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Resistance of layered superclean superconductors at low temperatures
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The low-energy excitation spectrum is found for a layered superconductor vortex with a small number of
impurities inside the vortex core. All levels are found to be correlated. This leads to the strong enhancement of
conductivity in superclean layered superconductors.
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[. INTRODUCTION Feigel'man and Skvorzdv consider energy dissipation
during the vortex motion as a result of Landau-Zener transi-
In superconductors with weak pinning, th&/ character- tions between levels. They suppose that the level distribution
istic displays anomalous propertit$Some of them are very inside the vortex core obeys Wigner-Dyson statistics subject
difficult to explain in the framework of the quasiclassicalto ~some corrections, related to  specifics  of
approach. In the case of the quasiclassical approach there @réperconductivity? Such a treatment can probably be used
three limiting cases, determined by values of the three pal dirty and moderately clean superconductors. This method,
rameters: the size of the gapin the single-particle excita- 2&lthough differing from the quasiclassical approach, never-
tion spectrum, the level spacing inside the vortex coke theless gives f_or the essentla_ll_range of electrl_cal fle_lds the
~A2/g, and the electron mean collision timg. The three same expression of conductivity as the quasiclassical ap-

i . - - roach.

limiting cases are “dirty” limit, for 7,A<<1; “clean” limit P : . _ .

for A> 7-{1> wq, and superclean limit when the condition In. thls- paper we consider the. supercl_eap “m't' We find
r ' that in this region a new mechanism of dissipation arises. In

woTy>1 is fulfilled. _ the superclean limit no more than one impurity can be found
In the dirty limit at zero temperature the calculation of 4t distances of order of the correlation lengthoe /A from
Gor'kov and Kopniri confirms the qualitative picture of vor- the vortex center. It will be shown that in such a case a
tex motion of Bardeen and Stephém accordance with the  statistical description of level positions is impossible. If an
picture of Bardeen and Stephen the vortex core is in a “norimpurity is placed at a distance of order §from the vortex
mal” state. Bardeen and Shermarand Larkin and center and is weakBorn parameter is smallthen the shift
Ovchinniko derived conductivity in a mixed state for low of levels is also small. It is also important that levels with
temperatures and small magnetic field in the case of modeeven and odd orbital momentum are shifted in opposite di-
ately clean superconductors. In this case compared to thections. The level shift increases as the impurity comes
previous picture a logarithmically large factor arises in con-closer to the vortex center. At some distance from the impu-
ductivity. This factor is related to shrinkage of the vortexrity to the vortex center levels practically cross. It is very
core at low temperature§<T,.” The Hall component of important, that all levels with enerdy|<A cross simulta-
conductivity was found for moderately clean superconductineously.
ors by Kopnin and Lopatif. If we neglect the weakof order of wy/pgé) repulsion of
The superclean case was studied in the Kopnin andevels in this region, then positions of levels as a function of
Kravtsov papef. It was found that the level spacing, in-  the distance from the vortex core to the impurity form two
side a vortex core plays the same role as the cyclotron frefamilies of crossing straight lines. Outside of the dangerous
guencyw.=eH/mcin a normal metal. It was also found that level crossing region these lines are practically horizontal
in the superclean limit the Hall component of the conductiv-(see Fig. 1. The size of the dangerous zone, where the level
ity tensor is the largest one=en,/B (heren, is the elec- lines can be considered as crossing, depends on the Landau-
tron density in the conduction banB, is the magnitude of Zener parameter and hence on the vortex velocity. For the
the magnetic field The dissipative part of the conductivity vortex velocityV in the rangewy> peV=> wo(A/eg) the dis-
tensor is smaller by the parametesqr) 1. Hence the dis- tribution function of excitations inside the core of the vortex
sipative part of the resistance tensor is the same as in modloes not change until the impurity comes into the dangerous
erately clean superconductors. zone. But it changes essentially when the impurity goes
The quasiclassical approach is probably violated in théhrough the dangerous zone. Excitations, which arise when
two-dimensional casén layered superconductgrsbecause the impurity goes through this zone, determine the value of
the excitation spectrum in the vortex core is then discretethe dissipative part of the conductivity. Such a mechanism of
Guinea and PogoreléQ/ considered the dissipation in the dissipation is essential for the magnitude of the electrical
vortex state as a result of transitions between unperturbefteld E lying in the range
levels induced by “moving” impurities. Such a perturbation
theory approach is valid only in the high velocity limit BU—F
>v F(A/GF)Z.

