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Asymmetric gap soliton modes in diatomic lattices with cubic and quartic nonlinearity
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Nonlinear localized excitations in one-dimensional diatomic lattices with cubic and quartic nonlinearity are
considered analytically by a quasidiscreteness approach. The criteria for the occurrence of asymmetric gap
solitons~with vibrating frequency lying in the gap of phonon bands! and small-amplitude, asymmetric intrinsic
localized modes~with the vibrating frequency being above all the phonon bands! are obtained explicitly based
on the modulational instabilities of corresponding linear lattice plane waves. The expressions of particle
displacement for all these nonlinear localized excitations are also given. The result is applied to standard
two-body potentials of the Toda, Born-Mayer-Coulomb, Lennard-Jones, and Morse type. The comparison with
previous numerical study of the anharmonic gap modes in diatomic lattices for the standard two-body poten-
tials is made and good agreement is found.@S0163-1829~98!03410-9#
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I. INTRODUCTION

The study of the dynamics of nonlinear lattices and
lated solitonic excitations has been greatly influenced by
pioneering works of Fermi, Pasta, and Ulam,1 and of
Zabusky and Kruskal.2 Most of the work in this area ha
focused on models of one-dimensional~1D! monatomic
chains with simple interatomic potentials of polynomials,3–7

which can approximate any realistic potential near the eq
librium separation distance of two atoms. This descripti
usually done in a continuum limit, is only valid for a zon
boundary phonon mode, i.e., forq, the wave number of lat-
tice waves, being near zero orp/d0, whered0 is lattice spac-
ing. In 1972, Tsurui8 proposed an analytical method fo
studying the nonlinear excitations of lattices valid in t
whole Brillouin zone~BZ!. Later on this approach was ex
tended by Remoissenet9 and Huang.10,11 Exact analytical so-
lutions for the nonlinear localized excitations in 1D mo
atomic lattices can be obtained only for the Toda12 and
Ablowitz and Ladik13 lattices, which are discrete complete
integrable systems.

In recent years, the interest in localized excitations in n
linear lattices has been renewed due to the identification
new type of anharmonic localized modes.10,14–23 These
modes, called the intrinsic localized modes~ILM’s !,15 or the
discrete breathers,23 are the discrete analog of the envelo
~or breather! solitons with their spatial extension being on
of a few lattice spacing and the vibrating frequency lyi
above the upper cutoff of phonon bands.24 Experimentally,
the ILM’s have been observed in coupled pendulu
lattices25 and electrical lattices.26 The quantum-mechanica
aspects of the ILM’s have also been considered.27–29 How-
ever, examination of the 1D lattices with standard To
Born-Mayer-Coulumb, Lennard-Jones, and Morse two-bo
interatomic potentials demonstrates that the ILM’s do
570163-1829/98/57~10!/5746~12!/$15.00
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appear above the top of the plane-wave spectrum. The ph
cal reason for this is that the cubic nonlinearity in the Tay
expansion of these realistic potentials is too strong. One
the effects of the cubic nonlinearity is that increasing t
magnitude of the cubic term makes the potentials softer
hence decreases the localized mode frequency. The loca
mode is destroyed as it approaches the bounding plane-w
spectrum.10,30

Recently, much attention has been paid to the gap solit
in nonlinear diatomic lattices.11,27,31–41The concept of the
gap solitons was introduced by Chen and Mills42 when in-
vestigating the nonlinear optical response of superlattic
For a diatomic lattice, the phonon spectrum of the syst
consists of two branches~acoustic and optical ones!, induced
by mass or force-constant difference of two kinds of p
ticles. Due to nonlinearity gap soliton modes may appea
localized excitations with vibrating frequency being in th
gap of the linear spectrum. Since the gap solitons occu
perfect lattices with discrete translational symmetry, a na
‘‘anharmonic gap mode’’ or ‘‘intrinsic gap mode~IGM!’’
was given by Sievers and his collaborators.33,34,41 It is pos-
sible that the ILM’s and the IGM’s may be created expe
mentally in diatomic lattices. References 43 and 44 repor
some experimental studies of the gap solitons, reson
kinks, and the ILM’s in a damped and parametrically excit
1D diatomic pendulum lattices.

Since the standard two-body potentials of the Toda, Bo
Mayer-Coulomb, Lennard-Jones, and Morse type hav
strong cubic nonlinearity in their Taylor expansion ne
equilibrium position, it is therefore necessary to consider
nonlinear excitations in the diatomic lattices with cubic a
quartic anharmoniticity. In their recent contributions, Kisel
et al.33,34 investigated the anharmonic localized modes in
diatomic lattices with the above-mentioned two-body pote
tials. By using a rotating-wave approximation combined w
5746 © 1998 The American Physical Society
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computer simulation, they showed that an ILM doesnot exist
and a nonlinear optical lower cutoff gap mode~i.e., IGM! is
a general feature of these diatomic lattices. Lately, Franc
et al.35 numerically found that for a potential with the cub
and quartic nonlinearity there exists a ‘‘critical’’K3 ~cubic
force constant in the potential! value. For smallK3, nonlin-
ear optical and acoustic upper cutoff localized modes oc
while for large K3 these modes disappear and a nonlin
optical lower cutoff mode rises. In a recent work, Bon
et al.45 investigated the boundary condition effects in the
atomic lattices with cubic and quartic anharmonicity. Bas
on a rotating-wave approximation they gave existence cr
ria for the ILM’s and IGM’s, which are related to the stab
ity properties of linear optical upper and lower cutoff phon
modes. These studies posed an interesting problem of ho
provide an analytical approach which can give not only
explicit criteria for the existence of the ILM’s and the IGM
as well as other possible nonlinear excitations for both o
cal and acoustic branches but also the approximate analy
expressions for these nonlinear excitations in a unified w
It is this problem that will be addressed here.

