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Anharmonic lattice dynamics and neutron-scattering spectra in bcc transition metals
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Anharmonic phonon-phonon coupling strengths have been derived from a simple phenomenological model
potential in order to explain the characteristic phonon linewidths and lineshifts and inelastic neutron spectra of
bcc metals in their high-temperature phase. The strong quasielastic scattering nearq5

2
3 (111) and q

5
1
2 (110) in bcc Zr and bcc Ti is actually caused by anharmonic broadening, with the lifetime of these

low-frequency phonons of the order of a vibrational period. These modes which are connected to the structural
phase transition from the bcc to the hexagonal or the hcp phase show the strongest anharmonic effects. The
interference between one- and two-phonon neutron-scattering processes leads to an unusually strong intensity
variation over adjacent Brillouin zones.@S0163-1829~98!02010-4#
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I. INTRODUCTION

The phonon spectra of the group-IV and -V transiti
metals in their high-temperature bcc phase have been ex
ined by extended inelastic-neutron-scattering experiments1–3

While the bcc phase of the group-V metals is stable, for
group-III metals this phase exists only in the upper third
the temperature region below the melting point, and for
group-IV metals the range of stability narrows to 90 K belo
the melting point. Therefore, neutron-scattering experime
require sophisticated experimental techniques, namely, oin
situ grown crystals.1

Despite of the different electronic structure some char
teristic effects are very similar for all metals in their hig
temperature bcc phase. The experiments show that in
narrow region between12 (110) and2

3 (111) either the modes
are overdamped, or there is quasielastic scattering. Thes
fects are most important for those modes whose atomic
placements are related to the structural phase transition to
low-temperature hcp phase and the high-pressure hexag
v phase, respectively.1 The energy barriers between th
rather open bcc structure and the hcp andv phases are very
low, and thus the modes related to these phase transi
have low frequencies. At high temperatures the atomic
placements become large, and anharmonic effects have
taken into account.

In addition, so-called symmetry breaking phonons in
high-temperature phase of bcc La and bcc Zr have b
observed,3,4 namely, different line shapes at equivalentq
points in different Brillouin zones and anomalous scatter
intensities in adjacent Brillouin zones. In the case of bcc
for example, anharmonic effects cause an additional facto
five in the scattering intensity atq5 4

3 (111) as compared to
the symmetrically equivalentq5 2

3 (111).
Within the framework of perturbation theory, the natu

of interference was first elucidated by Thompson5 who has
derived the expressions for phonon lifetime, phonon f
quency shift, and one- and two-phonon interference effe
in the scattering cross section due to anharmonicity. Lifeti
effects have been observed and calculated in K,6 and later
lifetime and interference effects have been observed in
highly anharmonic bcc He.7 Interference makes a significan
570163-1829/98/57~10!/5758~6!/$15.00
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contribution to the scattering intensity in solid H and pro
ably also in Ne.8 In most cases perturbation theory wi
model anharmonicities has led to a qualitative understand
of the experimental facts. High-temperature bcc met
stimulated anew the interest in understanding theoretic
the vibrational properties of strongly anharmonic crysta
Scheipers and Schirmacher9 have presented a self-consiste
theory for the dynamical one-phonon structure factor.

To obtain a picture of the potential surface, in which t
atoms move, the total energy of the crystal can be plotted
a function of the normal coordinate of a phonon. This w
done in frozen-phononab initio calculations,10 and the re-
sults revealed the low-energy barrier between the differ
structural phases of the crystal. To understand the stabilit
bcc Zr, Yeet al.11 have extracted the anharmonic part of t
interatomic potential fitted to coupling parameters from
ab initio frozen-phonon calculation; from that they have c
culated the anharmonic frequency shift of single phono
Willaime and Massobrio12 have used anN-body potential
with four parameters to calculate thermal expansion, pho
dispersion and damping in bcc-Zr. Saxenaet al.13 derived
the phonon dispersion from temperature-dependent inte
tions from first principles.

A different approach to the behavior of the hig
temperature bcc metals is molecular dynamics. Zhanget al.14

have been able to reproduce the symmetry breaking eff
i.e., the abnormal scattering intensity variation, and have
tained the different line shapes in different Brillouin zone
Gornostyrevet al.15 used ab initio potentials with severa
wells to calculatev via numerical integration of the Lange
vin equation and obtain a central peak and splitting of p
non peaks.

