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Anelastic contributions and transformed volume fraction
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The internal-friction spectra of a thermoelastic martensitic transformation are usually obtained as a function
of temperature withṪÞ0 and show three—phase transition, transitory, and intrinsic—contributions. This
paper proposes a systematic method to analyze these internal-friction spectra. Indeed, two different procedures
are derived. The first one, with the support of an isothermal spectrum (Ṫ50), allows one to decompose the
internal-friction spectrum into its three contributions and in addition to calculate the volume fraction of
transformed material. The second one is based on an iterative process, and allows one to separate the intrinsic
term from the other two contributions directly related to the martensitic transformation, and to calculate the
volume fraction of transformed material, without the aid of an isothermal measurement. This method is
successfully applied to a thermoelastic Cu-Al-Ni shape-memory alloy. Then, the dependence of the phase
transition term on the volume fraction of transformed material is found. This allows us to reject the models
proposed to explain this term that do not take into account this dependence.@S0163-1829~98!00809-1#
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I. INTRODUCTION

In recent years there has been an increasing attentio
the physics of martensitic phase transformations in me
and alloys, and particularly in shape-memory alloys@see
~Ref. 1! for a general overview#. The principal features o
interest are related to the technological application of sh
memory alloys,2,3 that behave as smart materials,4–6 and to
the fact that this kind of alloy makes a good testing bench
study the physical behavior near the critical temperature
first-order structural transition like the martensitic transf
mation.

One of the main characteristics used to define a marte
tic transformation is the displaciveness of the lattic
distortive type involving a shear-dominant shape chang1

This means that during martensitic transformation an ato
shearing is responsible for the structural transition betw
the high-temperature phase~austenite! and the low-
temperature phase~martensite!. In fact, due to the elastic
instability of their crystalline lattice, the high-temperatu
phase undergoes a spontaneous homogeneous strain7 and a
combination of elastic modulii vanishes at the critical te
perature, giving rise to a soft mode. This behavior has b
widely observed and reviewed.8–10Nevertheless, it should b
stressed that the modes never become completely soften11

because the nucleation of martensite takes place throu
localized soft mode around the defects12–15 in such a way
that the incompleteness of the lattice instability leads t
first-order transition.16 This way, standard soft-mode theo
is not applicable because there is a finite discontinuity in
microscopic order parameter at the transition due to the fi
570163-1829/98/57~10!/5684~9!/$15.00
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order nature of the martensitic transformation. Fortunate
the relatively small jump observed in the order parame
gives a weakly discontinuous character to the martens
transformation so that it can be still regarded as a ne
continuous phase transition.11,17Accordingly, the martensitic
transformation has been treated in the framework of
Landau-Ginzburg theory using a variety of approaches.17–22

From an experimental point of view, it is not very easy
check the ability of these theories to explain the obser
experimental behavior, and for that reason they have alw
been controversial.1 Some aspects of this controversy cou
be attributed to the theoretical models themselves, but o
problems arise from the difficulty of comparison betwe
theory and experiments. This difficulty is enhanced by
fact that most of the usual experimental techniques only g
information about some particular aspects of the martens
transformation~transition temperature, hysteresis, transf
mation latent heat, crystallographic atomic shearing, soft
ing at the transition, etc.!. This partial experimental knowl-
edge does not allow checks of the global ability of t
theoretical models to explain the experimental behavior.

Among the different experimental techniques to study
martensitic transformation, the anelastic techniques,23 in-
cluding the simultaneous measurements of the inter
friction spectrum, the dynamic modulus evolution, and t
associated microdeformation24 vs temperature, have been e
tensively used to characterize the martensitic transforma
in different families of shape memory alloys: Ti-Ni~Refs.
25–31!, Cu-Zn-Al ~Refs. 32–39!, Cu-Al-Ni ~Refs. 40–43!,
Cu-Al-Zn-Ni-Mn ~Ref. 44!, Fe-Mn-Si-X ~Refs. 45–47!, and
Fe-Co-Ni-Ti.48
5684 © 1998 The American Physical Society
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One of the advantages of the anelastic techniques is
they are able to provide simultaneously a very precise in
mation about a large number of aspects involved in the m
tensitic transformation: ~a! global behavior of the revers
ible transformation; ~b! critical transition temperature
~c! transformation temperatures and hysteresis;~d! spe-
cific damping capacity evolution;~e! transformed volume
fraction evolution;~f! softening of the modulus at the tran
sition; ~g! microdeformation associated with the atom
shearing;~h! pretransitional effects. The knowledge of a
of these aspects is very useful making comparisons betw
theory and experiment, but we would like to remark that it
also very interesting from a technological point of view, pa
ticularly points ~c! to ~g!, due to the applications of th
shape-memory alloys.2–6

