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Vortex motion in charged and neutral superfluids: A hydrodynamic approach
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We derive a Galilean invariant expression for the electric field induced by a vortex moving through a
charged superfluid ak=0, which holds for any superconductor, from the dirty to the superclean limit. The
contribution of different areas around the vortex to the average electric field and to the charge distribution is
analyzed. The results are extended to a neutral system, where the chemical potential takes over the role of the
electrostatic potential in the charged situation. Different contributions to the vortex mass in charged and neutral
superfluids are brought together for comparison and discuds$61.63-1828)03301-3

[. INTRODUCTION vortex motion and the generation of local and average elec-
tric fields.

Dynamical properties of vortices in type-ll superconduct- A central element in our analysis is played by the vortex
ors have recently attracted a lot of attentiofihe real-time  equation of motion, which for the case of uniform motion
dynamics of the vortex lines determines the dissipation andomprises two term%° the dissipative and Hall terms
the Hall effect in current driven superconductors, with inter-— v, and »'v_Xn, both linear in the vortex velocity_ as
esting findings in the high-temperature superconductorgneasured with respect to the laboratory frame of reference
such as the peculiar sign change in the Hall effect close tén denotes the direction of the vortex lineAn important
the transition to the normal stateThe imaginary-time dy- Point to be discussed in this context is the relative impor-
namics of the flux lines determines the low-temperature thertance of these two contributions. The relevant parameter ad-
modynamic properties of the vortex syst@sych as the spe- cjressmg th|s_quest_|on is the purity of the sample as quanti-
cific heat* as well as the low-temperature quantum creep irfi€d by the dimensionless produep, wh_erewO~A2/sF _
a driven systerfi® The vortex motion is associated with the denotes the minigap separating quasiparticle states trapped in

generation of an electric field, giving rise to dissipation if the'::he vortex coréldand Tr i‘:’] the relaxation timelﬂ(F is the
electric field is oriented parallel to the driving current density ermi energyA denotes the energy gapn usual supercon-

j (vortices moving transverse }9, or producing a finite Hall gﬁczorfleg]ne"gﬁipatgi t\(/avrhne]rles tr?gmlun;;ri]t'a?ticzzvl\;e\;?a&e? atrhee
voltage in the case where the vortex moves with the super- P . 07r == q P i .
. . . well defined, the Hall term takes over the leading r@le
fluid. Although the problem has been studied since the earl¥erms of the mean free pattthe criterion for the superclean

times of vortex dynamics in superconducfoasd has been

v di din th bodkiitl ion has b limit takes the forml>é£e- /A, where¢ denotes the coher-
properly discussed in the textbookstle attention has been oo length of the supercondugtofs a result, the vortices

paid to the general case where the vortex moves under the, e transverse to the applied current density in the dirty
action of both dissipative and Hall forces and it is the main.5se and move with the superfluid in superclean supercon-
purpose of the present paper to fill this gap. In particular, wey,ctors.

will be concerned with the question of which velocithe The electric field generated by the moving vortex can be
vortex velocity measured with respect to the laboratorysplit into two terms associated with the longitudirtstalay
frame or with respect to the superflpshows up in the ex- and transversévectop potentialsV andA. The dipolar term
pression for the electric field and which area around the vorderiving from the scalar potentisl is governed by the vor-
tex line predominantly contributes to its average value. Intex velocity in the frame moving with the superfluid. It pro-
order to reply on these questions we will study the vortexduces local electric fields both in the vicinity of the vortex
dynamics within a hydrodynamic description, which pro- core and at distances of the order of the London penetration
duces simple and transparent results on the interplay betweelepthA away from the vortex line, however, its large-scale
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average vanishes. The local electric fields around the vortedown at higher frequencies> wg). A notable exception is
core are quite large in the dirty limit, of ordev(/c)H,, found in the vortex motion in Josephson junction arrays,
where the electromagnetic mass plays an important role.

