PHYSICAL REVIEW B VOLUME 57, NUMBER 10 1 MARCH 1998-II

Asymmetric gap soliton modes in diatomic lattices with cubic and quartic nonlinearity
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Nonlinear localized excitations in one-dimensional diatomic lattices with cubic and quartic nonlinearity are
considered analytically by a quasidiscreteness approach. The criteria for the occurrence of asymmetric gap
solitons(with vibrating frequency lying in the gap of phonon baphdad small-amplitude, asymmetric intrinsic
localized modeswith the vibrating frequency being above all the phonon baads obtained explicitly based
on the modulational instabilities of corresponding linear lattice plane waves. The expressions of particle
displacement for all these nonlinear localized excitations are also given. The result is applied to standard
two-body potentials of the Toda, Born-Mayer-Coulomb, Lennard-Jones, and Morse type. The comparison with
previous numerical study of the anharmonic gap modes in diatomic lattices for the standard two-body poten-
tials is made and good agreement is foufgD163-182@8)03410-9

[. INTRODUCTION appear above the top of the plane-wave spectrum. The physi-
cal reason for this is that the cubic nonlinearity in the Taylor

The study of the dynamics of nonlinear lattices and re-expansion of these realistic potentials is too strong. One of
lated solitonic excitations has been greatly influenced by théhe effects of the cubic nonlinearity is that increasing the
pioneering works of Fermi, Pasta, and Ulamand of magnitude of the cubic term makes the potentials softer and
Zabusky and Kruskal.Most of the work in this area has hence decreases the localized mode frequency. The localized
focused on models of one-dimensiondlD) monatomic mode is destroyed as it approaches the bounding plane-wave
chains with simple interatomic potentials of polynomils, spectrumt?3°
which can approximate any realistic potential near the equi- Recently, much attention has been paid to the gap solitons
librium separation distance of two atoms. This descriptionjn nonlinear diatomic lattice¥:?”31-*'The concept of the
usually done in a continuum limit, is only valid for a zone- gap solitons was introduced by Chen and Mflls/hen in-
boundary phonon mode, i.e., fqr the wave number of lat- vestigating the nonlinear optical response of superlattices.
tice waves, being near zero ofd,, whered is lattice spac- For a diatomic lattice, the phonon spectrum of the system
ing. In 1972, Tsurdi proposed an analytical method for consists of two branchdacoustic and optical ongsnduced
studying the nonlinear excitations of lattices valid in theby mass or force-constant difference of two kinds of par-
whole Brillouin zone(BZ). Later on this approach was ex- ticles. Due to nonlinearity gap soliton modes may appear as
tended by Remoisserfeand Huandg** Exact analytical so- localized excitations with vibrating frequency being in the
lutions for the nonlinear localized excitations in 1D mon- gap of the linear spectrum. Since the gap solitons occur in
atomic lattices can be obtained only for the Thdand perfect lattices with discrete translational symmetry, a name
Ablowitz and Ladik?® lattices, which are discrete completely “anharmonic gap mode” or “intrinsic gap moddGM)”
integrable systems. was given by Sievers and his collaboratdts**!It is pos-

In recent years, the interest in localized excitations in nonsible that the ILM’s and the IGM’s may be created experi-
linear lattices has been renewed due to the identification of eentally in diatomic lattices. References 43 and 44 reported
new type of anharmonic localized mod8s#-2® These some experimental studies of the gap solitons, resonant
modes, called the intrinsic localized mod#isM’s ),*° or the  kinks, and the ILM’s in a damped and parametrically excited
discrete breatherS are the discrete analog of the envelope1D diatomic pendulum lattices.

(or breather solitons with their spatial extension being only  Since the standard two-body potentials of the Toda, Born-
of a few lattice spacing and the vibrating frequency lyingMayer-Coulomb, Lennard-Jones, and Morse type have a
above the upper cutoff of phonon barfd€xperimentally, ~ strong cubic nonlinearity in their Taylor expansion near
the ILM's have been observed in coupled pendulumequilibrium position, it is therefore necessary to consider the
lattice$® and electrical lattice$® The quantum-mechanical nonlinear excitations in the diatomic lattices with cubic and
aspects of the ILM’s have also been consideéfed® How-  quartic anharmoniticity. In their recent contributions, Kiselev
ever, examination of the 1D lattices with standard Todagt al3*>**investigated the anharmonic localized modes in 1D
Born-Mayer-Coulumb, Lennard-Jones, and Morse two-bodydiatomic lattices with the above-mentioned two-body poten-
interatomic potentials demonstrates that the ILM’s do nottials. By using a rotating-wave approximation combined with
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computer simulation, they showed that an ILM doesexist  us to Tayler expand the potenti®l(r) at the equilibrium
and a nonlinear optical lower cutoff gap mode., IGM) is  position r=0 in a power series of the displacements to
a general feature of these diatomic lattices. Lately, Franchinfourth order’® Thus we obtain an approximat€,-K;-K,
et al® numerically found that for a potential with the cubic potential
and quartic nonlinearity there exists a “criticaK3 (cubic
force constant in the potentjalalue. For smalKs, nonlin- 1 Kor3 1 .,

- g ; =Kgro+ =K re, 2
ear optical and acoustic upper cutoff localized modes occur,

3 4
while for large K5 these modes disappear and a nonlinear . .
optical lower cutoff mode rises. In a recent work, BonartWhere K2(>0), K3 andK,4(>0) are harmonic, cubic, and

et al*® investigated the boundary condition effects in the di_q_uartic force constants, respec_tively. We _assume_tha}t the ba-
atomic lattices with cubic and quartic anharmonicity. Base ic features of the weakly nonlinear localized excitations for

