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We examine nonlocal conductivity in high-temperature superconductors from a phenomenological point of
view. One wants to deduce the properties of the conductivity, especially its inherent length scales, from the
transport data. Although this is a challengingerseproblem, complicated further by the experimental data not
being completely self-consistent, we have made some progress. We find that if a certain form for the conduc-
tivity is postulated then one requires positive “viscosity” coefficients to reproduce some of the experimental
results. We are able to show that the effects of surfaces on the conductivity are likely to be important and draw
comparisons with the treatment of the surface within the hydrodynamic approach put forth by Huse and
Majumdar. We also develop an approximation scheme for the conductivity which is more robust than the
hydrodynamic one, since it is stable for both positive and negative viscosity coefficients, and discuss the results
obtained using itfS0163-182608)04609-9

[. INTRODUCTION nificant temperature range above the “melting” transition. A
feature of our studies below is that substantial nonlocal ef-
The measurement of a substantial nonlocal conductivitfects are only present when a characteristic lerfgtesum-

in high-temperature superconductors in a magnetic field isbly the phase coherence lengghof the order of the sample
thought to imply the existence of moving vortex lines havingthickness. Now the phase coherence length scale along the
coherence lengths of the order of the sample thickness, d®ld direction(according to Ref. ygrows exponentially rap-
opposed to pancake vortices readily sliding past one anothédly as the temperature is lowered in such a way that the
(for a general review, see Blattet all). Measurements of temperature interval over which nonlocal effects might be
nonlocal effects probe the inherent length scales of the probeisible in the vortex-liquid region is only perhaps within 0.3
lem and thus can be used to investigate issues such &sof the temperature at which pinning drives the resistance
whether the decoupling and melting transitions occurapidly to zero. This is of the same order of magnitude as the
simultaneously?. The claims of Safaet al® to have observed rounding of the zero-field transition due to sample inhomo-
a sizable nonlocal effect in twinned YB2au;0,.5s (YBCO) geneities and as a consequence it will be hard to disentangle
are based on two sets of measurements. In the first, which wiee various effects from each other in the untwinned results
refer to as theop geometry, a current is put into and drawn of Lopez et al® If one supposes that the long length scale
out of the top of a modified flux transformer while the volt- causing the nonlocality in the twinned case is caused by a
age difference¥,, andV,, are measuretsee Fig. 1. Inthe = Bose-glass-like mechanisi,then one would expect the co-
second, thesidegeometry, the current is withdrawn from the
bottom and the voltage¥.; and Vg, are measured. Safar
et al? find that the ratiosV/pe/ Viep and Vyign/ Vier both ap-
proach 1 as they near the melting transition. Taken individu-
ally either result might be explained by a local though aniso-
tropic conductivity; but taken together the results are
inconsistent with a local description. Safaral® confirm
this by analyzing each data set as though the conductivity
were local(the Montgomery analysts and extracting from
each theapparent conductivity ratio o{®/¢{® , finding a

huge discrepancy in these apparent ratios. * V.
Eltsev and Rapbdispute the Safaet al. claim. They per- 6 V1 W
formed similar measurements but did not Ség/Vier Lout

—1. On the other hand, they may have seen nonlocal effects

in a tilted geometry in which the current is extracted from  FIG. 1. The modified flux-transformer set-up of Safatral.
terminal 6 (instead of terminal 5) and the ratio (Ref. 3. The diagram on the left shows the arrangement of the
(V3—Vg)/(V,—V5) measured. In a comparison of twinned terminals for thetop geometry, and the right shows teigle geom-
and untwinned YBCO, [pez et al® find that in the un- etry. The samples are single crystals of YBCO with the magnetic
twinned YBCO, the strongest signature of nonlocality seerfield aligned along thec-axis of the crystalVi=V,— Vg and

by Safaret al,> Vo= Viop, iS NO longer found for any sig-  Viign=Vs— V7.
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herence length to increase only as a power law, and the widtthe coefficients are in fact positive or negative will be dis-
of the temperature interval over which nonlocal effects arecussed in more det:_;1il in Sec. II. _
visible may therefore be wider in the twinned case. The hydrodynamic analysis leads to a fourth-order partial
The assertions of nonlocal effects in,Br, CaCy O, differential equation which reduces to Laplace’s equation in
(BSCCO are less dramatic than those in YBCO. In their the local limit (»=0). It also supplies sufficient boundary
measurements on sing|e_crysta| BSCCO, KeeagaLlO conditions to solve for the potentIM(r). Huse and Majum-
never observe the ratioguo/Viep and Vign/Vier Simulta- dar argue that there are discontinuities in the first derivative
neously approaching one. Nevertheless, when they perform® E(r) at the surface. When the conductivityhich in hy-
Montgomery analysis on their data, they do see discrepanciéfodynamics is a differential operajds applied, the result
in the apparent ratior®/o(® . Conversely, measurements Is 6 functions in the current distribution at the surface_:,. ie.,
by Buschet al! on si(r);glez-érystal BSCCé and by Doyle surface currents. One then uses charge conservatign

. . =0 to translate this outcome into boundary conditions on
12

et al.. on BS.CCO with golymnar defects are claimed to t.)eV(r). To handle thes function it is convenient to integrate
consistent with local resistivity. These seemingly contradic-

o o~ ~over the surface as in the standard Gaussian pillbox
tory results could be caused by approximations used in thg,qment®_only here, because of the surface current, the
local analysi§' and might be resolved by using the full

1 ) ' ! side surfaces of the pillbox contribute even as the volume of
analysis or better suited approximations, such as the one prgne pox is shrunk down to zero. This gives what initially

posed by Levirt® A theoretical framework which could pro- appears to be an extra term in their boundary conditions.
vide some quantitative analysis of these results—for ex- Huse and Majumdar study a two-dimensional geometry
ample, by the extraction of a temperature-dependent lengtfhodeling the flux transformer used in the experimentszthe
scale—would obviously be helpful in the interpretation of 54is of which coincides with th& axis of the supercon-
these and ot_her results. Our aim is to develop such a framey,ctor. They have performed a detailed analysis of the situ-
work. We will approach the problem phenomenologically, ation with one nonzero viscosity coefficient,,, which em-
attempting to relate the current-voltage characteristics to thgodies the interaction of pancake vortices moving in

form of the (nonloca) conductivity. - different ab planes and at different velocities. Somewnhat
‘When a material has a nonlocal conductivity, the approsurprisingly, their equation and boundary conditions are
priate form of Ohm's law is given by symmetric undemyy,,x— 7,55, despite the fact that these co-

efficients would appear to represent very different physics.
As an alterative to the hydrodynamic truncation of

