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Fluctuation paraconductivity in mesoscopic superconductor–normal-metal contacts
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The fluctuation conduction of normal-metal–superconductor–normal-metal~N/S/N! and superconductor–
normal-metal–superconductor~S/N/S! contacts aboveTc are analyzed. For N/S/N contacts, both Aslamazov-
Larkin and Maki-Thompson corrections to the conduction are found to be of the same order and diverge for
Tc* ,Tc according to the law (T2Tc* )21. For S/N/S contacts, the Aslamazov-Larkin correction vanishes, while
the Maki-Thompson correction is essential for contacts shorter than the phase breaking length.
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I. INTRODUCTION

Recently, mesoscopic superconducting–normal-m
~S/N! systems have attracted a great deal of attention.1–7 In
particular, it was shown that their conductance exhibits
cillatory behavior in magnetic field1–5 and nonmonotonic
temperature and voltage dependences.5 The reason for this
behavior is the effect superconducting correlations have
the electrons in the normal metal. The physics of these
fects is similar to the physics of corrections to the cond
tivity resulting from superconducting fluctuations abo
Tc .14–16 In particular, the authors of Ref. 8 have shown th
the nonmonotonic temperature dependence of conduct
in S/N systems is the result of competition between the c
tribution from the modified density of states and a contrib
tion which is similar to the Maki-Thompson~MT! fluctua-
tion conductivity above Tc ~Refs. 15,16! ~To avoid
confusion, we would like to note that the term ‘‘fluctuatio
conductivity’’ in our paper means corrections to the cond
tivity due to fluctuations of the order parameter in the sup
conductors aboveTc . We are not interested in universal co
ductance fluctuations which are of the order ofe2/h and do
not exhibit any noticeable temperature dependence nearTc .)
Therefore, it is of interest to calculate the conductance
different S/N systems aboveTc taking into account super
conducting fluctuations.

Despite the large number of papers concerned with su
conducting fluctuations in macroscopic samples, very f
authors have considered superconducting fluctuations in
tacts. In particular, Kulik9 considered the effect of superco
ducting fluctuations on the density of states and on the
rent in a tunnel junction. Zaitsev10 considered the fluctuation
corrections to the conductance of very short superconduc
microbridges. However, these studies have revealed only
types of fluctuation corrections in uniform systems; the c
rection due to the modified density of states and the
correction, which represents the effect of fluctuational C
570163-1829/98/57~9!/5450~7!/$15.00
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per pairs on the conduction of normal electrons. They did
reveal the Aslamazov-Larkin~AL ! correction14 which repre-
sents the direct contribution of fluctuational Cooper pairs
the current.

In this paper, we consider the effects of superconduct
fluctuations on the conductance of mesoscopic norm
metal–superconductor–normal-metal~N/S/N! and super-
conductor–normal-metal–superconductor~S/N/S! contacts
of various lengths. In the case of N/S/N contacts, we find t
the AL and MT corrections are of the same order of mag
tude. In the case of S/N/S contacts, the conductance is d
mined by the MT correction, which penetrates into the co
tact, from the electrodes, a distance up to the phase-brea
lengthLw .

II. BASIC EQUATIONS

The expressions determining the superconducting cor
tions to the conductivity are easily obtained by a trivial e
tension of the Aslamazov-Larkin and Maki-Thompson equ
tions to inhomogeneous systems. However, as many pe
are not familiar with the diagrammatic technique used
these authors, we present here a different derivation base
quasiclassical Green’s functions of the superconductor
the self-consistency equation with a Langevin source.10–12

One can show that the results obtained with the aid of
diagrammatic technique and the results presented here
identical.

The current density in a dirty superconductor is expres
by the formula

j5
p

2
eNFDE de

2pE de8

2p
SpH t̂zF ĝR~e,e8!

]ĝF~e,e8!

]r

1ĝF~e,e8!
]ĝA~e,e8!