As we will show in the following, the neutron-scatterin
spectra observed in bcc Ti and bcc Zr can be underst
within a simple anharmonic lattice-dynamical model pote
tial. Interference terms between one and two phonon p
cesses will be taken into account which leads to the obse
symmetry breaking behavior. Preliminary accounts of pa
of this work have been published before.16,17

II. THEORETICAL ASPECTS

We have adjusted the harmonic part of a phenomenol
cal Born-Mayer potential
5758 © 1998 The American Physical Society
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V~r !5V0e2r /r 0 ~1!

to the experimental~high-temperature! frequencies. We em
phasize that this potential contains only two parame
which are adjusted only to the quasiharmonic dispersion.
also have redone our calculations using a Morse potenti

V~r !5D~e22a~r 2r 0!22e2a~r 2r 0!! ~2!

from which we have obtained very similar results.
From the harmonic part of the potential we have obtain

the harmonic eigensolutions, i.e., the quasiharmonic pho
frequencies and eigenvectors throughout the entire Brillo
zone. From the anharmonic part of the potential and from
harmonic eigensolutions we have calculated the leading p
of the phonon self-energyP(v).18,19The anharmonic part o
the potential can be written in terms of the harmonic phon
field operators

VA5
\

3!(123
V~123!A~1!A~2!A~3!

1
\

4!(1234
V~1234!A~1!A~2!A~3!A~4!1••• , ~3!

where the index 1 stands for a combination of the wa
vector q1 and branch indexj 1 of the phonon 1, i.e., 1
[(q1 , j 1) and 1̄[(2q1 , j 1).

The anharmonic coupling coefficientsV(123) and
V(1234) are given in terms of the anharmonic derivatives
the interatomic potential and the~quasiharmonic! eigenvec-
tors and frequencies.18,19

The anharmonic one-phonon properties can be obta
from the anharmonic one-phonon Green function, which
for the phonon with quantum number 1, given by

G1~v!5
2v1

v1
22v212v1P1~v!

~4!

with the phonon self-energy

P1~v!5D1~v!2 iG1~v!5P1
~3!1P1

~4!1••• , ~5!

whereD1(v) andG1(v) are the shift and damping function
respectively, with

P1
~3!~v!52

1

2(23
uV~123!u2G23

0 ~v!, ~6!

P1
~4!5(

2
V~11̄22̄!S n21

1

2D , ~7!

and Gv
0 (23) is the ~approximately harmonic! two-phonon

Green function

G23
0 ~v!5~n21n311!

2~v21v3!

~v21v2!22~v1 i«!2

1~n32n2!
2~v22v3!

~v22v3!22~v1 i«!2
, ~8!
rs
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and nl is the Bose occupation factor of the phonon w
quantum numberl.

The contributionsP1
(3) and P1

(4) in Eq. ~5! are shown
diagrammatically in Fig. 1. With the exception of therm
expansion effects we have included in Eq.~5! the effect of
V(123) up to second order and ofV(1234) up to first order.
The ~complex! contribution P1

(3) describes the anharmoni
decay of the phonon with quantum number 1 into tw
phonons with quantum numbers 2 and 3 due to third-or
anharmonicity; this process has a real and an imaginary
and thus contributes both to the shift and damping functi
The ~real! contributionP1

(4) describes the anharmonic cou
pling of the phonon with quantum number 1 to the therm
displacement fluctuations due to fourth-order anharmonic

In comparison with these effects the effect of thermal e
pansion can be neglected: With the experimentally know1

thermal expansion coefficient of 5.14431025 Å/K a change
of 100 K leads to a change of the lattice constant of 0.16
and with the potential~1! the resulting change of the phono
frequencies is below 0.02 THz, while the effect expressed
P1

(3)1P1
(4) is larger by an order of magnitude, see Sec. III

The model potential~1! is fitted to the experimental~an-
harmonically shifted, quasiharmonic! frequencies and thus
contains anharmonic contributions. To correct for these c
tributions one must add a~real! contributionP1

qh to Eq. ~5!
such that the total shift functionD1(v1) vanishes at the
quasiharmonic eigenfrequencyv1,

P18~v!5D18~v!2 iG1~v!5P1
qh1P1~v!. ~9!

In a monatomic crystal the differential cross section
one-phonon inelastic neutron scattering including the in
ference with two-phonon processes can be written in
form6

S~Q,v!5Nb e22W~Q!(
1

@n1~v!11#

3(
G

dQ,q11GIm@K1~Q,v!K1* ~Q,2v!G1~v!#,

~10!

with b the scattering length and

K1~Q,v!5F1~Q!2H1~Q,v!, ~11!

F1~Q!52 iQ•e1A \

2v1M
, ~12!

H1~Q,v!5
1

N(
23

V~123!F2~Q!F3~Q!G23
0 ~v!. ~13!