. - : .~ the standard two-body potentials may be obtained by corre-
on a rotating-wave approximation they gave existence crite- i . S
ria for the ILM’s and IGM’s, which are related to the stabil- sponding thek,-K3-K, potentials. Then the Hamiltonigf)

ity properties of linear optical upper and lower cutoff phonontakes the following form:

modes. These studies posed an interesting problem of how to du

provide an analytical approach which can give not only theH=E Emi<d_tl

explicit criteria for the existence of the ILM’s and the IGM’s :

as well as other possible nonlinear excitations for both opti-

cal and acoustic branches but also the approximate analytical —+ —K,(u;,;—u;)*|. (3

expressions for these nonlinear excitations in a unified way. 4

It is this problem that will be addressed here. Since each of the standard two-body potentials mentioned
There are several theoretical methods to study the nonlirabove has only one minimum, we assume that for the

ear localized excitations in diatomic latticesee Ref. 11, and K,-K3-K, potential(2) there is the constraint

references thereinin this paper we use the quasidiscrete-

ness approackQDA) for diatomic lattice$! to investigate K3

the ILM’s and IGM’s as well as kinklike excitations with K2K4<4’ )

small amplitude in 1D diatomic lattices with cubic and quar- - )

tic nonlinear interactions between their nearest-neighbor patiniess there are two minimé.e., double-well potential -

ticles. The paper is organized as follows. In Sec. II, thehence the system may admit some types of nonlinear excita-

model is introduced and an asymptotic expansion based d#ns which will not be discussed here.

the QDA is made for the equations of motion. By using the If we write uy=v, (even particlesanduy.. 1 =w;, (odd

results obtained in Sec. Il, in Sec. Ill we discuss the solutionparticles, n is the index of thenth unit cell with a lattice

of the ILM’s and IGM's in a simple and unified way. Some spacingd=2d,, d, is the equilibrium distance between two

explicit criteria and expressions of particle displacement ofdjacent particles, the system can be split into two sublat-

the ILM’s and the IGM’s are also given in this section. In tices. The equations of motion for, andw, are

Sec. IV we apply our results to the standard two-body poten-

tials from the Toda to the Morse type and make a compari- e

son with existing numerical experiments. Finally, Sec. V dt2

contains a discussion and summary of our results.

1 2
V(r)ZEKZr +

21 1
2 3
+§K2(Ui+1_ui) +§K3(Ui+1_ui)

d2
Un:KZ(Wn+anl_2Un)+K3[(Wn_vn)2

—(Wp-1=0p)?]

Il. MODEL AND ASYMPTOTIC EXPANSION + K4[(Wn_vn)3+ (Wn—l_Un)s]a (5)
A. The model
d2
We consider a 1D diatomic lattices with a nearest- M—wW,=Kx(vn+Uns1—2W,)

neighbor interaction between particles. The restriction to the dt?
nearest-neighbor interaction is for simplicity and the ap- K[ (v W) ?—( —w,)?]
proach can be easily extended to second and higher neigh- 3LiUn™Wn Un+1™Wn
bors. The Hamiltonian of the system is given by + K[ (vn—Wn) 3+ (01— Wp) 3. (6)

2
+V(Uj1—Uy)

The linear dispersion relation of Eq&) and (6) is

H=Z : 1)

1 [dy;
zmi(ﬁ 02 (@) ={1o+ 1= [(15+3,)2— 4l ,d,siP(qd12) V212,

whereu; =u;(t) is the displacement from its equilibrium po- @
sition of the ith particle with mass m=ms, ,  Wherel,=K,/mandJ,=K,/M. The minus(plus) sign cor-
+M& 41 (M>mk is an integer. The potentialV(r) is responds to acoustioptica) mode. At wave numbeg=0
quite general, typically it can be the standard two-body pothe eigenfrequency spectrum has a lower cuteff(0)=0
tentials of the Toda, Born-Mayer-Coulomb, Lennard-Jonesfor the acoustic mode and an upper cutoff
and Morse type(for their detailed expressions, see Sec. IV®+(0)=w3=[2(1,+J,)]"? for the optical mode. At
below). We focus on displacements with smaller amplituded= 7/d there exists a frequency gap between the upper cut-
which can be detected experimentally without introducingoff of the acoustic branche _(m/d)=w;=+2J,, and the
reconstruction or phase transitions in the system. This allowkwer cutoff of the optical branche, (7/a)= J21,. The
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width of the frequency gap is 2I,—+2J, Un(t) = eu'™+ e2u@ + Su@ 4 .. @)

= 2K ,(1/ym—1/yM). In linear theory, the amplitudes of ' ' ’

lattice waves are constants and linear waves cannot propgere € is a smallness and ordering parameter denoting
gate and will be damped whea (the frequency of the the relative amplitude of the excitation anai’)
waves lies in the regionsv,; < w<w, and w> w3. Accord- =u(¢g,,mdy). E,=e(na—\t) and 7=t are two

ingly, these regions are the “forbidden bands” of the linearq, ,jipje-scales variableslow variables \ is a parameter to
waves. This property of the eigenfrequency spectrum resuli§e getermined by a solvability condition. The “fast” vari-
from the discreteness of the systdire., d|§cret¢ tr'ansla- able, ¢, = qnd— w(q)t, representing the phase of the carrier
tional symmetry. However, when the nonlinearity in EGS. \yaye s taken to be completely discrete. Substituting(Ep.

