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Vortex motion in charged and neutral superfluids: A hydrodynamic approach
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We derive a Galilean invariant expression for the electric field induced by a vortex moving through a
charged superfluid atT50, which holds for any superconductor, from the dirty to the superclean limit. The
contribution of different areas around the vortex to the average electric field and to the charge distribution is
analyzed. The results are extended to a neutral system, where the chemical potential takes over the role of the
electrostatic potential in the charged situation. Different contributions to the vortex mass in charged and neutral
superfluids are brought together for comparison and discussion.@S0163-1829~98!03301-3#
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I. INTRODUCTION

Dynamical properties of vortices in type-II supercondu
ors have recently attracted a lot of attention.1 The real-time
dynamics of the vortex lines determines the dissipation
the Hall effect in current driven superconductors, with int
esting findings in the high-temperature superconduct
such as the peculiar sign change in the Hall effect close
the transition to the normal state.2 The imaginary-time dy-
namics of the flux lines determines the low-temperature th
modynamic properties of the vortex system,3 such as the spe
cific heat,4 as well as the low-temperature quantum creep
a driven system.5,6 The vortex motion is associated with th
generation of an electric field, giving rise to dissipation if t
electric field is oriented parallel to the driving current dens
j ~vortices moving transverse toj ), or producing a finite Hall
voltage in the case where the vortex moves with the su
fluid. Although the problem has been studied since the e
times of vortex dynamics in superconductors7 and has been
properly discussed in the textbooks,8 little attention has been
paid to the general case where the vortex moves under
action of both dissipative and Hall forces and it is the m
purpose of the present paper to fill this gap. In particular,
will be concerned with the question of which velocity~the
vortex velocity measured with respect to the laborat
frame or with respect to the superflow! shows up in the ex-
pression for the electric field and which area around the v
tex line predominantly contributes to its average value.
order to reply on these questions we will study the vor
dynamics within a hydrodynamic description, which pr
duces simple and transparent results on the interplay betw
570163-1829/98/57~1!/575~7!/$15.00
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vortex motion and the generation of local and average e
tric fields.

A central element in our analysis is played by the vort
equation of motion, which for the case of uniform motio
comprises two terms,9,10 the dissipative and Hall term
2hvL andh8vL3n, both linear in the vortex velocityvL as
measured with respect to the laboratory frame of refere
(n denotes the direction of the vortex line!. An important
point to be discussed in this context is the relative imp
tance of these two contributions. The relevant parameter
dressing this question is the purity of the sample as qua
fied by the dimensionless productv0t r , wherev0;D2/«F
denotes the minigap separating quasiparticle states trapp
the vortex core11 and t r is the relaxation time («F is the
Fermi energy,D denotes the energy gap!. In usual supercon-
ductors the dissipative term is dominant, however, in
superclean limitv0t r.1, where the quasiparticle states a
well defined, the Hall term takes over the leading role~in
terms of the mean free pathl the criterion for the superclea
limit takes the forml .j«F /D, wherej denotes the coher
ence length of the superconductor!. As a result, the vortices
move transverse to the applied current density in the d
case and move with the superfluid in superclean superc
ductors.

The electric field generated by the moving vortex can
split into two terms associated with the longitudinal~scalar!
and transverse~vector! potentialsV andA. The dipolar term
deriving from the scalar potentialV is governed by the vor-
tex velocity in the frame moving with the superfluid. It pro
duces local electric fields both in the vicinity of the vorte
core and at distances of the order of the London penetra
depthl away from the vortex line, however, its large-sca
575 © 1998 The American Physical Society
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576 57SONIN, GESHKENBEIN, van OTTERLO, AND BLATTER
average vanishes. The local electric fields around the vo
core are quite large in the dirty limit, of order (vL /c)Hc2

whereHc2
denotes the upper critical field, but vanish in t

superclean limit. The electric field deriving from the tran
verse potentialA is associated with the moving flux of th
vortex line (B5“3A) and hence involves the velocityvL

measured in the laboratory frame. In the end it is this te
that determines the average electric field.

Recently, the electric fields and charges associated w
stationary vortex have attracted a great deal of atten
within the context of the sign change in the Hall coefficie
~the Hall anomaly!12,13 and with respect to a possible dire
observation of the electric field associated with the vor
charge.14 Here, we will only be concerned with the corre
sponding effects associated with the uniform motion of
vortex.