There are several theoretical methods to study the non
ear localized excitations in diatomic lattices~see Ref. 11, and
references therein!. In this paper we use the quasidiscre
ness approach~QDA! for diatomic lattices11 to investigate
the ILM’s and IGM’s as well as kinklike excitations with
small amplitude in 1D diatomic lattices with cubic and qua
tic nonlinear interactions between their nearest-neighbor
ticles. The paper is organized as follows. In Sec. II,
model is introduced and an asymptotic expansion based
the QDA is made for the equations of motion. By using t
results obtained in Sec. II, in Sec. III we discuss the soluti
of the ILM’s and IGM’s in a simple and unified way. Som
explicit criteria and expressions of particle displacement
the ILM’s and the IGM’s are also given in this section.
Sec. IV we apply our results to the standard two-body pot
tials from the Toda to the Morse type and make a comp
son with existing numerical experiments. Finally, Sec.
contains a discussion and summary of our results.

II. MODEL AND ASYMPTOTIC EXPANSION

A. The model

We consider a 1D diatomic lattices with a neare
neighbor interaction between particles. The restriction to
nearest-neighbor interaction is for simplicity and the a
proach can be easily extended to second and higher ne
bors. The Hamiltonian of the system is given by

H5(
i

F1

2
mi S dui

dt D 2

1V~ui 112ui !G , ~1!

whereui5ui(t) is the displacement from its equilibrium po
sition of the i th particle with mass mi5md i ,2k
1Md i ,2k11 (M.m,k is an integer!. The potentialV(r ) is
quite general, typically it can be the standard two-body
tentials of the Toda, Born-Mayer-Coulomb, Lennard-Jon
and Morse type~for their detailed expressions, see Sec.
below!. We focus on displacements with smaller amplitu
which can be detected experimentally without introduc
reconstruction or phase transitions in the system. This all
ni
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us to Tayler expand the potentialV(r ) at the equilibrium
position r 50 in a power series of the displacements
fourth order.35 Thus we obtain an approximateK2-K3-K4
potential

V~r !5
1

2
K2r 21

1

3
K3r 31

1

4
K4r 4, ~2!

whereK2(.0), K3 and K4(.0) are harmonic, cubic, and
quartic force constants, respectively. We assume that the
sic features of the weakly nonlinear localized excitations
the standard two-body potentials may be obtained by co
sponding theK2-K3-K4 potentials. Then the Hamiltonian~1!
takes the following form:

H5(
i

F1

2
mi S dui

dt D 2

1
1

2
K2~ui 112ui !

21
1

3
K3~ui 112ui !

3

1
1

4
K4~ui 112ui !

4G . ~3!

Since each of the standard two-body potentials mentio
above has only one minimum, we assume that for
K2-K3-K4 potential~2! there is the constraint

K3
2

K2K4
,4, ~4!

unless there are two minima~i.e., double-well potential!
hence the system may admit some types of nonlinear ex
tions which will not be discussed here.

If we write u2k5vn ~even particles! andu2k115wn ~odd
particles!, n is the index of thenth unit cell with a lattice
spacingd52d0, d0 is the equilibrium distance between tw
adjacent particles, the system can be split into two sub
tices. The equations of motion forvn andwn are

m
d2

dt2
vn5K2~wn1wn2122vn!1K3@~wn2vn!2

2~wn212vn!2#

1K4@~wn2vn!31~wn212vn!3#, ~5!

M
d2

dt2
wn5K2~vn1vn1122wn!

2K3@~vn2wn!22~vn112wn!2#

1K4@~vn2wn!31~vn112wn!3#. ~6!

The linear dispersion relation of Eqs.~5! and ~6! is

v6~q!5$ I 21J26@~ I 21J2!224I 2J2sin2~qd/2!#1/2%1/2,
~7!

whereI 25K2 /m andJ25K2 /M . The minus~plus! sign cor-
responds to acoustic~optical! mode. At wave numberq50
the eigenfrequency spectrum has a lower cutoffv2(0)50
for the acoustic mode and an upper cuto
v1(0)[v35@2(I 21J2)#1/2 for the optical mode. At
q5p/d there exists a frequency gap between the upper
off of the acoustic branch,v2(p/d)[v15A2J2, and the
lower cutoff of the optical branch,v1(p/a)[A2I 2. The
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width of the frequency gap is A2I 22A2J2

5A2K2(1/Am21/AM ). In linear theory, the amplitudes o
lattice waves are constants and linear waves cannot pr
gate and will be damped whenv ~the frequency of the
waves! lies in the regionsv1,v,v2 andv.v3. Accord-
ingly, these regions are the ‘‘forbidden bands’’ of the line
waves. This property of the eigenfrequency spectrum res
from the discreteness of the system~i.e., discrete transla
tional symmetry!. However, when the nonlinearity in Eqs
~5! and ~6! is considered, the above conclusions are
longer valid. As localized excitations, some nonlinear mo
may appear, whose oscillatory frequencies can lie in th
forbidden bands of the phonon spectrum.

B. Asymptotic expansion

We use the QDA for diatomic lattices developed in R
11 to investigate the effects of nonlinearity and discreten
of the system. In this treatment one sets
a-

r
lts

o
s

se

.
ss

un~ t !5eun,n
~1!1e2un,n

~2!1e3un,n
~3!1•••, ~8!

where e is a smallness and ordering parameter denot
the relative amplitude of the excitation andun,n

(n)

5u(n)(jn ,t;fn). jn5e(na2lt) and t5e2t are two
multiple-scales variables~slow variables!. l is a parameter to
be determined by a solvability condition. The ‘‘fast’’ var
able,fn5qnd2v(q)t, representing the phase of the carri
wave, is taken to be completely discrete. Substituting Eq.~8!
into Eqs. ~5! and ~6! and comparing the power ofe, we
obtain a hierarchy of equations aboutvn,n

( j ) and wn,n
( j )

( j 51,2,3, . . . ):

]2

]t2
vn,n

~ j ! 2I 2~wn,n
~ j ! 1wn,n21

~ j ! 22vn,n
~ j ! !5Mn,n

~ j ! ~9!

with
Mn,n
~1!50, ~10!

Mn,n
~2!52l

]2

]t]jn
vn,n

~1!2I 2d
]

]jn
wn,n21

~1! 1I 3~wn,n
~1!2vn,n

~1! !22I 3~wn,n21
~1! 2vn,n

~1! !2, ~11!