(}M(k), we consider an analysis based on Pagproxima-

: S tions to o ,,(K). It incorporates a more realistic largebe-
where symbols have their usual meaning in this context, an avior thgn the hydrodynamic approach and remains solv-
the integral is taken over the volume of the sample. For abl | inciol imate (k) t
nonlocal conductivityg,,(r,r ') #o,, (r—r'). In momen- able. In principle, one can approximate,,(k) to any

. . . . . desired degree of accuracy by using a sufficiently large-order
tum space, for a translationally invariant system, this relat'orbadeapproximation As the order of the approximation is
becomes .

increased, our technique of solution continues to work, but

. . . the computing effort increases rapidly. One stage of the so-
Ju(K)=0,,(k) E(K), (2)  lution involves a partial differential equation rather reminis-
. cent of that occurring in hydrodynamics. In fact, in one in-
wherej , (k) is the Fourier transform of,,(r), and similarly  stance we can recover the results of Huse and Majumdar by
for the other quantities. It should be noted that nonlocal efmeans of a limiting procedure on the Pagsult.
fects will only be observable when the length scale of the In the remainder of this paper we first discuss our moti-
nonlocality is of the same order or larger than the distanceation for wanting to improve upon and extend the work of
between leads. Huse and Majumdar; this involves an examination of

The best known theoretical work on the subject is thewhether the relevant coefficienigin the smallk expansion
“hydrodynamic” approach' expounded upon in genera| byOf the Conductivity are positiye pr n_egative. We investigate
Marchettiet al}* and applied specifically to the conductivity the current-voltage characteristics in a particular geometry
by Huse and Majumdar. This theory is so called because (the infinite-slab geometjywhich allows us to comment on
the nonlocal conductivitg, (k) is expanded in a Taylor whether positive or negative viscosity coefficients are ngeded

o KPR : ) to explain experimental data such as that of Saftal:
series ink, and the expansion is terminated at orééy in

L (Sec. III).,The section following that contains details of work
other words, the conductivity is taken to be of the form ,qjhq pad@pproximations to the conductivity. In Sec. V we

R R discuss the role of surfaces in determining the conductivity
0 ,(K)=0,,(0)+ 7,5, KgK, . (3 and how the analysis of Huse and Majumdar takes account

) _ ~of surfaces. Appendixes A and B contain some calculational
We revert to the notation of Huse and Majumdar to facilitatedetails, while in Appendix C we outline the Bose-glass scal-

j,m:f (rr ) Ey(r') dr, 0

comparison with that work? note that later work§~*®re-  ing of the conductivities used in some of the numerical work.
place then's with S's to prevent confusion with the viscosity

tensor of the vortex-line liquid, which is related but Il. ARE THE VISCOSITY COEFFICIENTS

distinct® Unfortunately, this form for the conductivity is NEGATIVE OR POSITIVE?

unphysical if certain coefficients become negative, as shown A
by Blum and Mooré-’ Huse and Majumdar always assume  For stability, the conductivity tensor,,(k) must be a
that the coefficients they use are positive. When and whethgiositive definite matrix. For this to be true of the hydrody-
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namic form, Eq.(3), certain of the viscosity coefficients model well its bulk properties, but high&rterms are needed
Nuapy MUSt be positive; in particulan,,,,and 7,.y. The  to capture the behavior at the boundaries. So one might think
work of Mou et al® and Blum and Moor€ shows that for a procedure focusing on smalwould do well in the bulk
high temperatures, these coefficients are actually negativand perhaps less satisfactorily at the surface. But hydrody-
Both works use the time-dependent Ginzburg-Landau equatamics involves a differential equation, and its solution, even
tion as a starting point, so “high temperatures” in this con-in the bulk, is determined by boundary conditions, i.e., the
text means near thid.,(T) line. Thus to treat nonlocal con- surface. Thus it is crucial to treat the surface properly—even
ductivities in this region of thed-T plane, one requires a more so, since in the experiments at issue here, all of the
model that can handle these so-called negative viscositiegjeasurements are taken at the surface. Huse and Majumdar
ruling out the hydrodynamics approach. However, we expeatlo take some account of surfaces, and in doing so find sur-
substantial nonlocal behavior occurs only near the meltindace currents, but their theory is unable to make any predic-
line, where some of the viscosities may very well be positivetion about the length scale over which these currents might

and hydrodynamics a viable approach. flow. Such restrictions as these provide the impetus to go
So what happens to,,(k) as the temperature is low- beyond hydrodynamics. _
ered? The arguments of Mat al® suggest and the simu- There is one further comment that is useful to make be-

lations of Wortis and Hugé bear out that as the temperature fore proceeding to some concrete calculations. While we re-
is decreasedy, 4« changes sign, becoming positive. Imagine quire thato (k) be a positive definite matrix, this does not

a plot of o, (k) (see Wortis and Hus8: at high tempera- imply that o,,,(r) must always be positive. Although con-
tures, o (k,) increases monotonically ds, is decreased, ductivities taking on negative values seems a little odd at

but at low temperatures, it develops a local maximum at e{'rSt S'Ehi’othe sm’kl)ulatlonst_of Wortis and H&%feﬁn]? thgtt
nonzerok, and then falls to a finite valug¢the flux-flow oxx(X,ky=0) can be negative over a range of a few inter-

valué® atk,=0 vortex spacings. In facny nonlocality in the conductivity
X implies that either the real-space conductivity or resistivity

tivity of a type-1l superconductor does not diverge, because or both) take on _n_egatlve _va_lues a_t some points. By_ d_ef_|n|-
lon, the conductivity matrix is the inverse of the resistivity

current causes the vortices to move, leading to dissipatio ] s . ) - -

that is, a nonzero resistance. The conductivity is thus end1atrix, which implies that in Fourier space,,,(k)p,a(k)
hanced if this movement of vortices is impeded, for instance= Sua (S, IS the Kronecker delta function and the summa-
by pinning centers. The interaction of a vortex with othertion convention is used For example, ifo,y=0y,=0 we
vortices may also inhibit its motion. However, for a uniform have in real space

current the vortices all move together and thus their mutual

interactions play IittI(_a role in hindering the center-of-mass f B’ g (r—r1') pu(r' —r")=38(r—r"). (4)
motion. For a nonuniform current, on the contrary, the vor-

tices are impelled to change their relative positions, and S r£1”, the right-hand side of Eq4) is zero; for the left-