| limit. The electric field deriving f the t However, in order to decide upon the irrelevance of the vor-
superciean limit. The electric Tield deriving from the rans-yo, maq5 we still need to know in detail the size of its vari-

verse potentialA is associated with the moving flux of the ous contributions, and we will make use of our hydrody-

vortex line B=V xA) and hence involves the velocity.  namic analysis to provide insight into the origin and size of

measured in the laboratory frame. In the end it is this termyarious mass terms in the equation of motion. In particular,

that determines the average electric field. we will study the electromagnetic mass arising from the elec-
Recently, the electric fields and charges associated with fjc fields around the vortex core and discuss its crossover to

stationary vortex have attracted a great deal of attentiofhe compressibility mass in the limit of an uncharged super-

within the context of the sign change in the Hall coefficientfluid. Furthermore, we will discuss the core and backflow

(the Hall anomaly*?>*3and with respect to a possible direct masses and comment on their interrelation.

observation of the electric field associated with the vortex We give a short outline: In Sec. Il we discuss the electric

charge'* Here, we will only be concerned with the corre- field and the charge arising from a vortex moving through a

sponding effects associated with the uniform motion of thesuperfluid atT=0 in both the screenedé$rp) and un-

vortex. screened{<rp) regimes. In Sec. Il we summarize the situ-
A further point often discussed within the context of vor- ation concerning the vortex mass and derive various contri-

tex dynamics is the vortex mass, contributing the inertialbutions to the mass based on hydrodynaniiondon

term — wa,v, to the vortex equation of motion. Various con- €lectrodynamigconsiderations.

tributions to the vortex mass have been discussed in the past,

starting from the work of Suhf who, based on the time- Il. ELECTRIC FIELD AND CHARGE DENSITY

dependent Ginzburg-LanddliDGL) theory, determined the AROUND A MOVING VORTEX

inertial forces due to the quasiparticle states trapped within . : . I
q P PP Let us consider a straight vortex line moving in a charged

the vortex core and arising from the energy stored N .
in the eIectrom{;gr:g'cei)c fields argund the movi%)é Vortexsuperflwd(a superconductdr The superfluid may be treated

(= ten). With gk and pe~(Po/cé)? the core as an ideal fluid with its motion described by the Euler equa-
mass is by a factorg(rp)? larger than the electromagnetic tion

one. Herekg is the Fermi wave vector and, is the Debye oV e 1

screening lengthd,=hc/2e denotes the flux unit and is M— +m(Vg V)Ve=€E+~[VeX B]— Vi + = Fs 8(r—r,).

the coherence length of the superconductor. These results at ¢ n

have later been confirmed by Kuprianov and Likhafeand @)

by Duan and Leggett. Here, vg=(2/2m)[V¢— (2m/Po)A] is the gauge invariant
The vortex mass due to the trapped quasiparticles dependgperfluid velocity,u= d,F is the chemical potential mea-
on the purity of the superconductor. In fact, Suhl's réSult syred in the frame moving with the superfiuid velocity,
for the vortex core mass applies to the dirty regime, whergyith F the free-energy and the electron density. In order to
the vortex core can be described in terms of a normal metaly,oig complications with the choice of mass we assume a
lic cylinder. In the superclean regime the quasiparticleqqeany free-electron model such that is the free-electron
trapped in the core h_ave to be treated mor_elglccu_rately. Baseghss, whereasrtis the mass of the Cooper pair with charge
on the work of Kopnin and KravtsovKopnin'® derived the 2 e restrict our analysis to tiE=0 case, but will retain

vortex mass in the superclgan limit and fogggla very largghe subscrips for the velocityvs in order to emphasize its
core masucoe~ Mke(ep/A)?. Recent work® discuss- superfluid nature.

ing the core mass in terms of the core bound states has con- \yjithout the s-function term on the right-hand side, Eq.
firmed this result and the crossover from the dirty limit to the 1) gescribes the motion of a charged ideal liquid sub,ject to
superclean limit results has been analyzed in Ref. 22. an electromagnetic field in the absence of any further exter-
A thlrd contribution to the. vortex mass is due to the vol- 1 forces acting on the liquid. Thiéfunction term in Eq(1)
ume difference of the metal in the normal and superconducty, o, represents thetal external forceFs acting on the su-
ing states, producing a polaron-type mass due to the latticge fyid through the presence of a vortex line at the position

