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Fluctuation paraconductivity in mesoscopic superconductornormal-metal contacts
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The fluctuation conduction of normal-metal—superconductor—normal-r(fét8/N) and superconductor—
normal-metal—superconduct@/N/S contacts abov& . are analyzed. For N/S/N contacts, both Aslamazov-
Larkin and Maki-Thompson corrections to the conduction are found to be of the same order and diverge for
T¥ <T, according to the lawT—T¥) ~L. For S/N/S contacts, the Aslamazov-Larkin correction vanishes, while
the Maki-Thompson correction is essential for contacts shorter than the phase breaking length.
[S0163-182698)04909-1

[. INTRODUCTION per pairs on the conduction of normal electrons. They did not
reveal the Aslamazov-LarkifAL) correctiort* which repre-
Recently, mesoscopic superconducting—normal-metagents the direct contribution of fluctuational Cooper pairs to
(SIN) systems have attracted a great deal of atterttiétn  the current.
particular, it was shown that their conductance exhibits os- In this paper, we consider the effects of superconducting
cillatory behavior in magnetic field® and nonmonotonic fluctuations on the conductance of mesoscopic normal-
temperature and voltage dependerit@e reason for this Metal—superconductor—normal-metéN/S/N) and super-
behavior is the effect superconducting correlations have ofonductor—normal-metal—superconduct@/N/S contacts
the electrons in the normal metal. The physics of these efOf various Iengths. In the case of N/S/N contacts, we find that

fects is similar to the physics of corrections to the conducihe AL and MT corrections are of the same order of magni-
tivity resulting from superconducting fluctuations abovetude. In the case of S/N/S contacts, the conductance is deter-

T..*~%8In particular, the authors of Ref. 8 have shown thatMined by the MT correction, which penetrates into the con-

the nonmonotonic temperature dependence of conductané@ct, from the electrodes, a distance up to the phase-breaking
in S/N systems is the result of competition between the conlengthL, .
tribution from the modified density of states and a contribu-

tion which is similar to the Maki-Thompso(MT) fluctua-

tion conductivity aboveT; (Refs. 15,16 (To avoid The expressions determining the superconducting correc-
confusion, we would like to note that the term “fluctuation tjons to the conductivity are easily obtained by a trivial ex-
conductivity” in our paper means corrections to the conductension of the Aslamazov-Larkin and Maki-Thompson equa-
conductors abové.. We are not interested in universal con- gre not familiar with the diagrammatic technique used by
ductance fluctuations which are of the orderedfh and do  these authors, we present here a different derivation based on
not exhibit any noticeable temperature dependenceedr  quasiclassical Green’s functions of the superconductor and
Therefore, it is of interest to calculate the conductance the Se|f-c0nsistency equation with a Langevin SO&PCéZ.
different S/N systems abové, taking into account super- QOne can show that the results obtained with the aid of the
conducting fluctuations. diagrammatic technique and the results presented here are

Despite the large number of papers concerned with supefdentical.
conducting fluctuations in macroscopic samples, very few The current density in a dirty superconductor is expressed
authors have considered superconducting fluctuations in comyy the formula
tacts. In particular, Kulik considered the effect of supercon- R
ducting fluctuations on the density of states and on the cur- = =« de [ de’ ~ | ~r , g™ (e, €")
rent in a tunnel junction. Zaitsé¥considered the fluctuation JZEGNFDJ EJ S0P T 9 (e €")— ——
corrections to the conductance of very short superconducting

~ J

types of fluctuation corrections in uniform systems; the cor- +9F(6,€')QT ] (1)
rection due to the modified density of states and the MT

microbridges. However, these studies have revealed only two €€)
correction, which represents the effect of fluctuational CoowheregR, g*, andg" are quasiclassical matrix Green’s func-

II. BASIC EQUATIONS

0
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tions of the superconductdt,Ne=mpy/27? is the density termines the density of states, is proportional to the order
of states at the Fermi level, afdl=1vy/3 is the diffusion parameter squared. However, this correction is small for the
coefficient of electrons. The retarded and advanced Greengase under consideration and will be neglected by us.
functions gR™® describe the energy spectrum of the super- AS the local electron distribution is assumed to be equi-
~ . . . “F . ~

conductor, whileg™ also contains information about the elec- |Jbr'L‘_m' the fun9t|ong. may be expressed in termsg@f and
tron distribution. In the case of a time-independent electrica” via the relationship
potential, the functiong®®)(e,e’,r) obey the equation A A A o

g7 (e,€")=aR(e,e’)n(e’)—n(e)g’(e,€'), (8)