:Eelr mtgractfu(_)tns do "Lh'b;]t_ tﬂ's s]:ort of motlo_?. Thereforet, hand side to be zero, some cancellation is needed. However,
e conductivity may be higher for a nonuniform current.., "0 14 be no cancellation i, (r—r') and p,(r’

These grguments suggest that at low tempergt_ures \_/vhere t—er”) are both everywhere positive. Thus, one or both has
interactions become important the conductivity might benegative regions. For experimental setups in which the cur-

higher aF some pon;eﬂq(. o . rent is distributed throughout the sample, this feature may
The situation is different for conductivity along teaxis.  not manifest itself in the voltage distribution; thus, Wortis

As with oy,(k,), at high temperaturesy,(k,) increases and Husé® have proposed geometries with very localized

monotonically ak, is lowered. However, the current is now currents in order to look for it.

along the axis of the vortices, the vortices are not forced to

move, and this time the uniform conductivity, (k= 0) di- lll. THE INFINITE-SLAB GEOMETRY
verges as the temperature is lowered. Hence, there is no com- AND POSITIVE VISCOSITIES
pelling reason to expect that a local maximum will develop
as temperature is lowered, and one might suspectihat
remains negative and therefore unsuited for the hydrody=. ) e
namic prescription at all temperatures. This expectation fo}"scoSlty coefficients to produce the strongly nonlocal behav-

3.
7222,5€€MS to be borne out by low-temperature calculationt’ S€€N by Safaet al’: Vi /Vigy—1 and Vign/Vier—1
which have the Abrikosov lattice as a starting poirand simultaneously. Let us consider the two-dimensional geom-
also by the preliminary simulation resufs etry shown in Fig. 2, with the lateral dimensitn- «; tak-

The proposition that some of thg's may be negative at ing this limit eliminates one set of boundary effects. Further-

all temperatures is one motive for wanting an alternative td"ore: et us postulate conductivities of the form
hydrodynamics; there are others. Hydrodynamics is a simple

In the presence of a magnetic field, thb-plane conduc-

The aim of this section is to show that for the choice of
conductivity given below, it is necessary to hapesitive

approximation to the actual conductivities, but we do not Tx(K) =2, (58)
know how good an approximation it is. Plus, there is no R R
obvious way to improve upon it—one might include terms of 0,4K)=0,4ky), (5b)

orderk®, but this necessitates additional boundary conditions . ) . .
to specify the solution, and it is unclear what they would be that is, o is a constanti.e., loca) and o, is a function of
In the Fourier representation of a function, the snkatkrms  k, alone. The functiorr,(k,) may include a constant piece;
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FIG. 2. The geometry used for our calculations of the potential FIG. 3. The ratios oW/ Vigp and Viign/Ver for the conduc-

AT - . tivity with positive viscosity coefficients, the form of which is pro-
V(x.2). Thec axis of the supe_rconductor IS allgne_d along zrexis vided in the text. The boundary conditions used wergx)
(called they axis in the notation of Huse and Majumglar

=Jol 6(Xx—2L.)— 8(x+2L.)] andJdg(x)=—Jg 8(x+2L;) (4L is
defined to be the distance between the current inplite voltages
moreover, tha_\t constant, as well §_§, may represent both Viop @Nd Vi, Were measured at=+ L, as were the voltage¥,,
superconducting and normal contributions to the local CONy,, "V, andV,. The parameters used atg=5, oM=1, C=1,
ductivity. Restricting the wave-vector dependence Ko p—1 andL =1; this corresponds to measuring lengths in terms of
alone enables us to solve for the potentigk,z) via Fourier e thickness of the sample and conductivities in terme'B¥, as

transformation. o . will also be done in all the other figures.
To determineV(x,z) for a given input current, first relate

V(X,z) to the components of the current

. 3 ikyX
VT(x,z)=—f dk, Jr(ky) cosh{xz)e 12

Ix(X,2)= =2y 9xV(X,2); (6a) ~% 2Tk g,4ky) Sinh(kD)
Note that charge conservation implids(0)=0, and hence
the integral above convergeskgt= 0. For the side geometry,
similar manipulations using the boundary conditions
using E,=—4,V. Next note that in the steady state, the j,(x,0)=]j,(x,D)=Jg(x) give

continuity equation isv-j=0, which in this case is

jz(x,z)=—f: o, AX—x") d,;V(x’',z) dx’', (6b)

= dk, Js(k,)sin k(D/2—z)]e'*x*
2 “ ’ 2 ’ ’ VS(XYZ):J Dy ~ (13)
2 BN+ | o Ax=X") V(X',2) dX'=0. (7) ~» 2Tk g,/k,) cosi{kD/2)
Fourier transforming Eq(7) with respect tax yields Analytically the x-axis decay length is controlled by the
pole structure of the above integralsee Appendix A for
—3 K2 V(K ,2)+ 0, fK,) 02V(Ky,z)=0 (8) more details Rather generically, this length grows if the
X ’ zZ 1 1]

viscosity coefficient[the coefficient ofk)z( in the smallk,
where we have used the fact that the transform of the corexpansion ofr,(k,)] is positive, leading to features such as
volution is the product of the transforms. The solution of thisV,y,/Vie— 1. Increasing this coefficientr{) also changes
differential equation is the ratio Vyoi/Viop though not necessarily in a monotonic
fashion. However, there is another way to ensure that
V(Ky ,z)=A(Ky) cosh k(ky)z]+ B(ky)sinH «(ky)z], (9) Vipot! Viop— 1: this is simply to maker,, very large, which
applies even in the local limit. Thus, to obtain results similar
to those of Safaet al.’> we expect that ar,/(k,) which
) grows large and has a positive viscosity coefficient at low
2 Ky 0 temperatures is required.
(}zz(kx). (10 These arguments have been checked numerically for a
variety of conductivities. One example is shown in Fig. 3.
One determines the function&(k,) and B(k,) from the  We have put all of the temperature dependence of the con-
boundary conditions; toward this end, it is convenient toductivity into the length scale” which is presumed to in-

where

K?(ky) =

Fourier transform the expression fpr[Eg. (6b)] crease as temperature decreases and choose a conductivity of
i X i the form o,(k)=0c"+Cr2(1+2K2/2)I(1+K2/?),
0,4k I V(Ky,2)=—],(ky,2). (1)  which meets the above criterion dsincreases. Note that we

have also included" , a local term that doesot scale with

Imposing the boundary conditions appropriate for the top/, Figure 3 shows a plot 0¥ ot/ Viop @Nd Viigne/Vierr @s a

geometry, namelyj,(x,0)=0 andj,(x,D)=J+(x), finding  function of 1/, for this choice. It can be seen that&s-,
V(k,,z) and taking the inverse transform yields the two ratios do indeed approach 1.



