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Nonlocal conductivity in high-temperature superconductors

S. J. Phillipson and M. A. Moore
Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom

T. Blum
Department of Physics, University of Virginia, Charlottesville, Virginia 22901

~Received 7 October 1997!

We examine nonlocal conductivity in high-temperature superconductors from a phenomenological point of
view. One wants to deduce the properties of the conductivity, especially its inherent length scales, from the
transport data. Although this is a challenginginverseproblem, complicated further by the experimental data not
being completely self-consistent, we have made some progress. We find that if a certain form for the conduc-
tivity is postulated then one requires positive ‘‘viscosity’’ coefficients to reproduce some of the experimental
results. We are able to show that the effects of surfaces on the conductivity are likely to be important and draw
comparisons with the treatment of the surface within the hydrodynamic approach put forth by Huse and
Majumdar. We also develop an approximation scheme for the conductivity which is more robust than the
hydrodynamic one, since it is stable for both positive and negative viscosity coefficients, and discuss the results
obtained using it.@S0163-1829~98!04609-8#
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I. INTRODUCTION

The measurement of a substantial nonlocal conducti
in high-temperature superconductors in a magnetic field
thought to imply the existence of moving vortex lines havi
coherence lengths of the order of the sample thickness
opposed to pancake vortices readily sliding past one ano
~for a general review, see Blatteret al.1!. Measurements o
nonlocal effects probe the inherent length scales of the p
lem and thus can be used to investigate issues suc
whether the decoupling and melting transitions oc
simultaneously.2 The claims of Safaret al.3 to have observed
a sizable nonlocal effect in twinned YBa2Cu3O7-d ~YBCO!
are based on two sets of measurements. In the first, which
refer to as thetop geometry, a current is put into and draw
out of the top of a modified flux transformer while the vo
age differencesVtop andVbot are measured~see Fig. 1!. In the
second, thesidegeometry, the current is withdrawn from th
bottom and the voltagesVleft and Vright are measured. Safa
et al.3 find that the ratiosVbot/Vtop and Vright /Vleft both ap-
proach 1 as they near the melting transition. Taken indivi
ally either result might be explained by a local though ani
tropic conductivity; but taken together the results a
inconsistent with a local description. Safaret al.3 confirm
this by analyzing each data set as though the conduct
were local~the Montgomery analysis4! and extracting from
each theapparent conductivity ratio sxx

(a)/szz
(a) , finding a

huge discrepancy in these apparent ratios.
Eltsev and Rapp5 dispute the Safaret al. claim. They per-

formed similar measurements but did not seeVright /Vleft
→1. On the other hand, they may have seen nonlocal eff
in a tilted geometry in which the current is extracted fro
terminal 6 ~instead of terminal 5) and the rati
(V32V8)/(V22V7) measured. In a comparison of twinne
and untwinned YBCO, Lo´pez et al.6 find that in the un-
twinned YBCO, the strongest signature of nonlocality se
by Safaret al.,3 Vbot'Vtop, is no longer found for any sig
570163-1829/98/57~9!/5512~12!/$15.00
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nificant temperature range above the ‘‘melting’’ transition.
feature of our studies below is that substantial nonlocal
fects are only present when a characteristic length~presum-
ably the phase coherence length! is of the order of the sample
thickness. Now the phase coherence length scale along
field direction~according to Ref. 7! grows exponentially rap-
idly as the temperature is lowered in such a way that
temperature interval over which nonlocal effects might
visible in the vortex-liquid region is only perhaps within 0
K of the temperature at which pinning drives the resistan
rapidly to zero. This is of the same order of magnitude as
rounding of the zero-field transition due to sample inhom
geneities and as a consequence it will be hard to disenta
the various effects from each other in the untwinned res
of López et al.6 If one supposes that the long length sca
causing the nonlocality in the twinned case is caused b
Bose-glass-like mechanism,8,9 then one would expect the co

FIG. 1. The modified flux-transformer set-up of Safaret al.
~Ref. 3!. The diagram on the left shows the arrangement of
terminals for thetop geometry, and the right shows thesidegeom-
etry. The samples are single crystals of YBCO with the magn

field aligned along theĉ-axis of the crystal.Vleft5V22V6 and
Vright5V32V7.
5512 © 1998 The American Physical Society
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57 5513NONLOCAL CONDUCTIVITY IN HIGH-TEMPERATURE . . .
herence length to increase only as a power law, and the w
of the temperature interval over which nonlocal effects
visible may therefore be wider in the twinned case.

The assertions of nonlocal effects in Bi2 Sr2 Ca Cu2 Ox
~BSCCO! are less dramatic than those in YBCO. In the
measurements on single-crystal BSCCO, Keeneret al.10

never observe the ratiosVbot/Vtop and Vright /Vleft simulta-
neously approaching one. Nevertheless, when they perfo
Montgomery analysis on their data, they do see discrepan
in the apparent ratiosxx

(a)/szz
(a) . Conversely, measuremen

by Buschet al.11 on single-crystal BSCCO and by Doyl
et al.12 on BSCCO with columnar defects are claimed to
consistent with local resistivity. These seemingly contrad
tory results could be caused by approximations used in
local analysis11 and might be resolved by using the fu
analysis or better suited approximations, such as the one
posed by Levin.13 A theoretical framework which could pro
vide some quantitative analysis of these results—for
ample, by the extraction of a temperature-dependent len
scale—would obviously be helpful in the interpretation
these and other results. Our aim is to develop such a fra
work. We will approach the problem phenomenological
attempting to relate the current-voltage characteristics to
form of the ~nonlocal! conductivity.

When a material has a nonlocal conductivity, the app
priate form of Ohm’s law is given by

j m~r !5E smn~r,r 8! En~r 8! d3r 8, ~1!

where symbols have their usual meaning in this context,
the integral is taken over the volume of the sample. Fo
nonlocal conductivity,smn(r,r 8)Þsmn d(r2r 8). In momen-
tum space, for a translationally invariant system, this relat
becomes

̂m~k!5ŝmn~k! Ên~k!, ~2!

wherêm(k) is the Fourier transform ofj m(r ), and similarly
for the other quantities. It should be noted that nonlocal
fects will only be observable when the length scale of
nonlocality is of the same order or larger than the dista
between leads.

The best known theoretical work on the subject is
‘‘hydrodynamic’’ approach, expounded upon in general
Marchettiet al.14 and applied specifically to the conductivit
by Huse and Majumdar.15 This theory is so called becaus
the nonlocal conductivityŝmn(k) is expanded in a Taylo
series ink, and the expansion is terminated at orderk2; in
other words, the conductivity is taken to be of the form

ŝmn~k!5ŝmn~0!1hmbgn kbkg . ~3!

