a!2b#
. ~20!

Both A and k will be real in Eq. ~20! for most standard
elastic materials~having the Poisson coefficientn.0) if the
value of the functiona is inside an interval:

0,a,
n

12n
. ~21!

Then the type of the strain wave~19! ~compressive or tensile
one! is defined only by the sign of the nonlinear coefficie
b, which depends on the elasticity of the rod material,
spectively.

Note that the use of the coefficienta, b values, defined
previously in Ref. 11, results in another interval fora,

a.0 or 21,a,2
n

~11n!
, ~22!

which prescribed the possibility of the existence both co
pressive and tensile waves for each sign ofb.

Let us study a distortion of the solitary strain wave due
the ‘‘geometrical’’ inhomogeneity considered. The followin
differential equation fora arises from the secular term ab
sence condition in orderO(g):

S ln
R2a2

2kA3D
X

1
4bk2R2A4

5
~ ln2R4a2Ak!X50, ~23!

which after use of Eqs.~20! is reduced to a nonlinear first
order ordinary differential equation~ODE! for an amplitude
variation,
n-

g
rs

.

t
-

-

RX

R
5aXS 1

6~12D1a!
2

1

2a
2

1

3~12D11a!

2
1

3~12D21a! D , ~24!

where

D5
b

a
5

1

~12n!
, D1,25

26A925n

5~12n!
.

Taking the restrictions fora, Eq. ~21!, into account, we con-
clude that the expansion in the brackets on the right-h
side of Eq.~24! is always positive. Therefore themagnitude
of the soliton will increase with the radius decrease. Dir
integration of Eq.~24! yields

R6a3@n1a~2n26/5!2a2~12n!#2

~12n!@n2a~12n!#
5const. ~25!

Routine analysis of the functionsv0, Eq. ~19!, and v0,x
shows that the distortion of the wave shape takes place a
from the amplitude variation. When the bell-shaped solit
propagates along the narrowing rod, its front side becom
steeper while the back one becomes smoother. Vice ve
the front side of the solitary wave, moving along the expan
ing rod, becomes smoother, while the back one steeper.
equation for the determination of an extremum of a deri
tive v0,x ,

g
RX

R
1$k~12gu0,X!1gkX@u2u0~X!#%tanh$k@u2u0~X!#%

50, ~26!

shows that for wave propagation along the narrowing
(RX,0) the extremum is achieved foru2u0(X).0, while
in an extending rod (RX.0) for an inverse sign. Then th
soliton accelerates in a narrowing rod and decelerates in
expanding one in comparison with the same soliton mov
along a uniform~homogeneous! rod.

The exact formulas~20! and~25! may be easily simplified
to analyze the wave parameter variations. The range of
strain wave amplitude change has to be restricted by a ph
cal condition of the strain’s elasticity:

uA112Cxx21u,e0 , ~27!

where e0 is the yield point of a material, and for most o
elastic materials its value lies in the interval 102421023.19

Thereforea will have to be small enough, and the followin
approximations follow from Eqs.~20! and ~25!:

A51, k25
a

4R2~a2b!
,

a

a0
5S R0

R D 2

. ~28!

The most important feature of the next order asympto
solution is in the appearance of a plateau, propagating be
the soliton~19! with much less velocity. The difference i
the values ofa and b calculated in the framework of two
theories results in a quantitative deviation in the plateau a
plitude value. However, it is of orderO(g); hence its change
will be small also in comparison with the value obtained
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Ref. 17. This deviation seems unlikely to be detected
means of the equipment used in our experiments, and
part of solution is omitted here.

III. EXPERIMENTAL OBSERVATION

A. Experimental method

It is well known that optical methods are preferable
study the transparent optical phase inhomogeneities. T
allow one not only to visualize inhomogeneity but also
determine its parameters, and on the other side, being
tactless, they do not introduce any disturbances in an ob
under study; see Ref. 20. All optical methods record
changes of the refractive index in an object, when study
the optically transparent phase inhomogeneities. Shadow
phy is more convenient to record a considerable refrac
index gradient, for example, caused by strong shock w
propagation. It was shown theoretically in our case tha
strain soliton is a propagating long density wave of sm
amplitude. Interferometry is the most appropriate for t
study of such waves because it allows one to observe
measure with sufficient accuracy even small refractive in
variations.