_ %(AR(Nag;(A) +(—ier,~1A+3ZFA)gRA where
~gRA(—ie'7,—iA+3KM) =0, 2) ) n[e—ed(r)] 0
where n(e,r)=( 0 nfe+ep(r)] |
0 A
A=( AR 0) , n(e)=tanh e/2T), 9)

SR - . - and ¢(r) is the electric potential. Substituting Ed8), (6),
and the matrixX 4= *I'7, describes the depairing. The and(5) into the self-consistency equati¢8) gives
products of the matrix quantities also imply convolutions

over the inner frequencies. N de
The order parameteX(w,r) satisfies the self-consistency A(w,r)zzf d3r’f 2—{PR(26,r,r’)n[e—w/2+ ed(r)]
equation containing the source of condensate fluctudfions 77

+PA2¢,r,r"n[e+ wl2—ed(r)}A(w,r")

Alw r)if d—fs;{(} —i7)0" (e+ w/2,e—wl2r)]
' 8) 2w x ' ' —Ap(w,r). (10

—Arple.r), ©) Consider the case where all the relevant length scales are
and the correlation function of the sources of fluctuatigns much larger than the characteristic lengt- (D/T.)Y? and
is given by w<T.. ThenA(r') may be expanded in powers of-r’ to
. . , , quadratic terms. Substituting the expressionR&* in in-
(n(o,r)7* (0',r'))=(16aNg) S0+ o")s(r—r’) finite space,
(n(o,r)n(w’,r'))=0. 4

RA) [ ®a exdiq(r—r")]
This expression implies that the sources of condenstate Po " (2er—r')= (2m)3 e+i(DG?+T)/2’ (11
fluctuations are5 correlated in time. The latter equality is the -

result of randomness in the phase of superconducting fluGq:, the self-consistency equati¢h0), one obtains the non-

tuations abovelc. stationary Ginzburg-Landau-Langevin equation in the form
Since the fluctuations of the order parameter are small, the

retarded and advanced Green’s functions of the supercon- 5
ductor may be represented as the sum of corresponding| H 7, = o o _
normal-metal Green'’s functions and a small additive propor- D ar? lw=2ie¢(r) = 7Te=T'A(w,1)=16T 7(w.n),
tional to A: (12

gRA(e,e")=*+277,8(e—€')+TRP(e,e').  (5)  whereT, is the BCS transition temperature ame: (8/)
X(T—T.)/T.. This equation is well known in the theory of
superconducting fluctuations.

Consider now the expression for the currébt Substi-
tuting Egs.(5) and(8), one obtains

Substituting Eq(5) into Eq. (2) and making use of the or-
thogonality conditiorf g?™1?=1,2% one obtains that

fR(A)(e,e’,r)=iJ’ d3r’ PRA(e+ e’ r,r') Ale—€' 1),
(6) i=intiactimr, (13
where the kernel®R® are determined by the equations  where
(D2l ar’+ie—T)PR(e,r,r)=2i8(r—r’), . R
. ~ on
PA(E,r,r,):_PR(_E,r,r,). (7) J”_ENFDeJ' de S% TZE)_UHE! (14)

Note that thefR® matrices contain no diagonal compo- &, represents the normal-state conduction. The second term
nents. The correction to the diagonal components, which deepresents the regular Aslamazov-LarkiL) correction



5452 A. F. VOLKOV, K. E. NAGAEV, AND R. SEVIOUR 57

oom NDJ dejde’s - | 3r ,&fR(e’,e)A . om NDJ deJde’

]AL_Ee F o7 27 Tz (G,G)Tn(f) JMT__Ee F 27| 2o

S atA(e’, . an(e),
—n(e)fA(e,e');—iE) J (15 XS;{ 7,iR(e,€") ;: )fA(e’,e) . (16

First consider the AL correction. Substituting Ef) into
and the third term represents the anomalous Maki-ThompsoBg. (15) and performing the averaging over the fluctuations
(MT) correction of the order parameter, one obtains

0PR26—(¢),F,I‘
PR(2e—w,r,ry) (ar 2)—PA(26—w,r,r1)

) T de (dw 3 3
JAL:EeNFDJZJ EJ d rlf d I’2
IPA(2e—w,r,15)
X
or

}[(A*(w,fl)A(— w,rz))n(eted)—(A(w,r)A*(—w,r))n(e—ed)]. 17

Equation(17) may be simplified, when the characteristic length scales are much largegghag settingr;=r in the
correlators in second factor of the integrand of Eky) and expanding in powers of—r to linear terms. Making use of Eq.
(11) for PR® in the infinite space, Eq17) is easily shown to be of the form