Mn,n
~3!52l

]2

]t]jn
vn,n

~2!2S 2
]2

]t]t
1l2

]2

]jn
2D vn,n

~1!1I 2S 2d
]

]jn
wn,n21

~2! 1
d2

2!

]2

]jn
2

wn,n21
~1! D 12I 3~wn,n

~1!2vn,n
~1! !~wn,n

~2!2vn,n
~2! !

22I 3~wn,n21
~1! 2vn,n

~1! !S wn,n21
~2! 2vn,n

~2!2d
]

]jn
wn,n21

~1! D 1I 4@~wn,n
~1!2vn,n

~1! !31~wn,n21
~1! 2vn,n

~1! !3#,

AA ~12!

and

]2

]t2
wn,n

~ j ! 2J2~vn,n
~ j ! 1vn,n11

~ j ! 22wn,n
~ j ! !5Nn,n

~ j ! ~13!

with

Nn,n
~1!50, ~14!

Nn,n
~2!52l

]2

]t]jn
wn,n

~1!1J2d
]

]jn
vn,n11

~1! 2J3~vn,n
~1!2wn,n

~1! !21J3~vn,n11
~1! 2wn,n

~1! !2, ~15!

Nn,n
~3!52l

]2

]t]jn
wn,n

~2!2S 2
]2

]t]t
1l2

]2

]jn
2D wn,n

~1!1J2S d
]

]jn
vn,n11

~2! 1
d2

2!

]2

]jn
2 vn,n11

~1! D 22J3~vn,n
~1!2wn,n

~1! !~vn,n
~2!2wn,n

~2! !

12J3~vn,n11
~1! 2wn,n

~1! !S vn,n11
~2! 2wn,n

~2!1d
]

]jn
vn,n11

~1! D 1J4@~vn,n
~1!2wn,n

~1! !31~vn,n11
~1! 2wn,n

~1! !3#,

AA ~16!
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which can be solved order by order. In Eqs.~9!–~16!, we
have definedI i5Ki /m and Ji5Ki /M ( i 52,3,4). The ex-
pressions ofMn,n

( j ) andNn,n
( j ) ( j 54,5, . . . )need not be written

down explicitly here.

C. Amplitude equations for acoustic and optical modes

In order to avoid possible divergence for zone-bound
phonon modes, we solve the acoustic and optical mo
separately. First we consider the low-frequency acou
mode of the system. For this we rewrite Eqs.~9! and~13! in
the form

L̂wn,n
~ j ! 5J2~Mn,n

~ j ! 1Mn,n11
~ j ! !1S ]2

]t2
12I 2D Nn,n

~ j ! , ~17!

S ]2

]t2
12I 2D vn,n

~ j ! 5I 2~wn,n
~ j ! 1wn,n21

~ j ! !1Mn,n
~ j ! , ~18!

where the operatorL̂ is defined by

L̂un,n
~ j ! 5S ]2

]t2
12I 2D S ]2

]t2
12J2D un,n

~ j ! 2I 2J2~un,n21
~ j ! 1un,n11

~ j !

12un,n
~ j ! ! ~19!

with un,n
( j ) ( j 51,2,3, . . . ) being a set of arbitrary functions

For j 51 it is easy to get

wn,n
~1!5F10~t,jn!1@F11~t,jn!eifn

2

1c.c.#, ~20!

vn,n
~1!5F10~t,jn!2F I 2~11e2 iqd!

v2
2 22I 2

F11~t,jn!eifn
2

1c.c.G
~21!

with fn
25qnd2v2(q)t. v2(q) has been given in Eq.~7!

with a minus sign. The amplitude~or envelope! functions
F10 andF11 are yet to be determined.F10 is a real function
representing the ‘‘direct current~dc!’’ part relative to the fast
variablefn

2 and F11 is a complex amplitude of the ‘‘alter
nating current~ac!’’ part. If K350, the dc part (F10) van-
ishes in this order. Forj 52 ~the second order! a solvability
condition determinesl5Vg

25dv2 /dq ~i.e., the group ve-
locity of the carrier waves! thus jn5jn

2[e(nd2Vg
2t). In

the third order (j 53), solvability conditions yields the evo
lution equations forF10 andF11:

i
]

]t
F111

1

2
a2

]

]jn
2

]

]jn
2

F111b2F11

]

]jn
2

F101g2uF11u2F11

50, ~22!

d2

]

]jn
2

]

]jn
2

F101s2

]

]jn
2

uF11u250. ~23!

The detailed expressions of the coefficients in Eqs.~22! and
~23! are given in Appendix A.

Second, we study the high-frequency optical mode ex
tations. In this case we recast Eqs.~9! and~13! into the form
y
es
ic

i-

L̂vn,n
~ j ! 5J2~Nn,n

~ j ! 1Nn,n21
~ j ! !1S ]2

]t2
12J2D Mn,n

~ j ! , ~24!

S ]2

]t2
12I 2D wn,n

~ j ! 5J2~vn,n
~ j ! 1vn,n11

~ j ! !1Nn,n
~ j ! . ~25!

By the same procedure of solving the acoustic mode gi
above, we obtain

vn,n
~1!5G10~t,jn!1@G11~t,jn!eifn

1

1c.c.#, ~26!

wn,n
~1!5G10~t,jn!2F J2~11eiqd!

v1
2 22J2

G11~t,jn!eifn
1

1c.c.G
~27!

with fn
15qnd2v1(q)t. The evolution equations for the

amplitudesG10 ~dc part of the optical mode! andG11 ~com-
plex amplitude for ac part of the optical mode! are given by

i
]

]t
G111

1

2
a1

]

]jn
1

]

]jn
1

G111b1G11

]

]jn
1

G10

1g1uG11u2G1150, ~28!

d1

]

]jn
1

]

]jn
1

G101s1

]

]jn
1

uG11u250, ~29!

wherejn
15e(nd2Vg

1t) with l5Vg
15dv1 /dq. The coef-

ficients in Eqs.~28! and~29! are also given in the Appendix
A.

Under the transformation

F105~1/e!g2 , F115~1/e! f 2 , ~30!