geformatiosn acdcobmpaning th%vmqtionkgj the vohrtex,.see Work “and includes forces arising from quasiparticle scattering in
y Coffey** and by Duan and iianek™" Rough estimates the vortex core as well as pinning forces. In the flux-flow

place this contribution to the vortex mass in the range of th?egime at weak magnetic fiel&<H,,, where there is no
. . . . c2
electromagnetic one. Finally, the mass of vortices in Othebinning, and neglecting effects of normal currents, the most

systems such as the neutral superfifide and Josephson general expression for the external force in an axisymmetric
junction arrays has been discussed by Baym and Chandler

and by $manek and by Eckern and Schnfil. medium s

Despit_e the appreciable size of the vortex mass in particu- Fs = v, — 7'[v_xn]. )
lar situations, e.g., the large core mass in the superclean
limit, the low-frequency dynamics of the vortex is always The force on the right-hand side arises from scattering of
dominated either by the dissipative or by the Hall fofuete  quasiparticles in the vortex core, e.g., impurity scattering, see
that the description of the vortex dynamics in terms of theRef. 9. Since the impurities are at rest with respect to the
nondispersive transport coefficients 7', and u breaks crystal, they move with velocity-v_ with respect to the

WhereHc2 denotes the upper critical field, but vanish in the
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vortex, wherev, =4,r denotes the vortex velocity in the e &, e
reference frame of the crystal. In reality, the forEe is VXvg= —-—nd(r—r)— —B. @
distributed over a finite area around the vortex line, at least
the core area or even a larger one, in which the scattering ofhen the Euler equation may be written as
guasiparticles by the vortex field occurs. Still, tBidunction
force is a good approximation as long as the dimension of ma—VS:eE—V
this area is less than other spatial scales involved in the prob- at
lem, such as the London penetration dejptbr the intervor-
tex distance.

The external forcd&s applied to the vortex is balanced by
the hydrodynamiaviagnus forcé’:28

mo 2
+
KT

ed,
+ T(v,_xn)é(r—r,_). (8)

Outside the core Ed8) is just Newton’s second law applied

to the superfluid electrons and is equivalent to the Josephson
relation: indeed, bearing in mind thd&=-VV-g,Alc,
whereV is the electrostatic potential, one obtaingeglecting

the &-function term)

¢

P
en—[(vi— Vo) Xn]=Fs. 3 )
—ﬁE=ZeV+2

mo?2
The total superfluid velocity field around the vortex line con- pt 2 | ©)
sists of the transport velocity, of the flow past the vortex,
superimposed on the circular velocity field around the

stationary vortex,

The right-hand side of this equation is the total electrochemi-

cal potential measured in the laboratory frame of reference.
On the other hand, thé-function term on the right-hand side

Vo(r)=Vo+V,(r). (4) of Eq. (8) represents the effect of phase slips due to the flow

) ) of singular vortex lines: as a vortex line crosses the line

The velocity vo determines the transport supercurrentconnecting two close points in the liquid, the phase differ-

j=engv,, which is assumed to be spatially uniform near thegpce between these two points jumps by. 2
vortex line. In fact, due to backflow effects, this assumption g, 4 stationary vortex motion we can replace the time

fa_uls very close to the vortex core, see Sec. Il D, howeverggrivative byd,=—v,-V. Then
since all such perturbations decrease faster thanl/r
away from the vortex they are irrelevant for the present Vs
analysis based on the Magnus-force relati®n At distances St = (VL V)Ve= = V(v vg) + [V X[V XL (10
less tham\ from the vortex line, the flow, is given by
and the Euler equatio(8) yields the desired relation giving