A further point often discussed within the context of vo
tex dynamics is the vortex mass, contributing the iner
term2m] tvL to the vortex equation of motion. Various con
tributions to the vortex mass have been discussed in the
starting from the work of Suhl,15 who, based on the time
dependent Ginzburg-Landau~TDGL! theory, determined the
inertial forces due to the quasiparticle states trapped wi
the vortex core (→mcore) and arising from the energy store
in the electromagnetic fields around the moving vor
(→mem). With mcore;mkF and mem;(F0 /cj)2 the core
mass is by a factor (j/r D)2 larger than the electromagnet
one. Here,kF is the Fermi wave vector andr D is the Debye
screening length,F05hc/2e denotes the flux unit andj is
the coherence length of the superconductor. These re
have later been confirmed by Kuprianov and Likharev16 and
by Duan and Leggett.17

The vortex mass due to the trapped quasiparticles dep
on the purity of the superconductor. In fact, Suhl’s resu15

for the vortex core mass applies to the dirty regime, wh
the vortex core can be described in terms of a normal me
lic cylinder. In the superclean regime the quasipartic
trapped in the core have to be treated more accurately. B
on the work of Kopnin and Kravtsov,9 Kopnin18 derived the
vortex mass in the superclean limit and found a very la
core massmcore;mkF(«F /D)2. Recent work10,19–21discuss-
ing the core mass in terms of the core bound states has
firmed this result and the crossover from the dirty limit to t
superclean limit results has been analyzed in Ref. 22.

A third contribution to the vortex mass is due to the vo
ume difference of the metal in the normal and supercond
ing states, producing a polaron-type mass due to the la
deformation accompaning the motion of the vortex, see w
by Coffey23 and by Duan and Sˇ imánek.24 Rough estimates
place this contribution to the vortex mass in the range of
electromagnetic one. Finally, the mass of vortices in ot
systems such as the neutral superfluid4He and Josephso
junction arrays has been discussed by Baym and Chand25

and by Šimánek and by Eckern and Schmid.26

Despite the appreciable size of the vortex mass in part
lar situations, e.g., the large core mass in the superc
limit, the low-frequency dynamics of the vortex is alwa
dominated either by the dissipative or by the Hall force~note
that the description of the vortex dynamics in terms of
nondispersive transport coefficientsh, h8, and m breaks
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down at higher frequenciesv.v0). A notable exception is
found in the vortex motion in Josephson junction arra
where the electromagnetic mass plays an important r
However, in order to decide upon the irrelevance of the v
tex mass, we still need to know in detail the size of its va
ous contributions, and we will make use of our hydrod
namic analysis to provide insight into the origin and size
various mass terms in the equation of motion. In particu
we will study the electromagnetic mass arising from the el
tric fields around the vortex core and discuss its crossove
the compressibility mass in the limit of an uncharged sup
fluid. Furthermore, we will discuss the core and backflo
masses and comment on their interrelation.

We give a short outline: In Sec. II we discuss the elect
field and the charge arising from a vortex moving through
superfluid atT50 in both the screened (j@r D) and un-
screened (j!r D) regimes. In Sec. III we summarize the sit
ation concerning the vortex mass and derive various con
butions to the mass based on hydrodynamic~London
electrodynamic! considerations.

II. ELECTRIC FIELD AND CHARGE DENSITY
AROUND A MOVING VORTEX

Let us consider a straight vortex line moving in a charg
superfluid~a superconductor!. The superfluid may be treate
as an ideal fluid with its motion described by the Euler eq
tion

m
]vs

]t
1m~vs•¹!vs5eE1

e

c
@vs3B#2¹m1

1

n
FSd~r2rL!.

~1!

Here, vs5(\/2m)@¹f2(2p/F0)A# is the gauge invarian
superfluid velocity,m5]nF is the chemical potential mea
sured in the frame moving with the superfluid velocityvs ,
with F the free-energy andn the electron density. In order to
avoid complications with the choice of massm, we assume a
nearly free-electron model such thatm is the free-electron
mass, whereas 2m is the mass of the Cooper pair with charg
2e. We restrict our analysis to theT50 case, but will retain
the subscripts for the velocityvs in order to emphasize its
superfluid nature.