We revert to the notation of Huse and Majumdar to facilita
comparison with that work;15 note that later works16–18 re-
place theh ’s with S’s to prevent confusion with the viscosit
tensor of the vortex-line liquid, which is related b
distinct.16 Unfortunately, this form for the conductivity is
unphysical if certain coefficients become negative, as sho
by Blum and Moore.17 Huse and Majumdar always assum
that the coefficients they use are positive. When and whe
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the coefficients are in fact positive or negative will be d
cussed in more detail in Sec. II.

The hydrodynamic analysis leads to a fourth-order par
differential equation which reduces to Laplace’s equation
the local limit (h50). It also supplies sufficient boundar
conditions to solve for the potentialV(r ). Huse and Majum-
dar argue that there are discontinuities in the first deriva
of E(r ) at the surface. When the conductivity~which in hy-
drodynamics is a differential operator! is applied, the result
is d functions in the current distribution at the surface, i.
surface currents. One then uses charge conservation¹• j
50 to translate this outcome into boundary conditions
V(r ). To handle thed function it is convenient to integrate
over the surface as in the standard Gaussian pill
arguments19—only here, because of the surface current,
side surfaces of the pillbox contribute even as the volume
the box is shrunk down to zero. This gives what initial
appears to be an extra term in their boundary conditions

Huse and Majumdar study a two-dimensional geome
modeling the flux transformer used in the experiments, thz
axis of which coincides with theĉ axis of the supercon-
ductor. They have performed a detailed analysis of the s
ation with one nonzero viscosity coefficienthxzzxwhich em-
bodies the interaction of pancake vortices moving
different ab planes and at different velocities. Somewh
surprisingly, their equation and boundary conditions a
symmetric underhxzzx↔hzxxz despite the fact that these co
efficients would appear to represent very different physic

As an alterative to the hydrodynamic truncation
ŝmn(k), we consider an analysis based on Pade´ approxima-
tions to ŝmn(k). It incorporates a more realistic large-k be-
havior than the hydrodynamic approach and remains s
able. In principle, one can approximateŝmn(k) to any
desired degree of accuracy by using a sufficiently large-or
Padéapproximation. As the order of the approximation
increased, our technique of solution continues to work,
the computing effort increases rapidly. One stage of the
lution involves a partial differential equation rather remin
cent of that occurring in hydrodynamics. In fact, in one i
stance we can recover the results of Huse and Majumda
means of a limiting procedure on the Pade´ result.

In the remainder of this paper we first discuss our mo
vation for wanting to improve upon and extend the work
Huse and Majumdar; this involves an examination
whether the relevant coefficientsh in the small-k expansion
of the conductivity are positive or negative. We investiga
the current-voltage characteristics in a particular geome
~the infinite-slab geometry!, which allows us to comment on
whether positive or negative viscosity coefficients are nee
to explain experimental data such as that of Safaret al.3

~Sec. III!. The section following that contains details of wo
using Pade´ approximations to the conductivity. In Sec. V w
discuss the role of surfaces in determining the conductiv
and how the analysis of Huse and Majumdar takes acco
of surfaces. Appendixes A and B contain some calculatio
details, while in Appendix C we outline the Bose-glass sc
ing of the conductivities used in some of the numerical wo

II. ARE THE VISCOSITY COEFFICIENTS
NEGATIVE OR POSITIVE?

For stability, the conductivity tensorŝmn(k… must be a
positive definite matrix. For this to be true of the hydrod
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5514 57S. J. PHILLIPSON, M. A. MOORE, AND T. BLUM
namic form, Eq.~3!, certain of the viscosity coefficient
hmabn must be positive; in particular,hzzzzandhxxxx. The
work of Mou et al.16 and Blum and Moore17 shows that for
high temperatures, these coefficients are actually nega
Both works use the time-dependent Ginzburg-Landau eq
tion as a starting point, so ‘‘high temperatures’’ in this co
text means near theHc2(T) line. Thus to treat nonlocal con
ductivities in this region of theH-T plane, one requires a
model that can handle these so-called negative viscosi
ruling out the hydrodynamics approach. However, we exp
substantial nonlocal behavior occurs only near the mel
line, where some of the viscosities may very well be posit
and hydrodynamics a viable approach.

So what happens toŝmn(k) as the temperature is low
ered? The arguments of Mouet al.16 suggest and the simu
lations of Wortis and Huse18 bear out that as the temperatu
is decreased,hxxxx changes sign, becoming positive. Imagi
a plot of ŝxx(kx) ~see Wortis and Huse18!: at high tempera-
tures, ŝxx(kx) increases monotonically askx is decreased
but at low temperatures, it develops a local maximum a
nonzerokx and then falls to a finite value~the flux-flow
value20! at kx50.

In the presence of a magnetic field, theab-plane conduc-
tivity of a type-II superconductor does not diverge, becaus
current causes the vortices to move, leading to dissipat
that is, a nonzero resistance. The conductivity is thus
hanced if this movement of vortices is impeded, for instan
by pinning centers. The interaction of a vortex with oth
vortices may also inhibit its motion. However, for a unifor
current the vortices all move together and thus their mu
interactions play little role in hindering the center-of-ma
motion. For a nonuniform current, on the contrary, the v
tices are impelled to change their relative positions, and
their interactions do inhibit this sort of motion. Therefor
the conductivity may be higher for a nonuniform curre
These arguments suggest that at low temperatures wher
interactions become important the conductivity might
higher at some nonzerokx .

The situation is different for conductivity along theĉ axis.
As with ŝxx(kx), at high temperatures,ŝzz(kz) increases
monotonically askz is lowered. However, the current is no
along the axis of the vortices, the vortices are not forced
move, and this time the uniform conductivityŝzz(k50) di-
verges as the temperature is lowered. Hence, there is no
pelling reason to expect that a local maximum will devel
as temperature is lowered, and one might suspect thathzzzz
remains negative and therefore unsuited for the hydro
namic prescription at all temperatures. This expectation
hzzzzseems to be borne out by low-temperature calculati
which have the Abrikosov lattice as a starting point21 and
also by the preliminary simulation results.22

The proposition that some of theh ’s may be negative a
all temperatures is one motive for wanting an alternative
hydrodynamics; there are others. Hydrodynamics is a sim
approximation to the actual conductivities, but we do n
know how good an approximation it is. Plus, there is
obvious way to improve upon it—one might include terms
orderk4, but this necessitates additional boundary conditio
to specify the solution, and it is unclear what they would
In the Fourier representation of a function, the small-k terms
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model well its bulk properties, but higher-k terms are needed
to capture the behavior at the boundaries. So one might th
a procedure focusing on smallk would do well in the bulk
and perhaps less satisfactorily at the surface. But hydro
namics involves a differential equation, and its solution, ev
in the bulk, is determined by boundary conditions, i.e., t
surface. Thus it is crucial to treat the surface properly—ev
more so, since in the experiments at issue here, all of
measurements are taken at the surface. Huse and Maju
do take some account of surfaces, and in doing so find
face currents, but their theory is unable to make any pre
tion about the length scale over which these currents m
flow. Such restrictions as these provide the impetus to
beyond hydrodynamics.