A 2>E>BUF Alep)®
er C( ep)”.
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B/ In our problem the order parametarin the absence of
W, ; E .
the impurity is given by the expression
2
/\ A =A(Dexglig), ®

where ¢ is polar angler=|r|. The low-energy excitation
spectrum in the absence of the impurity was found in Ref.
13. The systen(2) possesses a very important propertye if
is an eigenvalue with the eigenfunctiofy (f,), then—E is
also an eigenvalue and the corresponding eigenfunction is
(f5,—f7). This property holds in a magnetic field too.

The low-energy excitation spectrulﬂ‘an0 is given by the
equatior®

-2

%) 0 2 ppda/n Ed=—(n—1/2)wy, 4

FIG. 1. The excitation spectrum as a function of the impurity where
distance from the vortex center. The parameterr?/(

2woPg) (9l 1 amlda . . . ) equals 0.02. The quantija=a— a,, with =drA(r) Cok ©
N . ! wa= e (r) dre 2K(r)
a, is given by Eq.(20). 0 A o )

Here ¢ is the velocity of light. As we prove below, this r
mechanism of dissipation leads to the dissipative part of the K(r)=f driA(r)/ve. (5)
current density being equal to 0

If Kramer-Pesh effect takes place, then with a logarithmic

Ao e[ E \?B accuracy we obtain from Eqé4),(5)
Ix= b 23 0B (1)
o AZR\vE A% (A
wherea, is the distance from the “dangerous” region to the EF

vortex centemo~ 0. ¢ is the Born parameter which is equal The eigenfunction, corresponding to the eigenvat)eis
to the phase shift of an electron scattering off the impurity.

Usually its value is of the order of ore~1. Hence param- _ [fy - e"J,(Per)

. ; f,= =ce KOl (7
eter (ppag) is much larger than one, and current density n , —e(M=De3  (per))’
essentially exceeds the value obtained in the framework of n n-1EE
the quasiclassical approximation. In the ran@eé>wo7y  where ¢ is the normalization constand,(x) is a Bessel
>1 the Hall angle is small. function.n=0-+1+2 . ..

For the excitation spectruia in the presence of an im-
Il. THE LOW-ENERGY EXCITATIONS SPECTRUM FOR purity inside the vortex core, we obtain from E@) the
AN IMPURITY AT THE DISTANCE a FROM THE following system of equations:

VORTEX CENTER IN THE RANGE A £(Algp)'?

o _ det(s—E)+A)=0, )
The excitations spectrurk in the vortex state can be

found as a solution of the eigenvalue problem for the systenyhere the operatoh is given by its matrix elements. In the

of equation§®** basis(7) we have
—%%—,ﬁV(r)—E; A(r) Akn:<f_f<:)/;(r ¥ (iV(r—a) f_“> ©
52 a is the position of the impurity relative to the vortex center,
A(r)*; %ﬁ'i-,u,—V(r)—E and
) £kn= SknEg - (10
X f, =0, (2) In Eq. (9), essential are the values iosuch that > p;l. So

we can use an asymptotic expansion of Bessel functions to
whereA is the order parametey, is the chemical potential find matrix element#\,,. A simple calculation gives
(Fermi energyu=¢g), V(r) is the potential of impurities.
We suppose here that the magnetic fiBlis weak B<H,) A —oik-neal | m(n+k)
and omit the vector potential in E¢R). Below we consider kn= € 1(@)co 2
the two-dimensional case. We suppose, also, that there is
only one short-range impuritfwith the interaction radius of
order ofp;l) inside the vortex core.

w(n+Kk)

—1,(a)sin 5

], (11)
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wheree, is the polar angle of the vectar and the quantities Hence the discrete spectrum is given by two sets of equidis-