A nX(r—ry) the electric field and the chemical potential in terms of the
VoM =5 W (5)  vortex velocityv, ,
L
2
Note that with the specification “hydrodynamic” Magnus _ mu,, _ € _
force we refer to the left-hand side of E@), in contrast to eE=V]| ut 2 FMYLVL=Vo) -V ]+ c[vL>< B]=0,

the superfluidMagnus force in the superconductivity theory, 1y
which usually refers to the contribution proportional to the
vortex velocity only. The second contribution proportional to
the transport velocity, is the Lorentz force. The external
force given by Eq(2) also contains a componenty’ trans-
verse to the vortex velocity, . In the force balance equation
for the vortex[combine Eqs(2) and(3)] one may unite this
force with the bare superfluid Magnus foreeng into one
term, usually called the Hall ceffectiveMagnus force. The
latter then determines all transverse dynamical process
such as the Hall effect or quantum Hall tunneling of the I me2
vortices®® Su=—dn=—6n, (12)
For the present analysis, which concentrates on the elec-
tric field and the vortex mass, we do not need to use thgyhere s is the sound velocity. In superconductofise.,

vortex force balance equation, however. What we need t@harged superfluidssn is connected with the electric field
know is the vortex velocity, resulting from this equation, via Poisson’s equation,

rendering our analysis quite general. In particular, we are not
restricted to any special regime of vortex motion, such as the V.-E=4medn, (13
flux-flow regime for which Eq(2) holds. Instead, the exter-
nal force may include the pinning force as well.

We transform the Euler equatidf) using Eq.(3) and the
following vector identities for the gauge invariant velocity

where Eq.(11) is valid in both charged and neutral superflu-
ids. Further on, we are interested in the fields produced by
the vortex motion and therefore ignore the contribution
mv§/2 responsible for the electrostatic fields and the charge
of the vortex at restthe latter have been analyzed in Refs. 12
and 14.

The variation in the chemical potentidl relates to the
edsensity modulationsn via

and one can rewrite E@l1) as a differential equation for the
electric field,

e
Vs= (RI12M)[V ¢ — (27 Do)A], e[E—r3V(V-E)]+mV[(v_—Vp)-V, ]+ c[vxB]=0,
v2 (14)
(Vs V)Ve=V 5 = [V X[V X Vo], ©  \ith the Debye radiusy given by
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A. Debye screening

At distances away from the vortex line exceeding the De
bye radiusrp the condition of quasineutrality holds and we

can neglect variations in the chemical potential, i.e., we can

ignore the termer3 in Eq. (14). Solving for the electric field
we obtain

m 1
E —EV[(VL—VO)-VU]—E[VLXB], (16)
a result that is valid outside the core region. The redflt is
Galilean invariant. In the limit of an ideal fluigh superclean
superconductgrthe vortex moves with the fluidj = vy, and

only the second term describing the moving flux survives

On the other hand, in a dirty superconductor the vortex vearea~ A\

locity v, by far exceeds the transport velocity and the first
term, which is singular at smail, becomes important. As a
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core electric fields to the average electric field, even though
it is evident that inside the core the electric scalar potential is
different from the potential/=(m/e) (v, — Vo) -v, produced

by the line of dipoles: in making use of Gauss’ theorem it is
sufficient to know that the scalar potential is continuous ev-
erywhere inside the core region.

However, the scalar potential differs from the dipole po-

tential not only at small distances on the order of but also

at large distances on the order)ofwhere the velocity field

v, of the vortex decreases exponentially. At distances from
the vortex line much larger than the London penetration
depth\ all the fields, includingV, vanish, thus if the radius
ro in EqQ. (17) exceeds\ the integral also vanishes. We thus
conclude that the scalar potential part of the electric field
induced by the vortex motiodoes notcontribute to theav-
erage electric fieldat all: the large electric field inside the
core is compensated by the scalar fieldrat\, which,

though much smaller, is distributed over the much larger

2
In summary, we may represent the integral of the electric
field as consisting of three terms:

result, the electric field in the core is quite large in this case,

of the order oﬂ-|C2vL/c, see Ref. 8. This large electric field

is needed to push the normal current through the core region.

