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Anharmonic lattice dynamics and neutron-scattering spectra in bcc transition metals
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Anharmonic phonon-phonon coupling strengths have been derived from a simple phenomenological model
potential in order to explain the characteristic phonon linewidths and lineshifts and inelastic neutron spectra of
bcc metals in their high-temperature phase. The strong quasielastic scatteringq:né(alll) andq
=%(110) in bcc Zr and bee Ti is actually caused by anharmonic broadening, with the lifetime of these
low-frequency phonons of the order of a vibrational period. These modes which are connected to the structural
phase transition from the bcc to the hexagonal or the hcp phase show the strongest anharmonic effects. The
interference between one- and two-phonon neutron-scattering processes leads to an unusually strong intensity
variation over adjacent Brillouin zon€lsS0163-182@8)02010-4

[. INTRODUCTION contribution to the scattering intensity in solid H and prob-
ably also in Né In most cases perturbation theory with
The phonon spectra of the group-IV and -V transitionmodel anharmonicities has led to a qualitative understanding

metals in their high-temperature bcc phase have been exafif the experimental facts. High-temperature bcc metals
ined by extended inelastic-neutron-scattering experimiefits. Stimulated anew the interest in understanding theoretically
While the bce phase of the group-V metals is stable, for thdhe v_|brat|onal properties of strongly anharmonic crystals.
group-lll metals this phase exists only in the upper third ofScheipers and Schwmacﬁehave presented a self-consistent
the temperature region below the melting point, and for thé€"Y ft())r the dy_namlcallc ohne-phonqnlstru;:ture _factcr)]r_. hh
group-IV metals the range of stability narrows to 90 K below t To obtain zihplcttutrel of the poft?r?t'a sutr ?ce, 'B w IICtt tde
the melting point. Therefore, neutron-scattering experiment oms move, the total energy of the crystal can be plotied as

. gy ; . X function of the normal coordinate of a phonon. This was
require sophisticated experimental techniques, namelyn on done in frozen-phonomb initio calculationst® and the re-
situ grown crystals. ’

. i . sults revealed the low-energy barrier between the different
Despite of the different electronic structure some characgyr ctyral phases of the crystal. To understand the stability of
teristic effects are very similar for a_II metals in their h|_gh- bce Zr, Yeet al! have extracted the anharmonic part of the
temperature bce phase. The experiments show that in thgteratomic potential fitted to coupling parameters from an
narrow region betweei(110) and3(111) either the modes ah initio frozen-phonon calculation; from that they have cal-
are overdamped, or there is quasielastic scattering. These fulated the anharmonic frequency shift of single phonons.
fects are most important for those modes whose atomic dis/illaime and Massobrid have used amN-body potential
placements are related to the structural phase transition to theith four parameters to calculate thermal expansion, phonon
low-temperature hcp phase and the high-pressure hexagordispersion and damping in bcc-Zr. Saxeeizal*® derived
o phase, respectively.The energy barriers between the the phonon dispersion from temperature-dependent interac-
rather open bcc structure and the hcp anghases are very tions from first principles.
low, and thus the modes related to these phase transitions A different approach to the behavior of the high-
have low frequencies. At high temperatures the atomic distemperature bce metals is molecular dynamics. Zterg™
placements become large, and anharmonic effects have to bave been able to reproduce the symmetry breaking effect,
taken into account. i.e., the abnormal scattering intensity variation, and have ob-

In addition, so-called symmetry breaking phonons in thetéined the dlfferelrgt line shapes in different Brillouin zones.
high-temperature phase of bcc La and bee Zr have beefgornostyrevet al™> usedab initio potentials with several

observed* namely, different line shapes at equivalant wells to calculatew via numerical integration of the Lange-

points in different Brillouin zones and anomalous scatteringxg'negé’:;?n and obtain a central peak and splitting of pho-

intensities in adjacent Brillouin zones. In the case of bcc Zr, A il show in the followina. th t tteri
for example, anharmonic effects cause an additional factor of S W€ Wil Show in the Toflowing, the neutron-scattering

five in the scattering intensity at=3(111) as compared to spectra opserved in bee T' anq bee Zr can be understood
the symmetrically equivalerd=2(111) within a simple anharmonic lattice-dynamical model poten-
£ .