Without thed-function term on the right-hand side, Eq
~1! describes the motion of a charged ideal liquid subjec
an electromagnetic field in the absence of any further ex
nal forces acting on the liquid. Thed-function term in Eq.~1!
then represents thetotal external forceFS acting on the su-
perfluid through the presence of a vortex line at the posit
rL and includes forces arising from quasiparticle scattering
the vortex core as well as pinning forces. In the flux-flo
regime at weak magnetic fieldsB!Hc2, where there is no
pinning, and neglecting effects of normal currents, the m
general expression for the external force in an axisymme
medium is

FS5hvL2h8@vL3n#. ~2!

The force on the right-hand side arises from scattering
quasiparticles in the vortex core, e.g., impurity scattering,
Ref. 9. Since the impurities are at rest with respect to
crystal, they move with velocity2vL with respect to the



e

a
g

o
ro

y

n
,

n
he
io
e

en

s

y,
he
to
l

n

ss
he

le
th

,
n
th
-

ty

d
son

mi-
ce.

e
ow
ine
er-

me

he

u-
by

on
rge
12

57 577VORTEX MOTION IN CHARGED AND NEUTRAL . . .
vortex, wherevL5] trL denotes the vortex velocity in th
reference frame of the crystal. In reality, the forceFS is
distributed over a finite area around the vortex line, at le
the core area or even a larger one, in which the scatterin
quasiparticles by the vortex field occurs. Still, thed-function
force is a good approximation as long as the dimension
this area is less than other spatial scales involved in the p
lem, such as the London penetration depthl or the intervor-
tex distance.

The external forceFS applied to the vortex is balanced b
the hydrodynamicMagnus force27,28

ens

F0

c
@~vL2v0!3n#5FS . ~3!

The total superfluid velocity field around the vortex line co
sists of the transport velocityv0 of the flow past the vortex
superimposed on the circular velocity fieldvv around the
stationary vortex,

vs~r !5v01vv~r !. ~4!

The velocity v0 determines the transport supercurre
j5ensv0, which is assumed to be spatially uniform near t
vortex line. In fact, due to backflow effects, this assumpt
fails very close to the vortex core, see Sec. III D, howev
since all such perturbations decrease faster thanvv}1/r
away from the vortex they are irrelevant for the pres
analysis based on the Magnus-force relation~3!. At distances
less thanl from the vortex line, the flowvv is given by

vv~r !5
\

2m

n3~r2rL!

ur2rLu2
. ~5!

Note that with the specification ‘‘hydrodynamic’’ Magnu
force we refer to the left-hand side of Eq.~3!, in contrast to
thesuperfluidMagnus force in the superconductivity theor
which usually refers to the contribution proportional to t
vortex velocity only. The second contribution proportional
the transport velocityv0 is the Lorentz force. The externa
force given by Eq.~2! also contains a component}h8 trans-
verse to the vortex velocityvL . In the force balance equatio
for the vortex@combine Eqs.~2! and~3!# one may unite this
force with the bare superfluid Magnus force}ns into one
term, usually called the Hall oreffectiveMagnus force. The
latter then determines all transverse dynamical proce
such as the Hall effect or quantum Hall tunneling of t
vortices.28

For the present analysis, which concentrates on the e
tric field and the vortex mass, we do not need to use
vortex force balance equation, however. What we need
know is the vortex velocityvL resulting from this equation
rendering our analysis quite general. In particular, we are
restricted to any special regime of vortex motion, such as
flux-flow regime for which Eq.~2! holds. Instead, the exter
nal force may include the pinning force as well.

We transform the Euler equation~1! using Eq.~3! and the
following vector identities for the gauge invariant veloci
vs5(\/2m)@¹f2(2p/F0)A#,

~vs•“ !vs5¹
vs

2

2
2†vs3@“3vs#‡, ~6!
st
of

f
b-

-

t

n
r,

t

es

c-
e
to

ot
e

“3vs5
e

m

F0

c
nd~r2rL!2

e

mc
B. ~7!

Then the Euler equation may be written as

m
]vs

]t
5eE2¹S m1

mvs
2

2 D 1
eF0

c
~vL3n!d~r2rL!. ~8!

Outside the core Eq.~8! is just Newton’s second law applie
to the superfluid electrons and is equivalent to the Joseph
relation: indeed, bearing in mind thatE52¹V2] tA/c,
whereV is the electrostatic potential, one obtains~neglecting
the d-function term!