(5 and (6) is considered, the above conclusions are NGnio Egs. (5) and (6) and comparing the power of, we
longer valid. As localized excitations, some nonlinear mOde%btain a hierarchy of equations abomﬁlj) and w)
n n,n

may appear, whose oscillatory frequencies can lie in thes?. —123 ):
forbidden bands of the phonon spectrum. I=hed )
. . 2
B. Asymptotic expansion a—vﬁj)n—|2(W§1j)n+W§1j)r1_1—20$1D,1 :ng)n ©
We use the QDA for diatomic lattices developed in Ref. a2 ’ ’ ’ ’
11 to investigate the effects of nonlinearity and discreteness
of the system. In this treatment one sets with
M =0, (10
(2) — a (1) ey (1) _,,(1))2 (1) (1)y2
Mn,n_Z)‘ é,tafnvn,n_|2dﬁ_§r1wn,n71+|3(wn,n_vn,n) _|3(Wn,nfl_vn,n) ’ (11)
92 5? 92 d d? &2
M =2\ ——0@ | 2 IN— oW+, —d—wW2 _ + ——wD |+ 20w —p Dy (w2 (2)y
n,n &t&fn n,n tor ﬁfﬁ n,n 2 &En nn—1 21 &gﬁ nn—1 3 n,n n,n n,n n,n
J
1 1 2 2 1 1 1)\3 1 1),3
—2l3(Whn 1= oR (w&,zl—va,a—dﬁ—gnwé,al L (Wit — o) 3+ (Wit — v )3,
(12)
and
P . . _ _
i 3a( ol 2uilh) =N, 13
with
N =0, (14
(2) — 9 (1) J (1) (1) (1)y2 (1) (1)y2
Nn,n_Z)\ &to—.gnWn,n+‘JZda_gnUn,nJrl_JS(Un,n_Wn,n) +‘J3(Un,n+l_wn,n) ) (15)
& 9 9 d d? ¢?
N =28 —— w2 — | 2=+ 2 — | W)+ 3, d—— v 1+ 57— o | — 2350 - Wi (0 B —wiZ)
n,n ﬁtﬂfn n,n Nor aéﬁ n,n 2 &gn nn+1 21 r?éﬁ n,n+1 3Wn,n n,n n,n n,n
Jd
+zJ3<U;%g+l—w<n%g>( ng,;ﬂ—w;'f‘zﬁdgv;%zﬂ) IO+ (0= WD),
n

(16)
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which can be solved order by order. In Eq9)—(16), we o _ _ 52 _
have defined;=K;/m and J;=K;/M (i=23,4). The ex- Lot =J3,(NJ +ND) - )+ —+2J, MO, (24
pressions oMY andN{), (j=4,5, ... )need not be written at
down explicitly here.
2
| i i - — 420, | W =300 +0) L DFNGLL (25
C. Amplitude equations for acoustic and optical modes o2 2] %nn™ Y28 n,n T Ynn+1 n.n-

In order to avoid possible divergence for zone-boundary ) ) )
phonon modes, we solve the acoustic and optical mode8Y the same procedure of solving the acoustic mode given
separately. First we consider the low-frequency acousti@Pove, we obtain

mode of the system. For this we rewrite E(®. and(13) in
the form

82
E—FZIZ

Lwilh=3(M{+ ML )+ Noh, (17

2

?+2|2 oih=lawWih+wih ) +MIL, (18

where the operatdr is defined by

2

. 3 d . . .
Luih= ?+2|2 E+2J2 ugn— 232U+ ugh g
+2ul)) (19

with ul)(j=1,2,3...) being a set of arbitrary functions.
Forj=1 itis easy to get

W =Fio(r, &) +[Fu(r.é)e % +ccl, (20
I,(1 —iqd o
Ul(qlr)‘l:FlO(Trfn)_|:¥Fll(T,§n)el¢n+C.C.
' w,—2|2

(21)

with ¢, =qnd—w_(g)t. w_(q) has been given in Eq7)
with a minus sign. The amplitudéor envelopg functions
F.oandF,; are yet to be determineé.;, is a real function
representing the “direct curreiic)” part relative to the fast
variable ¢, andFy; is a complex amplitude of the “alter-
nating current(ag” part. If K;=0, the dc part F;p van-
ishes in this order. For=2 (the second ordgm solvability
condition determines =V, =dw_/dq (i.e., the group ve-
locity of the carrier wavesthus &,= ¢, =€e(nd—Vgt). In
the third order [=3), solvability conditions yields the evo-
lution equations folF 5 andF44:

'aF+1 aaF+[3FaF+|F|2F
I— —a_— —— _ — _
or 1T PP T 11 11(955 10T 7Y 111 P11
=0, (22
0 4 J 5
6_—— ——Fioto_——|F1/*=0. (23
&, 9¢&, 9&,

The detailed expressions of the coefficients in Eg8) and
(23) are given in Appendix A.

Second, we study the high-frequency optical mode exciwavelength one.

tations. In this case we recast E@®). and(13) into the form

v =Gy &) +[Gry( T &) +ccl,  (26)
J.(1 iqd .
Wiia=G1o( 7,€n) — {#Gm 7,6,)€%n +c.c.
' w+—2J2
27

with ¢, =gnd—w,(q)t. The evolution equations for the
amplitudesG;, (dc part of the optical modeand G4, (com-
plex amplitude for ac part of the optical mgdare given by

Gt ra G+ B.Gu—G
i— —a,— —— —
s-cut 5 +&§: Py 11T By 11(95: 10
+v+]G14°G11=0, (29)
J J J 5
o Giot oy —[G14*=0, (29

A
9y IE, Ié,

where £, = e(nd—V,t) with A=V =dw_ /dg. The coef-
ficients in Eqs(28) and(29) are also given in the Appendix
A.

Under the transformation

Floz(llf)g,, Fllz(llf)f,, (30)

Gio=(1le)g,

the nonlinear amplitude equatio(22), (23), (28), and(29)
can be written in the unified form

Gui=(Ue)f ., (31

'f+1 af+ﬂfa +y.|fL]?f.=0
=TT sas—F ——T+ e ——0+ +[T+]"T+=U,
a2 oxo oxg ax;g Y
(32
0 0 Jd
5:_+_+9:+0'¢_+|f:|2:0a (33
oXy oOXy Xy

when returning to the original variables. In Eq82) and
(33), x, =nd— V't and the plugminus sign corresponds to
the optical(acousti¢ mode, respectively.

