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We study the localized stationary solutions of the one-dimensional time-dependent Ginzburg-Landau equa-
tions in the presence of a current. Thekeeshold perturbationseparate undercritical perturbations which
return to the normal phase from overcritical perturbations which lead to the superconducting phase. Careful
numerical work in the small-current limit shows that the amplitude of these solutions is exponentially small in
the current; we provide an approximate analysis which captures this behavior. As the current is increased
toward the stall curreng*, the width of these solutions diverges, resulting in widely separated normal-
superconducting interfaces. We map out numerically the dependente@f u (a parameter characterizing
the materigl and use asymptotic analysis to derive the behaviors for largd* ~u~% and smallu (J
—J., the critical depairing curreptwhich agree with the numerical work in these regimes. For currents other
thanJ* the interface moves, and in this case we study the interface velocity as a functicandf). We find
that the velocities are bounded both ak—0 and as J—J., contrary to previous claims.
[S0163-182698)01609-9

[. INTRODUCTION taining multiple flux quanta. Without a current one finds sta-
tionary, singly quantized vortices, with a larger amount of

When a superconductor is placed in a magnetic field equalS interface per flux quantum than a multiply quantized
to its critical field H,, the normal and superconducting droplet. They conclude that the current produces an effective
phases can coexist in a state of equilibrium with the twosurface tension for the NS interface which is positive, stabi-
phases separated by normal-supercondu¢hi®) interfaces. lizing the interface and producing larger droplets with
The dynamics of such interfaces is important for varioussmaller surface area. Motivated in part by its role in this
nonequilibrium phenomena. For instance, if the applied magphenomenon we wanted to reexamine the nonequilibrium
netic field is quenched below., these interfaces move Stabilizing effects of current.
through the sample, expelling the magnetic flux so as to es- Even when the superconducting phase is ostensibly the
tablish the Meissner phase? Just as superconductivity can equilibrium phase, a current makes the normal phase meta-
be destroyed by applying a magnetic field exceediag it ~ Stable, i.e., linearly stable to infinitesimal superconducting
can also be destroyed by applying a current exceeding theerturbations. A localized superconducting perturbation of
critical depairing current),. Thus by analogy with the finite amplitude, on the other hand, has one of two fatk:
magnetic-field case, one might expect a special value of thés amplitude may ultimately shrink to zero, restoring the
applied current)* <J. at which the superconducting and normal phaséundercritica), or (2) it may grow, eventually
normal phases coexist, separated by a stationary Nsstablishing the superconducting stateercritica). Separat-
interface:® In contrast to the magnetic-field-induced NS in- ing these two possibilities are tlegitical nuclei or threshold
terfaces, these current-induced NS interfaces are intrinsicallperturbations for present purposes stationary solutions of
nonequilibrium entities, and their structure depends upon théhe time-dependent Ginzburg-Land&IDGL) equations lo-
dynamicsof the order parameter and magnetic field. Thecalized around the normal state. As one raises the current, the
evolution and dynamics of these nonequilibrium interfacesamplitude of the threshold solution grows, implying that the
are the subject of this paper. normal phase becomes increasingly stable.