Let us analyze the two terms in E(L6) in more detail:
we may express the electric field in Ed.6) via scalar and
vector potentialsE= —VV—g;A/c. A convenient choice for
these potentials is to refer to the vector poterias that of
the equilibrium magnetic fiel=V X A around the station-
ary vortex line. Then the second term in Ef6) originates
from this vector potential via the vortex motion:
dA=— (v -V)A=v_ XB. Second, the gradient term in Eq.
(16) corresponds to the scalar potentidd=(m/e)

X (VL —Vp) -V, . At distances small compared Xothe veloc-
ity v, is given by Eq(5) and our scalar potenti®l is simply
the electrostatic potential=(2p-r)/r? of a line of dipoles
with dipole moment p=(%/4e)[(v.—Vp)Xn] per unit
length[here and later on we assume that in Eg).r =0;
note that the line chargg generates the potentiady(r)
=2gInr and the line dipolgp=qu produces the above dipole
potential including the factor |2

In order to obtain the single-vortex contribution to the
average electric field we integrate the expressitf) over
the area around the vortex line. Let us integrate the potenti
part —VV over the area restricted by the radiug with
re<ro<\ intermediate between the core radiysand the
transverse screening lengkh In this case the integral does
not depend oy and is determined by the line dipole mo-
ment p [for the analogous three-dimension@D) electro-
static problem, see Ref. 29

r

m
—f d’r VV=— —f de[ (v — Vo) -V, Ir
r<r0 e =TIp

@,
2mp=— E[(VL_VO)X n]. (17)
The independence from the choice f tells us that the
integral in Eq.(17) draws its weight mostly from the core

area, whereas the contribution from large distarrces, is
not essential. Thus EL7) represents the contribution of the

°
C

/ d*rE = — qz)—[(vL — Vvp) X n]
r<oo
1

b, o,
+ %[(VL — Vo) X n] — T[VL X n}.

II 111

(18
The term | is the scalar potential from the cdqoeiginating
from small distancesthe term Il is due to the scalar poten-
tial arising from distances-\, and the term Il is due to the
vector potential part at large distances. Rearranging terms in
the above manner, one then concludes that the average elec-
tric field generated by a moving vortex is not originating
from the core: the core contribution | yields only one-half of
the overall average fiel@hich is compensated to zero fur-
ther away from the coyan the dirty limit and is not impor-
tant at all in the superclean limit. In the end, only the part
due to the vector potentifthe contribution 11l in Eq.(18)]
survives the averaging process and thus determines the aver-
age electric field. This interpretation is at variance with the

dpore traditional one as found, e.g., in Ref. 8, where the av-

erage electric field comes only from the core.

Finally, assuming a vortex array with density=B/®,
the average electric field is still given by the well-known
expression

1
<E>=_E[VLX<B>]- (19

Let us note here that starting from the paper by Bardeen
and Stephehit has been assumed that the dipole electric
field is proportional to the vortex velocityy measured in the
laboratory frame of referencesee, e.g., Ref.)8 Our result
(16) shows that instead the velocity measured with respect to
the moving superfluidy, — vy, is the relevant quantity. The
origin of this discrepancy is found in the tenmu?2/2 in the
Euler equation, which is essential for the Galilean invariance
of the theory and which has been ignored in previous work.
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Nevertheless, one may neglect the transport velogjtyn . VORTEX MASS

the dirty limit whenu >v,, which is the most relevant situ- g yariation of the electric field and the chemical poten-
ation in conventional superconductors. In general, NOWeVeki,; 516,nq the moving vortex is associated with an addi-
Eqg. (16) should be used, which shows that the dipole fieldional Kinetic energyu, (V. —Vo)2/2 in the frame moving

vanishes in the superclean limit whep=v,. with the fluid. In order to find an expression for the vortex
massu, we have to estimate this energy. Such a program
B. Charge distribution was carried out before in a number of works using the TDGL
Next, let us determine the charge distribution arising fromtheory;>*” however, such an approach suffers from the re-
the moving vortex. In order to find this charge density, westricted regime of applicability of the TDGL approach. Luck-
insert Eq.(16) into the Poisson equatiaiid). In the absence ily, the contributions to the vortex mass originating from
of London screening the dipole field proportional to the rela-outside the vortex core can be calculated without invoking
tive velocityv, — Vv, is divergence free and therefore does notthe TDGL theory, as we may use simple London electrody-
produce a charge. However, including London screening@mics that is free from the restrictions imposed on the ap-
small relativistic corrections arise. In order to find them wePlication of the TDGL theory.
have to take into account thatv?v,=(1/en)V?j,
=(e/mdc?) j,, wherej,=enyv,=(c/47)[V XB] is the equi- A. Electromagnetic mass in a superconductor
librium circular current density around the vortex. Making

i . In usual superconductors the core radiys-¢ exceeds
use of Eqs(13) and(16) we arrive at the charge density

the Debye radiugp (as usual,é denotes the coherence

1 m 1 length. In this case, the contribution to the electromagnetic

pq=7—V -E=——V (v, —Vp)V,]— 7—=V[v XB] vortex mass from the area outside the core is mainly due to
4m 4me 4mc the electric dipole field,