However, the analysis of the experimental data obtai
by anelastic techniques during a martensitic transforma
requires a specific treatment in order to establish a corr
tion with each one of the previously indicated paramet
and to give a good interpretation of them. Many studies
tempted to understand the main aspects involved in this
ject, see the works by R. De Batis49 and J. Van
Humbeeck50,51for a review. It is well known that the interna
friction ~IF! spectrum obtained during a martensitic pha
transformation can be decomposed into three differ
contributions:52

IF ~T!5IF Tr~T!1IF PT~T!1IF Int~T!. ~1!

IF Tr(T) is the transitory contributionof the IF spectrum,
because it appears only during heating or cooling and
comes zero when the temperature is held constant. It ta
account of the transformation kinetics, and is therefore
rectly related to the amount of volume fraction of tran
formed phase per unit time. TheIF PT(T) term is associated
with the phase transformation itself, and is responsible fo
the IF peak during isothermal measurements. Finally,
intrinsic term, IF Int(T), gives the own IF contribution o
each phase, martensite and austenite. In Fig. 1 the schem
representation of an IF spectrum and its different contri
tions during a martensitic transformation are shown.

FIG. 1. Schematic representation of IF and its three contri
tions during a martensitic phase transformation.IF Tr : Transistory
term. IF PT: Phase transition~or isothermal! term. IF Int : Intrinsic
term.
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It is obvious that considerable amount of information c
be obtained from the total IF spectrum, but to get a m
quantitative and precise information it becomes necessar
separate the different contributions of the IF spectrum. Th
taking into account the dependence ofIF Tr(T) on the trans-
formed volume fraction,n(T), it could be possible to calcu
late n(T) if the IF transitory term were isolated. Moreove
in order to check the different models proposed to expl
the martensitic transformation itself, it is necessary to
move the transitory and the intrinsic terms, and use only
phase transformation termIF PT(T). That is the case of the
models based on the Landau theory. Nevertheless, there
experimental procedure to decompose the IF spectrum an
obtain the evolution of the transformed volume fracti
n(T).

Commonly, the experimentally measured IF spectrum
carried out at a constant cooling~or heating! rate (ṪÞ0),
this way that spectrum includes all the contributions, and
problem arises when trying to separate each term. It is a
possible, however, to get an IF spectrum atṪ50 by measur-
ing each IF point in isothermal condition. In such isotherm
measurements, the IF spectrum does not show the trans
contribution and then we obtainIF PT(T)1IF Int(T). This
way, subtracting the isothermal spectrum from the norm
spectrum obtained atṪÞ0, the IF Tr(T) can be separated.53

In the same way, during a low-frequency IF spectrum with
high enoughṪ, the IF PT(T) contribution becomes markedl
lower than theIF Tr(T) one ~less than 10%!, and so the
IF PT(T) contribution could be neglected in a first approx
mation. Then, depending on the experimental conditions
becomes possible to separate or remove only one of th
contributions,IF Tr(T) or IF PT(T), keeping the other two
terms together,IF PT(T)1IF Int(T) or IF Tr(T)1IF Int(T), re-
spectively.

The aim of the present work is to describe a stand
method that permits the complete separation of the differ
contributions of the IF spectrum obtained during a marten
tic transformation. Two different procedures have been
veloped depending if an isothermal measurement has b
carried out in addition to the normal spectrum~at ṪÞ0! or
not. Taking into account this fact, the paper is organized
follows. In Sec. II an overview of the characteristics of t
different IF terms and the published theoretical models t
explain each IF contribution is presented. This overvi
shows that there is a common functional expression for
IF Tr(T) term. In Sec. III A the analysis method using a
isothermal measurement is explained. This allows one to
compose the total IF spectrum into the three different ter
In Sec. III B a method that may be used to treat the IF sp
trum when an isothermal measurement is not available
described. It consists of an iterative process that uses
relationship between the transformed volume fraction a
both the transitory and intrinsic terms. Finally, we summ
rize the main results obtained in this paper in Sec. IV. Alo
with the presentation of the analysis method, its applicat
to a thermoelastic Cu-Al-Ni shape memory alloy is show
This permits us to obtain results on theIF PT(T) contribution.