The current-induced NS interfaces arise in several con- At very low currents, the widths of the critical nuclei
texts. First, they are known to be important in understandinghrink as the current is increased, but eventually this trend is
the dynamics of the “resistive state” in superconductingreversed and the width grows as the current is increased fur-
wires and films(for a review see Ref. 21and in determin- ther. In fact, as the current approaches a particular vdue
ing the global stability of the normal and superconducting(the “stall current™®), the width diverges, resulting in two
phases in the presence of a currénSecond, Aranson well-separated, stationary NS interfaces. The interface solu-
et al’® have recently studied the nucleation of the normaltions have been studied numerically by Likhat&wvho
phase in thin type-1l superconducting strips in the presencéound that the interfaces were stationaryJat~0.335 for
of both a magnetic field and a transport current. They foundi=5.79, whereu characterizes the material and is 5.79 for
that a sufficient current produced large normal droplets connonmagnetic impuritiet They were also studied by Kramer
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TABLE I. Summary of the primary results. A
VXVXA=—(J,+Js), (2.2
(1) Critical nucleus ¢
SmallJ width W~ (uJ)~ 12 Sec. B where the normal currenl, and the supercurreni; are
SmallJ amplitude Wo~exp[—Alud} Sec. B given by
(I Stall currentd*
Largeu J*=0.584 49114 Sec. IVC Jn=0"(=gA/c-V D), (2.39
Smallu . (1—u/8)Y? Sec. IVD
=] - 7 he* e*2
ineti “(1-ur24y? Jo=—— (P*Vy—yVy* ) — —|g2A,  (2.3b
(1) Kinetic coeff. s~ omi VY=YV §r) me U°A, .
Largeu 7=0.790%* Sec. V
Smallu p~ud? Sec. V and wherey (which is assumed to be rg@a$ a dimensionless
(IV) Interface speed quantity characterizing the relaxation time of the order pa-
-0 cs2Mu Sec. V rameter, o™ is the normal conductivity, and
I3, c~u?? (u—0) Sec. V a=ap(1-T/T¢). From these parameters we can form two
c~u~ 085 (u— ) Sec. V important  length  scales, the coherence length

é=nl(2m|a])¥?  and the penetration depth
A=[mbc/4n(e*)?|a|]Y2
These equations assume relaxational dynamics for the or-

der parameter as well as a two-fluid description for the cur-
rent. With somewhat restrictive assumptions, they can be
derived from the microscopic BCS thedf*® Further sim-

lification is possible in the limit of a thin, narrow film, that

s, when the thickness is less than the coherence length,
d<¢, and the width is less than the effective penetration
depth!” w<\?/d. In this case the current carried by the film
or wire is small, and we need not worry about the fields it
roduces. Therefore, ER.2) may be dropped, and we need
nly specify the total currerit=J,+ Js (subject toV-J=0),
along with the order-parameter dynamics, Exj1). This 3}1%

roximation is commonly used for superconducting wires
(I=J%). Lilghlare\}o defined the constant of proportionality, gnd can be justified rrz/athematicallyp for supercgnducting
7=(dc/dJ)” Y-, where ¢ is the interface speed; he fiing 18 |n addition, we will be considering processes in the
found ~0.7 foru=5.79. In the extreme limits]—0 and  gpcence of an applied magnetic field, so that we may set
J—J Likharev predicted that the speedliverges. We find - ao—q wjith these simplifications, we can now rewrite the

cto b_e bounded in both cases and provide an analytic &Xsquations in terms of dimensionlegsimed quantities,
pression for it asl—0.

The results of this work are summarized in Table I. The /_|a| fe*|al
lr//: Flp’v =

and Baratoff:? who foundJ* ~0.291 foru= 12 (correspond-
ing to paramagnetic impuritié€d. However, we know of no
systematic study of the dependenceJdf uponu. In this
work we remedy this situation by using a combination of
numerical methods and analysis including matche
asymptotic expansiort§.We show thatl* ~u~* for large

u in contrast to a previous conjectufeand we find howd*
approached, in the smallu limit.

At currents other thad*, the interfaces move with a con-
stant velocity with the superconducting phase invading th%
normal phase fod<J* and vice versa fod* <J<J.. At
currents close td*, the interface velocity is proportional to

rest of the paper is organized as follows. After briefly re-
viewing the TDGL equations and the approximations used in
this work (Sec. I), we study the critical nuclei, focusing on

their size and shape in the limit—0 (Sec. ll). We then , mbo"

move on to consider the stationary interface solutions; in X=¢x',  t= e 2al

particular we map out the dependence of the stall cudént

onu and supplement the numerical work with analysis of the 2 e*|a|?

u— andu—0 limits (Sec. I\). Next, we examine moving J= \/: J, (2.9
interfaces first in the linear response regime and then in the b

limits J—0 andJ—J; (Sec. V). The Appendix contains a \ hich leads to

calculation of the amplitudes of the critical nuclei in the

—0 limit. u(dp+ip )y =(V'2+1-[y' )y’ (253

J=Im(H'*V'y')=V'u', V'-3’=0. (2.5b
Il. TDGL EQUATIONS . . .
Note that length is measured in units of coherence letigth.