]r G J , ~1!

whereĝR, ĝA, andĝF are quasiclassical matrix Green’s fun
5450 © 1998 The American Physical Society
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57 5451FLUCTUATION PARACONDUCTIVITY IN MESOSCOPIC . . .
tions of the superconductor,13 NF5mp0/2p2 is the density
of states at the Fermi level, andD5 lv0/3 is the diffusion
coefficient of electrons. The retarded and advanced Gre
functions ĝR(A) describe the energy spectrum of the sup
conductor, whileĝF also contains information about the ele
tron distribution. In the case of a time-independent electr
potential, the functionsĝR(A)(e,e8,r ) obey the equation

2D
]

]r S ĝR~A!
]ĝR~A!

]r D 1~2 i et̂z2 i D̂1Ŝd
R~A!!ĝR~A!

2ĝR~A!~2 i e8t̂z2 i D̂1Ŝd
R~A!!50, ~2!

where

D̂5S 0 D

2D* 0 D ,

and the matrixŜd
R(A)56Gt̂z describes the depairing. Th

products of the matrix quantities also imply convolutio
over the inner frequencies.

The order parameterD(v,r ) satisfies the self-consistenc
equation containing the source of condensate fluctuation11

D~v,r !5
l

8E de

2p
Sp@~ t̂x2 i t̂y!ĝF~e1v/2,e2v/2,r !#

2lh~v,r !, ~3!

and the correlation function of the sources of fluctuationsh
is given by

^h~v,r !h* ~v8,r 8!&5~16pNF!21d~v1v8!d~r2r 8!

^h~v,r !h~v8,r 8!&50. ~4!

This expression implies that the sources of condens
fluctuations ared correlated in time. The latter equality is th
result of randomness in the phase of superconducting fl
tuations aboveTc .

Since the fluctuations of the order parameter are small,
retarded and advanced Green’s functions of the super
ductor may be represented as the sum of correspon
normal-metal Green’s functions and a small additive prop
tional to D:

ĝR~A!~e,e8!562pt̂zd~e2e8!1 f̂ R~A!~e,e8!. ~5!

Substituting Eq.~5! into Eq. ~2! and making use of the or
thogonality condition@ ĝR(A)#251̂,13 one obtains that

f̂ R~A!~e,e8,r !56E d3r 8 PR~A!~e1e8,r ,r 8! D̂~e2e8,r 8!,

~6!

where the kernelsPR(A) are determined by the equations

~D]2/]r21 i e2G!PR~e,r ,r 8!52id~r2r 8!,

PA~e,r ,r 8!52PR~2e,r ,r 8!. ~7!

Note that thef̂ R(A) matrices contain no diagonal comp
nents. The correction to the diagonal components, which
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termines the density of states, is proportional to the or
parameter squared. However, this correction is small for
case under consideration and will be neglected by us.

As the local electron distribution is assumed to be eq
librium, the functionĝF may be expressed in terms ofĝR and
ĝA via the relationship

ĝF~e,e8!5ĝR~e,e8!n̂~e8!2n̂~e!ĝA~e,e8!, ~8!

where

n̂~e,r !5S n@e2ef~r !# 0

0 n@e1ef~r !#D ,

n~e!5tanh~e/2T!, ~9!

andf(r ) is the electric potential. Substituting Eqs.~8!, ~6!,
and ~5! into the self-consistency equation~3! gives

D~v,r !5
l

4E d3r 8E de

2p
$PR~2e,r ,r 8!n@e2v/21ef~r !#

1PA~2e,r ,r 8!n@e1v/22ef~r !#%D~v,r 8!

2lh~v,r !. ~10!

Consider the case where all the relevant length scales
much larger than the characteristic lengthj0;(D/Tc)

1/2 and
v!Tc . ThenD(r 8) may be expanded in powers ofr2r 8 to
quadratic terms. Substituting the expression forPR(A) in in-
finite space,

P0
R~A!~2e,r2r 8!5E d3q

~2p!3

exp@ iq~r2r 8!#

e6 i ~Dq21G!/2
, ~11!

into the self-consistency equation~10!, one obtains the non
stationary Ginzburg-Landau-Langevin equation in the for

S D
]2

]r2
1 iv22ief~r !2tTc2G D D~v,r !516Th~v,r !,

~12!

where Tc is the BCS transition temperature andt5(8/p)
3(T2Tc)/Tc . This equation is well known in the theory o
superconducting fluctuations.