II. THEORETICAL OVERVIEW

In the previous section it has been indicated that
internal-friction spectrum can be decomposed into three

-
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TABLE I. The most importantIF Tr models can be expressed as:IF Tr(T)5K]n/]T f(Ṫ,v,s0). The f (Ṫ,v,s0) and IF Tr(T) functions
for these models are shown.

f (Ṫ,v,s0) IF Tr(T)

Belko et al.
~Ref. 54!

Ṫ

vT

mV«t
2Ṫ

kvT

dn

dT

m: shear modulus.
V: volume associated to a critical germ.
« t : transformation strain.

Delorme
et al.a

~Ref. 55!

Ṫ

v
~s0 high!

KmṪ

v

dn

dT

m: shear modulus.
K: constant.
s0 : oscillation stress-amplitude.

Ṫ

vs0
~s0 low!

KmṪ

vs0

dn

dT

Gremaud
et al.
~Ref. 56!

12
pṪ

2avs0

11
pṪ

2avs0

Ṫ

vs0

2«0
t

J

12
pṪ

2avs0

11
pṪ

2avs0

Ṫ

vs0

]n

]T

if S Ṫ

avs0
,

2

3p
D

s0 : oscillation stress-amplitude.
a: stress induced change of critical
temperature~Clausius-Clapeyron coefficient!.
J: elastic compliance.
«0

t : stress-free transformation shear strain.

S Ṫ

vs0
1

2

p
aD «0

t

4J S Ṫ

vs0
1

2

p
aD ]n

]T

if S 2

3p
,

Ṫ

avs0
,

2

p
D

Ṫ

vs0

«0
t

2J

Ṫ

vs0

]n

]T

if S Ṫ

avs0
.

2

p
D

Wanget al.
~Ref. 57! S Ṫ

v
D12r

A~T!S Ṫ

v
D12r A(T) temperature-dependent coefficient.

0,r ,1, ~materials with elastic softening!.
r 50 ~materials without elastic softening!.

Zhanget al.b

~Ref. 58!
Ṫm

vm12q A~T!
Ṫm

vm12q

A(T) temperature-dependent function.
0,m, q,1

aOther authors, W. Dejongheet al. ~Ref. 59!, and more recently, T. Xiao~Ref. 60!, have taken into account the possibility that the mate
transforms under the oscillating stress, and then an isothermal term is added, but the transitory contribution remains like the Delor
to high oscillation amplitude.

bIn the Zhanget al. model there is also an isothermal term that can be expressed asB(T)v122q.
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ferent terms~1!. In this section we present the origins an
dependences of each contribution, as well as a summar
the theoretical and empirical models proposed for each te

The IF Tr(T) is a kinetic term, which only appears durin
heating or cooling, and is closely related to the transform
volume fraction. It shows a peak during the martens
transformation and is strongly dependent on external v
ables such as the temperature rate (Ṫ), the oscillation fre-
quency ~v! and the oscillation stress amplitude (s0). The
specific variable contribution depends on the different m
els proposed, but in general can be expressed as

IF Tr~T!5K
]n

]T
f ~ Ṫ,v,s0!, ~2!

wheren is the volume fraction of transformed martensite,K
is a constant, andf (Ṫ,v,s0) is a function ofṪ, v, ands0 .
of
.

d
c
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-

The specificIF Tr(T) and f (Ṫ,v,s0) functions for the
most important models are displayed in Table I. In view
this table, some general observations on the dependenc
IF Tr(T) on the temperature rate and the frequency can
made. IF Tr(T) is directly proportional toṪ and inversely
proportional tov, and the general relationship between the
parameters can be expressed asIF Tr}Ṫp/v l . Here l and p
are two coefficients equal to one in the models of Be
et al.,54 Delorme and Gobin,55 and Gremaud and
co-workers56 ~in the last model, this is an approximation, th
becomes exact when the termṪ/v is high enough!, whereas
they are less than one in the models of Wang a
co-workers57 and Zhang and co-workers.58

However, the most important fact is to notice the line
relationship betweenIF Tr(T) and ]n/]T. Although in the
Wang and co-workers57 and Zhang and co-workers58 models
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TABLE II. IF PT(T) contribution proposed by the different models.