2\
]f

]t
52eV12S m1

mvs
2

2 D . ~9!

The right-hand side of this equation is the total electroche
cal potential measured in the laboratory frame of referen
On the other hand, thed-function term on the right-hand sid
of Eq. ~8! represents the effect of phase slips due to the fl
of singular vortex lines: as a vortex line crosses the l
connecting two close points in the liquid, the phase diff
ence between these two points jumps by 2p.

For a stationary vortex motion we can replace the ti
derivative by] t[2vL•“. Then

]vs

]t
52~vL•“ !vs52¹~vL•vs!1†vL3@“3vs#‡, ~10!

and the Euler equation~8! yields the desired relation giving
the electric field and the chemical potential in terms of t
vortex velocityvL ,

eE2¹S m1
mvv

2

2 D 1m¹@~vL2v0!•vv#1
e

c
@vL3B#50,

~11!

where Eq.~11! is valid in both charged and neutral superfl
ids. Further on, we are interested in the fields produced
the vortex motion and therefore ignore the contributi
mvv

2/2 responsible for the electrostatic fields and the cha
of the vortex at rest~the latter have been analyzed in Refs.
and 14!.

The variation in the chemical potentialdm relates to the
density modulationdn via

dm5
]m

]n
dn5

ms2

n
dn, ~12!

where s is the sound velocity. In superconductors~i.e.,
charged superfluids! dn is connected with the electric field
via Poisson’s equation,

“•E54pedn, ~13!

and one can rewrite Eq.~11! as a differential equation for the
electric field,

e@E2r D
2 ¹~“•E!#1m¹@~vL2v0!•vv#1

e

c
@vL3B#50,

~14!

with the Debye radiusr D given by
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r D
2 5

1

4pe2

]m

]n
5

ms2

4pe2n
. ~15!

A. Debye screening

At distances away from the vortex line exceeding the D
bye radiusr D the condition of quasineutrality holds and w
can neglect variations in the chemical potential, i.e., we
ignore the term}r D

2 in Eq. ~14!. Solving for the electric field
we obtain

E52
m

e
¹@~vL2v0!•vv#2

1

c
@vL3B#, ~16!

a result that is valid outside the core region. The result~16! is
Galilean invariant. In the limit of an ideal fluid~a superclean
superconductor! the vortex moves with the fluid,vL5v0, and
only the second term describing the moving flux surviv
On the other hand, in a dirty superconductor the vortex
locity vL by far exceeds the transport velocityv0 and the first
term, which is singular at smallr , becomes important. As
result, the electric field in the core is quite large in this ca
of the order ofHc2

vL /c, see Ref. 8. This large electric fiel
is needed to push the normal current through the core reg

Let us analyze the two terms in Eq.~16! in more detail:
we may express the electric field in Eq.~16! via scalar and
vector potentials,E52¹V2] tA/c. A convenient choice for
these potentials is to refer to the vector potentialA as that of
the equilibrium magnetic fieldB5“3A around the station-
ary vortex line. Then the second term in Eq.~16! originates
from this vector potential via the vortex motion
] tA52(vL•“)A5vL3B. Second, the gradient term in Eq
~16! corresponds to the scalar potentialV5(m/e)
3(vL2v0)•vv . At distances small compared tol the veloc-
ity vv is given by Eq.~5! and our scalar potentialV is simply
the electrostatic potentialV5(2p•r )/r 2 of a line of dipoles
with dipole moment p5(\/4e)@(vL2v0)3n# per unit
length @here and later on we assume that in Eq.~5! rL50;
note that the line chargeq generates the potentialVq(r )
52qlnr and the line dipolep5qu produces the above dipol
potential including the factor 2#.

In order to obtain the single-vortex contribution to th
average electric field we integrate the expression~16! over
the area around the vortex line. Let us integrate the poten
part 2¹V over the area restricted by the radiusr 0 with
r c,r 0,l intermediate between the core radiusr c and the
transverse screening lengthl. In this case the integral doe
not depend onr 0 and is determined by the line dipole mo
ment p @for the analogous three-dimensional~3D! electro-
static problem, see Ref. 29#,

2E
r ,r 0

d2r ¹V52
m

eEr 5r 0

dw@~vL2v0!•vv#r

522pp52
F0

2c
@~vL2v0!3n#. ~17!