I, are given by the equation tant points.
Functiond ; , are periodic with the perioa/pg . Both are
sinl2p.| a+ @ ) defined by the same function with shift by a quarter of the
I\ C2 P Pr a period. The amplitude, ., of these functions is a smooth
T el a f drv(r) ant) |- function of the parametera(¢) and is given by Eq(12).
2 cod2pe| a+ e ) With the accuracy ofvg(A/eg) a pointag exists such that
(12 2wq
In Eq. (12) the normalization constar@ is equal to l1anf@0)=——=1 12(80)=0. (20
© -1 . . .
C2= [ 21-rf dreZK“)} ' (13) Hence at the pointay+ da given by equation
0
If there are several impurities inside the vortex core, then the Sa= 1) N, N=0,+1+2..., (22)
operatorA in Eq. (8) is a simple sum&i over all impurities. Pr
Therefore we have
{ai} _
Agl =2 A(@), (14) 3a dl 1 am
kn - kn\ & __
' Eo=717a . (22
0

where Ayn(a;) is given by Eq.(11). It follows from Egs.
(11),(14), that the transition-matrix elemen#s,, are sepa- Equation(22) means that in a vicinity of the points of the
rable. That isA,, can be presented as a finite sum of terms oftrajectory of the vortex, given by E¢20), there is a set of
the type',&{('élﬁ points, separated by the distan8a, where spectrum lines
are practically crossingsee Fig. 1 In Fig. 1 the quantity
da=a—ay is shown, wherea, is given by Eq.(20). The
vicinity of such points we denote as tHessipation regionlf

_ ) _ the impact parameter of the trajectory is smaller than some
As a result we can obtain an expression for the excitatioyritical value, then on such a trajectory there are two dissi-
spectrum in an explicit form. If only one impurity is placed pation regions. When the vortex moves through these two
inside the vortex core, then we obtain from E¢®). (11),  dissipation regions many excitations are created inside the
and (15) the following equation for the excitation spectrum: yortex core. The contribution of these excitations to the dis-

Aw=> AlBL. (15)

N+ 1 N+ 1 sipative part of conductivity will be found below.
1+1, E 1 1, 1 The si_tuation _of havi_ng several impurities inside the vor-
LN ey tE LN ey TE tex core is considered in the Appendix. We prove there that
de N+1 N+1 =0. the strong correlation in the level positions survives for two
I, -1, 2 1 impurities inside the vortex core. We can makg a conjecture
LEEN &gy 1 TE’ L==Nnega1tE that the strong correlation in level positions exists for many

(16 impurities inside the vortex core, while the conditige> £ is

fulfilled. But on a vortex trajectory of a general status dissi-
pation regions with a large number of practically crossing
energy-level lines do not exist, if there are two or more im-

For the linear spectrum given by E@), we obtain in the
limit N— 40

Nil 1 t( 1 N E ) purities inside the vortex core.
L=—N 82L+E_2woco . 4 2(,00 '
Ill. ONE IMPURITY AT SMALL DISTANCES
N+1 1 1 E [A<£(A/er)Y?] FROM THE VORTEX CENTER
a
LZE—N ea 1TE zwocc’{W(Z_ ZwO))' 17) First of all we shlall consider one impurity with a short-
_ range(of order ofpg ) potential placed exactly at the vortex
With a help of Eq.(17) we reduce Eq(16) to the form center. At distancep>p-! from the vortex center we can
use for the solution of Eq2) the quasiclassical approxima-
72 (11)%+(12)%] 7l ion Wi i :
1+ 1 2 1 -0 (19) tion with the first-order correction terms. Indeed these cor-
4w§ woCog TE/ wgp) rection terms will give an expression for the spectrum. And

o at small distances of order ugl we can omit nondiagonal
It foII(_)WS from Eq. (18) that the _Iow-energy excitation Spec- glements in Eq(2). As a result we obtain the following
trum is strong correlated even in the presence of an 'mp“”%xpression for the spectrum:

inside the vortex core. IE, is a spectrum point, that is &,

is some solution of equation for the spectr¢b®), then all 6. .—0 "

solutions of Eq.(18) are given by the equation E,=—(n—1/2wo+vE tar( %) / f dpe=2K(p),
0

E=+Eq+2woN, N=0,+1,+2. (19 (23)
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where 6, is the scattering phase in a state with angular mowhere
mentumn in the presence of the impurity potentis|(r).