IF PT(T)

Mercier
and
Melton
~Ref. 62!

lL4Bv

@F~AA21!#2

l: density of dislocations.
L: average loop length.
B: viscous coefficient.
F: is a function that depends on the crystallographic
directions of the dislocations,A is the anisotropic
factor.

Kosimizu
~Ref. 63!

x2MvG0

v211/t2

G0 : unrelaxed modulus.
t : relaxation time, calculated using the Landau theory
of the first-order phase transition.
M : parameter depending on the kinetics of the order
parameter.

Kuska
~Ref. 64!

x2MvG0

v211/t21x2MG0 /t

x2: coupling constant between the stress and the or
parameter.
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there is no explicit dependence of the internal friction on
volume fraction of transformed material, their calculatio
clearly show that a direct relationship must exist betwe
both functions IF (T) and n(T). In addition, Zhang and
co-workers61 have found experimentally that the volum
fraction of the new phase is equivalent to the normaliz
internal friction integral.

The phase transformationIF PT(T) term is independent o
Ṫ and is responsible for the IF peak during isothermal m
surements~IF PT(T) is also called the isothermal term!, being
the most important contribution in kHz frequency ran
measurements. According to the explanation given
Bidaux and co-workers,52 IF PT(T) is related to the reversible
displacement of the martensite—austenite interfaces du
one oscillation cycle, while theIF Tr(T) is associated with
the displacement of interfaces over large distances, produ
by the transformation kinetics. The main models that expl
this contribution are schematically represented in Table
The first one was proposed by Mercier and Melton62 who
assumed that the origin of this term is a dislocation rel
ation process. The models by Kosimizu63 and Kuska64 are
based on the Landau theory of the phase transition.

The intrinsic term IFInt(T) is the sum of the separate I
contributions of each phase, martensite in the lo
temperature side and austenite in the high one. It depe
only on the microstructure of each phase and consequen
expressed as

IF Int~T!5n~T!IF m1@12n~T!#IF a , ~3!

where IF m and IF a are the martensite and the austenite
contributions, respectively.

III. ANALYSIS METHOD OF INTERNAL-FRICTION
SPECTRA

The method of analysis that we will describe subseque
has been applied successfully to IF spectra of different all
~Fe- and Cu-based alloys!. Particularly, in this paper, we us
the method to analyze the martensitic transformation i
Cu-13Al-3Ni ~wt. %! polycrystalline alloy. The measure
ments were carried out in an inverted torsion pendul
working at about 1 Hz with a temperature rate of change
e

n

d

-

y
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ed
n
I.

-

-
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a

f

60 K/h for the nonisothermal measurement.
The starting point is the experimental IF spectrum o

tained as a function of temperatureIF (T) between a starting
Ts and a finishingTf . The temperature range (Ts ,Tf) is
assumed to be large enough to reach the background reg
on both peak sides. This way during the forward~cooling!
spectrum:Ts.Ms.M f.Tf , whereMs andM f are the mar-
tensite starting and the martensite finishing temperatures
spectively. And during the reverse~heating! spectrum:Ts
,As,Af,Tf , whereAs and Af are the austenite startin
and the austenite finishing temperatures respectively.

The IF spectra and the square frequency curv
(}modulus) for a nonisothermal measurement appear
Figs. 2~a! and 2~b!, respectively. On the other hand, Fig.
shows an isothermal spectrum obtained during the rev
martensitic transformation stabilizing the temperature ev
ten degrees approximately. Comparison of the two IF spe
makes evident the difference between the IF values of
two kinds of measurements, linked to the absence ofIF Tr(T)
in the isothermal spectrum.

A. Using an isothermal IF measurement

In this section we describe the procedure to be app
when it is possible to obtain an isothermal spectrum in ad
tion to a nonisothermal one. As pointed out in the introdu
tion, subtracting the isothermal spectrum from a nonisoth
mal one ~with three contributions! obtained immediately
after, we get theIF Tr(T) contribution@see Fig. 4~a!#. More-
over, it has been shown in Sec. II that the transitory con
bution of the IF spectrum could be expressed in general

IF Tr5K
]n

]T

Ṫp

v l , ~4a!

where thep andl coefficients are equal to one, except for t
models of Wang and co-workers57 and Zhang and
co-workers.58

This way, calculating the integral function we get

E
Ts

T

IF Trv
ldT5KṪpn~T!, ~4b!
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and then taking into account thatn(Ts)50 andn(Tf)51, we
obtain the normalization condition

KṪp5E
Ts

Tf
IF Trv

ldT. ~4c!