G105~1/e!g1 , G115~1/e! f 1 , ~31!

the nonlinear amplitude equations~22!, ~23!, ~28!, and ~29!
can be written in the unified form

i
]

]t
f 61

1

2
a6

]

]xn
6

]

]xn
6

f 61b6 f 6

]

]xn
6

g61g6u f 6u2f 650,

~32!

d6

]

]xn
6

]

]xn
6

g61s6

]

]xn
6

u f 6u250, ~33!

when returning to the original variables. In Eqs.~32! and
~33!, xn

65nd2Vg
6t and the plus~minus! sign corresponds to

the optical~acoustic! mode, respectively.
Finally, we consider the acoustic mode atq50. Noting

that Eq. ~32! for the minus sign is invalid atq50 for the
description of nonlinear excitations sinceb2uq50
5g2uq5050 anda2uq505`. This breakdown is due to the
fact that atq50 an acoustic mode excitation is a lon
wavelength one. In this case a discrete long-wa
approximation11 should be applied. By using the same tec



e
tic

s

th
is
th
rm

Z
r
p
ea

t

the
e-
e
y a
d

the
e
-
e

off
he

t of
-
dy

-
rity
—

-
.

it
. In
the

5750 57GUOXIANG HUANG AND BAMBI HU
nique used in Ref. 11, for the acoustic mode atq50 we
obtain a long wavelength amplitude equation

]u

]t
1Pu

]

]xn
u1Qu2

]

]xn
u1H

]3

]xn
3

u50, ~34!

where u5]A0 /]xn , xn5nd2ct with c25K2d2/@2(M
1m)#. A0 is the leading order approximation ofvn andwn .
Since v2(0)50, for the long-wavelength acoustic mod
there is no carrier wave. Thus the displacement of the lat
is purely a ‘‘direct current.’’ Equation~34! without the sec-
ond termP]u/]xn is standard modified Korteweg-de Vrie
~MKdV ! equation. Thus Eq.~34! is a modified MKdV
~MMKdV ! equation. Its coefficients are given by

P5
d2

4

K3

K2
S 2K2

M1mD 1/2

, ~35!

Q5
3d3

16

K4

K2
S 2K2

M1mD 1/2

, ~36!

H5
d3

16S 2K2

M1mD 1/2F1

3
2

mM

~M1m!2G . ~37!

III. ASYMMETRIC GAP SOLITONS, KINKS,
AND INTRINSIC LOCALIZED MODES

When deriving the nonlinear amplitude equations~32!–
~34! we have not used any kind of decoupling ansatz for
motion of two kinds of particles with different mass. This
one of the advantages of the QDA. On the other hand,
nonlinear amplitude equations, which are the reduced fo
of the original equations of motion~5! and ~6! for small-
amplitude excitations, are valid in the whole B
(2p/d,q<p/d) except a zero-dispersion point fo
the optical-phonon branch.46 Thus one can obtain the ga
solitons and ILM’s as well as some possible new nonlin
excitations by solving the cutoff modes of the system in
simple and unified way.

~1! Optical upper cutoff mode. For the optical mode
at q50, we have v15v35@2K2(1/m11/M )#1/2,
Vg

150, xn
15nd[xn , a152K2d2/@2(M1m)v3#, b1

52K3v3d/(2K2), g1523K4v3(11m/M )2/(2K2), d1

5K2
2d2/(Mm), ands154K2K3d(11m/M )2/(Mm). Equa-

tions ~32! and ~33! with the plus sign take the form

i
]

]t
f̃ 11

1

2
a1

]2

]xn
2

f̃ 11 g̃ 1u f̃ 1u2 f̃ 150, ~38!

]

]xn
g152

s1

d1
u f̃ 1u21C1 , ~39!

where f̃ 15 f 1exp(2ib1C1t) with C1 an integration constan
and

g̃ 15g12b1

s1

d1
5

2K4v3

K2
S 11

m

M D S K3
2

K2K4
2

3

4D .

~40!
e

e

e
s

r
a

Equation~38! is standard nonlinear Schro¨dinger~NLS! equa-
tion. It has a uniform vibrating solution

f̃ 15 f 0exp~ i g̃ 1u f 0u2t !,

where f 0 is any complex constant, which corresponds to
linear optical upper cutoff phonon mode with a simply fr
quency shiftg̃ 1u f 0u2 and is a fixed point of the system. Not
that it is possible to eliminate the time dependence b
simply transformation, justifying our use of the term ‘‘fixe
point’’ for the uniform vibrating solution. In fact, the fixed
point may also be written as

f̃ 15 f 0exp@ i ~ g̃ 1 f 0
2t1f̄ !#,

where f 0 in this case is any real constant and 0<f̄,2p. In
this sense there is a ring of fixed point characterized by
different values of the phase,f̄. It is easy to show that, sinc
a1,0, when g̃ 1,0 the fixed point is unstable by a long
wavelength small perturbation. This kind of instability is du
to a sideband modulation of the linear optical upper cut
mode. The modulational instability for waves is called t
Benjamin-Feir~BF! instability.47 It is similar to the Eckhaus
instability for patterns in extended dissipative systems ou
equilibrium.48 The BF instability in discrete lattices and re
lated formation of solitonlike localized states were alrea
discussed by Kivshar and Peyrard.49 By this mechanism
~usually called the Benjamin-Feir resonance mechanism50! a
linear optical upper cutoff excitation will bifurcate, grow ex
ponentially at first and then saturate due to the nonlinea
of the system. At later stage, a nonlinear localized mode
optical upper cutoff soliton is formed. In fact, forg̃ 1,0,
e.g.,

K3
2

K2K4
,

3

4
, ~41!