Consider now the expression for the current~1!. Substi-
tuting Eqs.~5! and ~8!, one obtains

j5 jn1 jAL1 jMT , ~13!

where

jn5
1

2
NFDeE de SpS t̂z

]n̂

]r D 5snE; ~14!

sn represents the normal-state conduction. The second
represents the regular Aslamazov-Larkin~AL ! correction
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jAL5
p

2
eNFDE de

2pE de8

2p
SpH t̂zF f̂ R~e,e8!

] f̂ R~e8,e!

]r
n̂~e!

2n̂~e! f̂ A~e,e8!
] f̂ A~e8,e!

]r G J ~15!

and the third term represents the anomalous Maki-Thomp
~MT! correction
fo

o

he

m

na
on

jMT52
p

2
eNFDE de

2pE de8

2p

3SpF t̂zf̂
R~e,e8!

]n̂~e8!

]r
f̂ A~e8,e!G . ~16!

First consider the AL correction. Substituting Eq.~6! into
Eq. ~15! and performing the averaging over the fluctuatio
of the order parameter, one obtains
.

jAL5
p

2
eNFDE de

2pE dv

2pE d3r 1E d3r 2FPR~2e2v,r ,r1!
]PR~2e2v,r ,r2!

]r
2PA~2e2v,r ,r1!

3
]PA~2e2v,r ,r2!

]r G@^D* ~v,r1!D~2v,r2!&n~e1ef!2^D~v,r1!D* ~2v,r2!&n~e2ef!#. ~17!

Equation~17! may be simplified, when the characteristic length scales are much larger thanj0, by settingr15r in the
correlators in second factor of the integrand of Eq.~17! and expanding in powers ofr22r to linear terms. Making use of Eq
~11! for PR(A) in the infinite space, Eq.~17! is easily shown to be of the form

jAL~r !52
i

4
eNFDE dvF K ]D~v,r !

]r
D* ~2v,r !L ]n

]eU
2v/21ef~r !

2 K D~v,r !
]D* ~2v,r !

]r L ]n

]eU
v/22ef~r !

. ~18!
n-
t a
y,
e

q.

T

This is just the standard Ginzburg-Landau expression
the current. Combined with Eq.~12!, it gives the correction
to the current due to fluctuations, which include the effects
a nonlinear electric field.

We now calculate the AL correction to linear terms in t
electric field. Using the functionsKR(v,r,r8), the Green’s
function of Eq. ~12! with zero potential, and
KA(v,r,r8)5KR(2v,r,r8), then retaining only linear
terms in the electric field, the fluctuation of the order para
eter may be written in the form

D~v,r !5E d3r 8 KR~v,r ,r 8!h~v,r 8!

12ieE d3r 8E d3r1 KR~v,r ,r1!@f~r1!

2f~r !#KR~v,r1 ,r 8!h~v,r 8!,

D* ~2v,r !5E d3r 8KA~v,r ,r 8!h~v,r 8!

22ieE d3r 8E d3r1 KA~v,r ,r1!@f~r1!

2f~r !#KA~v,r1 ,r 8!h* ~2v,r 8!. ~19!

Note that in comparison withKR(v,r,r8) defined by
Aslamasov and Larkin, this quantity contains an additio
factor mp0 /16pTc . Substituting Eq.~19! and the correlator
of the sources of condensate fluctuations Eq.~4! into Eq.
~18!, one obtains the linear AL correction in the form
r

f

-

l

jAL~r !5
8

p
e2DTE dvE d3r1E d3r2

]KR~r ,r1!

]r

3$@f~r1!2f~r !#KR~r1 ,r2!

2@f~r2!2f~r !#KA~r2 ,r1!%KA~r ,r2!. ~20!

Note that for the AL correction, the current-field relatio
ship is substantially nonlocal, i.e., the current density a
given point is determined by the electric field in its vicinit
of radiusj(T);AD/(T2Tc). This is a consequence of th
large size of fluctuational Cooper pairs nearTc .