Finally, we consider the acoustic mode gt 0. Noting
that Eq.(32) for the minus sign is invalid atj=0 for the
description of nonlinear excitations sinch,|q=O
=7y_|q=0=0 anda_|q—o=0°. This breakdown is due to the
fact that atq=0 an acoustic mode excitation is a long-
In this case a discrete long-wave
approximatiof! should be applied. By using the same tech-
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nique used in Ref. 11, for the acoustic modeqat0 we
obtain a long wavelength amplitude equation

au d J 3

—+Pu—u+Qu*-—u+H—u=0, (34)
n X,

ot ox IXn

where u=dA,/dx,, X,=nd—ct with c?=K,d?/[2(M
+m)]. Aq is the leading order approximation of, andw,, .
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Equation(398) is standard nonlinear Schitimger(NLS) equa-
tion. It has a uniform vibrating solution

To=foexpliy |fol?),

wheref is any complex constant, which corresponds to the
linear optical upper cutoff phonon mode with a simply fre-

quency shifty, |fo|? and is a fixed point of the system. Note

Since »_(0)=0, for the long-wavelength acoustic mode hat it is possible to eliminate the time dependence by a

is purely a “direct current.” Equatiori34) without the sec-

point” for the uniform vibrating solution. In fact, the fixed

ond termPJu/dx, is standard modified Korteweg-de Vries noint may also be written as

(MKdV) equation. Thus Eq(34) is a modified MKdV
(MMKdV) equation. Its coefficients are given by

d2 K3 2K2 1/2
-— = , (35)
4 Ky \M+m
3d3 K, [ 2K, \1? 26
Q=16 K\ Mrm) (36
y @l 2k, \YT1 mMm ;
~16\|M+m/ |3 (M+m)2|’ (37)

Ill. ASYMMETRIC GAP SOLITONS, KINKS,
AND INTRINSIC LOCALIZED MODES

When deriving the nonlinear amplitude equatid3®)—

T, =foexdi(y, fat+ )],

wheref in this case is any real constant ang a<277. In
this sense there is a ring of fixed point characterized by the

different values of the phas% It is easy to show that, since

@, <0, wheny, <0 the fixed point is unstable by a long-
wavelength small perturbation. This kind of instability is due
to a sideband modulation of the linear optical upper cutoff
mode. The modulational instability for waves is called the
Benjamin-Feir(BF) instability*’ It is similar to the Eckhaus
instability for patterns in extended dissipative systems out of
equilibrium®® The BF instability in discrete lattices and re-
lated formation of solitonlike localized states were already
discussed by Kivshar and PeyrdfdBy this mechanism
(usually called the Benjamin-Feir resonance mechaifisan

(34) we have not used any kind of decoupling ansatz for thdinear optical upper cutoff excitation will bifurcate, grow ex-
motion of two kinds of particles with different mass. This is Ponentially at first and then saturate due to the nonlinearity
one of the advantages of the QDA. On the other hand, thef the system. At later stage, a nonlinear localized mode —
nonlinear amplitude equations, which are the reduced formeptical upper cutoff soliton is formed. In fact, foy, <O,

of the original equations of motiof6) and (6) for small- e.g.,

amplitude excitations, are valid in the whole BZ

(—mld<q=w/d) except a zero-dispersion point for K% 3

the optical-phonon brancfi. Thus one can obtain the gap KK <Z’ (41
solitons and ILM’s as well as some possible new nonlinear 24

excitations by solving the cutoff modes of the system in
simple and unified way.

(1) Optical upper cutoff modeFor the optical mode
at q=0, we have w,=w;=[2K,(1/m+1/M)]*? -
Vi=0, xi=nd=x,, a,=-Kd¥[2M+m)ws], B, fe=
=—Ksw3d/(2K,), y.=—3K,w3(1+m/M)?/(2K,), &,
=K3d?/(Mm), ando, = 4K,K3d(1+m/M)?/(Mm). Equa-
tions (32) and (33) with the plus sign take the form

aEquation(38) admits the envelopéreathey soliton solution

1/2
ay
~ ) nosech 7o(Xn— Xno)]
Y+

1
Xex[{—i§|a+|7jgt—i¢o ) (42

i~ 1 N where 7, ¢o, andx,, =nyd are constantsy, is an arbitrary
H— _ - 2 — 0
"ot et 2% 3X2f sy fL]5F. =0, (38) integer. Inequality(41) is just the condition of the modula-
" tional instability for the linear optical upper cutoff mode.
o From Eq.(39) we obtain
oy = T F 2
ﬂxng+ 5+|f+| +Cy, (39
S - 43
wheref . =f  exp(—iB.Cst) with C; an integration constant 9+ = e 7otanti 7o(Xn=Xn )1, (

and

where the integration constaft; has chosen as zero as it
corresponds to a constant displacement for all particles. In
leading approximation the lattice configuration takes the
form

KoK, 4/
(40)

o, 2Kumg m\[ K5 3
M

7’+:’)’+_ﬂ+Z: K, v
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gLa.

vn(t)=— —=—notant no(n—ngy)d]
04 Y+
RLL
+2 ,.—*) noSech 7o(n—ng)d]cog Qsst+ o),
Y+
(44
oLa,
Wy (1) = — —=— notant 7o(n—ng)d]
O+ v+
12
m(a,
Y 7) nosect 7o(N—ng)d]cog Qst+ o),
N
(45
with
1 2
Q3= w3+ §|a+|7lo: (46)

o]a|

Wy (1) = ——=— notant 7o(n—ng)d]
S+ v+
102
m(|a.|
el = notant no(n—ng)d]
Y+
X cog Qg t+ ) (50
with
|y |y
Q= wz— = +77(2>- (51)
Y+

Since y, <0, the vibrating frequency of the kink mode de-
noted by the expressiorig9) and (50) is greater than ws.
This is an example of a kink with the vibrating frequency
above all the phonon bands due to the cubic nonlinearity of
the system.