The starting point for our study is the set of TDGL equa-We will drop the primes hereafter. The only parameters re-
tions for the order parametef, the scalar potential, and  maining in the problem are the scaled currémind a dimen-
the vector potentiah: sionless material parameter 7,/7;, wherer, =% yl/|a| is
the order-parameter relaxation time ang= c("mb/e*?a|
) is the current relaxation time. We will treatas a phenom-

y+|al y—b| ]2 enological paramet-er and study.the nuc!eatlon ar_ld growth
' process as a function af. The microscopic derivations of
(2.) the TDGL equations predict that=5.79 (nonmagnetic

ie* h? *
ﬁ?(‘“T) ‘”:ﬁ<v_ hc
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impurities,'* and u=12 (paramagnetic impurities® but 15 X

small u is also wuseful for modeling gapped —f

superconductor®, o
1.0

IIl. NUCLEATION OF THE SUPERCONDUCTING PHASE
FROM THE NORMAL PHASE

In the presence of an applied current the normal phase in
a wire is linearly stable with respect to superconducting per-
turbations forany value of the curremt>?? The reason for
this stability is that any quiescent superconducting fluctua-
tion will be accelerated by the electric field, its velocity
eventually exceeding the critical depairing velocity, resulting
in the decay of the fluctuation. The growth of the supercon-
ducting phase therefore requires a nucleus of sufficient size G 1. The bump’s amplitudg(x), its superfluid velocitg(x),
that will locally screen the electric field and allow the super-ang the electric fiel&E(x) for u=5.79 andi=0.2.
conducting phase to continue growing; smaller nuclei will

simply decay back to the normal phase. The amplitude of thgynonential behavior suggested in Refs. 11 and 25. More

“critical” nucleus should decrease as the current approaCheﬁrecisely our small data (0.008J<0.015) atu=5.79 are
zero, reaching zero only at=0. We expect theritical nu- ¢ by

clei to be unstable, stationafiput nonequilibrium solutions

of the TDGL equations, which asymptotically approach the Wo(J)=B exp(—Alud) (3.2
normal solution ax— oo, These “bump” solutions of the '

TDGL equations are the subject of this section. We includeyith A=0.042 andB=0.19. A somewhat similar depen-
here an extensive numerical study of the amplitudes an@ence(with A=2/3) was suggested by Ivieat al;**?®they
widths of the critical nuclei, as well as some analytical esti-yere considering a distinct quantity but one also related to

0 2 4 6 8 10
Distance from center of bump, x

mates for these quantities. critical fluctuations about the normal phasee the Appen-
dix for more details
A. Numerical results The width of the bump diverges in the smallimit like

L by di o th ical work on the crit uJ) Y2 as can be seen from the analysis below. So &s
| et L:S.Stlfrt ﬁ/ 'SCL:SS.'ngt I((anumefrlcaf_wgr_ on the critl, - eased from zero, the width initially shrinks, but eventu-
cal nuclel. For the analytic work, we often find it convenient o, e \idth begins to grow again, diverging as the current

; : : io
to use th_e a"?p"t“de and phas_e vanables,_ e=fe”, but approaches the stall curredit. In this limit the bump trans-
they are ill suited for the numerical work, since the calcula-¢j s into two well-separated interfacésee Fig. 3.

tion of the phase becomes difficult when the amplitude is
small. Following Likhare¥’ we use insteady=R-+il, with o o
R and| real, and in one dimension EqR.5 become B. Analysis in the J—0 limit