Now we proceed to the MT correction. Substituting E
~6! for f̂ R(A) into Eq. ~16!, one obtains

jMT~r !52pe2NFD
]f

]r E d3r 1E d3r 2E dv

2p
^D~v,r1!

3D* ~2v,r2!&E de

2p
PR~2e,r ,r1!PA~2e,r ,r2!

3
]

]e
n@e2v/21ef~r !#. ~21!

Retaining only the terms linear in the electric field the M
correction is given by the expression

sMT~r !58e2DTE d3r 1E d3r 2E d3r 8E dv

2p

3KR~v,r1 ,r 8!KA~v,r2 ,r 8!E de

2p
PR

3~2e,r ,r1!PA~2e,r ,r2!. ~22!
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Unlike the AL correction, the current-field relationship of th
MT correction is purely local, as the electric field direct
affects normal electrons rather than fluctuational Coo
pairs.

III. N/S/N CONTACT

Consider the N/S/N contact in the shape of a narrow ch
nel of lengthL@j0 and cross-sectional areaS connecting
two massive electrodes. The transverse dimensions of
channel are assumed to be much smaller thanj(T). Let thex
axis be directed along the channel. The normal-state ele
potential in the contact is unperturbed by superconduc
fluctuations and has the formf52Vx/L, whereV is the
voltage drop across the contact. As the superconducting
rections to the current essentially depend on the dista
from the electrodes, the AL and MT corrections@Eqs.
~20!,~22!# should be calculated with the unperturbed pote
tial and then averaged over the length of the contact to
sure current conservation.
na

de

o

r

n-

he

ric
g

r-
ce

-
n-

First consider the AL correction. As the transverse dime
sions of the channel are small, all the relevant quantities m
be considered to be dependent only on the longitudinal
ordinatex. Introduce a system of the eigenfuctions of t
Laplace equation

wn~x!5A2

L
sinS pnx

L D . ~23!

Then the functionKR entering into Eq.~20!, the Green’s
function of Eq. ~12! with zero boundary conditions at th
ends of the contact, may be represented in the form

KR~x,x8!52
i

S(n

wn~x!wn~x8!

v1 i eL~p2n21tL1g!
, ~24!

whereeL5D/L2 is the Thouless energy,tL5tTc /eL , and
g5G/eL . Performing the integration in Eq.~20! over the
coordinates and frequency and making use of the relat
ships
E
0

L

dxwm~x!xwn~x!5H 2
4

p2
L

mn

~m22n2!2
@12~21!m1n#, mÞn,

L/2, m5n,

~25!

E
0

L

dx
]wm

]x
wn~x!5H 2

2

L

mn

n22m2
@12~21!m1n#, mÞn,

0, m5n,

~26!
es
y

ob-
one obtains the AL correction in the form

dI AL564
e2TV

eL
(
m

(
nÞm

S mn

m22n2D 2
@12~21!m1n#2

umun~um1un!
,

~27!

whereum5p2m21tL1g. In the limit tL@1@g, Eq. ~27!
gives the standard AL correction for the one-dimensio
wire

dI AL5
p3/2

211/2

e2TeL
1/2

~T2Tc!
3/2

V. ~28!

The AL correction~27! remains finite atT5Tc owing to the
finite length of the contact, the transition temperature
creases from the bulk value to the value

Tc* 5Tc2
p

8
G2

p3

8
eL . ~29!

NearTc* the temperature dependence of AL correction is
the form

dI AL5a
e2TV

T2Tc*
,

l

-

f

a5
1

p3(k51

`
k2

~k221!4
'0.1026. ~30!

Now we proceed to the MT correction. As the quantiti
PR(A) appearing in Eq.~22! also satisfy the zero boundar
conditions at the ends of the contacts, they have the form

PR~e,x,x8!5
2

S(n

wn~x!wn~x8!

e1 i eL~p2n21g!
. ~31!

