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Resistance of layered superclean superconductors at low temperatures

A. I. Larkin* and Yu. N. Ovchinnikov*
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The low-energy excitation spectrum is found for a layered superconductor vortex with a small number of
impurities inside the vortex core. All levels are found to be correlated. This leads to the strong enhancement of
conductivity in superclean layered superconductors.
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I. INTRODUCTION

In superconductors with weak pinning, theI -V character-
istic displays anomalous properties.1,2 Some of them are very
difficult to explain in the framework of the quasiclassic
approach. In the case of the quasiclassical approach ther
three limiting cases, determined by values of the three
rameters: the size of the gapD in the single-particle excita
tion spectrum, the level spacing inside the vortex corev0

;D2/«F, and the electron mean collision timet tr . The three
limiting cases are ‘‘dirty’’ limit, for t trD!1; ‘‘clean’’ limit
for D@t tr

21@v0, and superclean limit when the conditio
v0t tr@1 is fulfilled.

In the dirty limit at zero temperature the calculation
Gor’kov and Kopnin3 confirms the qualitative picture of vor
tex motion of Bardeen and Stephen.4 In accordance with the
picture of Bardeen and Stephen the vortex core is in a ‘‘n
mal’’ state. Bardeen and Sherman5 and Larkin and
Ovchinnikov6 derived conductivity in a mixed state for low
temperatures and small magnetic field in the case of mo
ately clean superconductors. In this case compared to
previous picture a logarithmically large factor arises in co
ductivity. This factor is related to shrinkage of the vort
core at low temperaturesT!Tc .7 The Hall component of
conductivity was found for moderately clean supercondu
ors by Kopnin and Lopatin.8

The superclean case was studied in the Kopnin
Kravtsov paper.9 It was found that the level spacingv0 in-
side a vortex core plays the same role as the cyclotron
quencyvc5eH/mc in a normal metal. It was also found tha
in the superclean limit the Hall component of the conduct
ity tensor is the largest ones.ene /B ~herene is the elec-
tron density in the conduction band,B is the magnitude of
the magnetic field!. The dissipative part of the conductivit
tensor is smaller by the parameter (v0t)21. Hence the dis-
sipative part of the resistance tensor is the same as in m
erately clean superconductors.

The quasiclassical approach is probably violated in
two-dimensional case~in layered superconductors!, because
the excitation spectrum in the vortex core is then discre
Guinea and Pogorelov10 considered the dissipation in th
vortex state as a result of transitions between unpertur
levels induced by ‘‘moving’’ impurities. Such a perturbatio
theory approach is valid only in the high velocity limitv
@vF(D/eF)2.
570163-1829/98/57~9!/5457~9!/$15.00
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Feigel’man and Skvorzov11 consider energy dissipatio
during the vortex motion as a result of Landau-Zener tran
tions between levels. They suppose that the level distribu
inside the vortex core obeys Wigner-Dyson statistics sub
to some corrections, related to specifics
superconductivity.12 Such a treatment can probably be us
in dirty and moderately clean superconductors. This meth
although differing from the quasiclassical approach, nev
theless gives for the essential range of electrical fields
same expression of conductivity as the quasiclassical
proach.

In this paper we consider the superclean limit. We fi
that in this region a new mechanism of dissipation arises
the superclean limit no more than one impurity can be fou
at distances of order of the correlation lengthj5vF /D from
the vortex center. It will be shown that in such a case
statistical description of level positions is impossible. If
impurity is placed at a distance of order ofj from the vortex
center and is weak~Born parameter is small!, then the shift
of levels is also small. It is also important that levels wi
even and odd orbital momentum are shifted in opposite
rections. The level shift increases as the impurity com
closer to the vortex center. At some distance from the im
rity to the vortex center levels practically cross. It is ve
important, that all levels with energyu«u!D cross simulta-
neously.