FIG. 1. ContributionsP1
(3) and P1

(4) in Eq. ~5!. The first dia-
gram leads to frequency-dependent shift and damping. The se
diagram leads to a frequency-independent frequency shift.
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5760 57T. MAY, W. MÜLLER, AND D. STRAUCH
The Debye-Waller factore22W(Q) leads to a decrease of th
scattering intensity with increasing temperature and/or
creasing scattering vectorQ but is independent of frequency

As in Eq. ~6! the summation in Eq.~10! runs over the
whole Brillouin zone, and the conservation of quasimom
tum is guaranteed by the factordQ,q11G . The frequency de-

pendent expression Im@•••# is weighted by the occupatio
number (n111) and contains the one-phonon termG1(v),
Eq. ~4!. Im@G1(v)# is the resonance curve of one anha
monic phonon.K1(Q,v)K1* (Q,2v) contains the one- and
two-phonon interference in the anharmonic case and red
to the usual one-phonon expression in the harmonic cas

The frequency dependence of the anharmonic te
H1(Q,v) modifies the line shape and intensity as compa
to that given by the harmonic termF1(Q). This modificaton
can be different in different Brillouin zones because the te
H1 depends on two factorsQ while F1 depends on only one
factor of Q. This leads to different line shapes in differe
Brillouin zones and for this reason has been called symm
breaking behavior. It was observed in the high-tempera
phase of bcc metals. Neglecting the termH1 leads back to
anharmonically damped and shifted phonons without in
ference with two-phonon states, and additionally neglect
of the phonon self-energy in Eq.~4! for the one-phonon
Green functionG1(v) leads to the expression for pure
harmonic inelastic scattering.

III. RESULTS

A. Dispersion

The longitudinal and transverse force constants for bcc
are calculated with the two parametersV05100 eV and
r 050.6 Å from the Born-Mayer potential~1! using the ex-
perimentally determined lattice constanta53.46 Å. Figure 2
shows the resulting theoretical quasiharmonic phonon
persion curves. There is only a narrow margin to the cho
of the parameters: A change ofV0 leeds to an overall scaling
of the frequencies, and only in a small region aroundr 0
50.6 Å are all frequencies real.

Interactions up to fifth-nearest neighbors have to be ta
into account to stabilize the low-frequency branches. Thi
a well-known fact in the lattice dynamics of materials wi
the rather open bcc structure. Although the potential is v
simple and has only two parameters it is able to give a g
description of the phonon dispersion. In the case of bcc
we have obtained very similar results, and in contrast to
case of other fcc metals20 there is no obvious need for angu
lar forces. In other cases such as La and Cr thed electrons
seem to stabilize the low-frequency phonons,2,21 so that a
simple central potential is not able to describe the harmo
and anharmonic properties.

In our calculations we have started from the bcc struct
with real quasiharmonic phonon frequencies, and we h
determined anharmonic effects within this structural phas
the crystal. In the harmonic approximation the atoms ex
rience the low potential barriers in the directions towards
other phase structures. The resulting large amplitudes lea
strong anharmonic effects for modes with displacement
these directions.
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B. Damping function G1„v… and linewidth G1„v1…

The only contribution to the damping function com
from P1

(3)(v), Eq. ~6!. The imaginary part ofGv
0 (23) is a

sum ofd functions, and we have replaced them by Gauss
functions with the same width of 0.5 THz for all phonon
This replacement is not only numerically convenient but a
has the physical content of giving an averaged lifetime to
contributing phonons and of simulating resolution effec
Thus, the width of the Gaussian functions has been chose
the order of the experimental resolution.1

The two-phonon Green function~8! can be written in
terms of one-phonon Green functions. In a self-consist
anharmonic theory~of higher order! one would have to use
anharmonic one-phonon Green functions rather than
~quasi!harmonic one-phonon Green functions, only the lat
leading to the form of Eq.~8!. However, there are differen
pairs of phonons with different widths contributing at a giv
frequency, and this leads to a sort of average over the dif
ent widths.

The summations in Eqs.~6! and~7! have been carried ou
with a cubic mesh of 1300 wave vectors distributed over
whole Brillouin zone. Convergence of the results was tes
by examing different numbers of wave vectors.

Another numerical test of our results was employing t
linear tetrahedron method with 631 tetrahedra in the irred
ible wedge of the Brillouin zone and a mesh of 175 freque
cies. The result of this test was, that for a mean phon
linewidth of 0.5 THz chosen in our calculations, the summ
tion over the simple cubic mesh is sufficient.