Substituting Eqs.~24! and~31! into Eq. ~22!, averaging over
the contact length, and summing the resulting series one
tains

dI MT52e2V
1

t H 1

g1/2S cothg1/22
1

g1/2D
2

1

~tL1g!1/2Fcoth~tL1g!1/22
1

~tL1g!1/2G J
~32!

for tL1g.0 and
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FIG. 1. ~a! shows the MT and the AL terms for several values ofg ~ga!. As is seen from~a! all the curves for the AL terms lay on top
each other.~b! shows the ration of MT/AL terms for several values ofg ~ga!. ~c! is a ln-ln plot of ~a!.
w

te
:

MT

he

.

res
nd

rmal

airs
trate
dI MT52e2V
1

utu H 1

utL1gu1/2F 1

utL1gu1/2
2cotUtL1gU1/2G

2
1

g1/2S cothg1/22
1

g1/2D J ~33!

for tL1g,0. Alternatively, Eqs.~32!,~33! can be written in
the form

dI MT54
e2TV

eL
(
m

um~um2tL!. ~34!

For large contact lengthstL@1, the MT correction re-
duces to the standard equation for the one-dimensional

dI MT5
p

4
e2V

1

t S 1

g1/2
2

1

tL
1/2D . ~35!

As with the AL correction, the MT correction remains fini
at T5Tc and diverges atT5Tc* according to the same law
ire

dI MT5
1

2p

e2TV

T2Tc*
. ~36!

In Fig. 1 we plotted the temperature dependences of the
and AL terms in dimentionless fluctuation conductancesSMT
andSAL for different values ofg ~the ratio of the depairing
rate G and the Thouless energy eL); here
SMT5dI MT /I 0 , SAL5dI AL /I 0 , I 05e2VT/eL . As may be
seen from Fig. 1, the MT contribution dominates over t
whole temperature range. The depairing rateG can be deter-
mined from measurements of the fluctuation conductance

IV. S/N/S CONTACT

Consider a structure of similar geometry as the structu
considered perviously but with a normal-metal channel a
superconducting electrodes. The superconductor and no
metal are characterized by the diffusion coefficientsDs and
Dn and by the phase-breaking ratesGs andGn , respectively.
In the case of S/N/S contacts, the fluctuational Cooper p
generated in the superconducting electrodes can pene
into the normal metal only a distance shorter thanj0 as the
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BCS coupling constantl is zero in the normal metal. How
ever, as in the superconducting state atT,Tc ,6,7 they can
affect the conduction of normal electrons at distances m
larger than the phase-breaking lengthLw . In this case, the
conductance of the contact depends on the geometry o
electrodes even though their dimensions are much la
than the transverse dimensions of the contact.

In view of this reasoning, the AL correction is negligib
in S/N/S contacts. The MT correction is obtained by aver
ing Eq. ~22! over the contact length, then integrating wi
respect tor1, r2, andr 8 over the bulk of both electrodes, eac
giving an independent contribution to the conductance of
contact. Hence in Eq.~22!, one may use the expressions f
KR(A) in a bulk homogeneous superconductor:

KR~v,r ,r 8!52
i

V(
q

exp@ iq~r2r 8!#

v1 i @Dsq
21tTc1Gs#

, ~37!

whereV is the normalization volume.
First consider the contribution from the left electrode. A

sume that the origin coincides with the left end of the co
tact. As in the case of N/S/N contact, all the quantities ins
the channel depend only on the longitudinal coordinatex. As
the integral~22! is dominated byur1u andur2u of the order of
j(T), i.e., much larger than the transverse dimensions of
contact, the quantityPR(e,x,r ), wherex is the coordinate of
a point inside the contact andr is the coordinate of a poin
inside the left electrode, may be represented in the form

PR~A!~e,x,r !5P0
R~A!~e,2r !c~6e,x!, ~38!

whereP0
R(e,2r ) is given by Eq.~11! and functionc is the

solution of the equation

Dn

d2c

dx2
1~ i e2Gn!c~e,x!50

with the boundary conditionsc(0)51 andc(L)50. Explic-
itly, it is given by the expression

c~e,x!5
sin@k~12x/L !#

sinhk
, k~e!5~gn2 i e/eL!1/2.

~39!

With these expressions and taking into account contributi
from both electrodes, Eq.~22! takes the form

dI MT564e2eLTLSV
1

V(
q

3E dv

2p

1

v21~Dsq
21tTc1Gs!