5516 S. J. PHILLIPSON, M. A. MOORE, AND T. BLUM 57

w 1 1
~ ~
S 09t Vip 3
N L
0.8} VYot 0.5 untwinned
0.7 3 4 6 04 i 3 3
S v, IV S
0.8+ bot” " top SN 05t
twinned
0.7 L y . . .
0 2 4 6 0 3
D/l 0 ! 2 D/l
FIG. 4. The voltage¥/,,, and Vbot and their ratio for the con- FIG. 6. The results fo¥,, andV, as a function o, usmg the
ductivity &,k =™ +C/e~%*, with the same values of pa- conductivities of Eq.(14) with parameterss™=5, o{"=1, D
rameters as in Fig. 3. By deflnltloMTL is defined to be/y, in the =1,Cy=1, andC,=5. The upper curve in each plot4,,, and

local case for this geometry, which can be calculated from Eqthe lower isVy;.
(A2). Note thatVy/V,,, does not tend to 1 ag— .

. I , ) , o We choose conductivities given by
Using conductivities with negative viscosity gives results

such as those shown in Figs. 4 and 5. In this particular case, o=,
the conductivity used was, (k) = o™+ C/e~% how-
ever, the results are typical of conductivities with negative
viscosity. Finding negative voltages is not necessarily un-
physical[see the discussion surrounding E4)] but the re-
sults clearly do not give us the strongly nonlocal behavior
seen by Safaet al® To= 0+ Cop?,

Now let us consider the difference between the experi- . o 2
mental data taken from twinned YBC(@Ref. 3 and un- Twinnedy . m C1/°(1+2k5/9)
twinned YBCO® Recall that for the twinned YBCO, thé,,, T2z~ 2 1+ K22
andV,; curves meet at some temperatiitg, and they con- X
tinue toward zero together as the temperature is lowered. Fd#oth choices have the same overall form with positive vis-
the untwinned YBCO, on the other hand, the curves onlycosity coefficients, the only difference is in how the con-
meet just before dropping sharply to zero. We can reproducetants scale with’.
some of these features by choosing the scaling forms for the The results obtained are shown in Fig. 6. First, it can be
conductivity appropriately, depending upon whether theseen that in both instanceg,,,/Vy,—1 as the length scale
sample is twinned or untwinned. For the twinned case, we” is increased. However, for the twinned case, batfy and
use the Bose-glass scaling forms, which are discussed in AP/, tend to zero together, whereas in the untwinned case,
pendix C. Although these are supposed to be valid in théhey tend to some finite value. If one identifies the sharp drop
presence of columnar defects, and not strictly twin planesin the corresponding experimental results as the transition
we use them here since there is currently no better alterndrom a vortex liquid to solid, then this is the correct behavior.
tive, and there is at least some experimental evidénice The voltages in Fig. 6 level off ag grows small, whereas
support a Bose-glass transition in twinned YBCO. For thethe voltages measured in the experiments continue to rise as
untwinned case, we will use the same forms used to generatke temperature is increased. This discrepancy is due to our

Untwinned: C1/%(1+2K2/?)

AR (n)+
1+k2/?

02,=0;

(14

Fig. 3. neglect of, among other things, the temperature dependence
of the normal component, which can be nontriiaNever-
5 1 theless, the results show that varying the scaling behavior
§ 0.5 \V_left/ can account for some of the differences between the twinned
Ok----————- and untwinned YBCO.
I |
0 1 2 3 IV. WORK WITH PADE APPROXIMATIONS
f O/ In this section, we lift some of the restrictions in the pre-
R 05 Vo vi_ous. s_ection by S:onsid_ering a qux-transfqrmer geometry
| right " " left with finite lateral dimensior. and by generalizing the non-
. local conductivities of Eq(5) to allow eithera, or o, to be
0 1 2 D/f nonlocal and depend on eithkg or k,. As opposed to the

infinite-slab geometry, we could not make progress with gen-
FIG. 5. The voltageﬁ/Ieﬂ andvngm and their ratio for the con- eral conductivities, thus we elect to use Pageroximations
ductivity o, (k) =0 +c/e*k/ with the same parameters as t0 the conductivities. Two important advantages to using
for Figs. 3 and 4. Herey, , is defined to b&/,. for the local case, Padeforms are(i) they capture the higk-behavior as well
Eq. (A2). The notable feature here is théty, becomes negative. as the lowk behavior of the true conductivity an) the
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resulting equations are analytically soluble. In addition, the 1(n?  1+47 N2 142 2 402 142
corresponding real-space conductivities can be chosen to be;2(n)= = —t+t— 2+ —+— 2 - N ,
decaying exponentials, which, according to Wortis and 2 A7 4 A, 7 /Ny

Huse!® could be the correct form for the high-temperature (19
regime. where \,=\3,L%/#?3, is a length scale occurring in the

We will consider four different cases: local limit (y2=0). Note that ify>>0 (corresponding to a

negative viscosity coefficiehtthe &'s are real; whereas if
(153 ¥4<0 (corresponding to a positive viscosity coefficietite

z
z

(1) o (K)=34, 0,4K)=3,+

1+k2/% &'s can become complex.
Case (2).For conductivities given by Eq15b), the cor-
z responding differential equation is

(2) 0, 4K)=3,, o(k)=3,+ (15b)

X
1+k2/% 52&2_i62_§(1+y§) 2
ZVX /2 z EZ /2 X

a4+§ V=0. (20
z Ez '

X
(3) 0,4k)=%,, ox(K)=3,+——5—, (159  Proceeding with separation of variables, the functispé)
1+k/ are exactly the same as in ca4g, and the function&,(z2)

have the same form as in E@.8), but the two length scales

- . A} &. are now given by
(4) o(K)=2y, 0,dK)=Z2,+ T2 .2 (150
1+ki/? - 12 1 Rz 1)\2 an2y? 12 o
Note that the momentum dependence is uppm cases1) T2\ 2 [\ 2 A

and(2) whereas it is upok, in caseg3) and(4) and thato,
is local in case$l) and(4) while (}ZZ is local is case$?) and

(3). In the Padeform, X is the conductivity ak—o, % Case (3).Turning the example with conductivities given

+A is that atk=0, and/ is a length scale. We set out t0 p £q (150 into a partial differential equation yields
solveV-j=0 subject to the usual boundary conditions on the

As opposed to casfl), this time whenyz<0 the &'s are
real; and wheny:>0 the ¢’s may become complex.