) 3 i N Dfd aA(w,r)A* an A IA*(—w,r)\ dn 18
JAL(r)__Ze F w o (—o,r) Je - (w.r)T Te (18
—wl2+ed(r) wl2—ed(r)
|
This is just the standard Ginzburg-Landau expression for _ 8 , . 5 aKR(r,ry)
the current. Combined with Eq12), it gives the correction ja(r)=—e DTJ de d flf dro——0—
to the current due to fluctuations, which include the effects of
a nonlinear electric field. X{[p(ry)— d(r)IKR(rq,rp)
We now calculate the AL correction to linear terms in the A A
electric field. Using the function&R(w,p,p’), the Green’s —[(r2) = ¢(r) JKA(r,r) }KA(r,rz). (20

E‘E(C;'o:p,)oi KE(CE w(;zl)J,) Wltt[Ten Z?er?ainiﬁgtegﬁz/l, “naer;dr Note that for the AL correction, the current-field relation-
terms in the electric field, the fluctuation of the order param-s.hlp 'S s_ubgtantlally _nonlocal, €., thg current (_jen§|ty ata
eter may be written in the form given point is determined by the electric field in its vicinity,

of radius¢&(T)~D/(T—T,). This is a consequence of the
large size of fluctuational Cooper pairs néar.

Now we proceed to the MT correction. Substituting Eq.

— 37 KR ’ ’ "
Ale.n) jd K@ rnrn(e.r) (6) for fr(a) into Eq.(16), one obtains

raie [ @ [ o KRy jur()= - meNeD % [ or, [ ar, [ % (Ao

— (DO KR(w,r,r) p(w,r’), de
xA*(—w,rz))j ZPR(Ze,r,rl)PA(Ze,r,rz)

*(__ — 3K A ’ ’
Atmen fd FRAe. e x%n[e—wmeqs(r)]. (21)

—2ieJ d3r’f d3r; KA(w,r,r)[o(ry) Retaining only the terms linear in the electric field the MT

correction is given by the expression
dw
UMT(r)=8e2DTJ d3rlf d3r2J d%’JE
Note that in comparison wittKR(w,p,p’) defined by
Aslamasov and Larkin, this quantity contains an additional

de
factor mpy /167 T, . Substituting Eq(19) and the correlator XKR(w,rl,r’)KA(w,rz,r’)f EPR
of the sources of condensate fluctuations E.into Eq.
(18), one obtains the linear AL correction in the form X (2€,r,r)PA(2€,r,r5). (22

—d)(r)]KA(w,rl,r')n*(—w,r'). (19)
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Unlike the AL correction, the current-field relationship of the  First consider the AL correction. As the transverse dimen-

MT correction is purely local, as the electric field directly sions of the channel are small, all the relevant quantities may

affects normal electrons rather than fluctuational Coopebe considered to be dependent only on the longitudinal co-

pairs. ordinatex. Introduce a system of the eigenfuctions of the
Laplace equation

IIl. N/S/N CONTACT

2 mnX

Consider the N/S/N contact in the shape of a narrow chan- en(X)= \[Esin< T) . (23
nel of lengthL> ¢, and cross-sectional are& connecting
two massive electrodes. The transverse dimensions of thEhen the functionKR entering into Eq.(20), the Green’s
channel are assumed to be much smaller #(@). Let thex  function of Eq.(12) with zero boundary conditions at the
axis be directed along the channel. The normal-state electriends of the contact, may be represented in the form
potential in the contact is unperturbed by superconducting
fluctuations and has the formd=—Vx/L, whereV is the R , i en(X)@n(X")
voltage drop across the contact. As the superconducting cor- KP(xX") == _; i 2.2 '

; X X w+ie (TN + 1 +7y)
rections to the current essentially depend on the distance
from the electrodes, the AL and MT correctiofifqs. Wheree =D/L? is the Thouless energy; =7T./€_, and
(20),(22)] should be calculated with the unperturbed poten-y=1'/¢, . Performing the integration in Eq20) over the
tial and then averaged over the length of the contact to encoordinates and frequency and making use of the relation-