Holographic interferometry, used in our experiments, h
several advantages in comparison with conventional opt
interferometry. In particular, limitations on the optical qua
ity are considerably lower because wave fronts to be co
pared pass through the same optical path. For this rea
both waves are distortedto the same extentand possible
defects in the optical elements and experimental cell do
affect the resulting interference pattern.

However, the choice of an optical recording method
lows one to study, in general, only elastic materials, wh
are transparent for the given light wave length. The appro
must be modified for an opaque material investigation.

Let us estimate the parameters of the initial pulse fr
which the strain soliton may be formed. Strain solitary wav
cannot propagate with arbitrary velocity, and below we sh
show the existence of an ‘‘allowed’’ velocity interval, be
yond which the propagation of strain solitons is not possi
~in contrast to our previous model,11 where the ‘‘dead zone’’
of velocities was found, inside which the soliton cann
propagate!. For a homogeneous~uniform! rod the solution
~19! in the leading order problem for the longitudinal stra
waveUx has the form

Ux5
3Ea

b
cosh22k0~x6Vt!, ~29!

while the soliton parameters depend on velocity as follow

a5
V2

c
*
2

21, k0
25

~V22c
*
2 !V2

2nR2c
*
2 @c

*
2 2~12n!V2#

. ~30!

One can see that the velocityV chosen to be positive shoul
satisfy the inequalities at 1/2>n.0,

1,
V2

c
*
2

,
1

12n
, ~31!

while at 21,n,0,
y
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V2

c
*
2

.1. ~32!

Obviously, forn.0 the existence of subsonic (V,c* ) com-
pressive solitons is impossible for any elastic material
rameter values, while supersonic solitons may propag
having the velocity only from the interval~31! for most elas-
tic materials. Therefore generation of compressive solit
strain waves requires an initial pulse generation@a shock
wave, but a weak one to satisfy the limitation~27!# with the
velocity from the interval~31!. The ‘‘allowed’’ velocities for
the generation of compressive~or tensile! soliton in materials
with n,0 are shown in Table I.

To check that the excited strain wave possesses indee
soliton feature to conserve its shape, it is necessary to fol
in observations its propagation along an extended ela
waveguide. However, the more absorbing is a wavegu
material for linear elastic waves; the much shorter distanc
to be sufficient to detect the constant shape wave prop
tion.

Based on the results of the analysis presented above
transparent polystyrene SD-3 has been chosen as an a
priate material for waveguide manufacturing. The elas
properties of it are given by a set of parametersn50.35,b
52631010 N/m2, and c* 51.83103 m/s; see Ref. 19.
Polystyrene absorbs well both linear and shock elastic wa
and it is widely used as an acoustic power absorber; see R
21 and 22.

Shown in Fig. 1 is the optical scheme of the experimen
setup used to generate and observe the strain solitons.

TABLE I. Type of solitary waves that are dependent on t
nonlinearity coefficientb, the Poisson coefficientn, and the veloc-
ity interval V2/c

*
2 .

Wave type b n V2/c
*
2

Compression ,0 .0 „1, 1/(12n)…
Extension .0 .0 „1, 1/(12n)…
Compression .0 ,0 (1,̀ )
Extension .0 ,0 „0, 1/(12n)…
Compression ,0 ,0 (1, `)
Extension ,0 ,0 „0, 1/(12n)…

FIG. 1. Experimental setup for laser generation and optical
servation of strain solitons.
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FIG. 2. Shock wave generation in water due to laser beam evaporation of metallic film target~a! and shock wave propagation near th
rod ~b!.
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apparatus consists of a device to produce the initial sh
wave, a holographic interferometer for the recording o
wave pattern, a synchronizer, and a laser radiation en
meter.