current at the surface. Each of these problems involves an s (1+ 9% s
integrodifferential equation, which can be converted into a a§+2—za§a§— - —=d5|V=0, (22
partial differential equation with linear coefficients, which x / 2/
can in turn be solved by separation of variables. This procezq separation of variables leads to
dure is outlined in Appendix B. Below we point out some of
the distinguishing features of the various cases. 4 2 (14++9] g2 2
Case (1).With conductivities of the form in Eq(153, {d_ 22K _( ‘y") d__ 22K ]x=0, (239
solving V-j=0 leads to the partial differential equation dx* 2 72 A 3,7
3 (1+9) , 3 d®
4 X 2.2 Z 2 X 2(v— — —K2|z=
a5+ E—Zazax— 2 95— s 7 9z|V=0, (16) iz Z=0. (23b)
/ S

We see here that this situation differs from the previous two
in that the solution ofX(x) is no longer simply sines and
cosines, and similarlx has become nontrivial. This feature
complicates the application of the boundary conditions and
the summing over eigenfunctions necessary to achieve a

where y, is a dimensionless variable given by,
fAléZ/EM. Separation of variableg(x,z)=X(x) Z(z) then
yields

2 .
= Kk lx= complete solution.
dx? k*|X=0, (179 Case (4).Conductivities of the form Eq15d lead to
4 2 z 2 2 3 1 pX (1+7X)
4 |5k Aty d® ZkK 70, (17H &§+E—Zﬂf&§—ﬁﬁi—2—z /ZZ 2lv=0. (29
dz | 2 /2 |dR s/ X / 7

i i i The method of solution is similar to that for ca&, includ-
The solution of Eq(173 is X(x) =Acoskx)+Bsin(kx). Ap- ing the nontrivial values ok.

plying the boundary condition that no current enters on the “Regyits et us now consider the results of using Pade
sides, i.e.0,V(£L/22)=0, givesk=n/L with B=0 for  5555imants. We look at the behavior\¢f,, andVy as a
evenn andA=0 for oddn. Whenn>0, the solution of EQ.  fynction of /, as in the previous section. In cagésand (2),
(17b) is we input a current

Z(2)=Ae’*++Be ¢+ +Ce’t-+Ee ?t-, (18 lop(X) = 11SIN(TX/L),  Tpo(X)=0 (25)

which has two length scales given by for the top geometry, and
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lop(X) =l pot( X) =T o[ 1+ sin(7x/L) ] (26) 1

top

. twinned
for the side geometry. These currents are chosen because

they roughly approximate the experimental inputs but in- 0.5}

volve the minimum number of Fourier components, which

simplifies the calculation. If we input the same currents in unscaled

caseg3) and(4), our solution will involve an infinite number o

of terms since our formula fov(x,z) is not in the form of a

Fourier series but is a sum over more complicated eigenfunc-

tions. We instead expand the current in terms of these eigen- 05 ‘

functions. In fact, we once again choose the input currents 0 1 D/f

that minimize the number of terms in the sum over eigen-

functions. In the top geometry, the current is chosen to be FIG. 7. The results obtained for the ratifyy/Vq, for case(2).

proportional to the eigenfunction correspondingdo where  The conductivities used are given by Efj5b) for the lower curve,

Kk, is the eigenvalue which tends to/L in the local limit. ~ and Eq.(C3b) for the upper curvéwhich has the appropriate scal-

For the side geometry, we choose the combination of twdng for a twinned sample The parameters used a¥g=o{"=5,

eigenfunctions that tends to the current of E2f). For case >.=0y’=1, /|=/, D=1, L=5, C;=1, C,=5, and

(3), this unfortunately means that we vary the input currentdx="5/°—note the scaling with/" which is present. For the

as we vary/; at /=0, the input current is the same as for tWinned caseVy,/Vio, does in fact tend to 1 as—-.

cases(1l) and (2), but this smoothly evolves so that in the

limit of /' —oo, the input current id ,~1,sin(2rx/L). The  metry found in hydrodynamics. Furthermore, this lack of

side geometry is affected similarly. Hence, we must bear irfymmetry seems to persist even when we choose foaais

mind that the input current changes significantly in cé®e  With positive viscosity coefficients that should correspond

In case(4), on the contrary, the variation of input current more closely to the hydrodynamic case.

with / does not appear to be as substantial. The voltages Notice that in the unscaled data in FigV{, goes nega-

were calculated a&t=0,z=D andx=+0.3L. For each case, tive. Although the potential reverses sign, calculations reveal

we did two sets of calculations: one using the conductivitieghat the current flow is always from left to right, even at the

as written in Eqs(15) with A scaling as”?, and the second bPottom of the sample. In Sec. Il we showed that if the con-

using the scaling forms appropriate for a Bose glass; as giveﬁUCtiVity is nonlocal, then either the real-space resistivity or

in Appendix C by Eqs(C3a—(C3d). conductivity is negative at some point. We believe that the
The first point to make about all of the results is that weSign reversal in the unscaled data is simply a consequence of

never foundVgn/Vier—1 S0 long asA>0, which corre- this fact. It should be noted tha_t voltage reversals have in fact

sponds to a negative viscosity coefficient. Hence none oPeen measured by Aukkaravittayapenal;*> however, it

these forms give us the strongly nonlocal behavior seen b§eems unlikely that nonlocal conductivity accounts for their

Safar etal® (though perhaps they do resemble otherfesults.

results$'9. We showed in the infinite-slab caégec. 1)), in Before conclupling this section, we note that it is possible

which the conductivities corresponded most closely to cast® extend the Padiorms considered above to higher levels

(4), that we could only model Safar's results with positive Of approximation. Suppose one simply adds a second Pade

viscosity coefficients. The results of this section suggest thd€rm to the first one, for instance,

this statement may hold for all of the cases.

Vbot v,

Secondly, we look at the difference between the Bose- R A, A,
glass scaled and unscaled results. We have already seen one Oux(K) =2+ . . (27
i ison in Fi i 1+K/% 1+K/3
example of this comparison in Fig. 6. Another appears in x/ 1 x/ 2

Fig. 7, this time for casd2). The curves are remarkably

different considering they came from the same overall form'here are now two length scales, and one can choose the
of the conductivity, Eqs(15b), which shows how vastly dif- Parameters so that the conductivity has a positive viscosity
ferent behaviors can be modeled by the same form, making ghd maintain the property,(0)> oy, (ky—). It is still
difficult to extract detailed information on the conductivity Possible to solve the equatiéhj=0 in a manner similar to
from the experimental data. the examples discussed above. However, one would need to

Recall that the analysis of Huse and Majumtfadis- differentiate the integrodifferential equation four times in-
cussed in the Introduction, has a symmetry undestead of twice in order to eliminate the two integral terms. As
Txza— Tzxxz- I this sSymmetry applies in the Padmalysis, @ result, one ends up with a sixth-order equation and a lot
it would correspond to a symmetry between caé®sand Mmore algebra. We have not pursued this avenue.