The independence from the choice ofr 0 tells us that the
integral in Eq.~17! draws its weight mostly from the cor
area, whereas the contribution from large distancesr .r c is
not essential. Thus Eq.~17! represents the contribution of th
-

n

.
-

,

n.

ial

core electric fields to the average electric field, even thou
it is evident that inside the core the electric scalar potentia
different from the potentialV5(m/e)(vL2v0)•vv produced
by the line of dipoles: in making use of Gauss’ theorem it
sufficient to know that the scalar potential is continuous
erywhere inside the core region.

However, the scalar potential differs from the dipole p
tential not only at small distances on the order ofr c , but also
at large distances on the order ofl, where the velocity field
vv of the vortex decreases exponentially. At distances fr
the vortex line much larger than the London penetrat
depthl all the fields, includingV, vanish, thus if the radius
r 0 in Eq. ~17! exceedsl the integral also vanishes. We thu
conclude that the scalar potential part of the electric fi
induced by the vortex motiondoes notcontribute to theav-
erage electric fieldat all: the large electric field inside th
core is compensated by the scalar field atr;l, which,
though much smaller, is distributed over the much larg
area;l2.

In summary, we may represent the integral of the elec
field as consisting of three terms:

~18!

The term I is the scalar potential from the core~originating
from small distances!, the term II is due to the scalar poten
tial arising from distances;l, and the term III is due to the
vector potential part at large distances. Rearranging term
the above manner, one then concludes that the average
tric field generated by a moving vortex is not originatin
from the core: the core contribution I yields only one-half
the overall average field~which is compensated to zero fu
ther away from the core! in the dirty limit and is not impor-
tant at all in the superclean limit. In the end, only the p
due to the vector potential@the contribution III in Eq.~18!#
survives the averaging process and thus determines the
age electric field. This interpretation is at variance with t
more traditional one as found, e.g., in Ref. 8, where the
erage electric field comes only from the core.

Finally, assuming a vortex array with densitynv5B/F0
the average electric field is still given by the well-know
expression

^E&52
1

c
@vL3^B&#. ~19!

Let us note here that starting from the paper by Bard
and Stephen7 it has been assumed that the dipole elec
field is proportional to the vortex velocityvL measured in the
laboratory frame of reference~see, e.g., Ref. 8!. Our result
~16! shows that instead the velocity measured with respec
the moving superfluid,vL2v0, is the relevant quantity. The
origin of this discrepancy is found in the termmvs

2/2 in the
Euler equation, which is essential for the Galilean invarian
of the theory and which has been ignored in previous wo
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57 579VORTEX MOTION IN CHARGED AND NEUTRAL . . .
Nevertheless, one may neglect the transport velocityv0 in
the dirty limit whenvL@v0, which is the most relevant situ
ation in conventional superconductors. In general, howe
Eq. ~16! should be used, which shows that the dipole fie
vanishes in the superclean limit whenvL5v0.

B. Charge distribution

Next, let us determine the charge distribution arising fro
the moving vortex. In order to find this charge density,
insert Eq.~16! into the Poisson equation~13!. In the absence
of London screening the dipole field proportional to the re
tive velocityvL2v0 is divergence free and therefore does n
produce a charge. However, including London screen
small relativistic corrections arise. In order to find them w
have to take into account that¹2vv5(1/ens)¹

2j v
5(e/mc2) j v , wherej v5ensvv5(c/4p)@“3B# is the equi-
librium circular current density around the vortex. Makin
use of Eqs.~13! and ~16! we arrive at the charge density

rq5
1

4p
“•E52

m

4pe
¹2@~vL2v0!•vv#2

1

4pc
“•@vL3B#

52
1

4pc
~vL2v0!•@“3B#1

1

4pc
vL•@“3B#

5
1

c2
j v•v0 . ~20!

Note that all the charges considered above are local, i.e.
fluxon has no total charge. The same is true for a unifo
array of vortices: the average charge in the unit cell o
vortex array vanishes exactly. However, if the vortex dens
or vortex velocity varies in space, a small average charge
vortex might arise, in analogy with the corresponding el
trostatic effect in an insulator: the spatial variation of t
polarizationP induces a polarization charge2“•P, though
there is no charge density in the uniform state.