. . . . . . o0 A
The corresponding eigenfunction is given by the expression | = waCZJ dpue_gK(p), |/ wg=pral2.
| € °
f,= ( fl) :§e‘K(P) With the help of functiorB we reduce Eq(26) for the spec-
2/n trum to the following simple form:
ein(p[‘Jn(pFP"'en)"'\]n(pFP"'enfl)] ) 60— 05
. . oy, N-
_el(nil)w[Jnfl(pr‘F 0n)+Jnfl(pr+ anl)] , B(l,E,l), le COS( 2 )’O’O

(24) s 00_ 02 .
_ —le™'%%co ;Eo—E;—1€e'2;0
whereC is a normalization constant. Suppose now that the det 2 -0

impurity is placed on a distanca from the vortex center, » _ 60— 0,
such thafal<£(A/eg)*2 In Eq.(2) we make a transforma- 0;—le™'¢aE,—E;—le'¥acog —
tion to the coordinate system with the origin at the impurity. b
Then we obtain O;O;Ie“f’acos< 02 2);B(I,—E,1)
@ i d i (30)
—o— 5~ rtV(N—E;  [Ale"+|a—|(|Ale') _
2m gy or Equation(29) means thaB(l,E,1) can be presented as an
P 2 infinite fraction
—ig —iey. _— _ _
[Ale +(aﬁ (Jale™) g gz TaV(N—E B(I,E,.)=—E,~E
f 12cog((0,— 63)/2)
x| ] =o. (25) - T
f, 12c0Z((0,— 64)12)
. . . - E3_ E- 2 52
From Eq.(25) we obtain the following equation for the ex- CE_E_ 1“cos (03— 65)/2)
citation spectrum: 4 ...B(I,E,n+1)
(3D

def(¢—E)+A)=0, (26)
The fraction (31) converges very quickly, if foB(l,E,n

wheree, = E, 8, andE,, is given by Eq(23). The operator +1) we use the expression

A is given by matrix element8,, in the basis defined in Eq.

(24), B(ILEn+1)=[ (n+1/2w,—E
d . +V[(N+1/2we—E]?—417 |12, (32
: (a2 |ales a2 EF a2, (22
Aol T2, £y (N+ 12wy E>|I]. (33
(aﬁ) (|ale”'®); 0 Suppose now, that the impurity is of a small size, so @ly

(27) scattering is essential. Suppose also, that the impurity poten-

) ) ) ) tial is of order of the atomic one and hence the inequality
A simple straightforward calculation making use of Egs.takes place

(24), (27) gives

|A | 80:A tan(00/2)>w0. (34)
Axn=— waCZJ dp — £l g~ 2K(p) Then in the first approximation E¢30) for low-energy ex-
0 p citations uncouples to two independent branches
y 5k,n+1e‘“"a<305( @) B(I,E,)=0 and B(l,—E,1)=0. (35)

0 —_g Hence we obtain two independent families of spectrum

+ 5, n_le‘*Daco% n nZ)]. (28) Iines.. Of course in thi; approximation they will cross, and

‘ 2 only in the next approximation with respect to the parameter
(wo/e0)? will a gap in the crossing points open.

In Eq. (28) the constanC is given by Eq.(13). It follows For small values of we have

from Eq.(28) that in the operator in Eq26), only diagonal
and rjear—diagona! elements are nonzero. Now we define the B(1,E,1)=B+ aE, (36)
function B(l,E,n) in the following manner:
202 where
I“co [(anfl_ 0n+l)/2]
B(l,E,n—1)=—-E,—E—- B(.E.n) , :aB(I,E,l).

a

(29 JE

(37
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Inserting expressiofB6) into Eq. (30) we obtain the follow- Elo, . .

ing equation for the lowest energy level near the crossing 1.08
points: 3 \

E2a?e3=B?[| cog 60/2)1?+[eoB+ (Icog 60/2))%]2.