If we neglect the weak~of order ofv0 /pFj) repulsion of
levels in this region, then positions of levels as a function
the distance from the vortex core to the impurity form tw
families of crossing straight lines. Outside of the dangero
level crossing region these lines are practically horizon
~see Fig. 1!. The size of the dangerous zone, where the le
lines can be considered as crossing, depends on the Lan
Zener parameter and hence on the vortex velocity. For
vortex velocityV in the rangev0@pFV@v0(D/«F) the dis-
tribution function of excitations inside the core of the vort
does not change until the impurity comes into the danger
zone. But it changes essentially when the impurity go
through the dangerous zone. Excitations, which arise w
the impurity goes through this zone, determine the value
the dissipative part of the conductivity. Such a mechanism
dissipation is essential for the magnitude of the electri
field E lying in the range

B
vF

c S D

«F
D 2

@E@B
vF

c
~D/«F!3.
5457 © 1998 The American Physical Society
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5458 57A. I. LARKIN AND YU. N. OVCHINNIKOV
Here c is the velocity of light. As we prove below, thi
mechanism of dissipation leads to the dissipative part of
current density being equal to

j x5
a0nimp

f0

«F
5/3

D2/3S E

vFBD 2/3

, ~1!

wherea0 is the distance from the ‘‘dangerous’’ region to th
vortex centera0;uj. u is the Born parameter which is equ
to the phase shift of an electron scattering off the impur
Usually its value is of the order of oneu;1. Hence param-
eter (pFa0) is much larger than one, and current dens
essentially exceeds the value obtained in the framewor
the quasiclassical approximation. In the rangepFa@v0t tr
@1 the Hall angle is small.

II. THE LOW-ENERGY EXCITATIONS SPECTRUM FOR
AN IMPURITY AT THE DISTANCE a FROM THE
VORTEX CENTER IN THE RANGE A@j„D/«F…

1/2

The excitations spectrumE in the vortex state can b
found as a solution of the eigenvalue problem for the sys
of equations13,14

S 2
1

2m

]2

]r2
2m1V~r !2E; D~r !

D~r !* ;
1

2m

]2

]r2
1m2V~r !2E

D
3S f 1

f 2
D 50, ~2!

whereD is the order parameter,m is the chemical potentia
~Fermi energym5«F), V(r ) is the potential of impurities.
We suppose here that the magnetic fieldB is weak (B!Hc2)
and omit the vector potential in Eq.~2!. Below we consider
the two-dimensional case. We suppose, also, that ther
only one short-range impurity~with the interaction radius o
order ofpF

21) inside the vortex core.

FIG. 1. The excitation spectrum as a function of the impur
distance from the vortex center. The parameter (p2/
2v0pF)(]I 1,am/]a . . . ) equals 0.02. The quantityda5a2a0, with
a0 is given by Eq.~20!.
e

.

of

m

is

In our problem the order parameterD in the absence of
the impurity is given by the expression

D~r !5D~r !exp~ iw!, ~3!

where w is polar angle,r 5ur u. The low-energy excitation
spectrum in the absence of the impurity was found in R
13. The system~2! possesses a very important property: ifE
is an eigenvalue with the eigenfunction (f 1 , f 2), then2E is
also an eigenvalue and the corresponding eigenfunctio
( f 2* ,2 f 1* ). This property holds in a magnetic field too.

The low-energy excitation spectrumEn
0 is given by the

equation13

En
052~n21/2!v0 , ~4!

where

v05E
0

`drD~r !

pFr
e22K~r !Y E

0

`

dre22K~r !,

K~r !5E
0

r

dr1D~r 1!/vF . ~5!

If Kramer-Pesh effect takes place, then with a logarithm
accuracy we obtain from Eqs.~4!,~5!

v05
D2

«F
lnS D

T D , D5D~`! . ~6!

The eigenfunction, corresponding to the eigenvalue~4! is

f̄ n5S f 1

f 2
D

n

5 c̃e2K~r !S einwJn~pFr !

2ei ~n21!wJn21~pFr !
D , ~7!

where c̃ is the normalization constant,Jn(x) is a Bessel
function,n50,61,62, . . . .

For the excitation spectrumE in the presence of an im
purity inside the vortex core, we obtain from Eq.~2! the
following system of equations:

det„~ «̂2E!1Â…50, ~8!

where the operatorÂ is given by its matrix elements. In th
basis~7! we have

Akn5K f̄ k
1S V~r2a!; 0

0; 2V~r2a!
D f̄ nL , ~9!

a is the position of the impurity relative to the vortex cente
and

«̂kn5dknEn
0 . ~10!

In Eq. ~9!, essential are the values ofr such thatr @pF
21 . So

we can use an asymptotic expansion of Bessel function
find matrix elementsAkn . A simple calculation gives

Akn5ei ~k2n!waH I 1~a!cosS p~n1k!