(2) Optical lower cutoff modeFor the optical mode at
g=m/d (zone-boundary optical-phonon mggdeone has
Wy =wWr= \/2K2/m, V;r :0, X;r :Xn , L= K2d2/[2w2(M

i.e., the vibrating frequency of the localized mode is above—m)],  Bi=—Kzw,d/(2K,), vy.=—3K w,/(2K,),
the spectrum of the linear optical mode thus above the aI5+=K§d2/(M m), ando , =4K,Kzd/(Mm). In this case we
phonon bands. Hence Ege4) and (45) represent an ILM  have

accompanied by an asymmetric dc displacement due to the

cubic anharmonicity of the system. We call it the small- ~ 2K, K§ 3

amplitudeasymmetric intrinsic localized mode VTR, 2\ KoK, 4) (52)
From Egs.(44) and (45) we can see that the free param-

eter 5, can be taken as an expansion parameter, i.elf y,>0, i.e.,

70=0(e). By Eq.(46) we haven,=[2(Q3s— w3)/|a.|]¥2

Thus in our approach, the expansion parameteised in Eq. K% 3

(8), is proportional to the square root of frequency difference K2K4>Z’ (53

between the nonlinear localized mode and the linear cutoff

phonon mode.

Wheny, >0, e.g., the inequality41) takes the opposite

sign, the uniform vibrating solution of the NLS equati(@®)

is neutral stable. In this case E88) admits the dark soliton

solution

12
T.= ( |§+|) notant 7o(X,—Xn ) Jexdile. | nat—i o).
(47)

From Eq.(39) we can obtairg, by integration. In this case
we choseC, in such a wa§ that (99, /(?xn)||xn‘=m=0. Then

we haveC,=o, |a,|73/(8,y,). Hence we have

olayl
g+= = notant 7o(Xn— Xno)]- (48)
Srv+

The lattice displacement in this case takes the form

oilal
Un(t) = ——=—7notant no(n—ng)d]
Orv+

12

]|

"f notant 70(n—ng)d]cog Lyt + o),
+

+2

(49

Egs.(32) and(33) for the plus sign have the solution

@, 12 1 -
fo=| =5 mosechno(xy—xn,) lext iz, nét—igo

Y+
(54)
[onys 2
g+=- = notant 770(Xn_xn0)]- (59
S04 v+
The lattice configuration takes the form
ooy
vn(t)=— ——=—notant no(n—no)d]
0+7+
112
no| &+
+(=1) 2( ~_> nosect no(n—ng)d]
Y+
X cog Nyt + ¢g), (56)
[0 nys 2
Wn(t) = — ——=—notanh 7o(n—ng)d] (57)
S+ v+
with
1 2
Oye= @2 547, (58)
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lying in the frequency gap of the phonon spectra between th# is the standard MKdV equation and can be solved by the
acoustic and the optical modes. It is a typical asymmetridnverse scattering transform. For the explicit expressions of
nonlinear gap mode, existing in the diatomic lattices wherthe kink and breather solutions of the MKdV equation we

the condition(53) is satisfied. We note that for this mode the

refer to Ref. 11,

displacement of the heavy particles only has a kinklike Needless to say, in addition to the cutoff modes consid-
asymmetric dc part. But the displacement of the light parered above, our approach developed in Sec. Il can also be
ticles, besides the same type of dc part, has an additionaised to discuss the nonlinear localized excitationsgfgi0

“staggered” vibrational part(i.e., “staggered” envelope
soliton). We call it theasymmetric optical lower cutoff gap
soliton The vibrating frequencyl,s has the parabola rela-

tion with respect to the wave amplitude, denoted by the pa-

rameteryy. The formation of the asymmetric nonlinear gap
mode is also the conclusion of the BF instability for the

corresponding linear optical lower cutoff phonon mode. A

andq# 7r/d (i.e., the intraband modgswhich will be done
elsewhere.

IV. APPLICATION TO REALISTIC TWO-BODY
NEAREST-NEIGHBOR POTENTIALS

In this section, we apply the general results obtained

further discussion for such nonlinear modes in the realisti@bove to the diatomic lattices with the standard two-body

potentials is given in the next section.
(3) Acoustic upper cutoff mod&or the acoustic mode at

g=m/d (zone-boundary acoustic-phonon mpdeone
has o =w;=v2K;/M, V;=0, X;=X,, a =
—K,0%[20,(M—m)]<0, B_=-Kzw,d/(2K,), y_=

—3K,401/(2Ky), 6_=K3d*(Mm), and o_=4K,Kd/
(Mm). Similarly one can obtain the equations lik&B) and

(39 with g,,f.,0..,5.,a, and 7y, changed by
g_,f_,0_,5_,a_andy_. Here
-~ o 2K, K: 3 5
77—77—,375—7—}(—2601 KK, 4/ (59
If y_<0, wheny_<0, i.e.,
K3 3 60
K2K4<Z’ (60)

due to a BF instability of the corresponding linear upper

cutoff acoustic mode amasymmetric acoustic upper cutoff
gap solitonappears, with the vibrating frequency being in

the gap of the phonon spectra between the acoustic and op-
tical modes. Otherwise an acoustic upper cutoff kink vibra-

tional mode occurs. We can readily write down the explicit

expression of the lattice configuration in this case, but it is

omitted here to save space.