There is one further comment that is useful to make
fore proceeding to some concrete calculations. While we
quire thatŝmn(k) be a positive definite matrix, this does n
imply that smn(r ) must always be positive. Although con
ductivities taking on negative values seems a little odd
first sight, the simulations of Wortis and Huse18 find that
sxx(x,ky50) can be negative over a range of a few inte
vortex spacings. In fact,any nonlocality in the conductivity
implies that either the real-space conductivity or resistiv
~or both! take on negative values at some points. By defi
tion, the conductivity matrix is the inverse of the resistivi
matrix, which implies that in Fourier space,ŝmn(k) r̂na(k)
5dma (dma is the Kronecker delta function and the summ
tion convention is used!. For example, ifsxy5sxz50 we
have in real space

E d3r 8 sxx~r2r 8! rxx~r 82r 9!5d~r2r 9!. ~4!

If rÞr 9, the right-hand side of Eq.~4! is zero; for the left-
hand side to be zero, some cancellation is needed. Howe
there would be no cancellation ifsxx(r2r 8) and rxx(r 8
2r 9) are both everywhere positive. Thus, one or both h
negative regions. For experimental setups in which the c
rent is distributed throughout the sample, this feature m
not manifest itself in the voltage distribution; thus, Wort
and Huse18 have proposed geometries with very localiz
currents in order to look for it.

III. THE INFINITE-SLAB GEOMETRY
AND POSITIVE VISCOSITIES

The aim of this section is to show that for the choice
conductivity given below, it is necessary to havepositive
viscosity coefficients to produce the strongly nonlocal beh
ior seen by Safaret al.3: Vbot/Vtop→1 and Vright /Vleft→1
simultaneously. Let us consider the two-dimensional geo
etry shown in Fig. 2, with the lateral dimensionL→`; tak-
ing this limit eliminates one set of boundary effects. Furth
more, let us postulate conductivities of the form

ŝxx~k!5Sx , ~5a!

ŝzz~k!5ŝzz~kx!, ~5b!

that is,ŝxx is a constant~i.e., local! and ŝzz is a function of
kx alone. The functionŝzz(kx) may include a constant piece
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57 5515NONLOCAL CONDUCTIVITY IN HIGH-TEMPERATURE . . .
moreover, that constant, as well asSx , may represent both
superconducting and normal contributions to the local c
ductivity. Restricting the wave-vector dependence tokx
alone enables us to solve for the potentialV(x,z) via Fourier
transformation.

To determineV(x,z) for a given input current, first relate
V(x,z) to the components of the current

j x~x,z!52Sx ]xV~x,z!; ~6a!

j z~x,z!52E
2`

`

szz~x2x8! ]zV~x8,z! dx8, ~6b!

using Em52]mV. Next note that in the steady state, t
continuity equation is¹• j50, which in this case is

Sx ]x
2V~x,z!1E

2`

`

szz~x2x8! ]z
2V~x8,z! dx850. ~7!

Fourier transforming Eq.~7! with respect tox yields

2Sx kx
2 V̂~kx ,z!1ŝzz~kx! ]z

2V̂~kx ,z!50, ~8!

where we have used the fact that the transform of the c
volution is the product of the transforms. The solution of th
differential equation is

V̂~kx ,z!5A~kx!cosh@k~kx!z#1B~kx!sinh@k~kx!z#, ~9!

where

k2~kx!5
Sx kx

2

ŝzz~kx!
. ~10!

One determines the functionsA(kx) and B(kx) from the
boundary conditions; toward this end, it is convenient
Fourier transform the expression forj z @Eq. ~6b!#

ŝzz~kx! ]zV̂~kx ,z!52 ĵ z~kx ,z!. ~11!

Imposing the boundary conditions appropriate for the
geometry, namely,j z(x,0)50 and j z(x,D)5JT(x), finding
V̂(kx ,z) and taking the inverse transform yields

FIG. 2. The geometry used for our calculations of the poten

V(x,z). Theĉ axis of the superconductor is aligned along thez axis
~called they axis in the notation of Huse and Majumdar!.
-

n-

p

VT~x,z!52E
2`

` dkx

2p

ĴT~kx! cosh~kz!eikxx

k ŝzz~kx! sinh~kD !
. ~12!

Note that charge conservation impliesĴT(0)50, and hence
the integral above converges atkx50. For the side geometry
similar manipulations using the boundary conditio
j z(x,0)5 j z(x,D)5JS(x) give

VS~x,z!5E
2`

` dkx

2p

ĴS~kx!sinh@k~D/22z!#eikxx

k ŝzz~kx! cosh~kD/2!
. ~13!

Analytically the x-axis decay length is controlled by th
pole structure of the above integrals~see Appendix A for
more details!. Rather generically, this length grows if th
viscosity coefficient@the coefficient ofkx

2 in the small-kx

expansion ofszz(kx)# is positive, leading to features such a
Vright /Vleft→1. Increasing this coefficient (h) also changes
the ratio Vbot/Vtop though not necessarily in a monoton
fashion. However, there is another way to ensure t
Vbot/Vtop→1: this is simply to makeszz very large, which
applies even in the local limit. Thus, to obtain results simi
to those of Safaret al.,3 we expect that aŝzz(kx) which
grows large and has a positive viscosity coefficient at l
temperatures is required.

These arguments have been checked numerically fo
variety of conductivities. One example is shown in Fig.
We have put all of the temperature dependence of the c
ductivity into the length scalel which is presumed to in-
crease as temperature decreases and choose a conductiv
the form ŝzz(kx)5sz

(n)1Cl 2(112kx
2l 2)/(11kx

2l 2),
which meets the above criterion asl increases. Note that we
have also includedsz

(n) , a local term that doesnot scale with
l . Figure 3 shows a plot ofVbot/Vtop and Vright /Vleft as a
function of 1/l , for this choice. It can be seen that asl →`,
the two ratios do indeed approach 1.

l FIG. 3. The ratios ofVbot /Vtop and Vright /Vleft for the conduc-
tivity with positive viscosity coefficients, the form of which is pro
vided in the text. The boundary conditions used wereJT(x)
5J0@d(x22Lc)2d(x12Lc)# andJS(x)52J0 d(x12Lc) (4Lc is
defined to be the distance between the current inputs!. The voltages
Vtop and Vbot were measured atx56Lc as were the voltagesV2,
V3, V6, and V7. The parameters used areSx55, sz

(n)51, C51,
D51, andLc51; this corresponds to measuring lengths in terms
the thickness of the sample and conductivities in terms ofsz