1

(VL—Vo)? _ J o2 E?
r>re

Mem 2 I’g
1 2
- 1/m
= =]y Vo- (20 - = f 2 vy 12
2 grle) ., CTV(LV0)v,]
Note that all the charges considered above are local, i.e., the D2\ (v —v.)2
fluxon has no total charge. The same is true for a uniform = -9 M, (22)
array of vortices: the average charge in the unit cell of a c2g? 2

vortex array vanishes exactly. However, if the vortex density
or vortex velocity varies in space, a small average charge p
vortex might arise, in analogy with the corresponding elec - ) 9
trostatic effect in an insulator: the spatial variation of theN(_)te :chat at;l]dltlonal CQ”?.C?C?”S Mem of th6e orderltl)f ¢/ ]Z‘)

polarizationP induces a polarization chargeV - P, though  arise from the magnetic field term in EQ.6) as well as from

there is no charge density in the uniform state. cutting off the dipole field at the distance

here we have made use of E@6). This result agrees with
the mass as calculated by Stfrand by Duan and Leggett.

C. Uncharged superfluids: chemical potential B. Compressibility mass in a neutral superfluid

and density variations In a neutral superfluid the contribution to the vortex mass

A second case of interest is the vortex in an unchargegom outsi_de the core area is due to the variation in the par-
liquid (or, equivalently, in a “weakly” charged supercon- tcle density,
ductor at distances from the vortex line much smaller than
the Debye radiusp). In this case we can neglect the electric
and magnetic fields in Eq11) and obtain an expression for
the chemical potentigk. The termocvﬁ is important only for

rﬂn 2

(VL_V0)2 2 &,u 5n2
Mo 5 =
r>r

2
the density variation around the stationary vortekich we _m omn d2r[ (v, —vp)-v,]?
ignore here, see Ref. 14 for a discussion of the stationary 2 dptr>rg
vortex chargg The additional variations of the chemical po- ) )
tential and the density originating from the vortex motion __mn (i) n R (v~ Vo) 29
then are given by 47s2\2m re 2 '
u ms where we have made use of Eg1). Thus the compressibil-
Op= - dN=——=N=m(V.~Vo)-V, . (21) ity mass is given as the ratio between the static vortex energy

and the square of sound velocitgee Refs. 17 and 30 and
We observe that in the uncharged liquid the chemical potenreferences therein As the static vortex energy, the vortex
tial u takes over the role of the electrostatic potential in themass involves a logarithmic divergence, which has to be cut
charged liquid. According to Eq(21), the vortex motion at some hydrodynamic scaf e.g., the intervortex distance.
produces a density variatiom1/r, yielding a logarithmic  Note that the compressibility mags. in a Fermi superfluid
contribution to the vortex magsee Sec. Il B. differs essentially from the one in the weakly interacting
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Bose superfluid. In the former case the compressibilitytrodynami¢ approach. This contribution was first discussed
duldn=ms/n is large with a sound velocity of the order of by Baym and Chandler for théHe superfluid® and is due to

the Fermi velocitys=uv/+/3. Thus, apart from the logarith- the backflow induced by the moving vortex core: as the su-
mic factor (which may be large, indeg¢dthe compressibility —perfluid moves with respect to the vortex, the current, either
mass is of the same order as the masmk-~mn Y3 ob-  completely or partly, flows around the vortex core since the
tained by Suhl from TDGL theor}? However, within the superfluid density is suppressed in the core. For the simplest
Gross-Pitaevskii theofy for the weakly interacting Bose gas situation of a hard-core modéhith no current penetrating
the chemical potential isu=V;n=%2%/2mé?, whereV,,  through the core of radiug) a backflow arises that is given
quantifies the interaction and is the coherence length, by the dipole velocity fielé?
which is much larger than the interparticle distancé’® and

even becomes infinite in the ideal Bose gas. Thus, the com-

pressibility and, correspondingly, the sound velocity o | (VL= Vo)1
_ Vp(r)=—rcV (25
s=+(n/m)dulon~#/mé are small and as a consequence, bf c

the compressibility mass is quite large, of the order of

~mné?. This result agrees with the expression obtained b L .