In our experiments the strain soliton was formed from
initial shock wave, produced by action of theQ-switched
ruby laser~1! ~pulse duration is 15220 ns) on the metallic
film target ~10!, placed in the water cell nearby the inp
edge of the rod~6!. The laser pulse power density was me
sured by the energy meter~12! and was kept constant~equal
to 2.33108 W/cm2) during the experiment in order to avoi
any inelastic strains in the material.

A second ruby laser~2! has been used for the hologra
recording. The shutters of both lasers were synchronized
multichannel generator of delayed pulses, which allowed
to record a wave pattern at a required time moment with
accuracy of order 12231026 s. The light beam from the
laser~2! ~the beam diameter was 1.5 mm! was expanded by
a telescopic system~3! up to a diameter equal to 50 mm, an
then it was divided into the object and reference beams b
wedge~4!. Passed through the wedge, the object beam
directed to the water cell~5! and to the rod~6! immersed in
it. The central rod section was projected onto the hologr
plane ~9! by a lens~8!, and the hologram of the focuse
image was recorded.

The first exposure of the hologram was carried out by
pulse from the laser~2! in the absence of a pulse from th
laser~1!, and so the hologram of undisturbed waveguide~6!
was recorded. The second exposure was made by a
pulse synchronized with the prescribed stage of the w
propagation. Observations were made in the transversa
rection, and two cutoffs were made parallel to the rod axis
order to make transparent the central part of the rod.
carrier fringes on interferograms, obtained due to the rec
struction of doubly exposed holograms, occurred due to
wedge ~7! turn between the exposures. The longitudin
strain wave patterns were recorded at various distances
the input edge of the rod, which was attained by the c
displacement along the axis of wave propagation.

Recently in Ref. 23 we have reported the study of a sh
wave produced in water by the laser explosive evaporatio
a metallic film target immersed in water. It was shown th
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such a shock wave~see Fig. 2! exhibits a very narrow com-
pressive area~ 0.1–0.2mm wide! followed by a considerable
rarefaction area~1 mm wide! of small amplitude. The param
eters of this shock wave satisfy the conditions required
strain soliton generation.14 The proximity of wave imped-
ance values for water and polystyrene allows us to enter
wave energy into the rod without considerable losses
power at the liquid/solid interface.

B. Experimental data processing

The soliton parameters were calculated based on the
of the holographic interferograms obtained. Note that the
terferometric pattern does not exhibit a standard bell-sha
image of a shallow water soliton since the strain soliton is
fact, a longitudinal density wave in a solid.

The soliton amplitude can be calculated using the int
ference fringe shiftDk measured in the interferogram. Le
2h be a distance passed by the recording light across the
i.e., precisely the distance between two longitudinal cuto
Before the deformation the phase variationDf1 of the light
wave having lengthL is caused by the laser light propag
tion along the distanceq22h through the water and the
distance 2h through the rod~whereq is the distance betwee
the cell walls!:

n0~q22h!12hn15
L

2p
Df1 . ~33!

Heren0 andn1 are the refraction indices of water and th
elastic material before deformation, respectively. After t
deformation the refraction index value of the rod changes
n2. Moreover, the distances, which light passes through
rod and water, vary due to the deformation of the rod. A
result we obtain the formula for the magnitude of the lig
wave phase variationDf2:

n0~q22h22Dh!1n2~2h12Dh!5
L

2p
Df2 . ~34!

Evidently, the interference fringe shiftDk is defined as
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Dk5
Df22Df1

2p
. ~35!

The new value of the refraction index of the deformed ro
n2, is caused by the local density variation:

Dr

r
5

n22n1

n121
, ~36!

which can be easily obtained following the Lorenz-Loren
formula.12 On the other side, one can obtain the dens
variation from the solution of a static linear problem o
uniaxial compression~or tension! ~see Ref. 5! and as a resul
the following relationship is valid:

Dr

r
5Ux~2n21!. ~37!