C. Uncharged superfluids: chemical potential
and density variations

A second case of interest is the vortex in an unchar
liquid ~or, equivalently, in a ‘‘weakly’’ charged supercon
ductor at distances from the vortex line much smaller th
the Debye radiusr D). In this case we can neglect the elect
and magnetic fields in Eq.~11! and obtain an expression fo
the chemical potentialm. The term}vv

2 is important only for
the density variation around the stationary vortex~which we
ignore here, see Ref. 14 for a discussion of the station
vortex charge!. The additional variations of the chemical p
tential and the density originating from the vortex moti
then are given by

dm5
]m

]n
dn5

ms2

n
dn5m~vL2v0!•vv . ~21!

We observe that in the uncharged liquid the chemical po
tial m takes over the role of the electrostatic potential in
charged liquid. According to Eq.~21!, the vortex motion
produces a density variation}1/r , yielding a logarithmic
contribution to the vortex mass~see Sec. III B!.
r,

-
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g,

he

a
y
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d

n

ry

n-
e

III. VORTEX MASS

The variation of the electric field and the chemical pote
tial around the moving vortex is associated with an ad
tional kinetic energymv(vL2v0)2/2 in the frame moving
with the fluid. In order to find an expression for the vorte
massmv we have to estimate this energy. Such a progr
was carried out before in a number of works using the TD
theory;15,17 however, such an approach suffers from the
stricted regime of applicability of the TDGL approach. Luc
ily, the contributions to the vortex mass originating fro
outside the vortex core can be calculated without invok
the TDGL theory, as we may use simple London electro
namics that is free from the restrictions imposed on the
plication of the TDGL theory.

A. Electromagnetic mass in a superconductor

In usual superconductors the core radiusr c'j exceeds
the Debye radiusr D ~as usual,j denotes the coherenc
length!. In this case, the contribution to the electromagne
vortex mass from the area outside the core is mainly du
the electric dipole field,

mem

~vL2v0!2

2
5E

r .r c

d2r
E2

8p

5
1

8pS m

e D 2E
r .r c

d2r @¹~vL2v0!•vv#2

5S F0
2

c2j2D ~vL2v0!2

2
, ~22!

where we have made use of Eq.~16!. This result agrees with
the mass as calculated by Suhl15 and by Duan and Leggett.17

Note that additional corrections tomem of the order of (j/l)2

arise from the magnetic field term in Eq.~16! as well as from
cutting off the dipole field at the distancel.

B. Compressibility mass in a neutral superfluid

In a neutral superfluid the contribution to the vortex ma
from outside the core area is due to the variation in the p
ticle density,

mc

~vL2v0!2

2
5E

r .r c

d2r
]m

]n

dn2

2

5
m2

2

]n

]mEr .r c

d2r @~vL2v0!•vv#2

5
mn

4ps2S \

2mD 2

ln
R

r c

~vL2v0!2

2
, ~23!

where we have made use of Eq.~21!. Thus the compressibil-
ity mass is given as the ratio between the static vortex ene
and the square of sound velocity~see Refs. 17 and 30 an
references therein!. As the static vortex energy, the vorte
mass involves a logarithmic divergence, which has to be
at some hydrodynamic scaleR, e.g., the intervortex distance
Note that the compressibility massmc in a Fermi superfluid
differs essentially from the one in the weakly interacti
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Bose superfluid. In the former case the compressibi
]m/]n5ms2/n is large with a sound velocity of the order o
the Fermi velocity,s5vF /A3. Thus, apart from the logarith
mic factor~which may be large, indeed!, the compressibility
mass is of the same order as the mass,;mkF;mn21/3 ob-
tained by Suhl from TDGL theory.15 However, within the
Gross-Pitaevskii theory31 for the weakly interacting Bose ga
the chemical potential ism5Vint n5\2/2mj2, where Vint
quantifies the interaction andj is the coherence length
which is much larger than the interparticle distancen21/3 and
even becomes infinite in the ideal Bose gas. Thus, the c
pressibility and, correspondingly, the sound veloc
s5A(n/m)]m/]n;\/mj are small and as a consequenc
the compressibility mass is quite large, of the order
;mnj2. This result agrees with the expression obtained
Baym and Chandler.25

For a better understanding of the crossover between
charged and uncharged superfluids it is useful to consid
‘‘weakly’’ charged superfluid with a Debye radiusr D essen-
tially exceeding the core radiusr c . Then the total mass from
outside the core can roughly be estimated as the sum o
compressibility mass~from distancesr ,r D) and the electric
field mass originating from large distancesr .r D . The De-
bye radiusr D then appears as the upper cutoff in the co
pressibility mass and the lower cutoff in the electric ma
and the final result reads

mmix'
F0

2

c2 S 1

r D
2

ln
r D

r c
1

1

r D
2 D . ~24!