(39 k

Hence the value of the gapnear this crossing point is equal
to -1

|1cog 6,/2)3 2
= > > (39) -3
|aeo| \/80+ (Icog 64/2))
-4
In Eqg. (38) the quantitya should be taken at the point 0 1 s 3 4 5
I cos(0u/2)/
dB(l,E,1) 5
A= |a__ gollcog6y/2)] | (40) FIG. 2. The low-energy excitation spectrum at small distarces
[Icos{00/2)]2+s§ from the impurity to the vortex centel{ wy=pga/2, see Eq(29);
By the order of magnitude the value of the g&fs given by
the equation 5=3.2x10"3 (46)

- 3
o~A(alg)”. (4D The contribution of these crossing points to the dissipative
It is possible to keep in the expansion of the order paramPart Of the conductivity will be discussed below.

eterA with respect to the shifa in Eq. (25 terms up to the
second order ia. Then the operato& will have the follow- V- LANDAU-ZENER TUNNELING NEAR THE CROSSING

ing nonzero matrix element®,,;An n=1:An n+2. Equation POINT OF SPECTRUM LINES

(26) in this approach enables us to determine the excitation Near the crossing point of spectrum lines, given by Eq.
spectrum up to the shit of order of (18), we can put

a~¢&(Alep)', (42) wly wl,
. : S —=—1+y; 5—=2peX; X=Vt, (47
At the boundary of this region the gah given by Eq.(41), 2wy 2w

is of the order ofwy. Hence energy levels can “cross” only
in dissipation regiongEq. (22)], or when the impurity is
placed near the vortex cof&q. (39)].

Equation(30) for the spectrum can be reduced to the form

whereV is the velocity of the vortex. For two close spectrum
pointsE.. we obtain from Eq(18) the following value:

w

0
E.=Xew—. gm=VYy*+(2peX)*. (48)

0o— 02) +B(I,E,1)+B(I,—E,1)r

| 2
E—Ocos2 > >

The usual Landau-Zener consideration leads to the fol-
2 lowing value for the probabilityv, , for a “particle” to
remain on the same branch after collision

B(I,E,1)—B(l,—E,1) _E_l2 52< 0o— 02>

2 B2 2
2 woy?
|2_E2 E|2 00_02 W++=1—GX —2—|V| . (49)
+———B(l,E,)B(l,~E,1)+| —cos 3 Pr
0 E With the help of Eq(49) we will find the energy transmitted
—0 (43) to the vortex at one collision with impurity.
Near the crossing points the last two terms are sfidll V. DISSIPATIVE PART OF CONDUCTIVITY
order of (%/Ey)?] and lead to the repulsion of spectrum IN SUPERCONDUCTORS

lines. In zero approximation neglecting two last terms Eq.
(43) uncouples to give two families of independent spectrum,
lines.

Energy levels as a function of the shét(or quantity|
~a) are given in Fig. 2. Inside the circle in Fig. 2 the equa- V<ve(Alep)?, (50)
tions for two spectrum branches are

Let us first consider the superclean limit, when only one
purity can be found inside the vortex core. Then for small
values of the vortex velocity, such that

an excitation can arise only at spectrum line crossing points.
E/wo—1.073=5(0.1335+ 1+1t%); (44)  Such crossing points are located only in dissipation regions
[Egs.(20), (21)], or if the vortex center is close to the impu-
t=1.3431/wg—2.3173/6; (45  rity [Eq. (39)].
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Suppose that between two consequent collisions the sys- 7a%(wopp/2)8
tem goes to the equilibrium due to inelastic-scattering pro- Wi =1l-exp ———F—S (58
cesses. In such a case the dissipative part of conductivity is 07|V

directly connected to the energy, stored by the vortex after o o
one collision with impurity. Hence the number of excitatioMsthat arise in the vortex

Consider first processes happening in dissipation region§0re, when the impurity passes through the vortex near its
Suppose thap, is the impact parameter. Then near the pointCenter, 1S
ao [Eq. (20)] we have - e
2apg -
N - ( ) ' &=

| al
™ 1.am:1+y' y= %( 1.am) X 1_(p0/a0)2_ T
0

dap &

Vegy: |1
ez ) 59
w(wOpF/2)5) &9

(51 These transitions give the following contribution to the

Periodicity 6x of a crossing point with respect tois energy dissipatioE per volume and time unit