Then we get finally from Eq.~35!

Ux52
LDk

2h@~n121!~122n!1n~n12n0!#
. ~38!

The amplitude is determined by the maximal fringe sh
value. Derivation of Eq.~38! shows that the lengthL of the
solitary pulse may be directly determined from the interfe
gram as the length of the fringe perturbation between
undisturbed areas.

C. Observation of the soliton evolution
in an inhomogeneous rod

The holographic wave pattern near the input edge of
rod is shown in Fig. 3. The left vertical black region repr
sents an input section of the rod, and horizontal black ar
above and below the central fringe area are cylindri
‘‘caps’’ along the rod; see Fig. 4.

Black rectangular frames~as well as the gray frames i
Figs. 5 and 6 below! surrounded the fringe pattern inside
rod appear due to the fact that the lateral surface of a

FIG. 3. Interferogram of the strain wave pattern near the in
edge of the rod.
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beyond the central area of observation is not precisely p
pendicular to the laser beam, i.e., not transparent, and th
fore reflects the light.

The wave pattern in Fig. 3 is complicated. On the int
ferogram one can see the shock wave~A!, propagating along
the rod, the remainder of the original shock wave~D!, mov-
ing in a surrounding liquid and lagging behind the wave~A!
due to the difference in velocities in solid and in water. T
parts of wave~D! in water behind and ahead of the transp
ent rod appear due to observation in the direction transve
to the wave propagation. Moreover, a second shock wave~B!
of a complex shape enters the rod also. This wave arises
to the partial refraction of the initial shock wave from th
input edge and from the film target, respectively. The bou
ary conical waves~P! are observed also in a surroundin
liquid, arising due to Poisson’s expansion of the rod late
surface when the compressive wave propagates inside it.
wave location detection~‘‘which and where’’! was done by
means of velocity measurements of all of them using dou
exposed schlieren photography; see Ref. 20.

The choice of the rod’s cross section variation is cau
by two reasons. First, we were going to observe a geom
cal inhomogeneity influence just on the strain soliton, a
second, the experimental setup limitations should be ta
into account. Measurements of the soliton amplitude in
homogeneous rod resulted in an estimation of the param
«5O(1023). When the inhomogeneity parameterg is cho-
sen to beg!«, then the possible variation of the initial ro
radius (R055 mm! at the distance 100 mm along the ax
will be of order 0.1 mm or 2% from the initial value. Th
estimation of the amplitude change in this case by mean
an approximation~28! shows that such a magnitude corr
sponds to the oscillations of the observed solitary wa
front.16 So it seems hardly possible to detect such a devia
using our experimental setup. Therefore the inhomogen
parameter should be chosen asg@« .

It has to be noted, however, that a nonstationary proc
takes place in experiments in contrast to a quasistation
process governed by the asymptotic solution obtained ab
Wheng@« the inhomogeneity will change the initial puls

t

FIG. 4. Schematic of the rod with variable cross sections a
cutoffs.

FIG. 5. Interferogram of the strain soliton in the nonlinear
elastic rod recorded at the end of the uniform cross section inter
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earlier than both nonlinearity and dispersion, and the st
soliton will hardly appear from an initial shock. Thus the ro
cross section should remain constant at the distance req
for soliton generation and separation, and begin to vary o
after it. Experiments on the soliton generation in a homo
neous rod15,16 showed that a soliton appears even at the d
tance of 60 mm~ca. 10R0) approximately from the inpu
edge of the rod.

Based on this analysis, a rod 140 mm long was made
polystyrene with uniform and narrowing parts, as is shown
Fig. 4, and two cutoffs were made on the lateral surface
observation purposes. The rod radius decreases linearly
the valueR055 mm to the valueR52.75 mm along the
distance 70 mm. In this case the inhomogeneity param
g50.032 is much greater than the typical soliton amplitu
'1024 ~Refs. 15 and 16! for the homogeneous rod.