(n) , as
will also be done in all the other figures.
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Using conductivities with negative viscosity gives resu
such as those shown in Figs. 4 and 5. In this particular c

the conductivity used wasŝzz(kx)5sz
(n)1Cl e2kx

2
l 2

; how-
ever, the results are typical of conductivities with negat
viscosity. Finding negative voltages is not necessarily
physical@see the discussion surrounding Eq.~4!# but the re-
sults clearly do not give us the strongly nonlocal behav
seen by Safaret al.3

Now let us consider the difference between the exp
mental data taken from twinned YBCO~Ref. 3! and un-
twinned YBCO.6 Recall that for the twinned YBCO, theVtop
andVbot curves meet at some temperatureTth , and they con-
tinue toward zero together as the temperature is lowered.
the untwinned YBCO, on the other hand, the curves o
meet just before dropping sharply to zero. We can reprod
some of these features by choosing the scaling forms for
conductivity appropriately, depending upon whether
sample is twinned or untwinned. For the twinned case,
use the Bose-glass scaling forms, which are discussed in
pendix C. Although these are supposed to be valid in
presence of columnar defects, and not strictly twin plan
we use them here since there is currently no better alte
tive, and there is at least some experimental evidence23 to
support a Bose-glass transition in twinned YBCO. For
untwinned case, we will use the same forms used to gene
Fig. 3.

FIG. 4. The voltagesVtop and Vbot and their ratio for the con-

ductivity ŝzz(kx)5sz
(n)1Cl e2kx

2
l 2

, with the same values of pa
rameters as in Fig. 3. By definition,VTL is defined to beVtop in the
local case for this geometry, which can be calculated from
~A2!. Note thatVbot /Vtop does not tend to 1 asl →`.

FIG. 5. The voltagesVleft andVright and their ratio for the con-

ductivity ŝzz(kx)5sz
(n)1Cl e2kx

2
l 2

, with the same parameters a
for Figs. 3 and 4. Here,VLL is defined to beVleft for the local case,
Eq. ~A2!. The notable feature here is thatVright becomes negative.
e,

e
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te

We choose conductivities given by

Untwinned:H ŝxx5sx
~n! ,

ŝzz5sz
~n!1

C1l 2~112kx
2l 2!

11kx
2l 2

,

~14!

Twinned:H ŝxx5sx
~n!1C2l 4,

ŝzz5sz
~n!1

C1l 6~112kx
2l 2!

11kx
2l 2

.

Both choices have the same overall form with positive v
cosity coefficients, the only difference is in how the co
stants scale withl .

The results obtained are shown in Fig. 6. First, it can
seen that in both instances,Vtop/Vbot→1 as the length scale
l is increased. However, for the twinned case, bothVtop and
Vbot tend to zero together, whereas in the untwinned ca
they tend to some finite value. If one identifies the sharp d
in the corresponding experimental results as the transi
from a vortex liquid to solid, then this is the correct behavi
The voltages in Fig. 6 level off asl grows small, whereas
the voltages measured in the experiments continue to ris
the temperature is increased. This discrepancy is due to
neglect of, among other things, the temperature depend
of the normal component, which can be nontrivial.24 Never-
theless, the results show that varying the scaling beha
can account for some of the differences between the twin
and untwinned YBCO.

IV. WORK WITH PADE´ APPROXIMATIONS

In this section, we lift some of the restrictions in the pr
vious section by considering a flux-transformer geome
with finite lateral dimensionL and by generalizing the non
local conductivities of Eq.~5! to allow eitherŝxx or ŝzz to be
nonlocal and depend on eitherkx or kz . As opposed to the
infinite-slab geometry, we could not make progress with g
eral conductivities, thus we elect to use Pade´ approximations
to the conductivities. Two important advantages to us
Padéforms are~i! they capture the high-k behavior as well
as the low-k behavior of the true conductivity and~ii ! the

.

FIG. 6. The results forVtop andVbot as a function ofl , using the
conductivities of Eq.~14! with parameterssx

(n)55, sz
(n)51, D

51, C151, andC255. The upper curve in each plot isVtop, and
the lower isVbot .
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57 5517NONLOCAL CONDUCTIVITY IN HIGH-TEMPERATURE . . .
resulting equations are analytically soluble. In addition,
corresponding real-space conductivities can be chosen t
decaying exponentials, which, according to Wortis a
Huse,18 could be the correct form for the high-temperatu
regime.

We will consider four different cases:

~1! ŝxx~k!5Sx , ŝzz~k!5Sz1
Dz

z

11kz
2l 2

, ~15a!

~2! ŝzz~k!5Sz , ŝxx~k!5Sx1
Dx

z

11kz
2l 2

, ~15b!

~3! ŝzz~k!5Sz , ŝxx~k!5Sx1
Dx

x

11kx
2l 2

, ~15c!

~4! ŝxx~k!5Sx , ŝzz~k!5Sz1
Dz

x

11kx
2l 2

. ~15d!

Note that the momentum dependence is uponkz in cases~1!

and~2! whereas it is uponkx in cases~3! and~4! and thatŝxx

is local in cases~1! and~4! while ŝzz is local is cases~2! and
~3!. In the Pade´ form, S is the conductivity ask→`, S
1D is that atk50, andl is a length scale. We set out t
solve¹• j50 subject to the usual boundary conditions on
current at the surface. Each of these problems involves
integrodifferential equation, which can be converted into
partial differential equation with linear coefficients, whic
can in turn be solved by separation of variables. This pro
dure is outlined in Appendix B. Below we point out some
the distinguishing features of the various cases.

Case (1).With conductivities of the form in Eq.~15a!,
solving ¹• j50 leads to the partial differential equation

F ]z
41

Sx

Sz
]z

2]x
22

~11gz
z!

l 2
]z

22
Sx

Szl
2
]x

2GV50, ~16!

where gm
n is a dimensionless variable given bygm

n

5Dm
n /Sm . Separation of variablesV(x,z)5X(x) Z(z) then

yields

S d2

dx2
1k2D X50, ~17a!

H d4

dz4
2FSxk

2

Sz
1

~11gz
z!

l 2 G d2

dz2
1

Sxk
2

Szl
2J Z50. ~17b!

The solution of Eq.~17a! is X(x)5Acos(kx)1Bsin(kx). Ap-
plying the boundary condition that no current enters on
sides, i.e.,]xV(6L/2,z)50, givesk5np/L with B50 for
evenn andA50 for oddn. Whenn.0, the solution of Eq.
~17b! is

Z~z!5Aez/j11Be2z/j11Cez/j21Ee2z/j2, ~18!

which has two length scales given by
e
be
d

e
an
a

e-

e

j6
22~n!5

1

2H n2

lz
2

1
11gz

z

l 2
6F S n2

lz
2

1
11gz

z

l 2 D 2

2
4n2

l 2lz
2G 1/2J ,

~19!

where lz5ASzL
2/p2Sx is a length scale occurring in th

local limit (gz
z50). Note that ifgz

z.0 ~corresponding to a
negative viscosity coefficient! the j ’s are real; whereas if
gz

z,0 ~corresponding to a positive viscosity coefficient! the
j ’s can become complex.