2 D
2I 2~a!sinS p~n1k!

2 D J , ~11!
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57 5459RESISTANCE OF LAYERED SUPERCLEAN . . .
wherewa is the polar angle of the vectora, and the quantities
I 1,2 are given by the equation

S I 1

I 2
D 5

C2

a
e22K~a!E d2rV~r !F sinX2pFS a1

~ar!

a D C
cosX2pFS a1

~ar!

a D CG .

~12!

In Eq. ~12! the normalization constantC is equal to

C25H 2pE
0

`

dre22K~r !J 21

. ~13!

If there are several impurities inside the vortex core, then
operatorÂ in Eq. ~8! is a simple sumÂi over all impurities.
Therefore

Akn
$ai %5(

i
Akn~ai !, ~14!

where Akn(ai) is given by Eq.~11!. It follows from Eqs.
~11!,~14!, that the transition-matrix elementsAkn are sepa-
rable. That isAkn can be presented as a finite sum of terms
the typeÃk

j B̃n
j

Akn5(
j

Ãk
j B̃n

j . ~15!

As a result we can obtain an expression for the excita
spectrum in an explicit form. If only one impurity is place
inside the vortex core, then we obtain from Eqs.~8!, ~11!,
and ~15! the following equation for the excitation spectrum

detS 11I 1 (
L52N

N11
1

«2L1E
;I 2 (

L52N

N11
1

«2L1E

I 2 (
L52N

N11
1

«2L211E
;12I 1 (

L52N

N11
1

«2L211E

D 50.

~16!

For the linear spectrum given by Eq.~4!, we obtain in the
limit N→1`

(
L52N

N11
1

«2L1E
5

p

2v0
cotXpS 1

4
1

E

2v0
D C,

(
L52N

N11
1

«2L211E
52

p

2v0
cotXpS 1

4
2

E

2v0
D C. ~17!

With a help of Eq.~17! we reduce Eq.~16! to the form

11
p2@~ I 1!21~ I 2!2#

4v0
2

1
pI 1

v0cos~pE/v0!
50. ~18!

It follows from Eq. ~18! that the low-energy excitation spec
trum is strong correlated even in the presence of an impu
inside the vortex core. IfE0 is a spectrum point, that is ifE0
is some solution of equation for the spectrum~18!, then all
solutions of Eq.~18! are given by the equation

E56E012v0N, N50,61,62. ~19!
e

f

n

ty

Hence the discrete spectrum is given by two sets of equi
tant points.

FunctionsI 1,2 are periodic with the periodp/pF . Both are
defined by the same function with shift by a quarter of t
period. The amplitudeI 1.am of these functions is a smoot
function of the parameter (a/j) and is given by Eq.~12!.

With the accuracy ofv0(D/«F) a pointa0 exists such that

I 1.am~a0!52
2v0

p
; I 2~a0!50. ~20!

Hence at the pointsa01da given by equation

da5S p

pF
DN, N50,61,62 . . . , ~21!

we have

E05
da

2 S ]I 1.am

]a D
a0

. ~22!

Equation~22! means that in a vicinity of the points of th
trajectory of the vortex, given by Eq.~20!, there is a set of
points, separated by the distanceda, where spectrum lines
are practically crossing~see Fig. 1!. In Fig. 1 the quantity
da5a2a0 is shown, wherea0 is given by Eq.~20!. The
vicinity of such points we denote as thedissipation region. If
the impact parameter of the trajectory is smaller than so
critical value, then on such a trajectory there are two dis
pation regions. When the vortex moves through these
dissipation regions many excitations are created inside
vortex core. The contribution of these excitations to the d
sipative part of conductivity will be found below.

The situation of having several impurities inside the vo
tex core is considered in the Appendix. We prove there t
the strong correlation in the level positions survives for tw
impurities inside the vortex core. We can make a conject
that the strong correlation in level positions exists for ma
impurities inside the vortex core, while the conditionl tr@j is
fulfilled. But on a vortex trajectory of a general status dis
pation regions with a large number of practically crossi
energy-level lines do not exist, if there are two or more i
purities inside the vortex core.

III. ONE IMPURITY AT SMALL DISTANCES
†A!j„D/«F…

1/2
‡ FROM THE VORTEX CENTER

First of all we shall consider one impurity with a shor
range~of order ofpF

21) potential placed exactly at the vorte
center. At distancesr@pF

21 from the vortex center we can
use for the solution of Eq.~2! the quasiclassical approxima
tion with the first-order correction terms. Indeed these c
rection terms will give an expression for the spectrum. A
at small distances of order ofpF

21 we can omit nondiagona
elements in Eq.~2!. As a result we obtain the following
expression for the spectrum:

En52~n21/2!v01vF tanS un212un

2 D Y E
0

`

dre22K~r!,

~23!
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whereun is the scattering phase in a state with angular m
mentumn in the presence of the impurity potentialV(r ).
The corresponding eigenfunction is given by the express

fn5S f 1

f 2
D

n

5
C̃

2
e2K~r!