Let us consider the holographic interferograms of the l
gitudinal strain soliton recorded in the transition interv
from the rod with uniform cross section to its tapered par
the distance 40–90 mm from the edge of the rod~Fig. 5! and
in the interval 75–125 mm~Fig. 6!, where rod is tapered
The diameter of the recording beam is equal to 50 mm
proximately. For convenient experimental data process
one of the disturbed interference fringes inside the
~marked with arrows! was extracted from and placed belo
the interferogram. Fringes in the surrounding liquid rem
undisturbed~horizontal!, which confirms that the observe
wave propagates inside the rod.

The shape of the strain wave was reconstructed by me
of Eq. ~38! using the following values of parameters:n0
51.33, n151.6, L5731027 m, andn50.35. It must be
taken into account that light passes the different distancesh
in different cross sections. At the interval where the cro
section remains uniform~Fig. 5!, we have 2h52h057.75
31023 m, while the measured cross sections for the tape
rod’s part are shown in Table II.

One can see that the maximal fringe shift on both int
ferograms is almost equal to the width between two nei
boring fringes, i.e., to one fringe width. Substituting the da
from Table II into Eq. ~38!, one can calculate finally the
soliton parameters and obtain the soliton evolution in
tapered rod; see Fig. 7. The envelope lines are drawn t
after interpolation. For convenience the compressive wa
having a negative amplitude, are shown in the first quadr

IV. DISCUSSION AND CONSLUSIONS

Thus, using the laser generator of weak shock waves
the holographic setup, we have made a generation, detec

FIG. 6. Interferogram of the strain soliton recorded in the
pered nonlinearly elastic rod.
in

ed
ly
-
-

of
n
r
m

er
e

-
l
t

-
g
d

n

ns

s

d

-
-

a

e
re
s,
t.

nd
on,

and record of the strain solitary wave~the soliton! inside
nonlinearly elastic both uniform and narrowing sol
waveguides~the rods!.

The following arguments may confirm the observation
the genuine strain solitary wave in our experiments.

First, there is no tensile area behind the observed l
compressive wave~having a lengthl.7R), which is a typi-
cal feature of localized nonlinear waves. Tensile areas
any, can be easily detected using the same apparatus:
fringes will be shifted in the opposite direction. Howeve
deformation of the rod behind the soliton was studied
detail, and nothing was observed there except stra
fringes; i.e., the rod was free of strain again after the soli
propagation.

Second, even at distances exceeding dozens of rod’s r
both the shape and the wave parameters remain perma

-

TABLE II. Light path distance measurements inside the d
formed narrowing rod.

Distance from Diameter Light path

the input edge of the rod distance 2h

~mm! ~mm! ~mm!

50 10 7.75

65 10 7.75

70 10 7.75

75 9.8 7.45

80 9.5 7.2

85 9.2 7.0

90 8.9 6.8

95 8.6 6.6

100 8.3 6.3

105 8.0 6.1

110 7.7 5.8

115 7.5 5.7

120 7.1 5.4

125 6.9 5.0

FIG. 7. Focusing~amplification! of longitudinal strain soliton.
Two graphs of ‘‘strainv vs solitary pulse widthL ’’ are drawn after
interpolation. Solid circles and the dashed interpolative line b
correspond to experimental data measured on a 40–60 mm int
of the rod’s length; open triangles and the solid interpolative l
correspond to them on a 75 – 125 mm interval.
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and do not exhibit any essential distortions in the unifo
rod, as was shown recently;16 that is, the nonlinear strain
wave possesses one of the most distinctive features of a
ton. The distance chosen for our observations seems t
sufficiently large, because polystyrene is well known to
an effective absorber of acoustic and shock waves. The
was confirmed by considerable decay of the shock wa
which moved ahead of the soliton, as is shown in Figs. 5
6.