C. Core mass

The above mechanisms responsible for the vortex m
outside the core can be extrapolated onto the core itself
suming that the divergent growth of the electric fields or
chemical potential is cut off in the core. This procedu
yields a core contribution to the electric mass that is of
same order as that from the London region, Eq.~22!,
whereas the core contribution to the compressibility ma
Eq. ~23!, merely adds a numerical factor to the argument
logarithm and thus is not important if the logarithm itself
large.

More importantly, the core region generates a mass wh
is due to the quasiparticles localized within the core,
determination of which requires a microscopic analys
Such an analysis was first carried out by Kopnin,18 who
solved the kinetic equation for those quasiparticles trappe
the core, and is at present vividly discussed.10,19,20 In the
superclean limit the core massmcore;mnj2 is large, as if all
particles inside the core move with the vortex velocityvL ,
thus contributing with their inertia tomcore. On the other
hand, in the dirty limit the core mass is quite small, of t
order of the Suhl massmcore;mkF as discussed in Refs. 2
and 22.

D. Backflow mass

Within this context it is interesting to discuss one furth
contribution to the vortex mass, which admits a simp
minded estimation within the hydrodynamic~London elec-
y
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trodynamic! approach. This contribution was first discuss
by Baym and Chandler for the4He superfluid25 and is due to
the backflow induced by the moving vortex core: as the
perfluid moves with respect to the vortex, the current, eit
completely or partly, flows around the vortex core since
superfluid density is suppressed in the core. For the simp
situation of a hard-core model~with no current penetrating
through the core of radiusr c) a backflow arises that is give
by the dipole velocity field25

vbf~r !52r c
2¹F ~vL2v0!•r

r 2 G . ~25!

The kinetic energy of the backflow then contributes to t
vortex mass with a term

mbf n
~vL2v0!2

2
5

mnrc
4

2 E
r .r c

d2rU¹F ~vL2v0!•r

r 2 GU2

5pr c
2mn

~vL2v0!2

2
. ~26!

With r c;j we obtain a backflow massmbf ;pmnj2. Com-
paring this mass to the compressibility mass Eq.~23! for the
weakly interacting Bose gas we find thatmbf is smaller by a
large logarithm factor. However, for the weak-coupling BC
superconductor the backflow mass for aninpenetrablecore
exceeds the core mass as obtained by Suhl by the large f
j2kF

2;eF
2/D2 and matches up with the core mass due to

trapped quasiparticles as obtained in the superclean lim
then seems that the assumption of an impenetrable co
applicable to the superclean limit, whereas in a dirty mate
the current will flow through the core, thus producing a r
duced backflow field. Indeed, within the Bardeen-Steph
model7 one assumes that the total current density flows
mogeneously through the sample with no backflow aris
around the core region. It then seems that the backflow m
around the core can be related to the vortex core mass du
the trapped quasiparticles through a core transparency
depends on the relaxation time of the quasiparticles.

IV. CONCLUSIONS

Summarizing, using a London electrodynam
hydrodynamic approach we have derived expressions for
electric field/chemical potential and the charge/dens
modulation produced by a moving vortex. The results
general and refer to any superconductor, dirty, clean, or
perclean. We have obtained a singular dipolar contribution
the electric field that is linear in therelative velocity vL2v0
of the vortex line with respect to the superfluid velocityv0
away from the vortex core. In contrast to previous analys
which neglected the underlying superflowv0 ~see Ref. 8 and
references therein!, our expression for the dipole electri
field shows that this field vanishes in the superclean li
whenvL5v0. Using the results for the electric field/chemic
potential we have determined the associated vortex mass
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charged and neutral superfluids and have compared ou
sults to other contributions arising from the quasipartic
trapped within the vortex core and from the backflow arou
the core region. We find that the most important contribut
in the charged superfluid originates from the core ma
whereas it is the logarithmically divergent compressibil
mass that provides the most relevant term in a neutral su
fluid.
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