3S einw@Jn~pFr1un!1Jn~pFr1un21!#

2ei ~n21!w@Jn21~pFr1un!1Jn21~pFr1un21!#
D ,

~24!

whereC̃ is a normalization constant. Suppose now that
impurity is placed on a distancea from the vortex center,
such thatuau!j(D/«F)1/2. In Eq. ~2! we make a transforma
tion to the coordinate system with the origin at the impuri
Then we obtain

S 2
1

2m

]2

]r2
2m1V~r !2E; uDueiw1S a

]

]r D ~ uDueiw!

uDue2 iw1S a
]

]r D ~ uDue2 iw!;
1

2m

]2

]r2
1m2V~r !2E

D
3S f 1

f 2
D 50. ~25!

From Eq.~25! we obtain the following equation for the ex
citation spectrum:

det„~ «̂2E!1Â…50, ~26!

where«̂kn5Endnk andEn is given by Eq.~23!. The operator
Â is given by matrix elementsÂkn in the basis defined in Eq
~24!,

Âkn5K f̄ k
1S 0; S a

]

]r D ~ uDueiw!

S a
]

]r D ~ uDue2 iw!; 0
D fnL .

~27!

A simple straightforward calculation making use of Eq
~24!, ~27! gives

Ãkn52paC2E
0

`

dr
uD~r!u

r
e22K~r!

3H dk,n11e2 iwacosS un212un11

2 D
1dk,n21eiwacosS un2un22

2 D J . ~28!

In Eq. ~28! the constantC is given by Eq.~13!. It follows
from Eq. ~28! that in the operator in Eq.~26!, only diagonal
and near-diagonal elements are nonzero. Now we define
function B(I ,E,n) in the following manner:

B~ I ,E,n21!52En2E2
I 2cos2@~un212un11!/2#

B~ I ,E,n!
,

~29!
-

n

e

.

.

he

where

I 5paC2E
0

`

dr
uDu
r

e22K~r!, I /v05pFa/2.

With the help of functionB we reduce Eq.~26! for the spec-
trum to the following simple form:

detS B~ I ,E,1!;2IeiwacosS u02u2

2 D ;0;0

2Ie2 iwacosS u02u2

2 D ;E02E;2Ieiwa;0

0;2Ie2 iwa;E12E;2IeiwacosS u02u2

2 D
0;0;Ie2 iwacosS u02u2

2 D ;B~ I ,2E,1!

D 50.

~30!

Equation~29! means thatB(I ,E,1) can be presented as a
infinite fraction

B~ I ,E,1!52E22E

2
I 2cos2„~u12u3!/2…

2E32E2
I 2cos2„~u22u4!/2…

2E42E2
I 2cos2„~u32u5!/2…

. . . B~ I ,E,n11!

.

~31!

The fraction ~31! converges very quickly, if forB(I ,E,n
11) we use the expression

B~ I ,E,n11!5@ ~n11/2!v02E

1A@~n11/2!v02E#224I 2 # /2, ~32!

~n11/2!v06E@uI u. ~33!

Suppose now, that the impurity is of a small size, so onlyS
scattering is essential. Suppose also, that the impurity po
tial is of order of the atomic one and hence the inequa
takes place

«05D tan ~u0/2!@v0 . ~34!

Then in the first approximation Eq.~30! for low-energy ex-
citations uncouples to two independent branches

B~ I ,E,1!50 and B~ I ,2E,1!50. ~35!

Hence we obtain two independent families of spectr
lines. Of course in this approximation they will cross, a
only in the next approximation with respect to the parame
(v0 /«0)2 will a gap in the crossing points open.

For small values ofE we have

B~ I ,E,1!5B1aE, ~36!

where

a5
]B~ I ,E,1!

]E
. ~37!
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Inserting expression~36! into Eq. ~30! we obtain the follow-
ing equation for the lowest energy level near the cross
points:

E2a2«0
25B2@ I cos~u0/2!#21@«0B1„Icos~u0/2!…2#2.

~38!