The enlargement of the amplitude scale allows us to v
alize the main features of the solitary wave in the tape
rod; see Fig. 7. All the features predicted by our theory
pear in experiments, namely, the increase of the amplitu
the steepness of the wave front, and smoothness of its b
i.e., asymmetric deformation of the bell-shaped solit
Moreover, the characteristic width of the pulse shown in F
6, L1525.2 mm, in the homogeneous part of the rod at
one-half amplitude level is visibly greater than a simi
value,L2522.3 mm, in the narrowing part; hence the wid
of the localized strain solitary pulse decreases along the
pered rod.

Finally, simultaneously both an increase of the amplitu
and a decrease of the width~i.e., the focusing! are distinctive
for the nonlinear localized wave in a tapered wavegui
while the parameters of the linear strain wave are indep
dent and defined by the initial or boundary conditions on

The abilities of our experimental setup do not allow us
measure directly the soliton acceleration caused by the
rowing cross section along the rod.

However, all other details of the distortion of the wa
observed~Fig. 7! compared with those theoretically pre
dicted for the strain soliton, Eq.~19!, lead to the conclusion
that both the strain soliton and its focusing were observ
indeed, in our experiments. Fortunately we detected a
both a steepening of the soliton front and a simultane
smoothening of its back~Fig. 7! in close correspondenc
with a theoretical predicition of a soliton shape variati
when focusing.

Therefore, the possibility was shown to transfer elas
energy at long distances without losses even in mate
having a considerable absorbtion~dissipation! even for
shocks. We proved in experiments that the elastic strain s
ton is not absorbed even at distances much greater than
standard linear dissipation length for polystyrene. Presu
ably it means that the nonlinear absorbtion is much less t
the linear one that does not affect the soliton; this probl
requires further analysis.

The measurement of the wave amplitude is suppose
be quite plausible for comparison with the theory. One c
see in Figs. 5 and 6 that the maximal amplitude of the str
g
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soliton is achieved at the distances 60 and 95 mm from
rod input edge, respectively. Then from the estimation~38!
we obtain soliton magnitudes equal to 3.2931024 in the
interval 40–90 mm~Fig. 5! and to 3.8331024 for the inter-
val 75–125 mm~Fig. 6!. Therefore the soliton magnitud
increases 1.16 times. The estimation using the simplified
mulas ~28! and a length dependence of the kindR5R0
2g(x270) gives the amplification as 1.31 times, which is
good agreement with the experimental data.

However, some new theoretical results cannot be chec
still in our experiments and require further study, namely,
following.

~i! In Sec. I A a refined theory was proposed to descr
the nonlinear strain waves in a rod, improved by means o
precise fulfilment of the boundary conditions on a free late
rod surface. The differences in the dispersive terms coe
cients values in Eq.~16! result in a variation of the value o
the soliton parameterk, Eqs.~20!. The value of 1/k may be
considered as the ‘‘width’’ of a soliton. Calculations bas
on the experimental data for a homogeneous rod sho
20–25 % alteration in its value with respect to those fou
on the basis of a previous theory.11,13 However, the concep
of a soliton width is rather conventional; therefore this p
ticular deviation between the two theories is rather diffic
to confirm in our experiments.

~ii ! The upper ‘‘speed limit’’ was found in Sec. II A for
velocities ~31! of a soliton in any elastic material, and th
‘‘allowed zone’’ for velocities was found to exist, outside o
which neither generation nor propagation of a soliton
possible. The upper value of the limit~31! was not proved in
our experiments because the soliton amplitude correspon
to this velocity provides an inelastic strain in polystyrene

~iii ! The observation of the amplitude dependence up
the Poisson coefficientn is expected to be of interest fo
applications found by means of the exact formula~25!.

The advantages of the theoretical description propo
here are of importance for the study of periodical, partic
larly, cnoidal waves, because the deviation in the values ok
will correspond to the deviation in the wave lengths, whi
can be measured in experiments with reasonable accur
Another problem for which the refined theory should be a
plied is wave propagation along a waveguide embedde
an external medium. The theory also may be used for a s
ton focusing study in 2D waveguides, in particular, in plat
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