Within the framework of perturbation theory, the naturet'al‘ Interference terms between one and two phonon pro-
of interference was first elucidated by Thomp'%who has Cesses will be taken into account which leads to the observed

derived the expressions for phonon lifetime, phonon fre.Symmetry breaking behavior. Preliminary accounts of parts

; ; 7
guency shift, and one- and two-phonon interference effectgf this work have been published befdfe.
in the scattering cross section due to anharmonicity. Lifetime
Il. THEORETICAL ASPECTS
effects have been observed and calculated fhad later
lifetime and interference effects have been observed in the We have adjusted the harmonic part of a phenomenologi-
highly anharmonic bcc HéInterference makes a significant cal Born-Mayer potential
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V(r)=Voe "o ()

to the experimentalhigh-temperaturefrequencies. We em- _O__

phasize that this potential contains only two parameters

which are adjusted only to the quasiharmonic dispersion. We

. . (3) (4) ; » oL
also have redone our calculations using a Morse potential FIG. 1. ContributionslT;™ and II{™ in Eq. (5). The first dia

gram leads to frequency-dependent shift and damping. The second
V(r)=D(e"” 2a(r=10) _ pg= a(,,,o)) @) diagram leads to a frequency-independent frequency shift.
from which we have obtained very similar results. andn, is the Bose occupation factor of the phonon with
From the harmonic part of the potential we have obtainedjuantum numbex.
the harmonic eigensolutions, i.e., the quasiharmonic phonon The contributionsIT{® and I1{*Y in Eq. (5) are shown
frequencies and eigenvectors throughout the entire Brillouimiagrammatically in Fig. 1. With the exception of thermal
zone. From the anharmonic part of the potential and from thexpansion effects we have included in Ef) the effect of
harmonic eigensolutions we have calculated the leading part¢(123) up to second order and ¥{1234) up to first order.
of the phonon self-energhl (w).131°The anharmonic part of The (complex contribution H(l?’) describes the anharmonic
the potential can be written in terms of the harmonic phonordecay of the phonon with quantum number 1 into two
field operators phonons with quantum numbers 2 and 3 due to third-order
anharmonicity; this process has a real and an imaginary part
and thus contributes both to the shift and damping function.
The (real contributionH(l“) describes the anharmonic cou-
" pling of the phonon with quantum number 1 to the thermal
n o displacement fluctuations due to fourth-order anharmonicity.
+ 4!12234 V(1234A(DA2)AR)A4) + 9 In comparison with these effects the effect of thermal ex-
pansion can be neglected: With the experimentally krfown
where the index 1 stands for a combination of the wav&hermal expansion coefficient of 51)44_0_5 A/K a Change
vector ; and branch index; of the phonon 1, i.e., 1 of 100 K leads to a change of the lattice constant of 0.16%,
=(0qq,j1) and 1=(—q4,j1)- and with the potentiall) the resulting change of the phonon
The anharmonic coupling coefficienty/(123) and frequencies is below 0.02 THz, while the effect expressed by
V(1234) are given in terms of the anharmonic derivatives ofil1{®)+I1{* is larger by an order of magnitude, see Sec. Il C.
the interatomic potential and tHguasiharmoniceigenvec- The model potentia(l) is fitted to the experimentdhn-
tors and frequencie$:*® harmonically shifted, quasiharmomniérequencies and thus
The anharmonic one-phonon properties can be obtainegbntains anharmonic contributions. To correct for these con-
from the anharmonic one-phonon Green function, which istributions one must add @ea) contributionH‘jh to Eq. (5)
for the phonon with quantum number 1, given by such that the total shift functiol;(w;) vanishes at the
quasiharmonic eigenfrequenay,

)
Va= =2 V(123 A(1)A(2)A(3)
31173

Gy(w)= 21 4
) s 20 () & () =A}(0)=iTy(0) =T+ T(e). ()
with the phonon self-energy In a monatomic crystal the differential cross section for
one-phonon inelastic neutron scattering including the inter-
My(w)=A(0)—iT(0)=TF+0P+..., (5 ference with two-phonon processes can be written in the
form

whereA ;(w) andl';(w) are the shift and damping function,
respectively, with

S(Q,w)=Nb e-ZW@; [ny(w)+1]