The equations for nuclei centered at the origin are

UR=Ry+uul +R—(R?>+1?)R, (3.13
hx—Upip+ ¢_|¢|2¢: 0, (3.33
uli=ly—upR+1—(R?+12)1, (3.1b
X
,u:—Jx+f Im(¢™ iy )dX’, (3.3b
J=RI,— IRy — . (3.10 0
Since the nuclei are unstable stationary states, they are 10
investigated only by time-independent means. Such solutions
require a particular gauge choice—in this cgséx)=0 . %87
where (x) has its maximum amplitude; they are then :
sought using a relaxation algorithfFigure 1 shows a typi- 2 087
cal bump’s amplitudef = \J/R?+ 17, the associated superfluid §
velocity q=(RI,—IR)/f2, and the electric field g 047
E(X) = — uy(X). The figure shows only half of the solution; a
f(x), q(x), andE(x) are even about=0. In Fig. 2 we plot 021
the bump’s maximum amplitudé, as a function of]; it
0.0

grows as the current rises, indicating the increasing stability
of the normal phase. In the data presented by Watts-Tobin
et al?* i, appears to vary linearly with for smallJ. How-
ever, in our numerical calculations at very small currents the FIG. 2. The maximum amplitude of the bumgps as a function
dependence deviates from linearisee the inset of Fig.)2  of J for u=5.79. The inset shows the exponential dependence of
and ¢ drops rapidly to zero ad—0, consistent with the the smalld data; see E¢3.2).

000 005 010 015 020 025 030 035
Current, J
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wu/ 18 u

—-1/2 16
T exr{ - _81UJ)' (3.8

The factorA=16/81 is within a few percent of that extracted
from the numerical data.

2J>1’4(9 1

=]

0.8 1

0.6 §

0.4 - IV. STATIONARY INTERFACES

As the current is raised, the width of the critical nucleus
grows and ultimately diverges as the stall current is reached,
resulting in well-separated, stationary interfaces. These inter-
face solutions will be the subject of the rest of this work.

Normalized Order Parameter

0.2

0.0

Distance from center of bump, x .
A. Numerical methods and results

_ FIG. 3. The bump profiles fon*=J=10 ® (solid line), Let us first discuss the numerical work on the interface
J*—J=10"" (dashed ling and J*—J=10"" (dotted ling at g4 tions. For given values of andJ we evolved the TDGL
u=5.79. equations from an initial guess which is purely supercon-
ducting on the leftj(x) = f.e'%* and u,(x) =0, and purely
normal on the righti(x) =0 andu,(X) = —J. The valued
andq.. are related to the applied current through

where we have dropped the terp and selected the gauge
©1(0)=0. We saw in Fig. 2 tha#, becomes very tiny in the
small-J limit; thus the nonlinear terms can be neglected,

leading to J=12\1—-f2, (4.19
PuxFUIXY+ =0, (3.4 Q.= 1—f2. (4.1b
a complex version of the Airy equation. Applying the WKB Stability requires taking the larger positive root of the former
method results in the approximate solution equatior® which places the following bounds ah f.,, and
Qoo
Y~[1+(udx?] 18
) 3 0<J=<J.= y4/27~0.3849, (4.2
v il I 213040
ex”[ 3ug| 11 (U eosy—1 1=1,>/2/3~0.8165, (4.2b
2 3a « _
Xexp[i m[1+(u‘]x)2]3/4sin7_ : ] (3.5 0<q..</1/3~0.5774. (4.20

We employed several schemes to integrate the equations in

wherea=tan *(uJx). The numerical data agree quite well time including 220th explicit (Eulen and implicit
with this predicted shape in the smadllimit. For smallx the ~ (Crank-Nicholson

expression can be approximated by Initially the front moves and changes shape but eventually
it reaches a steady state in which the interface moves at a
~exdi(1—udid)x—udxé/4]. (3.6)  constant velocity without further deformation. By the time-