Case (2).For conductivities given by Eq.~15b!, the cor-
responding differential equation is

F ]z
41

Sx

Sz
]z

2]x
22

1

l 2
]z

22
Sx

Sz

~11gx
z!

l 2
]x

2GV50. ~20!

Proceeding with separation of variables, the functionsXn(x)
are exactly the same as in case~1!, and the functionsZn(z)
have the same form as in Eq.~18!, but the two length scales
j6 are now given by

j6
225

1

2H n2

lz
2

1
1

l 2
6F S n2

lz
2

2
1

l 2D 2

2
4n2gx

z

l 2lz
2 G 1/2J . ~21!

As opposed to case~1!, this time whengx
z,0 the j ’s are

real; and whengx
z.0 thej ’s may become complex.

Case (3).Turning the example with conductivities give
by Eq. ~15c! into a partial differential equation yields

F ]x
41

Sz

Sx
]x

2]z
22

~11gx
x!

l 2
]x

22
Sz

Sxl 2
]z

2GV50, ~22!

and separation of variables leads to

H d4

dx4
1FSzk

2

Sx
2

~11gx
x!

l 2 G d2

dx2
2

Szk
2

Sxl 2J X50, ~23a!

S d2

dz2
2k2D Z50. ~23b!

We see here that this situation differs from the previous t
in that the solution ofX(x) is no longer simply sines and
cosines, and similarlyk has become nontrivial. This featur
complicates the application of the boundary conditions a
the summing over eigenfunctions necessary to achiev
complete solution.

Case (4).Conductivities of the form Eq.~15d! lead to

F ]x
41

Sz

Sx
]x

2]z
22

1

l 2
]x

22
Sz

Sx

~11gz
x!

l 2
]z

2GV50. ~24!

The method of solution is similar to that for case~3!, includ-
ing the nontrivial values ofk.

Results.Let us now consider the results of using Pa´
approximants. We look at the behavior ofVtop andVbot as a
function of l , as in the previous section. In cases~1! and~2!,
we input a current

I top~x!5I 1sin~px/L !, I bot~x!50 ~25!

for the top geometry, and
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I top~x!5I bot~x!5I 0@11sin~px/L !# ~26!

for the side geometry. These currents are chosen bec
they roughly approximate the experimental inputs but
volve the minimum number of Fourier components, whi
simplifies the calculation. If we input the same currents
cases~3! and~4!, our solution will involve an infinite numbe
of terms since our formula forV(x,z) is not in the form of a
Fourier series but is a sum over more complicated eigenfu
tions. We instead expand the current in terms of these eig
functions. In fact, we once again choose the input curre
that minimize the number of terms in the sum over eig
functions. In the top geometry, the current is chosen to
proportional to the eigenfunction corresponding tok1, where
k1 is the eigenvalue which tends top/L in the local limit.
For the side geometry, we choose the combination of
eigenfunctions that tends to the current of Eq.~26!. For case
~3!, this unfortunately means that we vary the input curr
as we varyl ; at l 50, the input current is the same as f
cases~1! and ~2!, but this smoothly evolves so that in th
limit of l →`, the input current isI top'I 2sin(2px/L). The
side geometry is affected similarly. Hence, we must bea
mind that the input current changes significantly in case~3!.
In case~4!, on the contrary, the variation of input curre
with l does not appear to be as substantial. The volta
were calculated atz50, z5D andx560.3L. For each case
we did two sets of calculations: one using the conductivit
as written in Eqs.~15! with D scaling asl 2, and the second
using the scaling forms appropriate for a Bose glass; as g
in Appendix C by Eqs.~C3a!–~C3d!.

The first point to make about all of the results is that
never foundVright /Vleft→1 so long asD.0, which corre-
sponds to a negative viscosity coefficient. Hence none
these forms give us the strongly nonlocal behavior seen
Safar et al.3 ~though perhaps they do resemble oth
results5,10!. We showed in the infinite-slab case~Sec. III!, in
which the conductivities corresponded most closely to c
~4!, that we could only model Safar’s results with positi
viscosity coefficients. The results of this section suggest
this statement may hold for all of the cases.

Secondly, we look at the difference between the Bo
glass scaled and unscaled results. We have already see
example of this comparison in Fig. 6. Another appears
Fig. 7, this time for case~2!. The curves are remarkabl
different considering they came from the same overall fo
of the conductivity, Eqs.~15b!, which shows how vastly dif-
ferent behaviors can be modeled by the same form, makin
difficult to extract detailed information on the conductivi
from the experimental data.

Recall that the analysis of Huse and Majumdar,15 dis-
cussed in the Introduction, has a symmetry un
hxzzx↔hzxxz. If this symmetry applies in the Pade´ analysis,
it would correspond to a symmetry between cases~2! and
~4!. We have looked for such a symmetry. The compariso
complicated by the fact that the eigenfunctionsXn(x) are
different in the two cases, as mentioned above. Howe
using conductivities given by Eq.~15! led to qualitatively
different features for cases~2! and~4!—while admittedly the
case~4! input currents change in this analysis, we do n
expect the difference to affect the general features of
results. Thus, the Pade´ forms do not seem to share the sym
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metry found in hydrodynamics. Furthermore, this lack
symmetry seems to persist even when we choose Pade´ forms
with positive viscosity coefficients that should correspo
more closely to the hydrodynamic case.

Notice that in the unscaled data in Fig. 7Vbot goes nega-
tive. Although the potential reverses sign, calculations rev
that the current flow is always from left to right, even at t
bottom of the sample. In Sec. II we showed that if the co
ductivity is nonlocal, then either the real-space resistivity
conductivity is negative at some point. We believe that
sign reversal in the unscaled data is simply a consequenc
this fact. It should be noted that voltage reversals have in
been measured by Aukkaravittayapunet al.;25 however, it
seems unlikely that nonlocal conductivity accounts for th
results.

Before concluding this section, we note that it is possi
to extend the Pade´ forms considered above to higher leve
of approximation. Suppose one simply adds a second P´
term to the first one, for instance,

ŝxx~kx!5Sx1
D1

11kx
2l 1

2
1

D2

11kx
2l 2

2
. ~27!

There are now two length scales, and one can choose
parameters so that the conductivity has a positive visco
and maintain the propertysxx(0).sxx(kx→`). It is still
possible to solve the equation¹• j50 in a manner similar to
the examples discussed above. However, one would nee
differentiate the integrodifferential equation four times i
stead of twice in order to eliminate the two integral terms.
a result, one ends up with a sixth-order equation and a
more algebra. We have not pursued this avenue.