Hence the value of the gapd near this crossing point is equa
to

d5
uIcos~u0/2!u3

ua«0uA«0
21„Icos~u0/2!…2

. ~39!

In Eq. ~38! the quantitya should be taken at the point

a5
]B~ I ,E,1!

]E UB52
«0@ Icos~u0 /2!#2

@ Icos~u0 /2!#21«
0
2

. ~40!

By the order of magnitude the value of the gapd is given by
the equation

d;D~a/j!3. ~41!

It is possible to keep in the expansion of the order para
eterD with respect to the shifta in Eq. ~25! terms up to the
second order ina. Then the operatorÂ will have the follow-
ing nonzero matrix elements:Ann ;An,n61 ;An,n62. Equation
~26! in this approach enables us to determine the excita
spectrum up to the shifta of order of

a;j~D/«F!1/3. ~42!

At the boundary of this region the gapd, given by Eq.~41!,
is of the order ofv0. Hence energy levels can ‘‘cross’’ onl
in dissipation regions@Eq. ~22!#, or when the impurity is
placed near the vortex core@Eq. ~39!#.

Equation~30! for the spectrum can be reduced to the fo

F I 2

E0
cos2S u02u2

2 D1
B~ I ,E,1!1B~ I ,2E,1!

2 G2

2FB~ I ,E,1!2B~ I ,2E,1!

2
2

EI2

E0
2

cos2S u02u2

2 D G 2

1
I 22E2

E0
2

B~ I ,E,1!B~ I ,2E,1!1FEI2

E0
2

cos2S u02u2

2 D G 2

50. ~43!

Near the crossing points the last two terms are small@of
order of (I 3/E0)2] and lead to the repulsion of spectru
lines. In zero approximation neglecting two last terms E
~43! uncouples to give two families of independent spectr
lines.

Energy levels as a function of the shifta ~or quantity I
;a) are given in Fig. 2. Inside the circle in Fig. 2 the equ
tions for two spectrum branches are

E/v021.0735d~0.1335t6A11t2!; ~44!

t51.343~ I /v022.3172!/d; ~45!
g

-

n

.

-

d53.231023 ~46!

The contribution of these crossing points to the dissipat
part of the conductivity will be discussed below.

IV. LANDAU-ZENER TUNNELING NEAR THE CROSSING
POINT OF SPECTRUM LINES

Near the crossing point of spectrum lines, given by E
~18!, we can put

pI 1

2v0
5211y;

pI 2

2v0
52pFX; X5Vt, ~47!

whereV is the velocity of the vortex. For two close spectru
pointsE6 we obtain from Eq.~18! the following value:

E656«~ t !

v0

p
, «~ t !5Ay21~2pFX!2. ~48!

The usual Landau-Zener consideration leads to the
lowing value for the probabilityW11 for a ‘‘particle’’ to
remain on the same branch after collision15

W11512expS 2
v0y2

2pFuVu D . ~49!

With the help of Eq.~49! we will find the energy transmitted
to the vortex at one collision with impurity.

V. DISSIPATIVE PART OF CONDUCTIVITY
IN SUPERCONDUCTORS

Let us first consider the superclean limit, when only o
impurity can be found inside the vortex core. Then for sm
values of the vortex velocityV, such that

V!vF~D/«F!2, ~50!

an excitation can arise only at spectrum line crossing poi
Such crossing points are located only in dissipation regi
@Eqs.~20!, ~21!#, or if the vortex center is close to the impu
rity @Eq. ~39!#.

FIG. 2. The low-energy excitation spectrum at small distancea
from the impurity to the vortex center;I /v05pFa/2, see Eq.~29!;
u!1 ; E0 /v0550.
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Suppose that between two consequent collisions the
tem goes to the equilibrium due to inelastic-scattering p
cesses. In such a case the dissipative part of conductivi
directly connected to the energy, stored by the vortex a
one collision with impurity.

Consider first processes happening in dissipation regi
Suppose thatr0 is the impact parameter. Then near the po
a0 @Eq. ~20!# we have

pI 1.am

2v0
511y, y5

p

2v0
S ]I 1.am

]r D
a0

xA12~r0 /a0!2.

~51!

Periodicitydx of a crossing point with respect tox is

dx5
p

pFA12~r0 /a0!2
. ~52!

Hence the full numberN of crossing points in a dissipatio
region, with the effective transition of a particle to the oth
branch, is

N5S 2x

dxD 2/3

5
pF~Vv0!1/3

~]I 1.am/]r!a0

2/3
. ~53!