- SE=2aVwoN?Niyy(B/ ¢p). (60)
K= ——. 52
PeV1—(po/ag)? 52 Equations(55), (60) completely determine the dissipative

. _ o art of the current
Hence the full numbeN of crossing points in a dissipation P

region, with the effective transition of a particle to the other n 4.2 19142, =\ 10142
branch, is jx=j(1>+w0 imp '1:2,7( 072 ) ( )
X ¢O 7T(wopp/2)5 B
N ( 2X 2/3_ Pe(Vawg)'? 53 (62)
X (dl 1.am/‘"7p)§£)3. By the order of magnitude we have

To obtain Eq.(53) we use Eq(49). Inside of this region the 4l 20
energy of excitations increases linearly with the shift. After ( Mm) ~ 20 (62
that the diffusion processes of excitations on the energy axis ap e

start to be essential. The transitions of excitations to the other _ N

branch happen in an essentially larger regith—~N¥2 but ~ Hence, in the range of velocitiés, such that

are not important. We get with the help of E§3), that the 20/9

vortex, after passing through two dissipation regigose Vive>(Aleg) (63

collision with impurity), stores the energ§E being equal to the second term in Eq61) is smaller than the first one. By

- v wg/3p'2:V2/3 5 the large parameter
=wogN'=—————7:.
(9 1.aml 9p)a” Nimpé? [ &8 | 23 vE)| 13
0 — =~ - (64)
. . . - . TIFA A V
As a result, we can estimate the contribution of transitions in
dissipation regions to the dissipative curr@aﬁ’? the dissipative part of the current, given in E§1), exceeds
the quasiclassical value for the current in the two-
(1) 80Nimp wg’3p,2: /E 213 55 dimensional case. Express_i@!ﬁS) for conductivity was ob- _
= b0 (911 .0/d )4/3\5 ' (59 tained under the assumption that the number of crossing
Lam' P )a, points in a dissipation region E¢p3) is large. This condition

where ¢,= /e is the flux quantumB is the magnetic field 9ives the same restriction on the value of the velocity as
value. Consider now the energy, dissipated as an impuritgiven in Eq.(63).

passes near the vortex core. From E@)) and (39) we

obtain the following expression for the excitation spectrum VI. CONCLUSION

near the crossing points: . . L )
In the two-dimensional case the excitation spectrum in

|6 12 vortex core is discrete. This results in the strong increase of
E=*|—— +[w0p,:(5a)/2]2) , (56)  the dissipative part of the conductivity,, [Eq. (1)] com-
€072 pared to its value obtained by the quasiclassical method. It is
very probable that the strong increase of conductiwity at

where ! 4 . .
low temperatures, obtained in experimental papérs, re-
aB(l,E,1) lated to the phenomena considered in this paper. For a de-
Vo= | = wopral2, (57)  tailed comparison to the experiment both experimental and
theoretical investigations are necessary.
(6a) is a shift from a crossing point, and the parametgrs Consider now the applicability region of Eq&5), (61),

of the order of unity. According to Eq49), the probability = and(64). We do not see any restriction for the temperaflire
W, , for the particle to remain on the same branch after a@n the framework of the model used excep&T.. In the
collision is equal to rangeT~ T, excitations with the energy~ A are essential.
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In this region the excitation spectrum is not equidistant.decrease the,, value in the range of small vortex veloci-
Probably it is more essential that in our model the mainties. Now the physical reason for the energy relaxation in
mechanism of dissipation is the scattering of excitations ofhigh-T, superconductors at low temperatures is not clear,
impurities. In real highf, compounds such an assumption and we cannot make any quantitative estimation of this ef-
holds only in the low temperature region. The predicted effect. Equationg55), (61) are valid in the superclean limit, if
fect should vanish in the strong magnetic field regian at distances of the order @ffrom the vortex center there is
~Heo. no more than one impurity. If at a distance of the orde€ of