V. SURFACE CONSIDERATIONS

We begin this section on surface considerations with
comparison of the voltage and current distributions fou
using the hydrodynamic approach with those found using
Padéapproach. Let us consider case~2! from the previous
section making the following parameter choices:

FIG. 7. The results obtained for the ratioVbot /Vtop for case~2!.
The conductivities used are given by Eq.~15b! for the lower curve,
and Eq.~C3b! for the upper curve~which has the appropriate sca
ing for a twinned sample!. The parameters used areSx5sx

(n)55,
Sz5sz

(n)51, l i[l , D51, L55, C151, C255, and
Dx

z55l 2—note the scaling withl which is present. For the
twinned case,Vbot /Vtop does in fact tend to 1 asl →`.
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Sx5sx
01hl 22, ~28a!

Dx
z52hl 22, ~28b!

so that the small-k expansion of the conductivity is

sxx~k!5sx
01hkz

22hl 2kz
41O~ l 4kz

6!. ~29!

Note that thel →0 limit coincides with the truncation use
in the hydrodynamic approach. The fourth-order equat
derived for case~2!, Eq. ~20!, becomes

@ l 2Sz]z
41~h1l 2sx

0!]z
2]x

22sx
0]x

22Sz]z
2#V50. ~30!

If the terms proportional tol 2 are dropped, the equation
identical to the one studied by Huse and Majumdar.15,26

However, notice the small parameterl 2 multiplies the high-
est derivative]z

4V. This is the classic scenario for the deve
opment of aboundary layer, a small region in whichV var-
ies quite rapidly and in whichl 2]z

4V is not negligibly
small.27 Recall that our analysis of case~2! produced two
length scales given by Eq.~21!. In the small-l limit, j1 is a
small length~proportional tol ), while j2 is the length scale
arising in the hydrodynamic analysis. It is tempting to co
clude that one has discovered the length scale assoc
with Huse and Majumdar’s surface currents, but a more c
ful analysis is in order.

Following the steps outlined in the Appendix B we c
calculateV(x,z) for the top geometry with an input curren
I 1sin(px/L). From it we calculatej x(x,z), the current density
in the x direction. Figure 8 showsj x(0,z) as a function ofz
for several values ofl . As l decreases, the current becom
increasingly confined to the surfacez5D, in other words, we
obtain surface currents. However, they differ from tho
found by Huse and Majumdar.15 For the same input curren
the hydrodynamic analysis predicts that the ratio of curr
carried in the surface to that in the bulk is

surface current

bulk current
5

hp2

SzL
2

, ~31!

FIG. 8. The current densityj x(0,z) for different values ofl
corresponding to the case~2! Padéconductivities, Eqs.~15b! and
~28!, with parameters:sx

055, h55, Sz51, D51, L55 and input
currentI (x)5I 1sin(px/L). The dashed curve is the local curve (l

→`), and the other curves are forl 50.4, andl 50.067. The areas
under the curves are equal, but asl becomes smaller there is mor
current density at the surface.
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whereas Fig. 8 seems to show thatall of the current in our
solution is carried in the surface in the limitl →0. We con-
firm this result by noting that in the bulkj x;l in the small-
l limit, implying that we have no bulk and all surface cu
rent asl →0.

We have examined thel →0 limit not because we be
lieve it to model the real conductivity but in order to mak
contact with and perhaps better understand the hydro
namic theory. Nevertheless, the outcome—that much of
current is confined to the surface—has been suggeste
other contexts. If a significant fraction of the current flows
the surface, one might expect to find nonlinear behav
down to very low currents, since the current density near
surface would vary quite rapidly, leading to enormous te
ing forces on the vortices. NonlinearIV characteristics have
indeed been observed in both the top geometry28 and in
ĉ-axis resistivity measurements.29 However, our work is con-
cerned only with the linear regime, and so we do not disc
this further.

The fact that the small-l limit of Eq. ~30! is identical to
the corresponding hydrodynamic equation and yet the
approaches predict differing amounts of surface current s
gests that it is in the treatment at the boundary~or in the
effect of the boundary layer! that the two approaches differ
In the Pade´ calculation we considered the effect of the su
face only through the boundary conditions on the current;
neglected any effect the surface might have on the nonlo
conductivity itself. One expects some surface depende
since the conductivity is determined by the superconduc
order parameter, which in turn depends on the bounda
Within the limits of their calculation, Blum and Moore17

gave an explicit expression for the conductivity in the pre
ence of a surface. In addition to the usual bulk conductiv
their analysis yielded a term corresponding to the image
the bulk conductivity as well as ‘‘cross terms.’’ In order t
proceed with their voltage-distribution calculation analy
cally, the cross terms were dropped with an argument s
gesting their effect was small. Subsequent work30 has shown
that the effect while small propagates farther into the b
than was suggested in that work, indicating again the imp
tance of treating the surface effects properly.

It may turn out that the hydrodynamic approach actua
incorporates some of these surface effects. We have fo
that the small-l limit of the Pade´ approach with some sur
face effects duplicates the hydrodynamic results. In the p
vious analysis, we used the conductivity in Eq.~15b! which
corresponds to

sxx~r,r 8!5Fsx1
h

l 2Gd~r2r 8!2
hG~z,z8!

l 2
d~x2x8!

~32!

with

G~z,z8!5
1

2l
e2uz2z8u/l . ~33!

Now, we modify this conductivity so that
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G~z,z8!5
cosh@~D2uz2z8u!/l #1cosh@~D2z2z8!/l #

2l sinh@D/l #
,

~34!

which corresponds to including a series of image terms s
that the nonlocal conductivity satisfies the boundary con
tion of its derivative vanishing on the two surfacesz50 and
z5D. Some motivation for using this choice might com
from the boundary condition the order parameter its
satisfies;17 however, the justification here is that the resu
match those of the hydrodynamic approach.

Using this form, one can still solve the¹• j50 equation in
the same manner as for the conductivity of Eqs.~15!. In fact,
the partial differential equation one obtains as an interme
ate step is the same as that obtained in case~2! with a trans-
lationally invariant conductivity, i.e., Eq.~20!. But this is to
be expected since the difference lies in the boundary and
in the bulk. Applying the boundary conditions results in t
following voltage distribution

V~x,z!5
I 1sin~px/L !j1

2 j2~j2
2 2l 2!cosh~z/j2!

Szl
2~j1

2 2j2
2 !sinh~D/j2!

1$j2↔j1%, ~35!

which agrees with the hydrodynamic result in thel →0
limit. The corresponding current distributionj x(x,z)

j x~x,z!

5

I 1

p

L
cos~px/L !j1

2 j2~h2sx
0j2

2 1sx
0l 2!cosh~z/j2!

Szl
2~j1

2 2j2
2 !sinh~D/j2!