Equation~38! admits the envelope~breather! soliton solution

f̃ 15S a1

g̃ 1
D 1/2

h0sech@h0~xn2xn0
!#

3expF2 i
1

2
ua1uh0

2t2 if0G , ~42!

whereh0, f0, andxn0
5n0d are constants,n0 is an arbitrary

integer. Inequality~41! is just the condition of the modula
tional instability for the linear optical upper cutoff mode
From Eq.~39! we obtain

g152
s1a1

d1 g̃ 1

h0tanh@h0~xn2xn0
!#, ~43!

where the integration constantC1 has chosen as zero as
corresponds to a constant displacement for all particles
leading approximation the lattice configuration takes
form
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vn~ t !52
s1a1

d1 g̃ 1

h0tanh@h0~n2n0!d#

12S a1

g̃ 1
D 1/2

h0sech@h0~n2n0!d#cos~V3st1f0!,

~44!

wn~ t !52
s1a1

d1 g̃ 1

h0tanh@h0~n2n0!d#

22
m

M S a1

g̃ 1
D 1/2

h0sech@h0~n2n0!d#cos~V3st1f0!,

~45!

with

V3s5v31
1

2
ua1uh0

2 , ~46!

i.e., the vibrating frequency of the localized mode is abo
the spectrum of the linear optical mode thus above the
phonon bands. Hence Eqs.~44! and ~45! represent an ILM
accompanied by an asymmetric dc displacement due to
cubic anharmonicity of the system. We call it the sma
amplitudeasymmetric intrinsic localized mode.

From Eqs.~44! and ~45! we can see that the free param
eter h0 can be taken as an expansion parameter,
h05O(e). By Eq.~46! we haveh05@2(V3s2v3)/ua1u#1/2.
Thus in our approach, the expansion parametere, used in Eq.
~8!, is proportional to the square root of frequency differen
between the nonlinear localized mode and the linear cu
phonon mode.

When g̃ 1.0, e.g., the inequality~41! takes the opposite
sign, the uniform vibrating solution of the NLS equation~38!
is neutral stable. In this case Eq.~38! admits the dark soliton
solution

f̃ 15S ua1u

g̃ 1
D 1/2

h0tanh@h0~xn2xn0
!#exp@ i ua1uh0

2t2 if0#.

~47!

From Eq.~39! we can obtaing1 by integration. In this case
we choseC1 in such a way6 that (]g1 /]xn)u uxnu5`50. Then

we haveC15s1ua1uh0
2/(d1 g̃ 1). Hence we have

g15
s1ua1u

d1 g̃ 1

h0tanh@h0~xn2xn0
!#. ~48!

The lattice displacement in this case takes the form

vn~ t !5
s1ua1u

d1 g̃ 1

h0tanh@h0~n2n0!d#

12S ua1u

g̃ 1
D 1/2

h0tanh@h0~n2n0!d#cos~V3kt1f0!,

~49!
e
ll

he
-

.,

e
ff

wn~ t !5
s1ua1u

d1 g̃ 1

h0tanh@h0~n2n0!d#

22
m

M S ua1u

g̃ 1
D 1/2

h0tanh@h0~n2n0!d#

3cos~V3kt1f0! ~50!

with

V3k5v32
ua1ug1

g̃ 1

h0
2 . ~51!

Sinceg1,0, the vibrating frequency of the kink mode de
noted by the expressions~49! and ~50! is greater than v3.
This is an example of a kink with the vibrating frequen
above all the phonon bands due to the cubic nonlinearity
the system.

~2! Optical lower cutoff mode. For the optical mode a
q5p/d ~zone-boundary optical-phonon mode!, one has
v15v25A2K2 /m, Vg

150, xn
15xn , a15K2d2/@2v2(M

2m)#, b152K3v2d/(2K2), g1523K4v2 /(2K2),
d15K2

2d2/(Mm), ands154K2K3d/(Mm). In this case we
have

g̃ 15
2K4

K2
v2S K3

2

K2K4
2

3

4D . ~52!

If g̃ 1.0, i.e.,

K3
2

K2K4
.

3

4
, ~53!

Eqs.~32! and ~33! for the plus sign have the solution

f 15S a1

g̃ 1
D 1/2

h0sech@h0~xn2xn0
!#expF i

1

2
a1h0

2t2 if0G ,

~54!

g152
s1a1

d1 g̃ 1

h0tanh@h0~xn2xn0
!#. ~55!

The lattice configuration takes the form

vn~ t !52
s1a1

d1 g̃ 1

h0tanh@h0~n2n0!d#

1~21!n2S a1

g̃ 1
D 1/2

h0sech@h0~n2n0!d#

3cos~V2st1f0!, ~56!

wn~ t !52
s1a1

d1 g̃ 1

h0tanh@h0~n2n0!d# ~57!

with

V2s5v22
1

2
a1h0

2 , ~58!
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lying in the frequency gap of the phonon spectra between
acoustic and the optical modes. It is a typical asymme
nonlinear gap mode, existing in the diatomic lattices wh
the condition~53! is satisfied. We note that for this mode th
displacement of the heavy particles only has a kinkl
asymmetric dc part. But the displacement of the light p
ticles, besides the same type of dc part, has an additi
‘‘staggered’’ vibrational part~i.e., ‘‘staggered’’ envelope
soliton!. We call it theasymmetric optical lower cutoff ga
soliton. The vibrating frequencyV2s has the parabola rela
tion with respect to the wave amplitude, denoted by the
rameterh0. The formation of the asymmetric nonlinear ga
mode is also the conclusion of the BF instability for t
corresponding linear optical lower cutoff phonon mode.
further discussion for such nonlinear modes in the reali
potentials is given in the next section.

~3! Acoustic upper cutoff mode. For the acoustic mode a
q5p/d ~zone-boundary acoustic-phonon mode!, one
has v25v15A2K2 /M , Vg

250, xn
25xn , a25

2K2d2/@2v1(M2m)#,0, b252K3v1d/(2K2), g25
23K4v1/(2K2), d25K2

2d2/(Mm), and s254K2K3d/
(Mm). Similarly one can obtain the equations like~38! and
~39! with g1 , f̃ 1,s1 ,d1 ,a1 and g̃ 1 changed by
g2 , f̃ 2,s2 ,d2 ,a2 and g̃ 2 . Here

g̃ 25g22b2

s2

d2
5

2K4

K2
v1S K3

2

K2K4
2

3

4D . ~59!