Expressions~4b! and ~4c! allow us to obtain the volume
fraction of transformed martensite as a function of tempe
ture:

FIG. 2. Experimental internal friction~a! and square frequenc
~b! measurements during the forward~black circles! and reverse
~open circles! martensitic transformations in Cu-13Al-3Ni~wt. %!
shape-memory alloy.

FIG. 3. Isothermal IF spectrum during a reverse martens
transformation. The line is the interpolated curve.
-

n~T!5E
Ts

T

IF Trv
ldTY E

Ts

Tf
IF Trv

1dT . ~4d!

Therefore, it is clear thatn(T) can be easily calculated from
the IF Tr(T) using the last equation, andn(T) so obtained is
plotted in Fig. 4~b!. IF int(T), also plotted in Fig. 4~b!, shows
the same functional shape asn(T), according to Eq.~3!. Its
numerical values can be obtained using the values ofIF a and
IF m , which can be easily calculated from the IF spectru
Once two terms of the IF spectrum have been calculated,

c

FIG. 4. Curves of the three IF contributions during a reve
martensitic transformation:~a! The transitory term, obtained sub
tracting the interpolated curve of Fig. 3 from the experimental cu
of Fig. 2~a!. ~b! Intrinsic term andn(T), obtained from theIF Tr(T)
curve and the square frequency spectrum using Eqs.~4d! and ~3!.
~c! IF PT(T) contribution, obtained subtracting theIF Int(T) curve
from the isothermal IF spectrum of Fig. 3.
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trivial to get the third, that is,IF PT(T). This contribution,
obtained during a reverse martensitic transformation, is p
ted in Fig. 4~c!; it shows a peak during the transformation

It is important to notice that the normalized integral cur
of IF PT(T) term looks like the transformed fraction curv
n(T) of Fig. 4~b!. Moreover, it can be seen in Fig. 5 that th
linear correlation betweenn(T) and the integral curve o
IF PT(T) is qualitatively good. This means that there is
clear dependence ofIF PT(T) on n(T), that has not been
noticed previously. Nevertheless, the models proposed to
plain the IF PT(T) term,62–64 do not take into account an
explicit relationship between this IF contribution and the v
ume fraction of transformed martensite~see Table II!. Then,
in the light of this new result, it is clear that these mod
should be revised to include explicitly this dependence
IF PT(T) on n(T).

Once the three IF contributions have been separated,
obvious that they will be useful to determine the differe
interesting parameters of the martensitic transformation fr
a technological point of view, or alternatively to compare t
experimental behavior with the theoretical models. In ad
tion, important new results can be obtained from the stud
the different contributions, such as the relationship betw
IF PT(T) andn(T) that has been mentioned before.

B. Using only a nonisothermal IF measurement

Section III A shows how to decompose the IF spectr
into the three terms and how to obtainn(T) making use of an
isothermal internal friction measurement. However, gett
an isothermal IF spectrum is difficult and tedious becaus
is necessary to stabilize the temperature for each data p
Then, the problem to solve now is how to analyze a norm
IF (T) spectrum including the three terms, without the su
port of an isothermal spectrum.

1. Relationship between the internal-friction integral and the
volume fraction of transformed martensite

Equation~4d! is not immediately useful in this case b
causeIF Tr(T) can not be previously calculated. In order

FIG. 5. Relationship betweenn(T) and the normalized integra
curve of IF PT(T).
t-

x-

-

s
f

is
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nt.
l
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overcome this problem we propose the following procedu
First, we define the integralJ(T) as

J~T!5E
Ts

T

~ IF 2IF Int!v
ldT5E

Ts

T

IF Trv
ldT1E

Ts

T

IF PTv
ldT,

~5a!

and consequently,

J~Tf !5E
Ts

Tf
~ IF 2IF Int!v

ldT5E
Ts

Tf
IF Trv

ldT

1E
Ts

Tf
IF PTv

ldT. ~5b!