1$j2↔j1%, ~36!

is plotted in Fig. 9. It can be seen that once again we h
surface currents in the limitl →0; however, this time only
some of the current flows in the surface, with the rest s

FIG. 9. The current densityj x(0,z) for different values ofl
corresponding to nontranslationally invariant conductivities of
form given by Eq.~34! with the same parameters and input curre
as in Fig. 8. The upper dashed curve is the local curve (l →`), and
the curves with closed circles are forl 50.4 andl 50.067. The
lower solid curve is the Huse and Majumdar result@ j x(0,z)
'0.48cosh(0.815z) for the parameters used here#, which corre-
sponds to thel →0 limit of our results.
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flowing in the bulk of the sample. In fact, the ratio of surfa
current to bulk current is identical to that from hydrodynam
ics.

This result is interesting in that it suggests that Huse a
Majumdar’s boundary condition may be related to surfa
effects in the conductivity. It is surprising that these tw
approaches, hydrodynamics with its translationally invari
conductivity and its slightly unusual boundary condition~as-
sociated with the discontinuity in the derivative of the ele
tric field at the surface! and the Pade´ approach with a non-
translationally invariant conductivity and ordinary bounda
condition, can produce the same outcome.

VI. CONCLUSIONS

It is clear from the above work that the problem of no
local conductivity is not completely understood, howev
we have made progress in developing a calculational sch
which appears to be more robust than what was availa
previously. First, with Pade´ approximations, we can solve fo
voltage distributions having either positive or negative v
cosities, whereas, hydrodynamics is limited to positive v
cosities. Moreover, these approximations give the correct
havior at both high and lowk and so may model the surfac
effects better than the hydrodynamic forms. Because m
surements in the standard flux-transformer geometry
taken at the surface, an approach that deals inadequately
the surface has got to be considered suspect.

Since we now have the ability to investigate both posit
and negative viscosities, we can make deductions ab
which sign yields the strongly nonlocal behavior seen
Safar et al.3 We have found that modeling these effec
seems to require positive viscosities, particularly so when
nonlocal behavior in thex direction inszz is considered. As
discussed in Sec. II, there is mounting evidence thatŝzz(kz)
may have a negative viscosity coefficient even at low te
peratures, implying that the nonlocal behavior seen is
due to the dependence ofŝzz on kz . ~There are, however
other current configurations in which this is the only depe
dence of the conductivity probed.17!

Finally we have discussed how the conductivity itself m
be affected by surfaces and have shown that removing
translational invariance of the conductivity does not nec
sarily complicate the voltage-distribution calculation. In pa
ticular, we have shown that the Huse and Majumdar solut
corresponds to the limit of a Pade´-type solution in which the
conductivity lacks translation invariance. This surprising o
come emphasizes again the importance of the surface in
problem of nonlocal conductivity and suggests that even g
ting the correct large-k behavior of the bulk conductivity
may be insufficient if one has neglected surface effects. F
tunately, we have at least one example in which includ
the surface effects did not destroy the solubility of the Pa´
approach.
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APPENDIX A: ANALYSIS OF THE INFINITE-SLAB
GEOMETRY

In this appendix we consider the length scales and sur
effects that characterizeVT(x,z) and VS(x,z), the voltage
distributions in the infinite-slab geometry, by considering t
pole structure of the integrals given in Eqs.~12! and~13! for
a number of choices ofŝzz(kx). TheVS integral, Eq.~13!, is
done by summing the residues associated with the zero
cosh(kD/2), given by k(kx)56 ip(2m11)/D with m
50,1, . . . ; theVT integral is rather similar. For the loca
problem@ŝzz(kx)5Sz# these poles are evenly spaced alo
the imaginary axis. In fact, withd-function-distributed input
currents

JT5J0@d~x22Lc!2d~x12Lc!#, ~A1a!

JS52J0 d~x12Lc!, ~A1b!

the resulting expressions can be resummed to give

VT,S~x,z!5VlnFcosh@~2Lc1x!/lx#1cos~pz/D !

cosh@~2Lc7x!/lx#6cos~pz/D !G ,
~A2!

whereV52J0/2pASxSz andlx5ASxD
2/p2Sz and where

the upper signs in the denominator correspond toVT(x,z)
which is odd aboutx50 and the lower signs correspond
VS(x,z) which is odd aboutz5D/2.31

If we consider a nonlocal part to have the hydrodynam
form ŝzz(kx)5sz

01hkx
2 , the poles are located at

kx~m!5
6 i ~2m11!

@ l̃ x
21h~2m11!2/sz

0#1/2
, ~A3!

where l̃ x5ASxD
2/p2sz

0. Note that the smallest pole (m
50) is shifted to smallerkx compared to the local situatio
(h50), implying a longer length scale. There is only a s
nificant shift if the viscous length scaleAh/sz

0 becomes

comparable to the ‘‘local’’ length scalel̃ x which depends on
the sample thicknessD. As h increases further the viscou
length dominates; we were able to resum the series in
limit, finding

VS~x,z!'
2J0~2z2D !

4Asz
0h

exp$2Asz
0/h u2Lc1xu%. ~A4!

It would be interesting to probe the spatial dependence oVS
experimentally and extract its length scale. However, suc
measurement would be difficult as it would require a sam
long enough to accommodate several leads, and the volt
far from the current may become too small to be meaning
Returning to the pole structure in the hydrodynamic ca
another point to notice is that they accumulate at a fin
value 6 iAsz

0/h. As a resultVS(x,z) no longer diverges
logarithmically at the contact points (22Lc ,D) and
(22Lc,0). Given thed-function input currents, this diver
-

ce

e

of

c
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es
l.
e,
e

gence is physical, and the failure of the hydrodynamic fo
to reproduce it is an example of how the incorrect largek can
affect the potential especially at the surface.

Next, let us considerŝzz(kx) to have a Pade´ form

ŝzz~kx!5Sz1
Dz

x

11kx
2l 2

. ~A5!

The small-kx behavior of this expression is similar to th
hydrodynamic example ifDz

x,0. However, it has twice as
many poles sincek(kx)56 ip(2m11)/D has twice as
many solutions as in the hydrodynamic case. These p
break into two sets. For largem one set is evenly spaced an
mimics the behavior in the local problem including the log
rithmic divergence at the leads, while the other set accum
lates at the value6 iA(11gz

x)/l 2 ~wheregz
x5Dz

x/Sz) and
mimics the hydrodynamic behavior in the bulk. The Pa´
form has clear advantages over the hydrodynamic form,
even it is not quite right since the large-kx limit of ŝzz(kx)
should be less thanŝzz(0). To achieve that one needs som
thing such as

ŝzz~kx!5SzF11
g1

11kx
2l 2

2
g2

~11kx
2l 2!2G , ~A6!

with g1/2<g2<g1, which leads to three sets of poles—on
similar to the local case and two similar to the hydrodynam
case. With the Pade´ form, Eq.~A5!, one can also investigat
the consequences of ‘‘negative’’ viscosities whenDz

x.0. As
Dz

x increases, thex-axis length scale decreases and even
ally a point is reached at which the poles move off the pur
imaginary axis and some oscillatory behavior is super
posed on the exponential decay.