To obtain Eq.~53! we use Eq.~49!. Inside of this region the
energy of excitations increases linearly with the shift. Af
that the diffusion processes of excitations on the energy
start to be essential. The transitions of excitations to the o
branch happen in an essentially larger regionN* ;N3/2 but
are not important. We get with the help of Eq.~53!, that the
vortex, after passing through two dissipation regions~one
collision with impurity!, stores the energydE being equal to

dE5v0N25
v0

5/3pF
2V2/3

~]I 1.am/]r!a0

4/3
. ~54!

As a result, we can estimate the contribution of transitions
dissipation regions to the dissipative currentj x

(1)

j x
~1!5

a0nimp

f0

v0
5/3pF

2

~]I 1.am/]r!a0

4/3S E

BD 2/3

, ~55!

wheref05p/e is the flux quantum,B is the magnetic field
value. Consider now the energy, dissipated as an impu
passes near the vortex core. From Eqs.~30! and ~39! we
obtain the following expression for the excitation spectru
near the crossing points:

E56S I 6

«0
4g2

2
1@v0pF~da!/2#2D 1/2

, ~56!

where

g25
]B~ I ,E,1!

]I
; I 5v0pFa/2, ~57!

(da) is a shift from a crossing point, and the parameterg2 is
of the order of unity. According to Eq.~49!, the probability
W11 for the particle to remain on the same branch afte
collision is equal to
s-
-
is
r

s.
t

r

r
is
er

n

ty

a

W11512expH 2
pa6~v0pF/2!5

«0
4g2

2uVu J . ~58!

Hence the number of excitationsN that arise in the vortex
core, when the impurity passes through the vortex near
center, is

N5S 2 ãpF

p
D 6/7

, ã5S V«0
4g2

2

p~v0pF/2!5D 1/6

. ~59!

These transitions give the following contribution to th
energy dissipationdE per volume and time unit:

dE52 ãVv0N2nimp~B/f0!. ~60!

Equations~55!, ~60! completely determine the dissipativ
part of the current

j x5 j x
~1!1

v0nimp

f0
pF

12/7S «0
4g2

2

p~v0pF/2!5D 19/42S E

BD 19/42

.

~61!

By the order of magnitude we have

S ]I 1.am

]r D
a0

;
2v0

pj
. ~62!

Hence, in the range of velocitiesV, such that

V/vF.~D/«F!40/9 ~63!

the second term in Eq.~61! is smaller than the first one. By
the large parameter

nimpj
2

t trD
S «F

D D 2/3S vF

V D 1/3

~64!

the dissipative part of the current, given in Eq.~61!, exceeds
the quasiclassical value for the current in the tw
dimensional case. Expression~55! for conductivity was ob-
tained under the assumption that the number of cross
points in a dissipation region Eq.~53! is large. This condition
gives the same restriction on the value of the velocity
given in Eq.~63!.

VI. CONCLUSION

In the two-dimensional case the excitation spectrum
vortex core is discrete. This results in the strong increase
the dissipative part of the conductivitysxx @Eq. ~1!# com-
pared to its value obtained by the quasiclassical method.
very probable that the strong increase of conductivitysxx at
low temperatures, obtained in experimental papers,1,2 is re-
lated to the phenomena considered in this paper. For a
tailed comparison to the experiment both experimental
theoretical investigations are necessary.

Consider now the applicability region of Eqs.~55!, ~61!,
and~64!. We do not see any restriction for the temperatureT
in the framework of the model used exceptT!Tc . In the
rangeT;Tc excitations with the energy«;D are essential.
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In this region the excitation spectrum is not equidista
Probably it is more essential that in our model the m
mechanism of dissipation is the scattering of excitations
impurities. In real high-Tc compounds such an assumptio
holds only in the low temperature region. The predicted
fect should vanish in the strong magnetic field regionH
;Hc2.

More complicated are the restrictions for the electric
field magnitude or for the vortex velocity. The restrictio
vF(D/«F)3!V!vF(D/«F)2, given in the introduction, holds
in our approximation. For the vortex velocityV
@vF(D/«F)2 the adiabatic consideration is inapplicable. A
impurity on the distancesa,j from the vortex center lead
to the transition of quasiparticles to highly excited states
the regionV!vF(D/«F)3 the small gap in the excitation
spectrum of the order ofv0(D/«F)3 leads to the adiabaticity
of motion in dissipation regions. In this case the impurit
that pass at small distances of the order ofj(D/«F)1/2 from
the vortex center@second term in Eq.~61!#, give the main
contribution to the energy dissipation. It is essential that e
in the frame of our approach theI -V characteristic change
its form for different ranges of the velocity.