(4) Acoustic lower cutoff modd&his is a long-wavelength
mode without any carrier wave, because when0 we have
w_=0 thus¢, =0. The lattice displacement only has a dc
part and its evolution is controlled by the MMKdV equation,
given by Eq.(34). A single-soliton solution of Eq(34) is
given by

24x°H

TPt JVPZ+24x2QHcosh 2k(nd— (c+ 24x2H)t)]’
(61)

wherex is an arbitrary constant. Making the transformation
u=—P/(2Q)+U(¢n,t) with {,=x,+ P?/(4Q), Eq. (34
becomes

d*U
+H—=0.
ity

&U U

+QUPZ- (62)

nearest-neighbor potentials to see whether the anharmonic
gap modes and the ILM’s can appear or not. This can be
easily done by using the existence criteria given by @d)

(for ILM’s), Eq. (53) (for optical lower cutoff gap solitons

and Eq.(60) (for acoustic upper cutoff gap solitong-our
standard interatomic potentials &te

(1) Toda

—br

+ar b’
wherea andb are coefﬁcients, such thab>0.r is the
deviation of the relative interparticle separation from its
zero-temperature equilibrium position.
Born-Mayer-Coulomb

an’
@2
do

V(r)= (63

)

2

V(r)= +poe"Po+dy—po (64)

r+d

where a), is the Madelung constang, is the effective
charge,d, is the zero-temperature equilibrium distance
between adjacent particles, apg is the constant de-
scribing the repulsion between atoms.

3) Lennard-Jones

dO 12 dO 6
V(r)=«a g -2 r+d +1, (65
where « is the constant determining the potential
strength.
(4) Morse
V(r)=P(e @ —1)?, (66)

where P and a are constants determining the strength
and the curvature of the potential, respectively.

For weakly nonlinear excitations we can Taylor expand
these potentials at their equilibrium position<0) to obtain
the force constants. They are defined by

div
dri

1

(-1 (67)

with j=2,3,4 ... . Thus we have the values &f,, K3, Ky,
and K%/(K2K4) which are given in Table I. Notice that
K3<0 for these potentials except that the Toda one with
andb being both negativénote that we require thdt, and
K, are positivg. The parameted for the Born-Mayer-
Coulomb potential in Table | is defined by
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TABLE I. The force constant&,, K3, K, and the value oﬂ(%/(KzK4) for the standard two-body
potentials from the Toda, Born-Mayer-Coulor(i8-M-C), Lennard-Joneél_-J), and Morse type.

Potential K, Ks Ky K3/(K,Ky)
Toda ab _ap? ab? 2
2 6
B-M-C am*(do—2po) _ o~ 6r) aucF(da=24p5) g
e 203t 603
L] @ 7562 6678 &
do d3 dg
Morse ra’ -Pa’ Pa* 3
3
(d3—6p3)? KBr-like parameters is used witin/M =39/80. Comparing
= 3 = (68)  the panel(a) of Fig. 1 in Ref. 34 with our result shown in
(do—2p0)(dy—24pp) Fig. 1 here, we see that the lattice configuration obtained
Generally, we havel>1. For examplé®3*%! for K|,  analytically by our QDA is basically the same as the corre-

dy=3.14 A, py=0.26 A, one hasl=1.1171; for KBr, SpPonding result given by the rotating wave approximation
do=3.29 A, p,=0.334 A, we havel=1.1328; for Lil, Plus computer simulation, used by Klselet_/al?‘f Further-
do=3.0 A, p,=0.374 A, one has=1.1487. By these results MOre, the par_abola relation be_tween the vibrating frequency
as well as the criteria given by Egell), (53), and(60), we  and the amplitude of the nonlinear optical lower cutoff gap
make the following conclusions: mode,_glven by Eq(53), is in good accordance with the
(1) The condition(53) is satisfied by all these standard Numerical resultgsee Fig. 3 of Ref. 34
two-body potentials. Thus the asymmetric optical lower cut- Shown in Fig. 2 is the amplitudémaximum absolute
off gap soliton mode given in expressiofs®) and(57) does ~ Valug ratio (|Aqd/|Aqd) of the dc part [Aq]) to ac part
exist in the diatomic lattices with the Toda, Born-Mayer- (|Aad) of the light particle displacement for the optical lower
Coulomb, Lennard-Jones and Morse type interatomic intercutoff gap soliton mode. We see that the amplitude ratio is
actions. This result agrees with the conclusion by numericaihe function of the mass ratiw/M. The larger ism/M, the
study presented by Kiseleat al333* larger is the amphtude ratio. The amplitude ratio grows very
Shown in Fig. 1 is the dédenoted by the solid circles fast as the mass ratio approaches 1.
and ac(denoted by the open circleamplitude patterns of ~ (2) Notice that the existence criterion of an IL{the op-
light particles for the optical lower cutoff gap soliton mode. tical upper cutoff solitopis the inequality(41), i.e., the nec-
The amplitude pattern for the heavy particles, which is notssary condition for the occurrence of the ILM is
shown here, only has dc part similar to that of the dc part for K2 3
the light particles. The Born-Mayer-Coulomb potential for 7 Ii <Z'
2\4

From Table | we see that in genefé@/(KzK4)>1. Thus for
all the standard two-body potentials from Toda to Morse

(69

0.20 T T

0.10 E 8

0.00

Displacement

Amplitude ratio
'S

-0.10

-0.20 : :
0.0 10.0 20.0 30.0 0

Particle number

m/M
FIG. 1. The dc and ac amplitude patterns of light particles in a

diatomic lattice for the optical lower cutoff gap soliton mode. The FIG. 2. The amplitudgnaximum absolute valye ratio
solid (open circles denote d¢ac part of the lattice displacement. (|Ayd/|A.d) of the dc part [Ayd) to ac part [A,d) of the light
The Born-Mayer-Coulomb potential for KBr-like parameters is particle displacement for the optical lower cutoff gap soliton mode
used withm/M =39/80. as a function of the mass ratio/M.
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type, an ILM is impossible This conclusion coincides also port also the criterior{14) in Ref. 45 for the appearance of
with the numerical results of Refs. 33 and 34. nonlinear localized modes. In addition, our analytical ap-