2

3E de

2p

1

4e21~Dsq
21Gs!

2
F~2e!, ~40!

where
h

he
er

-

e

-
-
e

e

s

F~e!5
1

LE0

L

dxc~e,x!c~2e,x!

5
~2k1!21sinh~2k1!2~2k2!21sin~2k2!

cosh~2k1!2cos~2k2!
,

k15Re@k~e!#, k25Im@k~e!#. ~41!

Integrating with respect to frequencyv in Eq. ~40! gives

dI MT532e2eLTLSV
1

V(
q

1

Dsq
21tTc1Gs

3E de

2p

1

4e21~Dsq
21Gs!

2
F~2e!. ~42!

To be specific, consider the case where the electro
represent a film of thicknessd0,j(T), then in this case the
sum overq may be replaced by the integral

1

V(
q
→

1

d0
E d2q

~2p!2
.

Introducing the dimensionless integration variab
u52e/eL , one arrives at the following expression:

dI MT5
4e2

p2

TLS

Dsd0
VE

0

` du

u21tL
2F lnSAu21gs

2

tL1gs
D

1
tL

u
arctanS u

gs
D Gu1

21sinhu12u2
21sinu2

coshu12cosu2
,

u1521/2~gn1Agn
21u2!1/2, u2521/2~Agn

21u22gn!1/2.
~43!

Assume for simplicity that the depairing rates in the no
mal and superconducting metals are equal (gs5gn5g).
First consider the case of a very short contact,g!tL!1. In
this case, the integral~43! is dominated byu;tL , so the last
factor in the integrand may be set equal to 1/3. This yiel

dI MT5
1

12

Dn

Ds

e2

d0t
lnS 11

tTc

G DSV

L
. ~44!

To within the factorDn /Ds and a numerical coefficient
the correction to the conductivity of the contact material
equal to the MT conductivity of the electrodes. A simil
result was previously obtained by Zaitsev10 for short S/c/S
contacts~c means a constriction!.

Consider now the case where the contact is of interme
ate length,g!1!tL . One obtains with logarithmic accu
racy

dI MT5
1

12

Dn

Ds

e2

d0t
ln~1/g!

SV

L
. ~45!

This expression differs from that for the short contact in th
the quantity (8/p)(T2Tc) in the logarithm is replaced by
the Thouless energyeL .
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Lastly, consider the case of a long contact, 1!g!tL . In
that case, the integral~43! is dominated byu@1, so the
second factor in the integrand may be approximated
(2u)21/2, yielding

dI MT5
1

2

Dn

Ds

e2

d0t
g21/2

SV

L
. ~46!

The physical meaning of this result is that the supercond
ing correlations that result in the MT correction penetr
into the contact over the lengthLw;g21/2L!L. Note that
unlike the case of N/S/N contact, the correction to the to
current is proportional to the cross-sectional area of the c
tact.

V. CONCLUSIONS

The fluctuation conductivities of N/S/N and S/N/S co
tacts of arbitrary lengths have been calculated. We have
tablished that the fluctuation conductivity in N/S/N conta
consists of contributions from both the Maki-Thompson a
Aslamasov-Larkin terms. The MT contribution dominat
over the whole temperature range. However, near the re
malized critical temperatureTc* the ratio of the MT and AL
terms does not contain any parameters, and equals a
1.56 .
n

e
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ev
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e
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out

In S/N/S contacts the AL contribution is absent. The
crease in the conductivity due to fluctuations is caused by
anomalous MT term containing the product of retarded a
advanced functions@see Eq.~22!#.

The superconducting fluctuations modify the density
states and decrease the conductivity. In the case of N/
and S/N/S contacts analyzed by us, this decrease is s
~i.e., it does not diverge asT tends toTc* ). However, the
correction to the conductivity due to the decrease of the d
sity of states is essential in S/N/S contacts atT,Tc* , this
leads to the reentrant behavior of the conductance,6–8 and
is also essential in tunnel superconductor-insulat
superconductor junctions,9 and in layered supercon
ductors.12,17
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