(4). We have looked for such a symmetry. The comparison is

complicated by the fact that the eigenfunctiods(x) are V. SURFACE CONSIDERATIONS
different in the two cases, as mentioned above. However,
using conductivities given by Eq15) led to qualitatively We begin this section on surface considerations with a

different features for casé€®) and(4)—while admittedly the comparison of the voltage and current distributions found
case(4) input currents change in this analysis, we do notusing the hydrodynamic approach with those found using the
expect the difference to affect the general features of th®adeapproach. Let us consider ca&® from the previous
results. Thus, the Paderms do not seem to share the sym- section making the following parameter choices:
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whereas Fig. 8 seems to show tladit of the current in our
solution is carried in the surface in the limit—0. We con-
firm this result by noting that in the bulik~ /" in the small-
/ limit, implying that we have no bulk and all surface cur-
rent as/—0.

We have examined th&—0 limit not because we be-
lieve it to model the real conductivity but in order to make
contact with and perhaps better understand the hydrody-
namic theory. Nevertheless, the outcome—that much of the
current is confined to the surface—has been suggested in
other contexts. If a significant fraction of the current flows in
the surface, one might expect to find nonlinear behavior

FIG. 8. The current density,(0,z) for different values of/ ~ down to very low currents, since the current density near the
corresponding to the cag®) Padeconductivities, Eqs(15b) and ~ Surface would vary quite rapidly, leading to enormous tear-
(28), with parameterso=5, =5,3,=1,D=1,L=5 and input  ing forces on the vortices. Nonline&¥ characteristics have
currentl (x) =1,sin(mx/L). The dashed curve is the local curvé ( indeed been observed in both the top geonttand in
—), and the other curves are f6r=0.4, and/=0.067. The areas  c-axis resistivity measuremerftSHowever, our work is con-
under the curves are equal, butadecomes smaller there is more cerned only with the linear regime, and so we do not discuss

(02 /1,

current density at the surface. this further.
The fact that the smal limit of Eq. (30) is identical to
S=00+ /72, (288  the corresponding hydrodynamic equation and yet the two
approaches predict differing amounts of surface current sug-
Al=—p/"2, (28  gests that it is in the treatment at the boundeoy in the
X effect of the boundary laygthat the two approaches differ.
so that the smalk expansion of the conductivity is In the Padecalculation we considered the effect of the sur-
face only through the boundary conditions on the current; we
oK)= a0+ k2 — /234 0(/*KS). (29)  heglected any effect the surface might have on the nonlocal

conductivity itself. One expects some surface dependence

Note that the”— 0 limit coincides with the truncation used since the conductivity is determined by the superconducting

in the hydrodynamic approach. The fourth-order equatiorprder parameter, which in turn depends on the boundaries.
derived for casé2), Eq. (20), becomes Within the limits of their calculation, Blum and Modre

gave an explicit expression for the conductivity in the pres-
[/23,0%+ (n+ /%60 3202 — 0992~ 3,9°]V=0. (30) €nce of a surface. In addition to the usual bulk conductivity
their analysis yielded a term corresponding to the image of
If the terms proportional to”? are dropped, the equation is the bulk conductivity as well as “cross terms.” In order to
identical to the one studied by Huse and Majumid&f. proceed with their voltage-distribution calculation analyti-
However, notice the small parametéf multiplies the high- ~ cally, the cross terms were dropped with an argument sug-
est derivatives’V. This is the classic scenario for the devel- gesting their effect was small. Subsequent WHas shown
opment of aboundary layera small region in which/ var-  that the effect while small propagates farther into the bulk
ies quite rapidly and in Which/*zaﬁv is not negligibly than was suggested in that work, indicating again the impor-
small?” Recall that our analysis of cagg) produced two tance of treating the surface effects properly.
length scales given by EQY). In the small# limit, £, isa It may turn out that the hydrodynamic approach actually
small length(proportional to”), while £_ is the length scale incorporates some of these surface effects._ We have found
arising in the hydrodynamic analysis. It is tempting to con-that the small limit of the Padeapproach with some sur-
clude that one has discovered the length scale associaté@e effects duplicates the hydrodynamic results. In the pre-
with Huse and Majumdar’s surface currents, but a more careZious analysis, we used the conductivity in E&5b) which
ful analysis is in order. corresponds to
Following the steps outlined in the Appendix B we can
calculateV(x,z) for the top geometry with an input current G(z.2)
I 1sin(mx/L). From it we calculatg(x,z), the current density o lrr’)= S(r—r')y— 7]—"5()(_)(')
in the x direction. Figure 8 showg,(0,2) as a function ofz /?
for several values of’. As / decreases, the current becomes (32
increasingly confined to the surfaze D, in other words, we
obtain surface currents. However, they differ from thoseith
found by Huse and Majumdar.For the same input current
the hydrodynamic analysis predicts that the ratio of current
carried in the surface to that in the bulk is

oyt

A
/2

G(z,z))= ief\Z*Z’lf/. (33
: 2/

surface current g2 31
bulk current EZLZ, Now, we modify this conductivity so that
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flowing in the bulk of the sample. In fact, the ratio of surface
current to bulk current is identical to that from hydrodynam-
ics.

This result is interesting in that it suggests that Huse and
Majumdar’s boundary condition may be related to surface
effects in the conductivity. It is surprising that these two
approaches, hydrodynamics with its translationally invariant
conductivity and its slightly unusual boundary conditi@s-
sociated with the discontinuity in the derivative of the elec-
tric field at the surfaceand the Padapproach with a non-
translationally invariant conductivity and ordinary boundary
condition, can produce the same outcome.