Applying Eq. ~4d!, we obtain

J~T!5n~T!E
Ts

Tf
IF Trv

ldT1E
Ts

T

IF PTv
ldT. ~5c!

From these equations we reach the result

J~T!

J~Tf !
5n~T!1Dn~T!, ~6!

where

Dn~T!5

*Ts

T IF PTv
ldT2

J~T!

J~Tf !
*Ts

TfIF PTv
ldT

*Ts

TfIF Trv
ldT

. ~7!

It will be shown later thatDn(T) can be neglected during
low frequency measurements and high enoughṪ, and in
these cases, there is a simple relationship betweenJ(T) and
n(T):

J~T!

J~Tf !
'n~T!. ~8!

This means that then(T) curve can be calculated from Eq
~8!, with no need to separate previously the transitory c
tribution IF Tr(T). The way to get theJ(T) integral from the
experimental IF spectrum is described in the next section

2. Iterative process

Taking into account the relationship between theJ(T)
integral and then(T) obtained in the Sec. III B 1, it is pos
sible to determine theIF Int(T) contribution and consequentl
n(T) using the following iterative process. The process b
gins with the proposal of an arbitrary initial function for th
intrinsic term@ IF Int(T)# initial . This function is subject only to
the condition IF m>@ IF Int(T)# initial>IF a , where IF a and
IF m are the austenite and martensite internal friction valu
respectively, which are easily calculated from the IF sp
trum.

From the chosen@ IF Int(T)# initial function, we estimate
IF (T)2@ IF Int(T)# initial , and then we calculate the integr
@J(T)# initial . This is directly related to the transformed vo
ume fraction@Eq. ~8!#, thus an expression forn(T) is ob-
tained. Introducing this expression in Eq.~3! and using the
values ofIF a and IF m previously calculated, a new expre
sion for IF Int(T) can be found@ IF Int(T)#1 .
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FIG. 6. Three possible initial functions for the IF intrinsic contribution used to check the iterative process.
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Using this new @ IF Int(T)#1 function, instead of
@ IF Int(T)# initial , at the beginning of the process we perfor
an iteration. Several iterative cycles must be done until
difference between the input function@ IF Int(T)# j 21 and the
output function @ IF Int(T)# j in an iteration cycle become
smaller than a prefixed value and thus a finalIF Int(T) is
reached. This process can be programmed easily for a c
puter, and then the IF intrinsic contribution may be quick
and precisely evaluated.

3. Checking the iterative process

In order to check the influence of the initial functio
@ IF Int(T)# initial chosen to begin with the iterative process w
will use three different@ IF Int(T)# initial that are displayed in
Fig. 6. In our opinion, these are the most intuitive functio
one can choose, but we remark that it may be whichever w
the only condition that it takes values betweenIF a andIF m .
Once the iterative process is applied, three important fa
can be remarked:

~a! In order to calculate theJ(T) integral, thel coefficient
has been chosen to be one, as it is assumed in most o
models. Nevertheless, the reall value could be calculated
experimentally making measurements as a function of
frequency. However, several proofs have been done with
ferent l and only slight differences have been observed.

~b! The process converges very quickly, where the squ
root of the quadratic differences between consecutive cy
has been used as parameter to check the convergence ra
Table III, the evolution of this parameter during the applic
tion of the iterative process is shown. ColumnsA, B, andC
correspond to the initial functions shown in Figs. 6~a!–6~c!,
respectively. After four iteration cycles the values of the co
vergence parameter become lower than the experimenta

TABLE III. The evolution of the square root of the quadrat
differences between consecutive cycles during the iterative pro
is shown in order to estimate the convergence rate. ColumnsA, B,
andC give the evolution for the three different@ IF Int(T)# initial func-
tions shown in Figs. 6~a!–6~c!, respectively.

Iteration cycle A B C

1 1.6331022 2.0731022 1.6431022

2 2.5531024 2.1131023 1.4431023

3 2.4031026 1.1931024 3.6431025

4 8.3731028 6.1231026 1.4231026

5 6.9531029 5.4331027 1.2231027

6 4.0031029 1.7431028 5.9431029

7 1.7031029 3.0431029 2.4131029

8 0.00 8.07310210 6.59310210

9 0.00 0.00 0.00
e
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ror of the IF data, that is, 1025. In any case, to show the
mathematical convergence, results for ten iteration cycles
presented in Table III. A stationary function is reached af
eight iteration cycles.