(24)

sure current conservation. ships
|
1 LM ™, me
——L—[1-(- ,  m#n,
| axenoxono =1 "7 (mimny (29
0
L/2, m=n,
L 4 2_mn [1-(—1)™"M] +*
- — —(— ,  m#n,
J XM, (x)={ L n2—m? (26)
0 X
0, m=n,
|
one obtains the AL correction in the form 1= K2
, a=—> ———~0.1026. (30)
Sl —6 evaz E mn [1_(_1)m+n]2 mk=1 (k _1)
AL €L m n#m m2—n2 Hmen(em"‘an), . "
(27) Now we proceed to the MT correction. As the quantities

o PR(A) appearing in Eq(22) also satisfy the zero boundary
where 6,= 7°m*+ 7+ y. In the limit 7 >1>1y, Eq. (27)  conditions at the ends of the contacts, they have the form
gives the standard AL correction for the one-dimensional
wire

2 ‘Pn(X)QDn(X/)

2
R " —_
P (E,X,X ) S n €+i6|_(772n2+‘)’).

1
2 ezTei/2 (31

RPYET: (T-T )3/2V' o . _
¢ Substituting Egs(24) and(31) into Eq. (22), averaging over
The AL correction(27) remains finite aff =T, owing to the  the contact length, and summing the resulting series one ob-

finite length of the contact, the transition temperature defains
creases from the bulk value to the value

Sl aL (28

™7 8l —2e2Vl ! (cothyl’2 ! )

* T - MT ™ — ap Y

Te=T, 8 r g L (29 7| 412 Y2

* ion i 1
NearT; the temperature dependence of AL correction is of _ coth( 7+ y)2—
the form (7. + 7)Y (1 +y)Y?
e’TVv (32
ol AL™— a——,

T-T¢ for 7.+ y>0 and
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FIG. 1. (a) shows the MT and the AL terms for several valuesydga). As is seen from(a) all the curves for the AL terms lay on top
each other(b) shows the ration of MT/AL terms for several valuesypfga). (c) is a In-In plot of (a).

1 1

1

8l yr=26eV.

|7

It Aot A

_CO[‘ 'TL+ Y

1/2

(33

for 7+ y<<0. Alternatively, Eqs(32),(33) can be written in

the form

e’T
€

L

5' MT:4

V
% Om(Om— 7).

(34)

For large contact lengths >1, the MT correction re-

duces to the standard equation for the one-dimensional wire

T, 1
5|MT=Ze V;

1

2 1/2) '
Y TL

(39

1 €TV
5' MT:Z T_T: .

In Fig. 1 we plotted the temperature dependences of the MT
and AL terms in dimentionless fluctuation conductangs
andS,, for different values ofy (the ratio of the depairing
rate ' and the Thouless energye ); here
Sur=06lut/lo, Sa=0la/lg, 10=6°VT/e . As may be
seen from Fig. 1, the MT contribution dominates over the
whole temperature range. The depairing fatean be deter-
mined from measurements of the fluctuation conductance.

(36)

IV. SIN/S CONTACT

Consider a structure of similar geometry as the structures
considered perviously but with a normal-metal channel and

superconducting electrodes. The superconductor and normal
metal are characterized by the diffusion coefficiebtsand

D, and by the phase-breaking ralésandI’,,, respectively.

In the case of S/N/S contacts, the fluctuational Cooper pairs

As with the AL correction, the MT correction remains finite generated in the superconducting electrodes can penetrate
atT=T, and diverges al =T according to the same law: into the normal metal only a distance shorter tligras the
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BCS coupling constant is zero in the normal metal. How- 1L

ever, as in the superconducting stateTatT,,%’ they can q’(G)ZEJ dxip(€,X) P(— €,X)

affect the conduction of normal electrons at distances much 0

larger than the phase-breaking length. In this case, the (2k1) " tsinh(2ky) — (2k,) ~1sin(2k,)

conductance of the contact depends on the geometry of the
electrodes even though their dimensions are much larger
than the transverse dimensions of the contact.

In view of this reasoning, the AL correction is negligible ra=Rex(e)],  xp=Imlk(e)]. (4D
in S/N/S contacts. The MT correction is obtained by averagintegrating with respect to frequeney in Eq. (40) gives
ing Eq. (22) over the contact length, then integrating with
respect ta,, r,, andr’ over the bulk of both electrodes, each 1 1
giving an independent contribution to the conductance of the Slyr=32e%¢ TLSV=>, P —
contact. Hence in Eq22), one may use the expressions for Q7 D+ 7T+ T
KR®A) in a bulk homogeneous superconductor:

cosi2k4) —cog2k5)

de
X | = d(2¢). 42
o f 2T 4€2+(Dq%+T)? (29, 42
KR(onr )= — expligq(r—r')] 37
04 o+i[D2+ 7T+ 1] To be specific, consider the case where the electrodes
represent a film of thicknesk,<£(T), then in this case the
where() is the normalization volume. sum overqg may be replaced by the integral