Baym and Chandle?® yI'hetz kinetic en_?;]gy tof the backflow then contributes to the
For a better understanding of the crossover between thgPrtex mass with a term

charged and uncharged superfluids it is useful to consider a

“weakly” charged superfluid with a Debye radiug essen- 4

, . : (VL—Vg)? mnr, (VL—Vp) T
tially exceeding the core radiug. Then the total mass from LN L "o _ Cf d2rl v °
outside the core can roughly be estimated as the sum of the 2 2 Jrsr, r2
compressibility masé&rom distances <rp) and the electric )

field mass originating from large distancesrp. The De- (VL — Vo)

2
) . = 2
bye radiusrp then appears as the upper cutoff in the com- mremn 2 (26)

pressibility mass and the lower cutoff in the electric mass
and the final result reads With r .~ £ we obtain a backflow masg,; ~ mmné2. Com-
) paring this mass to the compressibility mass &) for the
_ 501 rp 1 weakly interacting Bose gas we find thaj; is smaller by a
Homix™ o2 large logarithm factor. However, for the weak-coupling BCS
superconductor the backflow mass for iapenetrablecore
exceeds the core mass as obtained by Suhl by the large factor
£%kZ~ €2/A? and matches up with the core mass due to the
trapped quasiparticles as obtained in the superclean limit. It
The above mechanisms responsible for the vortex masfien seems that the assumption of an impenetrable core is
outside the core can be extrapolated onto the core itself, agpplicable to the superclean limit, whereas in a dirty material
suming that the divergent growth of the electric fields or thethe current will flow through the core, thus producing a re-
chemical potential is cut off in the core. This procedureduced backflow field. Indeed, within the Bardeen-Stephen
yields a core contribution to the electric mass that is of themodel one assumes that the total current density flows ho-
same order as that from the London region, ER2), mogeneously through the sample with no backflow arising
whereas the core contribution to the compressibility massaround the core region. It then seems that the backflow mass
Eq. (23), merely adds a numerical factor to the argument ofaround the core can be related to the vortex core mass due to
logarithm and thus is not important if the logarithm itself is the trapped quasiparticles through a core transparency that
large. depends on the relaxation time of the quasiparticles.
More importantly, the core region generates a mass which
is due to the quasiparticles localized within the core, the
determination of which requires a microscopic analysis. IV. CONCLUSIONS
Such an analysis was first carried out by Koptinyho

solved the kinetic equation for those quasiparticles trapped in Summarizing, —using a London  electrodynamic/
the core, and is at present vividly discus$e®? In the hydrodynamic approach we have derived expressions for the

superclean limit the core magg.«~mné? is large, as if all electric .field/chemical potentia! and the charge/density
particles inside the core move with the vortex veloaity, modulation produced by a moving vortex..The results are
thus contributing with their inertia tQi.,e. On the other general and refer to any superc_onductor, dirty, clegn, or su-
hand, in the dirty limit the core mass is quite small, of theperclean. We have obtained a singular dipolar contribution to

order of the Suhl masa ..~ mk: as discussed in Refs. 20 the electric field that is linear in theelative velocity v, — vg
and 22. of the vortex line with respect to the superfluid velocity

away from the vortex core. In contrast to previous analyses,
which neglected the underlying superflay (see Ref. 8 and
references therejn our expression for the dipole electric
Within this context it is interesting to discuss one furtherfield shows that this field vanishes in the superclean limit
contribution to the vortex mass, which admits a simplewhenv, =v,. Using the results for the electric field/chemical
minded estimation within the hydrodynamitondon elec- potential we have determined the associated vortex masses in

(24

C. Core mass

D. Backflow mass
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