If g̃ 2,0, wheng̃ 2,0, i.e.,

K3
2

K2K4
,

3

4
, ~60!

due to a BF instability of the corresponding linear upp
cutoff acoustic mode anasymmetric acoustic upper cuto
gap solitonappears, with the vibrating frequency being
the gap of the phonon spectra between the acoustic and
tical modes. Otherwise an acoustic upper cutoff kink vib
tional mode occurs. We can readily write down the expli
expression of the lattice configuration in this case, but i
omitted here to save space.

~4! Acoustic lower cutoff mode. This is a long-wavelength
mode without any carrier wave, because whenq50 we have
v250 thusfn

250. The lattice displacement only has a
part and its evolution is controlled by the MMKdV equatio
given by Eq.~34!. A single-soliton solution of Eq.~34! is
given by

u5
24k2H

P1AP2124k2QHcosh@2k„nd2~c124k2H !t…#
,

~61!

wherek is an arbitrary constant. Making the transformati
u52P/(2Q)1U(zn ,t) with zn5xn1P2t/(4Q), Eq. ~34!
becomes

]U

]t
1QU2

]U

]zn
1H

]3U

]zn
3

50. ~62!
e
ic
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It is the standard MKdV equation and can be solved by
inverse scattering transform. For the explicit expressions
the kink and breather solutions of the MKdV equation w
refer to Ref. 11,

Needless to say, in addition to the cutoff modes cons
ered above, our approach developed in Sec. II can also
used to discuss the nonlinear localized excitations forqÞ0
andqÞp/d ~i.e., the intraband modes!, which will be done
elsewhere.

IV. APPLICATION TO REALISTIC TWO-BODY
NEAREST-NEIGHBOR POTENTIALS

In this section, we apply the general results obtain
above to the diatomic lattices with the standard two-bo
nearest-neighbor potentials to see whether the anharm
gap modes and the ILM’s can appear or not. This can
easily done by using the existence criteria given by Eq.~41!
~for ILM’s !, Eq. ~53! ~for optical lower cutoff gap solitons!,
and Eq.~60! ~for acoustic upper cutoff gap solitons!. Four
standard interatomic potentials are34

~1! Toda:

V~r!5
a

b
e2br1ar2

a

b
, ~63!

wherea andb are coefficients, such thatab.0. r is the
deviation of the relative interparticle separation from
zero-temperature equilibrium position.

~2! Born-Mayer-Coulomb:

V~r!5
aMq2

d0
2 F2 d0

2

r1d0
1r0e

2r/r01d02r0G, ~64!

whereaM is the Madelung constant,q is the effective
charge,d0 is the zero-temperature equilibrium distan
between adjacent particles, andr0 is the constant de-
scribing the repulsion between atoms.

~3! Lennard-Jones:

V~r!5aFS d0

r1d0
D12

22S d0

r 1d0
D 6

11G , ~65!

where a is the constant determining the potenti
strength.

~4! Morse:
V~r!5P~e2ar21!2, ~66!

where P and a are constants determining the streng
and the curvature of the potential, respectively.

For weakly nonlinear excitations we can Taylor expa
these potentials at their equilibrium position (r 50) to obtain
the force constants. They are defined by

K j5
1

~ j 21!! S djV

dr j D
r 50

~67!

with j 52,3,4, . . . . Thus we have the values ofK2, K3, K4,
and K3

2/(K2K4) which are given in Table I. Notice tha
K3,0 for these potentials except that the Toda one witha
andb being both negative~note that we require thatK2 and
K4 are positive!. The parameterI for the Born-Mayer-
Coulomb potential in Table I is defined by
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TABLE I. The force constantsK2, K3, K4 and the value ofK3
2/(K2K4) for the standard two-body

potentials from the Toda, Born-Mayer-Coulomb~B-M-C!, Lennard-Jones~L-J!, and Morse type.

Potential K2 K3 K4 K3
2/(K2K4)

Toda ab
2

ab2

2
ab3

6

3
2

B-M-C aMq2(d022r0)

r0d0
3

2
aMq2~d0

226r0
2!

2r0
2d0

4

aMq2~d0
3224r0

3!

6r0
3d0

5

3
2 I

L-J
72a

d0
2 2

756a

d0
3

6678a

d0
4

63
53

Morse 2Pa2 2Pa3 Pa4

3

3
2
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I 5
~d0

226r0
2!2

~d022r0!~d0
3224r0

3!
. ~68!

Generally, we haveI .1. For example,19,34,51 for KI,
d053.14 Å, r050.26 Å, one hasI 51.1171; for KBr,
d053.29 Å, r050.334 Å, we haveI 51.1328; for LiI,
d053.0 Å, r050.374 Å, one hasI 51.1487. By these result
as well as the criteria given by Eqs.~41!, ~53!, and~60!, we
make the following conclusions:

~1! The condition~53! is satisfied by all these standa
two-body potentials. Thus the asymmetric optical lower c
off gap soliton mode given in expressions~56! and~57! does
exist in the diatomic lattices with the Toda, Born-Maye
Coulomb, Lennard-Jones and Morse type interatomic in
actions. This result agrees with the conclusion by numer
study presented by Kiselevet al.33,34

Shown in Fig. 1 is the dc~denoted by the solid circles!
and ac~denoted by the open circles! amplitude patterns o
light particles for the optical lower cutoff gap soliton mod
The amplitude pattern for the heavy particles, which is
shown here, only has dc part similar to that of the dc part
the light particles. The Born-Mayer-Coulomb potential f

FIG. 1. The dc and ac amplitude patterns of light particles i
diatomic lattice for the optical lower cutoff gap soliton mode. T
solid ~open! circles denote dc~ac! part of the lattice displacemen
The Born-Mayer-Coulomb potential for KBr-like parameters
used withm/M539/80.
-

r-
al

t
r

KBr-like parameters is used withm/M539/80. Comparing
the panel~a! of Fig. 1 in Ref. 34 with our result shown in
Fig. 1 here, we see that the lattice configuration obtain
analytically by our QDA is basically the same as the cor
sponding result given by the rotating wave approximat
plus computer simulation, used by Kiselevet al.34 Further-
more, the parabola relation between the vibrating freque
and the amplitude of the nonlinear optical lower cutoff g
mode, given by Eq.~58!, is in good accordance with th
numerical results~see Fig. 3 of Ref. 34!.