First consider the contribution from the left electrode. As-
sume that the origin coincides with the left end of the con- 1 1 d?q
tact. As in the case of N/S/N contact, all the quantities inside 52 - d_f 2
the channel depend only on the longitudinal coordinxatas o) (2m)
the integral(22) is dominated byr,| and|r| of the order of  |yroducing  the  dimensionless  integration  variable
&(T), i.e., much larger than the transverse dimensions of th@zquy one arrives at the following expression:
contact, the quantitR(e,x,r), wherex is the coordinate of

a point inside the contact andis the coordinate of a point 42 TLS (= do [+ 2
inside the left electrode, may be represented in the form Slyr=— VJ [In ’s
w2 Dgdo " Jo 92+ Tﬂ Lt s
PR®(e,x,r)=P5 ™ (e, ~ 1) ih(= €X), (38) - 6\ |67 'sinhg; — 65 sin6,
+_ J—
0 arctarE Vs coshg;—cosd, '’

whereP§(e,—r) is given by Eq.(11) and functiony is the
solution of the equation
| 01=2 2yt FH P2, 0= 2V P )2

2 (43

L
Dn@ﬂ' e=I'n)(ex)=0 Assume for simplicity that the depairing rates in the nor-

mal and superconducting metals are equal=(y,=7).

; . _ _ ; First consider the case of a very short contgeg 7 <1. In
with the boundary conditiong(0)=1 and(L)=0. Explic- . . X . L
itly, it is given by the expression this case, the integrédt3) is dominated by~ 7, so the last

factor in the integrand may be set equal to 1/3. This yields

iex =0 = (il

(39

D, €’

Sl yr= [ 1+TT° sV
MTIZD, or

T /L

(44)

) , o o To within the factorD, /D¢ and a numerical coefficient,
With these expressions and taking into account contributiong,e correction to the conductivity of the contact material is
from both electrodes, Eq22) takes the form equal to the MT conductivity of the electrodes. A similar
result was previously obtained by Zaitd&¥or short S/c/S
contacts(c means a constriction

Consider now the case where the contact is of intermedi-

1
Slyr= 64e25LTLSV62
K ate length,y<1<7_. One obtains with logarithmic accu-

do 1 racy
27 2+ (Dgg?+ 7T+ T)? o2 S
n
de 1 5|MT—1—2D—S@|H(1/‘)/)T. (45
xf— 5 5 5P (2e), (40 _ _ ) )
27 4+ (Dg?+Ty) This expression differs from that for the short contact in that

the quantity (8#)(T—T.) in the logarithm is replaced by
where the Thouless energy; .
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Lastly, consider the case of a long contack 4<<7_. In In S/N/S contacts the AL contribution is absent. The in-
that case, the integrai3) is dominated byd>1, so the crease in the conductivity due to fluctuations is caused by the
second factor in the integrand may be approximated bywnomalous MT term containing the product of retarded and

(26) ', yielding advanced functiongsee Eq.(22)].
The superconducting fluctuations modify the density of
Sl yr= 1D, € 71/25_\/ _ (46) states and decrease the conductivity. In the case of N/S/N
2 Dy dor L and S/N/S contacts analyzed by us, this decrease is small

The physical meaning of this result is that the superconductd-€., it does not diverge a8 tends toT¢). However, the

ing correlations that result in the MT correction penetratecorrection to the conductivity due to the decrease of the den-
into the contact over the length,~y ~12 <L. Note that sity of states is essential in S/N/S contactsTatT} , this
unlike the case of N/S/N contact the correction to the totaleads to the reentrant behavior of the conductén%@,nd
current is proportional to the cross-sectional area of the conis also essential in tunnel superconductor-insulator-
tact. superconductor junctior’s, and in layered supercon-

ductorst*’
V. CONCLUSIONS

The fluctuation conductivities of N/S/N and S/N/S con-
tacts of arbitrary lengths have been calculated. We have es-
tablished that the fluctuation conductivity in N/S/N contacts
consists of contributions from both the Maki-Thompson and  This work was supported by the Russian Foundation for
Aslamasov-Larkin terms. The MT contribution dominatesBasic Research, Grant No. 96-02-16663-a, the Russian Su-
over the whole temperature range. However, near the renoperconductivity Program, Grant No. 96053, the Royal Soci-
malized critical temperatur&; the ratio of the MT and AL  ety, and by the CRDF, Grant No. RP1-165. We would also
terms does not contain any parameters, and equals abdike to thank C. J. Lambert for his attention and useful sug-
1.56 . gestions to this work.
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