FIG. 9. The current density,(0,z) for different values of/

corresponding to nontranslationally invariant conductivities of the VI. CONCLUSIONS
form given by Eq.(34) with the same parameters and input current ]
as in Fig. 8. The upper dashed curve is the local curtes¢), and It is clear from the above work that the problem of non-

the curves with closed circles are fgft=0.4 and/=0.067. The local conductivity is not completely understood, however,
lower solid curve is the Huse and Majumdar res[ji(0z) ~ We have made progress in developing a calculational scheme
~0.48cosh(0.815 for the parameters used hgravhich corre-  Which appears to be more robust than what was available

sponds to the”— 0 limit of our results. previously. First, with Padapproximations, we can solve for
voltage distributions having either positive or negative vis-
cosli(D—|z—2'|)//]+cosi(D—z—2")//] cosities, whereas, hydrodynamics is limited to positive vis-
G(z,2")= cosities. Moreover, these approximations give the correct be-

2/sinD//] (3,4) havior at both high and low and so may model the surface
effects better than the hydrodynamic forms. Because mea-

which corresponds to including a series of image terms sucfUrements in the standard flux-transformer geometry are
that the nonlocal conductivity satisfies the boundary condifaken at the surface, an approach that deals inadequately with
tion of its derivative vanishing on the two surfaces0 and  the Surface has got to be considered suspect. 3
z=D. Some motivation for using this choice might come Since we now have the ability to investigate both positive
from the boundary condition the order parameter itselfdd negative viscosities, we can make deductions about

satisfiest” however, the justification here is that the resultsWhich sign3 yields the strongly nonlocal behavior seen by
match those of the hydrodynamic approach. Safar et al® We have found that modeling these effects

Using this form, one can still solve the j=0 equation in  SE€MS t0 require positive viscosities, particularly so when the
the same manner as for the conductivity of E4$). In fact, ~ nonlocal behavior in the direction ino, is conS|deA:red. As
the partial differential equation one obtains as an intermedidiscussed in Sec. Il, there is mounting evidence thatk,)
ate step is the same as that obtained in ¢3pwith a trans- may have a negative viscosity coefficient even at low tem-
lationally invariant conductivity, i.e., Eq20). But this is to ~ peratures, implying that the nonlocal behavior seen is not
be expected since the difference lies in the boundary and nefue to the dependence 6{22 onk,. (There are, however,
in the bulk. Applying the boundary conditions results in theother current configurations in which this is the only depen-

following voltage distribution dence of the conductivity probéd)
Finally we have discussed how the conductivity itself may
| Sin(mx/L) &2 &_(£2 — /?)cosizZ/£_) be affected by surfaces and have shown that removing the
V(X,z)= YN R I translational invariance of the conductivity does not neces-
2,/ 5§53 —€2)sinh(D/§ ) sarily complicate the voltage-distribution calculation. In par-
HE oEL ), (35) ticular, we have shown that the Huse and Majumdar solution

corresponds to the limit of a Padigpe solution in which the
which agrees with the hydrodynamic result in tfe-0  conductivity lacks translation invariance. This surprising out-
limit. The corresponding current distributigg(x,z) come emphasizes again the importance of the surface in the
problem of nonlocal conductivity and suggests that even get-
ting the correct largé- behavior of the bulk conductivity

h(x.2) may be insufficient if one has neglected surface effects. For-
T 5 0.2 02 tunately, we have at least one example in which including
1 cod mXIL)ELE_(n— 0,67 + o/ F)cosz/§ ) the surface effects did not destroy the solubility of the Pade
= approach.
3,/ 28— €2)sinD/& )
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APPENDIX A: ANALYSIS OF THE INFINITE-SLAB Next, let us consider,(k,) to have a Padérm
GEOMETRY
. . . R A%
In this appendix we consider the length scales and surface o,4K,) =Ez+—22,2- (A5)
effects that characteriz€+(x,z) and Vg(x,z), the voltage 1+ki/

distributions in the infinite-slab geometry, by considering the ) ) o

pole structure of the integrals given in E42) and (13) for The smallkx-behawor of t)r(us expression is 5|m|Iar_ to the

a number of choices af,,(k,). The Vg integral, Eq.(13), is hydrodyn?mm gxamp:(le Esifo'zHOWiV/e[;’ Ilg has twice as
done by summing the residues associated with the zeros gpany  poles smceK_( x) = Tim(2m+ ). as twice as
cosh@D/2), given by x(k)==im(2m+1)/D with m many solutions as in the hydrodynamic case. These poles
—01,... ;’theVT integral i(s rather similar. For the local break into two sets. For larga one set is evenly spaced and

A N mimics the behavior in the local problem including the loga-
problem[ o (k,) =%,] these poles are evenly spaced alongyjhmic divergence at the leads, while the other set accumu-

the imaginary axis. In fact, witld-function-distributed input lates at the valuesi {1+ 7%)/72 (where yX= A% ) and

currents mimics the hydrodynamic behavior in the bulk. The Pade
Jr=Jo[ 8(x—2L) — 8(x+2Ly)], (A1a)  form has clear advantages over the hydrodynamic form, but
even it is not quite right since the lardg-limit of o,,(ky)
Js=—Jo 6(x+2L), (Alb)  should be less tham,,(0). Toachieve that one needs some-

the resulting expressions can be resummed to give thing such as

cosh (2L.+X)/\y]+cogwz/D) A 71 Y2
— , 0'zz(kx)zzz 1+ 2 2 2 2|
cosh (2L .+ X)/\y]=cog7z/D) 1+k /2 (1+ki/7)

(A2)
with y,/2<y,=< 4, which leads to three sets of poles—one
whereV= —Jo/2m XX, and\,= VX.D*/7m°X, and where  similar to the local case and two similar to the hydrodynamic
the upper signs in the denominator correspond/4¢x,z)  case. With the Paderm, Eq.(A5), one can also investigate
which is odd abouk=0 and the lower signs correspond to the consequences of “negative” viscosities whigfi>0. As

V1 g(X,2)=VIn (A6)

i — /o3l _ :

Vs(x,2) which is odd abouz=D/2. _A¥increases, the-axis length scale decreases and eventu-
If we conS|deor a ”2”'005" part to have the hydrodynamicyjiy 4 point is reached at which the poles move off the purely

form o,Aky) =0, + 7k, the poles are located at imaginary axis and some oscillatory behavior is superim-

posed on the exponential decay.
*i(2m+1)

N2+ p(2m+ 1Y o0V

Ky (M) (A3)

APPENDIX B: SOLUTION
OF THE INTEGRODIFFERENTIAL EQUATION
where \,=\2,D% 72¢0. Note that the smallest polem( ASSOCIATED WITH THE PADE FORM
=0) is shifted to smallek, compared to the local situation
(n=0), implying a longer length scale. There is only a sig-
nificant shift if the viscous length scalenlazU becomes

comparable to the “local” length scabe, which depends on

the sample thicknesB. As 7 increases further the viscous

length dominates; we were able to resum the series in this 3,2V(X,2) +3,02V(X,2)
limit, finding