There are also some other mechanisms that can ch
the I 2V characteristic. At small values of vortex velocitie
pinning can start to be essential. It can reduce dissipat
The pinning force is strongly dependent on the interact
between vortices and hence on the magnetic-field magni
and anisotropy factor. In superclean superconductors pin
can be considered weak.

The tunneling of excitations to the neighboring planes c
reduce dissipation at large velocity. If the anisotropy facto«
is small then the spectrum near the crossing points does
change much and the Landau-Zener tunneling probab
does not change. But near the points where the energy
quasiparticle is close to the unperturbed position of a le
from the neighboring plane, a notable probability arises
tunneling of a quasiparticle to the neighboring plane. A
result, the quasiparticle energy does not increase any m
and dissipation will be smaller than given by Eq.~54!. The
energy relaxation of quasiparticles can changeI -V character-
istics both for large values of vortex velocity and for sm
values. If the energy relaxation time is large enough, th
effective heating of excitations inside of the vortex co
takes place. The effective temperature reaches a value o
order ofTc .16 The value ofsxx decreases in this case. On th
other hand, strong energy relaxation can lead to the equ
rium inside of one act of tunneling. This phenomenon w
t.
n
ff
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decrease thesxx value in the range of small vortex veloc
ties. Now the physical reason for the energy relaxation
high-Tc superconductors at low temperatures is not cle
and we cannot make any quantitative estimation of this
fect. Equations~55!, ~61! are valid in the superclean limit, i
at distances of the order ofj from the vortex center there i
no more than one impurity. If at a distance of the order oj
from the vortex center there are two impurities, then t
probability of a level crossing decreases strongly. As a res
the value ofsxx decreases too.

sxx as a function of the impurity concentration has
maximum atv0t tr of the order of one. The question abo
the value of the impurity concentration, for which the matr
can be considered as random, demands an additional in
tigation.
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APPENDIX: A LARGE NUMBER OF IMPURITIES INSIDE
OF THE VORTEX CORE

If inside the vortex core a large number of impurities
placed, then transition-matrix elementsAkn$ai% (ai is the po-
sition of i th impurity!, are given by Eq.~14!. The equation
for the spectrum in such a case is

det~ 1̂1Ĉ!50 ~A1!

with the matrix elements of the operatorĈ being equal to

Ĉj j 1
5(

k

B̃k
j Ãk

j 1

Ek2E
, 1̂nm5dnm . ~A2!

If M impurities are placed inside the vortex core, then
size of the matrix in Eq.~A1! is ~4M34M!. Due to symme-
try properties of the elementsAkn @Eq. ~11!#, this matrix can
be easily reduced to the size~2M32M!. The structure of this
matrix M̂ is simple. On the diagonal are placed bloc
(232), defined only by one impurity. The second type
blocks are blocks (232), that give the interference contr
bution of a pair of impurities (i j ).

To clarify the structure of the matrixM̂ in the general
case, we give below the explicit expression of the matrixM̂
for two impurities inside the vortex core:
M̂51
11

pI 1
1

2v0
cotS p

4
1

pE

2v0
D ;

pI 2
1

2v0
cotS p

4
1

pE

2v0
D ;

I 1
2

2v0
z1 ;

I 2
2

2v0
z1

2
pI 2

1

2v0
cotS p

4
2

pE

2v0
D ;11

pI 1
1

2v0
cotS p

4
2

pE

2v0
D ;

I 2
2

2v0
z;2

I 1
2

2v0
z

I 1
1

2v0
z1* ;

I 2
1

2v0
z1* ;11

pI 1
2

2v0
cotS p

4
1

pE

2v0
D ;

pI 2
2

2v0
cotS p

4
1

pE

2v0
D

I 2
1

2v0
z* ;2

I 1
1

2v0
z* ;2

pI 2
2

2v0
cotS p

4
2

pE

2v0
D ;11

pI 1
2

2v0
cotS p

4
2

pE

2v0
D
2 . ~A3!
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In Eq. ~A3! the upper index inI i
j means the number of im

purities (j 51, . . .M ) and the lower indexi can be 1 or 2.
The quantitiesz,z1 are defined by the equations

z5 (
L52`

`
e2iL ~wa1

2wa2
!