APPENDIX B: SOLUTION
OF THE INTEGRODIFFERENTIAL EQUATION

ASSOCIATED WITH THE PADE´ FORM

In this appendix we outline the solution of case~2!. For
conductivities of the form given by Eq.~15b!, the steady-
state continuity equation¹• j50 takes the form

Sx]x
2V~x,z!1Sz]z

2V~x,z!

1
Dx

z

2l F E
0

D

e2uz2z8u/l ]x
2V~x,z8! dz8G50, ~B1!

where exp$2uz2z8u/l %/2l is the Fourier transform of (1
1kz

2l 2)21.
Let us now apply the following trick. Differentiate Eq

~B1! twice with respect toz, which leads to

Sx]z
2]x

2V~x,z!1Sz]z
4V~x,z!2

Dx
z

l 2
]x

2V~x,z!

1
Dx

z

2l 3H E0

D

e2uz2z8u/l ]x
2V~x,z8!dz8J 50, ~B2!
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where we have exploited the relation

d2

dz2
~e2uz2z8u/l !5F 1

l 2
2

2

l
d~z2z8!Ge2uz2z8u/l , ~B3!

familiar from the solution of Schro¨dinger’s equation with a
d-function potential. We can combine Eqs.~B1! and~B2! to
eliminate the integral term, giving

FSz]z
41Sx]z

2]x
22

~Sx1Dx
z!

l 2
]x

22
Sz

l 2
]z

2GV50, ~B4!

which was given in the main body of the paper as Eq.~20!.
Separating variablesV(x,z)5X(x) Z(z) and applying the

boundary condition j x(6L/2,z)50 yields X(x)
5Acos(2npx/L) or X(x)5Bsin@(2n11)px/L# for n
50,1, . . . .Whenn.0, the correspondingZ(z) is given by

Zn~z!5Pn cosh@~z2D/2!/j1#1Qn sinh@~z2D/2!/j1#

1Rn cosh@~z2D/2!/j2#1Sn sinh@~z2D/2!/j2#,

~B5!

where j6[j6(n) is given by Eq.~21!. For some of the
algebra that follows it is convenient to choose modes that
symmetric aboutz5D/2.

It might appear that we need to apply four boundary c
ditions to determine the constants inZn(z), but actually two
of the constants are found by inserting the solution into
original integrodifferential equation, Eq.~B1!. This step
yields the following two conditions:

Pn

Rn
5

2j2~ l 22j1
2 !@j2cosh~D/2j2!1l sinh~D/2j2!#

j1~ l 22j2
2 !@j1cosh~D/2j1!1l sinh~D/2j1!#

,

~B6a!

Qn

Sn
5

2j2~ l 22j1
2 !@ l cosh~D/2j2!1j2sinh~D/2j2!#

j1~ l 22j2
2 !@ l cosh~D/2j1!1j1sinh~D/2j1!#

.

~B6b!

The two remaining constants are fixed by the boundary c
ditions on j z , namely,

2Sz]zV~x,D !5I top~x!,

2Sz]zV~x,0!5I bot~x!. ~B7!

They turn out to be fairly complicated functions of the p
rametersl , Sx , Sz , gz

z , n, andL, in addition to the Fourier
components ofI top(x) and I bot(x). Note that eachZn(z) is
only a function of the corresponding Fourier component
the current. Then50 part of the solution requires separa
consideration; however, it is straightforward and no deta
are provided here.
re

-
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APPENDIX C: BOSE GLASS SCALING FORMS
FOR CONDUCTIVITIES

In this section we consider scaling forms for the condu
tivities which might be expected to hold in the presence
correlated disorder~e.g., columnar defects or twin bound
aries!. With such disorder, there is thought to be a seco
order phase transition between the low-temperature Bo
glass phase and the high-temperature phase consisting
entangled liquid of delocalized flux lines.8,9 Near the transi-
tion the characteristic length scalesl ' ~within the ab

planes! and l i ~along theĉ axis! and the characteristic time

scalet;l '
z8 diverge. Nelson and Radzihovsky32 used the

scaling of the free-energy densityf ;1/l il '
2 and the vector

potentialAi;1/l i and A';1/l ' ~from gauge invariance!,
and the relationsJ5] f /]A andE52]A/]t to suggest that
the conductivities scale as

s';l i
21l '

z8 ,

s i;l il '
z822 . ~C1!

Studies of this transition9,32 have suggested thatl i;l '
2 and

z856.060.5; we are going to usez856.
In the Pade´-form conductivities~Eqs. 15!, we have a

length scalel , which is aĉ-axis length scalel i in cases~1!
and ~2! and is anab-plane length scalel ' in cases~3! and
~4!. Recall the conductivities in case~1! areŝxx(k)5Sx and
ŝzz(k)5Sz1Dz

z/(11kz
2l 2). What we want to do here is

determine the dependence of the constantsS andD uponl .
Since in this case the length scale isl i , we usel i;l '

2 to
eliminate the dependence uponl ' and arrive at

s'
~s!;l i

2 ,

s i
~s!;l i

3f ~kzl i!, ~C2!

where the superscript (s) refers to the superconducting con
tribution, we also include inSx andSz normal contributions
sx

(n) andsz
(n) that are not affected by the scaling.

We thus obtain the following Bose-glass scaling forms

~1! ŝxx~k!5sx
~n!1C2l i

2 ,

ŝzz~k!5sz
~n!1

C1l i
3

11kz
2l i

2
; ~C3a!

~2! ŝxx~k!5sx
~n!1

C2l i
2

11kz
2l i

2
,

ŝzz~k!5sz
~n!1C1l i

3 ; ~C3b!

~3! ŝxx~k!5sx
~n!1

C2l '
4

11kx
2l '

2
,

ŝzz~k!5sz
~n!1C1l '

6 ; ~C3c!
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~4! ŝxx~k!5sx
~n!1C2l '

4 ,

ŝzz~k!5sz
~n!1

C1l '
6

11kx
2l '

2
. ~C3d!

It should be noted that although the constantsC1 and C2
have no explicit dependence upon the length scales, they
be temperature dependent. However, compared to the
perature dependence of the length scalesl ' andl i near the
transition, which go as powers ofuT2TBGu ~whereTBG is
the transition temperature!, it is a weak dependence. In th
,

J
s

F.

.

a

l,

G

,

v.
ill
m-

forms above the coefficient of the Pade´ term is assumed to be
positive, and therefore the viscosity coefficient is negati
We can also write forms that have positive viscosity coe
cients; for instance, case~4! would be

ŝxx~k!5sx
~n!1C2l '

4 ,

ŝzz~k!5sz
~n!12C1l '

6 2
C1l '

6

11kx
2l '

2
, ~C4!

which is the form used to generate Fig. 6.
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