In this appendix we outline the solution of ca&®. For
conductivities of the form given by Ed15b), the steady-
state continuity equatioN-j=0 takes the form

A)Z( D —|z=2'|1/ 42 "N dz'
+7J e i V(x,z") dz'|=0, (Bl)

—Jo(2z-D) 0

VS(X,Z)N4—\/O_T779XD{—\/O'S/77 |2LC+X|}. (A4)

where exp—|z—2'|//}/2/ is the Fourier transform of (1
+K2/H)L

It would be interesting to probe the spatial dependencésof Let us now apply the following trick. Differentiate Eq.
experimentally and extract its length scale. However, such @1) twice with respect ta, which leads to

measurement would be difficult as it would require a sample

long enough to accommodate several leads, and the voltages

far from the current may become too small to be meaningful. AZ

Returning to the pole structure in the hydrodynamic case, 3 B30V (%,2) + 3,05V (X,2) = — FZV(,2)

another point to notice is that they accumulate at a finite 4

value ii\/O'ZU/n. As a resultVg(x,z) no longer diverges AZ
logarithmically at the contact points—<2L.,D) and x
(—2L,0). Given thes-function input currents, this diver- 2/3{

D !
fe—lz—z 1792v(x,2')dZ | =0, (B2)
0
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APPENDIX C: BOSE GLASS SCALING FORMS
FOR CONDUCTIVITIES

where we have exploited the relation

2 . . . .
In this section we consider scaling forms for the conduc-

d_(e,‘z,zrv/): oo : . .

dz? tivities which might be expected to hold in the presence of
correlated disordefe.g., columnar defects or twin bound-

familiar from the solution of Schdinger's equation with a arieg. With such disorder, there is thought to be a second-

é-function potential. We can combine Eq81) and(B2) to  order phase transition between the low-temperature Bose-

eliminate the integral term, giving glass phase and the high-temperature phase consisting of an

entangled liquid of delocalized flux linéS.Near the transi-

tion the characteristic length scale§, (within the ab

planes and/ (along thec axis) and the characteristic time

scale r~/f diverge. Nelson and Radzihovskyused the

scaling of the free-energy density- 1//H/f and the vector

which was given in the main body of the paper as ).  potential A|~1// and A, ~1//, (from gauge invariande
Separating variableé(x,z) = X(x) Z(z) and applying the and the relations= 9f/dA and E=—9A/dt to suggest that

boundary  condition j,(+L/2z)=0 vyields X(x)  the conductivities scale as

=Acos(wx/L) or X(x)=BsinN(2n+1)mx/L] for n

=0,1,... .Whenn>0, the corresponding(z) is given by

1 2
- __ 5 —|z=2'|l/
/5(2 zZ')|e , (B3)

/2

(EX+A)Z() 2 EZ
—J

4 242 _ Tz
22(92 + EXaZ&X /:2 X /:2

92|V=0, (B4

y—1 7'
O-LN/H /L y

O'HN/H/ELZ. (C1

Z,(z)=P,, cosh(z—D/2)/ ¢, ]+ Q, sinf (z—D/2)/ £, ]
_ Studies of this transitiol?? have suggested that~ /2 and
+Ry cosli(z=D/2)/¢ ]+ S, sint{ (z—D/2)/¢_], 7' =6.0+0.5; we are going to USE =6.

(B5) In the Paddorm conductivities(Egs. 15, we have a

length scale”, which is ac-axis length scalg’| in caseg1)

where £..=¢.(n) is.g.iven by Eq.(21). For some of the .4 (2) and is anab-plane length scaleg’, in caseq?3) and
algebra that follows it is convenient to choose modes that ar& Recall th ductivities i &  K)=3 q
symmetric abouz=D/2. ( ). Recall the conductivities in casg) are o,,(k) =2, an

It might appear that we need to apply four boundary conZzAK) =2 ,+A%(1+kZ/?). What we want to do here is
ditions to determine the constantsn(z), but actually two ~ determine the dependence of the constanendA upon/".
of the constants are found by inserting the solution into theSince in this case the length scale/is, we use/|~/% to
original integrodifferential equation, EqB1). This step eliminate the dependence upsh and arrive at
yields the following two conditions:

o~ /F
1 I
Py — & (/?—&)[€_coshD/2¢_ )+ /sinh(D/2¢_)]
Ro  £.(/2-&)[ £, cosiDI2é, )+ /'sinh(D/2¢,)] o~ /3 (k) (C2

(B6a)

where the superscrips] refers to the superconducting con-
tribution, we also include iX, and3,, normal contributions
o™ and o that are not affected by the scaling.

We thus obtain the following Bose-glass scaling forms:

Qn & (/2 ¢2)[/coshDI2¢ )+ & sinh(D/2¢ )]

S £,(/?—E2)[/coshDI2¢, )+, sinh(D/2¢,)]
(B6b)

~ _(n /2
The two remaining constants are fixed by the boundary con- (1) oK)= o+ Co

ditions onj,, namely,

. w. G
o,AK)=0;"+ —1+ kz/f, (C39
7
—2,9,V(x,D)=1I top(X)v
. C/f
(2) axx<k)=a§”>+m,
- EZO"ZV(Xa 0)=1lpoX). (B7) 2 |
They turn out to be fairly complicated functions of the pa- oK)=V +Ci/T; (C3b
rameters”, 3., 2., ¥4, n, andL, in addition to the Fourier
components of ,,(X) and Ipo(Xx). Note that eactZ,(2) is - ) Cz/’j
only a function of the corresponding Fourier component of (3)  oxx(k)=0y +m
the current. Then=0 part of the solution requires separate X7 L
consideration; however, it is straightforward and no details - - 5
are provided here. 0 dK)=0;"+C1/ 7, (C30
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(4) (}Xx(k) _ o_g(n)_,_ C/“ ’ form; above the coefficient of the F_’a@em is_ e_lssumed to bg
positive, and therefore the viscosity coefficient is negative.
C./8 We can also write forms that have positive viscosity coeffi-
(1) cients; for instance, cagd) would be
O-ZZ(k)_O-z (C3d) ’ ’ i )

1+k2/2

It should be noted that although the consta@tsand C,
have no explicit dependence upon the length scales, they will
be temperature dependent. However, compared to the tem-
perature dependence of the length scalgsand /| near the
transition, which go as powers 6T —Tgg| (Where Tgg is
the transition temperatureit is a weak dependence. In the which is the form used to generate Fig. 6.

Tk =0 +Co/ T,

Cc,/®

o, K)=adV+2C /- ——
zz( ) z 17 1 1+k5/5

(C4
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