1
M (0)== 52 [V(123°Gw), (6)
X 2 9q.0,+6IMK1(Q,0)K1 (Q, ~ ©)Gy(w)],

7) (10)
with b the scattering length and

_ 1
n&=> V(1122)(n2+ S|
2

and 62(23) is the (approximately harmonjctwo-phonon

Green function K1(Q,w)=F1(Q)—H;(Q,w), (11
GO 0) = (Nt Nt 1) 2102+ @3) Q)= —iQ e\ (12)
23, @)= 2T (a)2+w2)2—(w+is)2 ! 1 2w, M’
N 2(wy— w3) 1
Hnny) e © Hi(Quw)= 3 V(129F(QF5(QGHw). (13
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The Debye-Waller factoe 2@ leads to a decrease of the 8
scattering intensity with increasing temperature and/or in-
creasing scattering vect@ but is independent of frequency. 6'
As in Eq. (6) the summation in Eq(10) runs over the —
whole Brillouin zone, and the conservation of quasimomen- :E‘ [
tum is guaranteed by the factébyqﬁe. The frequency de- a4
>

pendent expression [m- -] is weighted by the occupation
number f;+ 1) and contains the one-phonon te@®j(w),
Eq. (4). Im[G;(w)] is the resonance curve of one anhar-
monic phononK,(Q,w)K} (Q,— w) contains the one- and
two-phonon interference in the anharmonic case and reduces
to the usual one-phonon expression in the harmonic case.
The frequency dependence of the anharmonic term
H,(Q,») modifies the line shape and intensity as compared
to that given by the harmonic terfy (Q). This modificaton
can be different in different Brillouin zones because the term
H, depends on two factoi® while F; depends on only one
factor of Q. This leads to different line shapes in different
Brillouin zones and for this reason has been called symmetry
breaking behavior. It was observed in the high-temperature
phase of bcc metals. Neglecting the teHn leads back to .
anharmonically damped and shifted phonons without inter- 0 ol
ference with two-phonon states, and additionally neglecting (112]  [110]  [100] (111]
of the phonon self-energy in Edq4) for the one-phonon
Green functionG4(w) leads to the expression for purely
harmonic inelastic scattering.

N

FIG. 2. Quasiharmonic phonon dispersion for bcc TiTat
=1300 K and bcc Zr aT=1180 K calculated with a Born-Mayer-
potential(lines) and experimental datdrefs. 1,2 (dots.

. RESULTS B. Damping function T';(w) and linewidth T";(w,)

The only contribution to the damping function comes
from I1{¥)(w), Eq. (6). The imaginary part 0f3°(23) is a
The longitudinal and transverse force constants for bcc Zsum of § functions, and we have replaced them by Gaussian
are calculated with the two parametevg=100 eV and functions with the same width of 0.5 THz for all phonons.
ro=0.6 A from the Born-Mayer potentigfl) using the ex-  This replacement is not only numerically convenient but also
perimentally determined lattice constant 3.46 A. Figure 2  has the physical content of giving an averaged lifetime to the
shows the resulting theoretical quasiharmonic phonon diseontributing phonons and of simulating resolution effects.
persion curves. There is only a narrow margin to the choicdhus, the width of the Gaussian functions has been chosen of
of the parameters: A change 8§ leeds to an overall scaling the order of the experimental resolutibn.
of the frequencies, and only in a small region arougd The two-phonon Green functiofB) can be written in
=0.6 A are all frequencies real. terms of one-phonon Green functions. In a self-consistent
Interactions up to fifth-nearest neighbors have to be takeanharmonic theoryof higher ordey one would have to use
into account to stabilize the low-frequency branches. This istnharmonic one-phonon Green functions rather than the
a well-known fact in the lattice dynamics of materials with (quasjharmonic one-phonon Green functions, only the latter
the rather open bcc structure. Although the potential is veryeading to the form of Eq(8). However, there are different
simple and has only two parameters it is able to give a googbairs of phonons with different widths contributing at a given
description of the phonon dispersion. In the case of bcc Tfrequency, and this leads to a sort of average over the differ-
we have obtained very similar results, and in contrast to thent widths.
case of other fcc metafSthere is no obvious need for angu-  The summations in Eq$6) and(7) have been carried out
lar forces. In other cases such as La and Crdheectrons  with a cubic mesh of 1300 wave vectors distributed over the
seem to stabilize the low-frequency phondrsso that a  whole Brillouin zone. Convergence of the results was tested
simple central potential is not able to describe the harmonity examing different numbers of wave vectors.
and anharmonic properties. Another numerical test of our results was employing the
In our calculations we have started from the bcc structurdinear tetrahedron method with 631 tetrahedra in the irreduc-
with real quasiharmonic phonon frequencies, and we havéle wedge of the Brillouin zone and a mesh of 175 frequen-
determined anharmonic effects within this structural phase ofies. The result of this test was, that for a mean phonon
the crystal. In the harmonic approximation the atoms expelinewidth of 0.5 THz chosen in our calculations, the summa-
rience the low potential barriers in the directions towards thdion over the simple cubic mesh is sufficient.
other phase structures. The resulting large amplitudes lead to The calculated damping functiod; ;(w) for the longi-
strong anharmonic effects for modes with displacements itudinal branch along thigl11] direction in bcc Zr alf=1180
these directions. K are shown in Fig. 3. Analytic properties make the damping

A. Dispersion
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FIG. 5. LinewidthI";(v,) for the transverse branch[110] in
bce Ti at T=1300 K (full symbolg in comparison with the experi-

0 6 120 y [TéHz] 120 6 12 ment(empty symbols (Ref. 1.