Shown in Fig. 2 is the amplitude~maximum absolute
value! ratio (uAdcu/uAacu) of the dc part (uAdcu) to ac part
(uAacu) of the light particle displacement for the optical low
cutoff gap soliton mode. We see that the amplitude ratio
the function of the mass ratiom/M . The larger ism/M , the
larger is the amplitude ratio. The amplitude ratio grows ve
fast as the mass ratio approaches 1.

~2! Notice that the existence criterion of an ILM~the op-
tical upper cutoff soliton! is the inequality~41!, i.e., the nec-
essary condition for the occurrence of the ILM is

K3
2

K2K4
,

3

4
. ~69!

From Table I we see that in generalK3
2/(K2K4).1. Thus for

all the standard two-body potentials from Toda to Mor

a
FIG. 2. The amplitude~maximum absolute value! ratio

(uAdcu/uAacu) of the dc part (uAdcu) to ac part (uAacu) of the light
particle displacement for the optical lower cutoff gap soliton mo
as a function of the mass ratiom/M .
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type, an ILM is impossible. This conclusion coincides als
with the numerical results of Refs. 33 and 34.

~3! An acoustic upper cutoff gap soliton is not possible
all these standard two-body potentials, because its exist
condition ~60! @the same as Eq.~41!# cannot be satisfied
However, acoustic and optical upper cutoff vibrating kin
are possible excitations for these diatomic lattice system

~4! Nonlinear acoustic lower cutoff excitations are lon
wavelength modes and are governed by the MMKdV eq
tion ~34!. SinceQ andH are positive andP is negative~due
to K3,0) for all the two-body potentials~except the Toda
one witha andb being both negative!, the soliton amplitude
@see Eq.~61!# in the presence of cubic nonlinearity (K3

Þ0) is smaller than the soliton amplitude in the absence
the cubic nonlinearity(K350).

~5! For generalK2-K3-K4 potentials, by the criteria given
by Eqs. ~41!, ~53!, and ~60!, we conclude that in weakly
nonlinear approximation the ‘‘critical’’ value ofK3

2/(K2K4)
for the transition from an optical upper cutoff kink to a
optical upper cutoff soliton~ILM ! and for the occurrence o
an optical~acoustic! lower ~upper! cutoff gap mode is 3/4,
independent ofm/M . Because one of the conditions~53! and
~60! must be satisfied, we have the conclusion thatfor any
nonlinear diatomic lattice, gap solitons always occur. Our
analytical results support the numerical findings of Franch
et al.:35 for small cubic nonlinearity, nonlinear optical an
acoustic upper cutoff localized modes appear, while for la
cubic nonlinearity a nonlinear optical lower cutoff mod
rises. WhenK350, the corresponding theoretical and n
merical results for harmonic plus quartic potentials11,35 are
recovered.

It is interesting to note that the criteria~41! and ~60! for
the occurrence of the asymmetric optical and acoustic up
cutoff solitons in the diatomic lattices are the same as that
the appearance of the upper cutoff solitons in monato
lattices, given by Tsurui8 @Eq. ~4.8!, vc

254], Flytzaniset al.6

@Eq. ~5.5!, kD5p] and Flach52 @Eq. ~3.24!, v450]. This
criterion was also given implicitly in Ref. 10 since the env
lope soliton solution~23! in Ref. 10 requires sgn(PQ).0.

In addition, our results show analytically that for the p
tentials with cubic and quartic nonlinearity an nonlinear
calized excitation always consists of dc and ac parts.
appearance of the dc part is a direct conclusion of the as
metry in the potentials. This fact is already known by usi
different approaches~see, e.g., Refs. 33 and 34!.

Recently, Bonart, Ro¨ssler, and Page45 considered the
boundary condition effects in the diatomic lattice with cub
and quartic anharmonicity and gave existence criteria for
ILM’s and the IGM’s not restricted to small amplitudes b
using a different approach. By comparison we can see
our instability threshold criterion for the linear optical upp
cutoff phonon modes is in accordance with their correspo
ing one@Eq. ~10! in Ref. 45!# when exact toAac

2 @remember
that in our notationAac is the amplitude of the ac part of th
nonlinear excitation, e.g., in Eq. ~44! we have
Aac52(a1 / g̃ 1)1/2h0#. It is easy to show that our frequenc
formulas for the nonlinear optical~including upper and
lower! cutoff modes, i.e., Eqs.~46! and ~58!, also coincide
with the corresponding ones in Ref. 45@Eqs.~9! and~12!# if
the terms proportional toAac

4 are neglected. Our results su
r
ce
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port also the criterion~14! in Ref. 45 for the appearance o
nonlinear localized modes. In addition, our analytical a
proach based on QDA may provide many more insights s
as for the occurrence of nonlinear localized excitations in
acoustic branch, although it has the limitation of small a
plitude.

V. DISCUSSION AND SUMMARY

Based on the QDA for diatomic lattices we haveanalyti-
cally studied the nonlinear localized excitations with sm
amplitude in the diatomic lattices with cubic and quartic no
linearity. The results are quite general and allow us direc
to obtain many different types of nonlinear excitations in
unified way. Starting from the nonlinear amplitude equatio
given in Eqs.~32! and ~33!, the existence criteria for the
optical upper cutoff solitons and asymmetric gap solit
modes have been explicitly provided in Eqs.~41!, ~53!, and
~60!. The analytical expressions of particle displacements
all these nonlinear localized modes are also given. The
oretical results have been applied to the standard two-b
nearest-neighbor potentials from the Toda to the Morse t
and agreements with the previous numerical findings h
also been found.