(3) An acoustic upper cutoff gap soliton is not possible forproach based on QDA may provide many more insights such
all these standard two-body potentials, because its existen@ for t_he occurrence of nor_1|inear Iocqliz_ed _excitations in the
condition (60) [the same as Eq41)] cannot be satisfied. ac_oust|c branch, although it has the limitation of small am-
However, acoustic and optical upper cutoff vibrating kinksPlitude.
are possible excitations for these diatomic lattice systems.

(4) Nonlinear acoustic lower cutoff excitations are long-
wavelength modes and are governed by the MMKdV equa- Based on the QDA for diatomic lattices we heaamalyti-
tion (34). SinceQ andH are positive andP is negativeldue  cally studied the nonlinear localized excitations with small
to K3<0) for all the two-body potentialéexcept the Toda amplitude in the diatomic lattices with cubic and quartic non-
one witha andb being both negative the soliton amplitude linearity. The results are quite general and allow us directly
[see Eq.(61)] in the presence of cubic nonlinearit) tO obtain many different types of nonlinear excitations in a
#0) is smaller than the soliton amplitude in the absence ofNified way. Starting from the nonlinear amplitude equations
the cubic nonlinearity ;=0). given in Egs.(32) and (33), the existence crl_tena for th_e

(5) For generaK,-K ;-K, potentials, by the criteria given optical upper cutoff sthons an.d as_ymmetrlc gap soliton
by Egs.(41), (53), and (60), we conclude that in weakly modes have be.en epr|C|tIy. provided In Eqé.l)’ (53, and
nonlinear approximation the “critical” value dK%/(KzKA,) (60). The anal_ytlcal expressions of particle dlsp!acements for
for the transition from an optical upper cutoff Kink to an all these nonlinear localized mo_des are also given. The the-
optical upper cutoff solitoflLM ) and for the occurrence of oretical res_ults have bet_an applied to the standard two-body
an optical(acoustia lower (uppei cutoff gap mode is 3/4, nearest-neighbor potentials from the Toda to the Morse type

and agreements with the previous numerical findings have
independent ofn/M. Because one of the conditiof&3) and also bgen found P g
(60) must be satisfied, we have the conclusion fleatany :

. . ) . . Most of the existing analytical studies for nonlinear exci-
nonlinear diatomic lattice, gap solitons always ocC@ur  taiions in diatomic lattices involved a so-called “decoupling

analytical results support the numerical findings of Franchinhs47 » in which some relations were assumed between the
etal:™ for small cubic nonlinearity, nonlinear optical and yisp|acement of light particles and that of heavy ones before

acoustic upper cutoff localized modes appear, while for larggqing the equations of motiofsee Ref. 11, and references
cubic nonlinearity a nonlinear optical lower cutoff mode therein. Pnevmatikoset al® investigated the soliton dy-

rises. WhenK3=0, the corresponding theoretical and nu-\amics of nonlinear diatomic lattices by using the decou-

merical results for harmonic plus quartic potentiaf are pling ansatz. For long-wavelengtfie., q=0) excitations

recoyer_ed. . . this can be done without much difficulty. But for envelope-
It is interesting to note that the criterid1) and(60) for pe excitations and in the case of cubic nonlinearity, the

the occurrence of the asymmetric optical and acoustic UpPElonerete form of the decoupling ansatz is not easy to deter-
cutoff solitons in the diatomic lattices are the same as that fOFnine and the analytical calculation for the coefficients in

the_ appearance of the_ upper cut<)2ff solitons in.monaéoml%mp”tude equations, such as Eq82) and (33), is also
lattices, given by TsurB{Eq (4-28)' wc=4], Flytzaniset al”  peayy Except for several numerical studies, such an analyti-
[Eq. (5.5, kD=] and Flack® [Eq. (3.24, v,=0]. This  ca| calculation has never been accomplished. Recently, it
criterion was also given implicitly in Ref. 10 since the enve-yas shown that the decoupling ansatz is completely unnec-
lope soliton solution23) in Ref. 10 requires sgiQ)>0.  essary and can be derived by the QBAN addition, the

In addition, our results show analytically that for the po- QpA has many other advantages. For example, the results
ten.tials With_ cgbic and quartic nonlinearity an nonlinear 10- gptained by the QDA, though restricted to small amplitudes,
calized excitation always consists of dc and ac parts. Thgre valid in the whole BZ except at the zero-dispersion point
appearance of the dc part is a direct conclusion of the asynyf the optical-phonon branctsee Ref. 45 Thus one can
metry in the potentials. This fact is already known by usingohtain all solutions for nonlinear cutoff and noncutoff modes
different approachetsee, e.g., Refs. 33 and)34 in a simple and unified way; the method is quite general and