The calculated damping functionsGq, j (v) for the longi-
tudinal branch along the@111# direction in bcc Zr atT51180
K are shown in Fig. 3. Analytic properties make the damp

FIG. 2. Quasiharmonic phonon dispersion for bcc Ti atT
51300 K and bcc Zr atT51180 K calculated with a Born-Mayer
potential~lines! and experimental data~Refs. 1,2! ~dots!.
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57 5761ANHARMONIC LATTICE DYNAMICS AND NEUTRON- . . .
function equal to zero atq50. The strongest damping occu
between2

3@111# and the zone boundary. The damping fun
tions become as large as the phonon frequencies, so tha
low-frequency part of the branch is strongly damped.

For reasons of resolution the frequency dependence o
damping function can not be determined in the neutr
scattering experiment, but for approximately Lorentzi
damping the linewidth is given by the value of the dampi
functionG1(v1) at the quasiharmonic frequencyv1 and can
be compared with experimental results, which were obtai
by fitting a damped harmonic oscillator curve to the expe
mental line shape.1

A comparison of the theoretical and experimental lo
frequency and strongly damped transverse T1 @112# branch
in bcc Zr atT51300 K is shown in Fig. 4. Both theory an
experiment show maximum damping atq5 2

3 @112#. In this
mode the atoms move in the direction of a structural ph
transition: The corresponding displacements of the atoms
symmetrically equivalent to the one of the L2

3@111# mode and
correspond to the displacement towards the transition to
v phase.

The linewidthG1(v1) for the lowest transverse branch
1 as a function of the wave vector along the@110# direction
in bcc Ti atT51300 K is shown in Fig. 5. Maximum damp
ing is found at the zone boundary, where the atomic d
placements correspond to the transition towards a slig
distorted HCP phase.1

FIG. 3. Imaginary part of the phonon self-energy~damping
function! G1(n) of Zr at T51180 K for longitudinal waves with
wave vectorq5j(1,1,1)2p/a.

FIG. 4. LinewidthG1(n1) for the transverse branchT1@112# in
bcc Zr atT51300 K ~full symbols! in comparison with the experi
ment ~empty symbols! ~Ref. 2!.
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In all cases the theoretical values for the damping at
phonon frequencies agree very well with the experiment,
though at least two approximations have been made: F
the influence of the frequency dependence of the shift fu
tion D(v) on the line shape has been neglected. As
calculations show, the modification of the line shape for lo
frequency phonons is weak enough that the influence on
linewidth can be neglected. Secondly, we have neglected
interference effects on the linewidth. This is justified, b
cause the influence of interference terms on the line sh
~but not on the intensity! is small, as discussed in Sec. III E

C. The shift function D1„v… and line shift D1„v1…

There are three contributions to the shift function, on
one of which is frequency dependent. We have obtained
contributionD1

(3)(v) which is the real part ofP1
(3)(v), Eq.

~6!, from the damping functionG1(v) by Kramers-Kronig
transform. As an example, the result for the L2

3@111# phonon
in bcc Zr atT51180 K is shown in Fig. 6.

While D1(v) is the shift function with respect to th
purely harmonic frequencies, the calculation of the neut
cross section from the quasiharmonic phonon frequencies
volves the functionD18(v) as explained in connection with
Eq. ~9!. The total shift of a quasiharmonic phonon line
given by D1(v1) in the case of Lorentzian behavior of th
resonance. This shift from the decay process, for differ
symmetry directions is shown in Fig. 7. The total shift fun
tion D (3)(q)1D (4)(q) shows that the contributionD (4)(q)

FIG. 5. LinewidthG1(n1) for the transverse branchT1@110# in
bcc Ti at T51300 K ~full symbols! in comparison with the experi-
ment ~empty symbols! ~Ref. 1!.

FIG. 6. Real part of the self-energy~shift function! D1
(3)(n) for

the longitudinal branchL 2
3 @111# in bcc Zr,T51180 K; for the two

curves see text.
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5762 57T. MAY, W. MÜLLER, AND D. STRAUCH
tends to stabilize most branches, whileD (3)(q) leads to a
general softening of the modes. Both contributions are la
est for theT@110# and L 2

3 @111# branches. While the line
shift D1

(4)(v1) is generally positive it is outweighed by th
generally negativeD1

(3)(v1). This is unexpected since th
~total! anharmonic shift is believed to be positive and thus
stabilize the bcc structure at high temperatures. In fact,
results of Yeet al.10 give a contribution ofD1

(4)(v1) to the
N-point phonon frequencies which is larger than ours by
order of magnitude. The reason for our result must proba
be sought in the inadequateness of our fourth-order anha
nicity, while the third-order part adequately describes
interference effect as discussed in Sec. III E and gives res
for D1