Most of the existing analytical studies for nonlinear ex
tations in diatomic lattices involved a so-called ‘‘decouplin
ansatz,’’ in which some relations were assumed between
displacement of light particles and that of heavy ones bef
solving the equations of motion~see Ref. 11, and reference
therein!. Pnevmatikoset al.53 investigated the soliton dy
namics of nonlinear diatomic lattices by using the deco
pling ansatz. For long-wavelength~i.e., q50) excitations
this can be done without much difficulty. But for envelop
type excitations and in the case of cubic nonlinearity,
concrete form of the decoupling ansatz is not easy to de
mine and the analytical calculation for the coefficients
amplitude equations, such as Eqs.~32! and ~33!, is also
heavy. Except for several numerical studies, such an ana
cal calculation has never been accomplished. Recently
was shown that the decoupling ansatz is completely unn
essary and can be derived by the QDA.11 In addition, the
QDA has many other advantages. For example, the res
obtained by the QDA, though restricted to small amplitud
are valid in the whole BZ except at the zero-dispersion po
of the optical-phonon branch~see Ref. 46!. Thus one can
obtain all solutions for nonlinear cutoff and noncutoff mod
in a simple and unified way; the method is quite general a
can be applied to the other lattice systems. An extens
based on the QDA for magnetic gap soliton excitations
alternating Heisenberg ferromagnets has been gi
recently.54 In the present work, we use the QDA to consid
the nonlinear localized excitations in the diatomic lattic
with cubic and quartic nonlinearity. The detailed expressio
of the coefficients in the amplitude equations~32!–~34! and
various types of nonlinear excitations have been given
plicitly.

The study of stability by using nonlinear amplitude equ
tions is widely employed in pattern formation in systems o
of equilibrium.50,55 In the present work, by a similar idea w
have studied the stability of the linear optical and acous
~upper and lower! cutoff phonon modes. For theK2-K3-K4
potential, we have obtained the existence criteria for the
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currence of linear cutoff phonon mode-related nonlinear
calized excitations: IfK3

2/(K2K4),3/4, we have the acousti
and optical upper cutoff solitons. Otherwise one has only
optical lower cutoff~gap! solitons. The later case happens f
the standard two-body potentials from the Toda to the Mo
type. The formation of the asymmetric gap solitons in t
standard two-body potentials is the result of BF modulatio
instability of the optical lower cutoff phonon modes. O
results show that for any nonlinear diatomic lattice a g
soliton always occurs. The reason for this is that the cur
tures of the acoustic and optical branches of the pho
spectra in the vicinity of the BZ edge have different sign
This means that if the optical mode at the BZ edge supp
a lower cutoff gap soliton, the acoustic mode at the BZ ed
supports an upper cutoff kink subject to the same sign of
nonlinearity, and vice versa.

For large-amplitude excitations we should extend
present QDA to a higher-order approximation. It is expec
that higher-order correction terms, likelyu f 6u4f 6 and
(]/]xn

6)u f 6u4 ~as well as some higher-order dispersi
terms!, will be added, respectively, into Eqs.~32! and ~33!.
Then the existence criteria for the nonlinear localized ex
tations, i.e., Eqs.~41!, ~53!, and~60!, will be modified to be
amplitude dependent.

The generation of an asymmetric IGM in nonlinear 3
diatomic lattices has been considered recently.37,41 These
-
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.
ts
e
e
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d

i-

studies reveal the possibility of observing experimentally
IGM’s in real ~3D! crystals. A macroanalogy of the diatom
lattices with cubic and quartic nonlinearity is a chain of ma
netic pendulums. Russellet al.56 reported moving breather
in such a system quite recently, but they did not pay atten
to nonlinear cutoff modes. If the mass of the magnetic p
dulums is arranged in an alternating way, one can obta
diatomic lattice with an asymmetric intersite~dipole-dipole
interaction! potential. For small-amplitude excitations the i
tersite potential reduces to aK2-K3-K4 one. Thus it is pos-
sible to observe the asymmetric IGM’s by using this ma
rodiatomic lattice system.
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APPENDIX

The detailed expressions of the coefficients of Eqs.~22! and ~23! are given by

d25I 2J2d222~ I 21J2!F I 2J2dsin~qd!

2v2~ I 21J22v2
2 !

G 2

, ~A1!

s254I 2I 3d
v2

2 22J2

v2
2 22I 2

1
4J2I 3d

v2
2 22I 2

~v2
2 12I 2cosqd!1

32I 2J2I 3Vg
2v2sinqd

~v2
2 22I 2!2

, ~A2!

a25
4~ I 21J223v2

2 !~Vg
2!22d2@~v2

2 22I 2!~v2
2 22J2!22I 2J2#

4v2~v2
2 2I 22J2!

, ~A3!

b252
I 3v2d

2I 2
, ~A4!

g252
3J4v2

2J2
F11

v2
2 22J2

J2
S 11

I 2

v2
2 22I 2

D G1
v2

3 sin2~qd!

~v2
2 22I 2!~ I 21J22v2

2 !
F2I 3L21

J3~ I 31I 2L2cosqd!

2v2
2 2I 2

G , ~A5!

L25
I 2J3@cosqd2~2v2

2 2I 2!/J2#

~2v2
2 2J2!~2v2

2 2I 2!2I 2J2cos2qd
. ~A6!

The coefficients of Eqs.~28! and ~29! are given by

d15I 2J2d222~ I 21J2!F I 2J2dsin~qd!

2v1~ I 21J22v1
2 !

G 2

, ~A7!

s154J2J3d
v1

2 22I 2

v1
2 22J2

1
4I 2J3d

v1
2 22J2

~v1
2 12J2cosqd!1

32I 2J2J3Vg
1v1sinqd

~v1
2 22J2!2

, ~A8!
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a15
4~ I 21J223v1

2 !~Vg
1!22d2@~v1

2 22J2!~v1
2 22I 2!22I 2J2#

4v1~v1
2 2I 22J2!

, ~A9!

b152
J3v1d

2J2
, ~A10!

g152
3I 4v1

2I 2
F11

v1
2 22I 2

I 2
S 11

J2

v1
2 22J2

D G1
v1

3 sin2~qd!

~v1
2 22J2!~ I 21J22v1

2 !
F2J3L11

I 3~J31J2L1cosqd!

2v1
2 2J2

G , ~A11!

L15
J2I 3@cosqd2~2v1

2 2J2!/I 2#

~2v1
2 2I 2!~2v1

2 2J2!2I 2J2cos2qd
, ~A12!

wherev6(q) has been given in Eq.~7!.
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