Recently, Bonart, Resler, and Pag® considered the can be applied to the other lattice systems. An extension
boundary condition effects in the diatomic lattice with cubic pased on the QDA for magnetic gap soliton excitations in
and quartic anharmonicity and gave existence criteria for th@ternating Heisenberg ferromagnets has been given
ILM’s and the IGM's not restricted to small amplitudes by recently> In the present work, we use the QDA to consider
using a different approach. By comparison we can see thahe nonlinear localized excitations in the diatomic lattices
our instability threshold criterion for the linear optical upper with cubic and quartic nonlinearity. The detailed expressions
cutoff phonon modes is in accordance with their correspondpf the coefficients in the amplitude equatiof@®—(34) and
ing one[Eq. (10) in Ref. 45] when exact toA%; [remember  yarious types of nonlinear excitations have been given ex-
that in our notatiom. is the amplitude of the ac part of the plicitly.
nonlinear excitation, e.g., in Eq.(44 we have The study of stability by using nonlinear amplitude equa-
A=2(ay [y.)Y2n0]. Itis easy to show that our frequency tions is widely employed in pattern formation in systems out
formulas for the nonlinear opticalincluding upper and of equilibrium3®°In the present work, by a similar idea we
lower) cutoff modes, i.e., Eq946) and (58), also coincide have studied the stability of the linear optical and acoustic
with the corresponding ones in Ref. fi5gs.(9) and(12)] if  (upper and lowercutoff phonon modes. For thé,-K3-K,
the terms proportional té\gc are neglected. Our results sup- potential, we have obtained the existence criteria for the oc-

V. DISCUSSION AND SUMMARY
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currence of linear cutoff phonon mode-related nonlinear lostudies reveal the possibility of observing experimentally the
calized excitations: IK%/(K2K4)<3/4, we have the acoustic IGM’s in real (3D) crystals. A macroanalogy of the diatomic
and optical upper cutoff solitons. Otherwise one has only thdattices with cubic and quartic nonlinearity is a chain of mag-
optical lower cutoff(gap solitons. The later case happens for netic pendulums. Russedt al>® reported moving breathers
the standard two-body potentials from the Toda to the Morsén such a system quite recently, but they did not pay attention
type. The formation of the asymmetric gap solitons in theto nonlinear cutoff modes. If the mass of the magnetic pen-
standard tWO-bOdy potentials is the result of BF mOdUlatiOﬂaHmums is arranged in an a|ternating way, one can obtain a
instability of the optical lower cutoff phonon modes. Our giatomic lattice with an asymmetric intersitdipole-dipole
results show that for any nonlinear diatomic lattice a gapnteraction potential. For small-amplitude excitations the in-
soliton always occurs. The reason for this is that the curvagersite potential reduces tok,-K4-K, one. Thus it is pos-
tures of the acoustic and optical branches of the phonogjpie to observe the asymmetric IGM’s by using this mac-
spectra in the vicinity of the BZ edge have different signs. ogjatomic lattice system.

This means that if the optical mode at the BZ edge supports
a lower cutoff gap soliton, the acoustic mode at the BZ edge
supports an upper cutoff kink subject to the same sign of the
nonlinearity, and vice versa.

For large-amplitude excitations we should extend the G.H. wishes to express his appreciation to Professor Di-
present QDA to a higher-order approximation. It is expectedector P. Fulde for the warm hospitality received at the Max-
that higher-order correction terms, likelyf.|*f. and  Planck-Institut fu Physik komplexer Systeme, where part of
(alox;)|f+|* (as well as some higher-order dispersionthis work was carried out. It is a pleasure to thank Professor
terms, will be added, respectively, into Eq&2) and(33).  A. J. Sievers for kindly sending a copy of Ref. 21, Dr. S.
Then the existence criteria for the nonlinear localized exci+lach for the critical reading of the manuscript, Drs. MrBa
tations, i.e., Eqs(41), (53), and(60), will be modified to be and A. Cohen, Professor F. G. Mertens and Professor M. G.
amplitude dependent. Velarde for fruitful discussions. This work was partly sup-

The generation of an asymmetric IGM in nonlinear 3D ported by the Hong Kong Research Grant Council and the
diatomic lattices has been considered recefitff. These ~Hong Kong Baptist University Faculty Research Grant.
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APPENDIX

The detailed expressions of the coefficients of Eg8) and (23) are given by

. 2
1,J,dsin(gqd
8 =1,3,02—2(1 + J,)| — 22 AL )2 , (A1)
2(1),('2"'\.]2_(.07)
2 — .
w®—2] 43,1 .d 320,355V, w_singd
o =4l gd——— + — 2 (w2 + 21 ,comyd) + —— nd (A2)
0w’ =2l, w*-2l, (w? —21,)?
4(1,+3;=30%) (Vg )= d7 (02 = 21,) (w2 —2J5) — 21 ,3,] a3
a_= ,
4w,(w2,—|2—.]2)
IB __ |3w,d (A4)
- 21,
3J40_ w? -2 | o> siré(qd Js(13+1,L_cogyd
yo=— 40 2( 44 _ 2 — (qd) . P 3(l3 i Kd) . (AS)
23, Jz w® —=2l, (0% =21))(1,+J,— w?) 20 —1,

L 1,35 cogyd— (2w2 —1,)/3,] 6
T (202 -3,)(20% —1,)—1,J,c08qd

The coefficients of Eq928) and(29) are given by

I,J,dsin(qd
8, =1,3,02—2(1 o+ J,)| — 22 a )2 (A7)
20,4 (121t J~0%)
2 + ;
w2 =21, 4,3 320,3,d3V; o, singd
=gt 2 1200 (2o comyd) 4 223 e @S (A8)

wi—2), wi-2J, (w2 —23,)2
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A1+ 3= 302) (Vg )2 = d[ (05 = 23p) (0 = 215) = 21,0;]

o 4o (0f ~1,-3)) ’ "

= J;“;;d , (A10)

y+__3|24|w+ w+|—2|2<1+ 232 ) 2 w® sirf(qd) 2 _J3L++I3(J3+322L+cosqd)’ ALD
2 2 wi =23 (05 =23) (It~ w5) i —Jz

_ Jolgfcogd— (205 —J))/15] (AL2)

(202 —1,)(2w% —J,) —1,J,co8qd’

wherew. (q) has been given in Ed7).
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