(3)(v1) comparable to those of Yeet al.11

D. Scattering function S„Q,v…

With the use ofG(q,v) and D(q,v) we calculate the
one-phonon Green function and thus the scattering func
S(Q,v). As an example, the result for theL@111# branch in
bcc Ti at T51300 K is shown in Fig. 8. All spectra ar
normalized to equal integrated intensity except forq50.1

FIG. 7. Line shiftsD (3)(n1) ~A! andD (4)(n1) ~B! as a function
of wave vectorq along the main symmetry directions in bcc Zr
T51180 K. The total line shiftD1

(3)(n1)1D (4)(n1) ~C!.
-
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n
ly
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e
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where it was scaled to fit the maximum intensity. Near t
zone center the phonons are only weakly damped. The sm
ness of the damping and of the shift functions leads to sh
phonon resonances. For higher values of the wave vecto
line becomes increasingly broadened, and near2

3@111# we
find strongly damped behavior. The comparison with the
perimentally observed1 line shape at2

3 @111# shows good
agreement. Towards the zone boundary, the lines bec
sharper again.

In the temperature regime around the reference temp
ture the damping and shift function are proportional to t
temperature. Thus, the relative changes of the damping
shift function are equal to the relative temperature chang
This is in agreement with the experiment.

E. Interference effects

The interference effect between one-phonon and m
tiphonon processes turns out to be small for the first B
louin zone. For higher values of the scattering vectorQ the
interference effects due to the termH1 in Eq. ~11! become
important. The result for theL 2

3 @111# phonon in bcc Zr for
T51180 K at the two symmetrically equivalent pointsz5
2
3 and z5 4

3 is shown in Fig. 9. While the effect on the lin
shape is small, there is an enormous influence on the sca

FIG. 8. Scattering functionsS(q,n) for the longitudinal phonons
propagating along@111# in bcc Ti atT51300 K. All spectra except
q50.1 are scaled to equal integrated intensity. At q50.7 the experi-
mental data~Ref. 1! are shown.

FIG. 9. Reduced neutron-scattering intensityS(q
1G,n)/(e22W(Q)Q2) in bcc Zr at T51180 K for q
5

2
3 (1,1,1)2p/a with G50 (z5

2
3, lower full line! and G

5(2,2,2)2p/a (z5
4
3, upper full line! from two adjacent Brillouin

zones. To demonstrate the change in line shape the curve forz5
2
3 is scaled to the height of the one forz5

4
3 ~broken line!.
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57 5763ANHARMONIC LATTICE DYNAMICS AND NEUTRON- . . .
ing intensity: Apart from the factorQ2e22W(Q…, which deter-
mines the scattering intensity in the harmonic case, we
serve a strong intensity variation interference cau
additional scattering intensity atz5 4

3 by a factor of 2 with
respect toz5 2

3. Zhanget al.14 have found a larger anoma
lous intensity variation, but their line shape is less close
experiment.4

In principle, anharmonic contributions to the Deby
Waller factor could lead to an abnormal intensity variatio
too. In the case of solid bcc He the anharmonic contributio
to the Debye-Waller factore22W(Q… amount to less than
2%.22,23 Simulating the interference effect by an effectiv
Debye-Waller factor24 is in gross disagreement with this re
sult. Interference between one- and two-phonon proce
was able to explain the observed intensity anomalies in
He.23,24 We have therefore refrained from calculating th
Debye-Waller factor to higher order in bcc metals because
the expected smallness of the effect.

IV. CONCLUSIONS

The unusual lattice-dynamical and neutron-scatter
properties of bcc Zr and bcc Ti can be explained with
simple, central, anharmonic model potential. Its derivativ
yield both quasiharmonic and anharmonic force consta
and thus the quasiharmonic phonon frequencies and an
monic self-energies. The anharmonic effects such as
broadening, line shift, and interference are very strong a
0
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not just a small correction to the harmonic properties, a
they are most important for those phonons whose displa
ment patterns correspond to the ones towards the transit
to the low-temperature or the high-pressure phase. The
time of these phonons is of the order of one vibrational p
riod.

In addition, the so-called symmetry breaking behavior
the neutron-scattering cross section can be explained.
though the bcc structure is the starting point of our calcu
tions, the higher-order derivatives of the potential give rise
the supposed breaking of the bcc symmetry: Slightly diffe
ent phonon line shapes are observed at equivalent poin
different Brillouin zones. This behavior is caused by the
terference between one- and two-phonon processes w
results in a larger periodicity in reciprocal space as compa
with the one-phonon properties. Connected with the interf
ence is an abnormal increase of the scattering intensity
yond the factorQ2e22W(Q… ~typical of one-phonon scattering
processes! for larger values of the scattering vectorQ.
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