~c! The final IF Int(T) function does not depend on th
initial one and the three different@ IF Int(T)# initial shown in
Fig. 6 give the same final result. The finalIF Int(T) obtained
from the IF spectra of Fig. 2~a! are plotted in Fig. 7~a!.

Once we get the finalIF Int(T) function, making use of the
expression~3! the volume fraction of transformed marten
site, n(T)5„IF Int(T)2IF a… /(IF m2IF a) , is obtained. The
technical transformation temperatures can be easily ca
lated from then(T) curve. It is usual in technological appli
cations to determine these temperatures at a specific per
age of transformation. The transformation temperatu
displayed in Fig. 7~a! are taken at 5% and 95%.

FIG. 7. Final results of the iterative process for the IF spec
shown in Fig. 2~black and open circles stand for forward an
reverse transformations, respectively!: ~a! curve of the intrinsic
term and then(T). ~b! curve of the transitory plus phase transfo
mation contributions.
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57 5691ANELASTIC CONTRIBUTIONS AND TRANSFORMED . . .
Subtracting the calculatedIF Int(T) from the total IF spec-
trum one gets the two contributions directly related to t
martensitic transformation:IF Tr(T) andIF PT(T). This curve
is plotted in Fig. 7~b!.

In order to check the accuracy of the iterative method
have compared then(T) curve obtained from the IF isother
mal spectrum@see Fig. 4~b!# to the approximate one@Eq. ~8!#
obtained by direct application of the iterative method to t
three contributions spectrum. Figure 8 shows that the lin
correlation between the twon(T) curves is very good. The
deviation from the plotted straight line represents the diff
ence between then(T) and the approximated function
J(T)/J(Tf), that isDn(T). This difference remains alway
below 1.5% of transformed material. Consequently,
Dn(T) term in Eq.~7! can be neglected, and the approxima
relationship~8! turns out to be correct, as it was previous
supposed.

IV. SUMMARY AND CONCLUSIONS

An overview of the theoretical models published to inte
pret the IF spectrum during martensitic transformation h
been done. This overview shows a common functional
pression for theIF Tr(T) term. Taking into account this func
tional form, a standard method that permits a systematic
objective treatment of the IF spectrum during a martens
phase transformation has been developed. Thus, the t
contributions of the IF spectrum are obtained and in addit
the curve of transformed volume fraction of martensite
calculated. In Fig. 9 the general schema of the analy
method is shown.

The left branch describes the procedure to be app

FIG. 8. Linear correlation between then(T) curve obtained us-
ing the isothermal spectrum and then(T)'J(T)/J(Tf) curve ob-
tained using the iterative process during a reverse martensitic tr
formation.
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when it is possible to use an isothermal spectrum in addit
to the normal IF spectrum~nonisothermal!. This way, the
total decomposition of the spectrum and then(T) curve are
obtained. This is an interesting fact for the experimen
checking of the theoretical models proposed to explain
martensitic phase transformation, like the models based
the Landau theory, for which theIF PT(T) must be isolated.
Thus, the dependence of this term onn(T) has been found
that allows us to reject the proposed theories62–64 to explain
this term.

The right branch in Fig. 9 displays the procedure to
applied when only the nonisothermal spectrum is availab
This way it is possible to obtain the intrinsic termIF Int(T),
the n(T) curve and also theIF Tr(T)1IF PT(T) curve that in
the low frequency andṪ high enough ranges is approx
mately just theIF Tr(T) contribution. It has been pointed ou
that a total decomposition of the spectrum is possible o
with the aid of an isothermal spectrum. Nevertheless, fr
nonisothermal measurements, in spite of the impossibility
a total decomposition, there can be obtained information
technological interest such as then(T) curve and the damp-
ing capacity evolution during the transformation. From t
n(T) curve the characteristic transformation temperatu
can be accurately determined.
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FIG. 9. General schema of the analysis method. Dashed l
show the different terms obtained by the process. Using a non
thermal spectrum plus an isothermal one the total spectrum ca
decomposed, obtaining the three IF terms andn(T) ~left branch!.
From a nonisothermal spectrum by means of the iterative proc
IF Int(T), IF Tr(T)1IF PT(T)'IF Tr(T) andn(T) can be calculated
~right branch!.
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