In all cases the theoretical values for the damping at the
phonon frequencies agree very well with the experiment, al-
though at least two approximations have been made: First,
the influence of the frequency dependence of the shift func-

function equal to zero a=0. The strongest damping occurs tion A(w) on the line shape has been neglected. As our
between%[l_‘]_l] and the zone boundary_ The dampmg func-C&'CU'&tionS show, the modification of the line Shape for low-
tions become as large as the phonon frequencies, so that thedguency phonons is weak enough that the influence on the
low-frequency part of the branch is strongly damped. linewidth can be neglected. Secondly, we have neglected the
For reasons of resolution the frequency dependence of tHaterference effects on the linewidth. This is justified, be-
damping function can not be determined in the neutroncause the influence of interference terms on the line shape
scattering experiment, but for approximately Lorentzian(but noton the intensityis small, as discussed in Sec. IIl E.
damping the linewidth is given by the value of the damping
functionI';(w1) at the quasiharmonic frequeney and can C. The shift function A;(w) and line shift A;(w;)
be compared with experimental results, which were obtained
by fitting a damped harmonic oscillator curve to the experi-
mental line shapé.
A comparison of the theoretical and experimental low-
frequency and strongly damped transverse[T12] branch
in bce Zr atT=1300 K is shown in Fig. 4. Both theory and
experiment show maximum damping @t 5 [112]. In this . . . . .
mode the atoms move in the direction of a structural phaseu:/velh”ﬁarAr;E)(;?c I]‘Srethserslsilgsflirqg“gglc\lljvllgt]iorr?soaet(r:ltetzetﬁt?on
transition: The corresponding displacements of the atoms afRirely . q > i o
symmetrically equivalent to the one of th&[L11] mode and ~ ©'95° section from the quasiharmonic phonon frequencies in-
correspond to the displacement towards the transition to th plves the funct|om1.(w) as EXplamed n _connectlon_wnh_
o phase. g. (9). The total shift of a quasiharmonic phonon line is

The linewidthI"(w,) for the lowest transverse branch T given by A(w,) in the case of Lorentzian behavior of the
as a function of the wave vector along tHeL0] direction resonance. This shift from the decay process, for different
iln bce Ti atT=1300 K is shown in Fig. 5. Maximum damp- symmetry directions is shown in Fig. 7. The total shift func-

i (3 (4) ibution (4
ing is found at the zone boundary, where the atomic distion A™(q)+A™(a) shows that the contributiod™(q)

placements correspond to the transition towards a slightly
distorted HCP phask.

FIG. 3. Imaginary part of the phonon self-ener¢gamping
function I';(») of Zr at T=1180 K for longitudinal waves with
wave vectorgq=¢(1,1,1)2r/a.

There are three contributions to the shift function, only
one of which is frequency dependent. We have obtained the
contributionA{¥)(w) which is the real part of1{®(w), Eq.

(6), from the damping functiod’;(w) by Kramers-Kronig
transform. As an example, the result for thg111] phonon

in bcc Zr atT=1180 K is shown in Fig. 6.
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FIG. 4. LinewidthI';(v,) for the transverse branch[112] in FIG. 6. Real part of the self-energghift function A{¥(v) for

bce Zr atT= 1300 K (full symbolg in comparison with the experi- the longitudinal branclh%[lll] in bce Zr, T=1180 K; for the two
ment(empty symbols (Ref. 2. curves see text.
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(B) . FIG. 8. Scattering functionS(q, ») for the longitudinal phonons
1 . T T —T propagating alon@111] in bcc Ti atT=1300 K. All spectra except
] g=0.1 are scaled to equal integrated intensity. AtQy7 the experi-
—_ 0.5 F T L ] mental dataRef. 1) are shown.
T gp L TN
E — —3 | T - where it was scaled to fit the maximum intensity. Near the
(S’, -05¢L ] zone center the phonons are only weakly damped. The small-
S t ness of the damping and of the shift functions leads to sharp
< -1t ] phonon resonances. For higher values of the wave vector the
15 ) . . ’ line becomes increasingly broadened, and rgad 1] we
N [110] T [100] H [111] T find strongly damped behavior. The comparison with the ex-
perimentally observédline shape at?[111] shows good
1(A)+(B) agreement. Towards the zone boundary, the lines become

‘ T N sharper again.