More complicated are the restrictions for the electrical-from the vortex center there are two impurities, then the
field magnitude or for the vortex velocity. The restriction probability of a level crossing decreases strongly. As a result,
ve(Alep)3<V<uvg(Aleg)?, given in the introduction, holds the value ofo, decreases too.
in our approximation. For the vortex velocityV oyx as a function of the impurity concentration has a
>ve(Aleg)? the adiabatic consideration is inapplicable. An maximum atw,r, of the order of one. The question about
impurity on the distancea< ¢ from the vortex center leads the value of the impurity concentration, for which the matrix
to the transition of quasiparticles to highly excited states. Ircan be considered as random, demands an additional inves-
the regionV<uvg(A/eg)® the small gap in the excitation tigation.
spectrum of the order aby(A/eg)® leads to the adiabaticity
of motion in dissipation regions. In this case the impurities ACKNOWLEDGMENT
that pass at small distances of the ordeg@h/eg)Y? from
the vortex centefsecond term in Eq(61)], give the main
contribution to the energy dissipation. It is essential that eve
in the frame of our approach tHeV characteristic changes
its form for different ranges of the velocity.

There are also some other mechanisms that can change
the | —V characteristic. At small values of vortex velocities | inside the vortex core a large number of impurities is
pinning can start to be essential. It can reduce dissipatiorplaced, then transition-matrix elememtg.{a} (a; is the po-
The pinning force is strongly dependent on the interactiorsition of ith impurity), are given by Eq(14). The equation
between vortices and hence on the magnetic-field magnitud@r the spectrum in such a case is
and anisotropy factor. In superclean superconductors pinning
can be considered weak. 2L A

The tunneling of excitations to the neighboring planes can det1+C)=0 (A1)

reduce dissipation at large velocity. If the anisotropy faetor with the matrix elements of the operatérbeing equal to
is small then the spectrum near the crossing points does not

The research of Yu. N. Ovchinnikov was supported by the
I%:RDF Grant No. RP1-194.

APPENDIX: A LARGE NUMBER OF IMPURITIES INSIDE
OF THE VORTEX CORE

change much and the Landau-Zener tunneling probability BiAl

does not change. But near the points where the energy of a Ci.=> Kk 1..=6 (A2)
. . . . K E _ E 1 nm nm-

guasiparticle is close to the unperturbed position of a level k Ek

from the neighboring plane, a notable probability arises o ny impurities are placed inside the vortex core, then the

tunneling of a quasiparticle to the neighboring plane. As &jze of the matrix in EqQ(Al) is (4MX4M). Due to symme-

result, the quasiparticle energy does not increase any monﬂey properties of the elements, , [Eq. (11)], this matrix can

and dissipation will be smaller than given by Eg4). The be easily reduced to the siz2M X 2M). The structure of this
laxati f iparticl h h ter- N .
energy relaxation of quasiparticles can chahgecharacter | matrix M is simple. On the diagonal are placed blocks

istics both for large values of vortex velocity and for smal . .
ISt ge vau VOriex v Y r(2>< 2), defined only by one impurity. The second type of

values. If the energy relaxation time is large enough, the ) . .
effective heating of excitations inside of the vortex corePlOcks are blocks (22), that give the interference contri-

takes place. The effective temperature reaches a value of ttition of a pair of impuritiesif). A
order of T, .1® The value ofo,, decreases in this case. Onthe  To clarify the structure of the matriM in the general
other hand, strong energy relaxation can lead to the equilibease, we give below the explicit expression of the malttix
rium inside of one act of tunneling. This phenomenon will for two impurities inside the vortex core:

L mi | WE) wly 7T+’7TE 12 12
LM (T e e T omE) L e
200 2N %4 " 200 200 0\ 4 200 2002t " 2ap 2t
w3 T wE 4 i m wE\ 12 _ 12
. 200 0% 2w 200014 2wg) 200 2wo”
M= 1 1 2 2 (A3)
N b *oqy 7T|1CO 7T+’7TE 'WIZCO ’7T+7TE
2007 2001 200 % 4 200 200 0\ 4 T 20,
13 11 w3 (7 =E m? (7 =E
T ke _ T k. “ I I - -
2(1)02 ’ 2(1)02 ’ 2(1)0CO 4 2(1)0 ,1+ Z(J)OCO 4 2(1)0
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In Eq. (A3) the upper index if! means the number of im- A straightforward calculation gives for the quantitfE) the

purities =1, ...M) and the lower index can be 1 or 2.
The quantities,z, are defined by the equations

following expression:

* 2iL (@, ~@a,) - _ —im(1/4—El2wg) +iX,4_ 5 (1/2—Elwg)
= & 2B)= " Sin(mla— wEl2ag) © e !
L=—o L_1/4+ E/2(1)0’ (A6)
2 @i2L+1)(¢a ~ ¢a) where
2= 2 {14 Efowg (A4)
From Eq.(A4) it follows that Xaya,= (¢a, = ¢a,)/ mod 7>0. (A7)
7,(E)=—27*(—E)e'(¥a, ¢a), (A5)  From Eq.(A3) we obtain
|
deti = 1+J o 1+J i ) z —|Zzl|2J J
=(1+J3;+ +J,+ + +2Z2)+
€ 1" wocod mE/ wg) 2" wocod mE/ wg) 4wg(zlz %) 16‘”61 12
|z|? |1+2woJ ’7T+ 7E 24 2(1)0J ’7T+ 7E
4(1)% VW r 1€0 4 2w ' or 2€0 4 2w
|z,|? 1 2wg T wE , 2w T @E
_4_(0% |1+7J1C0 2_2_(1)0 |1+ 7J2CO Z_ 2_(1)0 , (A8)
where
772 . .
Ji=—[(1)*+(1)?]. (A9)
dwj

Note that the quantitgZ is purely imaginary. Hence the only term in E@8) that has a periodical dependence with
respect to the enerdy with the period, differing from 2, drops out. As a result, the expression for the specitl®nholds
also in the case if there are two impurities inside the vortex. Our conjecture is: for the low-energy excitation spectidn Eq.
is correct in the clean limit{A>1), even if there are a lot of impurities inside the vortex core.

With the help of Eqs(A5), (A6), (A8) we obtain the following equation for the excitation spectrum:

detV =0,
det ={ 1+J o 1+ ulh M
=|1+3,+ +Jp+ +
€ 17 wocod mE/ wg) 2" wocog mElwg) | co wE/wg) T2
w2 -|1+2w0,] t(ﬂ--i-ﬂ- ) |2+2w0J [(77+ WE)}
- —Jscof —+ >— —J,cot —+ —
AlSi(mld—mERwg)l - T 114 2w) |1 T2\ 4T 200
2 '|1+ ZwOJ t(q-r WE) 2y 2000‘J [(77 WE)} (A10)
o —J1C00 —— 5 — —JoCOl —— —|.
Aw3sir?(wlA+ mE2wq)! Vor T4 2w/ ||t m TN 4 20

For thel-V characteristic in the mixed state, decisive is the vatuahe existenceof the gap in the excitation spectrum. For
this reason we will calculate the value of détfor E=0. Simple calculations with the help of EGA10) give

2

R i3 Wl}
deM(E=0)=—=(1—-J))+—(1-J5)+(1+J1)(1+J,).
wo wo

(A11)
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ExpressionAll) is nonnegative. It can be written as a sum eral impurities are placed inside the vortex core, the quantity
of nonnegative terms detM(E=0) is a sum of nonnegative terms of the form

mll mZ ol 2\ (AL2).
detl (E=0) = 14—t "1 _1) Now, for small values ofE<w, we obtain from Eg.
2(1)0 2(1)0 2(,00 2(1)0 (AlO)
wl% 2 w|§ 2 7T|% 2 1 ’7T|% 2 ~ R 7E\?2
+ 200) | 200 + 200 " 2wg detM(E)zdetM(EzO)—(w—o) .
w32 w12
=] |1-5— (A12) lt ml?
2(1)0 2(,00

I
1 1
2J1J2—2—%(1—J2)—2—%(1—J1)]. (A13)
It means that on the vortex trajectory of a general status,
dissipation regions with a large number of practically crossEquationgA11), (A12), and(A13) completely determine the

ing energy levels lines do not exist. Now we can formulateexcitation spectrum near the crossing points of the energy
the following conjecture. In the clean limitrd>1), if sev-  levels.
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