L21/41E/2v0
,

z15 (
L52`

`
ei ~2L11!~wa1

2wa2
!

L11/41E/2v0
. ~A4!

From Eq.~A4! it follows that

z1~E!52z* ~2E!ei ~wa1
2wa2

!. ~A5!
A straightforward calculation gives for the quantityz(E) the
following expression:

z~E!52
p

sin~p/42pE/2v0!
e2 ip~1/42E/2v0!1 iXa1a2

~1/22E/v0!,

~A6!

where

Xa1a2
5~wa1

2wa2
!/ mod p.0. ~A7!

From Eq.~A3! we obtain
ith

Eq.

r

detM̂5S 11J11
pI 1

1

v0cos~pE/v0!
D S 11J21

pI 1
2

v0cos~pE/v0!
D 1

I 2
1I 2

2

4v0
2 ~z1z* 1zz1* !1

uzz1u2

16v0
4

J1J2

2
uzu2

4v0
2F I 1

11
2v0

p
J1cotS p

4
1

pE

2v0
D GF I 1

21
2v0

p
J2cotS p

4
1

pE

2v0
D G

2
uz1u2

4v0
2F I 1

11
2v0

p
J1cotS p

4
2

pE

2v0
D GF I 1

21
2v0

p
J2cotS p

4
2

pE

2v0
D G , ~A8!

where

Ji5
p2

4v0
2 @~ I 1

i !21~ I 2
i !2#. ~A9!

Note that the quantityzz1* is purely imaginary. Hence the only term in Eq.~A8! that has a periodical dependence w
respect to the energyE with the period, differing from 2v0, drops out. As a result, the expression for the spectrum~19! holds
also in the case if there are two impurities inside the vortex. Our conjecture is: for the low-energy excitation spectrum~19!
is correct in the clean limit (tD@1), even if there are a lot of impurities inside the vortex core.

With the help of Eqs.~A5!, ~A6!, ~A8! we obtain the following equation for the excitation spectrum:

detM̂50,

detM̂5S 11J11
pI 1

1

v0cos~pE/v0!
D S 11J21

pI 1
2

v0cos~pE/v0!
D 1

4

cos~pE/v0!
J1J2

2
p2

4v0
2sin2~p/42pE/2v0!

F I 1
11

2v0

p
J1cotS p

4
1

pE

2v0
D GF I 1

21
2v0

p
J2cotS p

4
1

pE

2v0
D G

2
p2

4v0
2sin2~p/41pE/2v0!

F I 1
11

2v0

p
J1cotS p

4
2

pE

2v0
D GF I 1

21
2v0

p
J2cotS p

4
2

pE

2v0
D G . ~A10!

For theI -V characteristic in the mixed state, decisive is the value~or the existence! of the gap in the excitation spectrum. Fo
this reason we will calculate the value of detM̂ for E50. Simple calculations with the help of Eq.~A10! give

detM̂ ~E50!5
pI 1

2

v0
~12J1!1

pI 1
1

v0
~12J2!1~11J1!~11J2!. ~A11!
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Expression~A11! is nonnegative. It can be written as a su
of nonnegative terms

detM̂ ~E50!5S 11
pI 1

1

2v0
1

pI 1
2

2v0
2

pI 1
1

2v0

pI 1
2

2v0
D 2

1S pI 2
1

2v0
D 2S pI 2

2

2v0
D 2

1S pI 2
1

2v0
D 2S 12

pI 1
2

2v0
D 2

1S pI 2
2

2v0
D 2S 12

pI 1
1

2v0
D 2

. ~A12!

It means that on the vortex trajectory of a general sta
dissipation regions with a large number of practically cro
ing energy levels lines do not exist. Now we can formula
the following conjecture. In the clean limit (tD@1), if sev-
o

e

a

m

us,
s-
te

eral impurities are placed inside the vortex core, the quan
detM̂ (E50) is a sum of nonnegative terms of the for
~A12!.

Now, for small values ofE!v0, we obtain from Eq.
~A10!

det M̂ ~E!5det M̂ ~E50!2S pE

v0
D 2

•

H 2J1J22
pI 1

1

2v0
~12J2!2

pI 1
2

2v0
~12J1!J . ~A13!

Equations~A11!, ~A12!, and~A13! completely determine the
excitation spectrum near the crossing points of the ene
levels.
t.

ure,

-
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