: In the temperature regime around the reference tempera-
ture the damping and shift function are proportional to the
temperature. Thus, the relative changes of the damping and
shift function are equal to the relative temperature changes.
This is in agreement with the experiment.

E. Interference effects

SN T ool H . i1 T The interference effect between one-phonon and mul-
tiphonon processes turns out to be small for the first Bril-
FIG. 7. Line shiftsA®(v;) (A) andA™)(v,) (B) as a function  |ouin zone. For higher values of the scattering ve@othe
of wave vectorg along the main symmetry directions in bcc Zr at interference effects due to the tefihy in Eq. (11) become
T=1180 K. The total line shifts{(v;) +A®(vy) (C). important. The result for the 3 [111] phonon in bee Zr for
T=1180 K at the two symmetrically equivalent points
tends to stabilize most branches, whité®)(q) leads to a 5 and{=1% is shown in Fig. 9. While the effect on the line
general softening of the modes. Both contributions are largshape is small, there is an enormous influence on the scatter-
est for theT[110] and L [111] branches. While the line
shift A{Y(w,) is generally positive it is outweighed by the
generally negativeA {¥(w;). This is unexpected since the
(total) anharmonic shift is believed to be positive and thus to
stabilize the bcc structure at high temperatures. In fact, the
results of Yeet all° give a contribution ofA{Y(w,) to the
N-point phonon frequencies which is larger than ours by an
order of magnitude. The reason for our result must probably
be sought in the inadequateness of our fourth-order anharmo-
nicity, while the third-order part adequately describes the -
interference effect as discussed in Sec. Il E and gives results
for A{®(w;) comparable to those of Yet all!

S(v) / [Q%M)

:
v [THz]

D. Scattering function S(Q, w) . . .
FIG. 9. Reduced neutron-scattering intensityS(q

With the use ofl'(q,w) and A(q,w) we calculate the 4G 1)/(e"2MdQ2) in bec 2zr at T=1180 K for q
one-phonon Green function and thus the scattering function-2(11 1)2r/a with G=0 (¢=2 lower full line) and G
S(Q,w). As an example, the result for th¢ 111] branch in = (2,2,2)2x/a (¢= 4, upper full line from two adjacent Brillouin
bce Ti at T=1300 K is shown in Fig. 8. All spectra are zones. To demonstrate the change in line shape the curve=for
normalized to equal integrated intensity except dp£r0.1 % is scaled to the height of the one f6r 3 (broken ling.
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ing intensity: Apart from the facto®?e?"(Q), which deter-  not just a small correction to the harmonic properties, and
mines the scattering intensity in the harmonic case, we obthey are most important for those phonons whose displace-
serve a strong intensity variation interference causesent patterns correspond to the ones towards the transitions
additional scattering intensity dt=3 by a factor of 2 with  to the low-temperature or the high-pressure phase. The life-
respect tof=2. Zhanget al!* have found a larger anoma- time of these phonons is of the order of one vibrational pe-
lous intensity variation, but their line shape is less close taiod.
experiment. In addition, the so-called symmetry breaking behavior of
In principle, anharmonic contributions to the Debye-the neutron-scattering cross section can be explained. Al-
Waller factor could lead to an abnormal intensity variation,though the bcc structure is the starting point of our calcula-
too. In the case of solid bcc He the anharmonic contributiongions, the higher-order derivatives of the potential give rise to
to the Debye-Waller factoe 2@ amount to less than the supposed breaking of the bcc symmetry: Slightly differ-
2%222 Simulating the interference effect by an effective ent phonon line shapes are observed at equivalent points in
Debye-Waller factd? is in gross disagreement with this re- different Brillouin zones. This behavior is caused by the in-
sult. Interference between one- and two-phonon processéerference between one- and two-phonon processes which
was able to explain the observed intensity anomalies in bctesults in a larger periodicity in reciprocal space as compared
He232* We have therefore refrained from calculating thewith the one-phonon properties. Connected with the interfer-
Debye-Waller factor to higher order in bcc metals because ognce is an abnormal increase of the scattering intensity be-
the expected smallness of the effect. yond the factoiQ?e 2@ (typical of one-phonon scattering
processesfor larger values of the scattering vecQr

IV. CONCLUSIONS
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