dependent means we found locally stable, constant-velocity
We see here that the width of the bump varies likd)(Y?>  solutions for currents less thaly. To examine these solu-
in this limit and that the superfluid velocity~(1—uJ/4). tions more accurately, we adopted a time-independent
For largex, on the other hand, where~ 7/2, the expression method. First, we transformed coordinates to a moving
becomes frame,x’ =x—ct; next, we chosg.=cq., asx— — which
allows for a truly time-independent solutigne., one with
J2ud both amplitude and phase time indepengerithen we
P~ (udx MGXF{ —T|X|3/2(1—i) ; (3.7 searched for stationary solutions using a relaxation
algorithn?3 where (,J) are input parameters ands treated
as one expects for the Airy function. Note that deep in theds an eigenvalue. This approach requires an additional
tail of the solution, we see a different length scaleboundary condition to fix translational invariance; we elected
)\Airy~(u\])*1/3 arising. to fix w on the rightmost site. To find the stall curredtswe
Since the above analysis is of a linear equation, it cannotan setc=0 and take] or u as the eigenvalue.
determine the amplitude of the nucleus; for this purpose the Figures 4 and 5 show the order-parameter amplifuaed
nonlinearities must be considered. In the Appendix we outthe electric-field distributiofE = — u, of the stalled interface
line anad hoccalculation of the small- limit of the bump  determined foru=500 andu=1.04, respectively. Note that
amplitude. We take @ of an unknown amplitude but of a while f is very flat in the superconducting region, the real
fixed shape inspired by the above analysis and assume thatdnd imaginary partsR and | oscillate with a wavelength
is a stationary solution of the full TDGL equation. We then 27/q.. . Because of this additional length scale inhererRRin
determine its amplitude self-consistently. The resulting amandl, there is little to be gained from varying the mesh size.
plitude is In fact, this length scale is compressed as we move to the
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1.0 e B. Asymptotic analysis of the interface solutions: Preliminaries
Before addressing the large-and smallu limits sepa-
081 rately, let us put the TDGL equations into a form convenient
for analysis and derive expressions for the length scales deep
0.6 1 in the superconducting and normal regions. The disparity of
these length scales in the largelimit will motivate the
0.4 - boundary-layer analysis in that regime, while an inequality
they satisfy will lead to the conclusion that —J; in the
0.2 1 smallu limit. _
——————— We make the substitutiogr=fe'?, which yields
0.0 : : : . .
M - 0 5 4 ufi=fo—f(0,)2+F—13, (4.39
g U(Op+ ) f =2, 0.+ Oy, (4.30

FIG. 4. The stationary NS interface solution whes 500 for
which the stall curreng* =0.122 52. Shown here are the numeri- J=120,— uy. (4.30
cally determined (x) andE(x), as well as the Langer-Ambegaokar
(LA) solution[Eg. (4.10, the solution with no electric fieldcorre-
sponding to the same current.

Next we restrict our attention to stationary solutions. Note
that only spatial derivatives af appear now, allowing us to
work with the superfluid velocityg= 6, instead offd. The

. o ~equations become
right, and we are only saved from the difficulties of handling

rapidly oscillating functions by the fact that the amplitudes fo—q2f+f—f3=0, (4.49
decay so quickly.

In the largeu case(see Fig. 4, E(x) remains flat through- upf=2fq+fay, (4.4b
out most of the space; it changes abruptly from one constant .2
to another only aftef(x) has become small. The variations I =170 s (4.49

of f(x) are more gradual; however, the greatest changés in where J* replaces] as these equations apply to the stall
occur in that same small area. This region of rapid change isituation. Next multiply Eq.(4.4b by f and note that the
known as aboundary layey it marks where the current sud- right-hand side is nowffq), which we can express in terms
denly changes from superconducting to normal, i.e., the poef u by differentiating Eq.(4.40; these steps lead to

sition of the NS interface. As increases, the longer length )

scale over whichf varies on the superconducting side re- Moo= utpe. (4.9
ma!ns essentially fixed, while_ thg poundary-layer thickness  \ow let us assume the following asymptotic formsxas
shrinks to zero. In the opposite limit, the smallease(see
Fig. 5, f(x) and E(x) appear to vary together even in the

s —o0

superconducting region; moreover, the length scale over lim f(x)=f,—feM+--- (4.6
which they vary grows as is decreased. We will postpone X
providing more of the numerical results on the interfaces i B I\ 4.65
until some of the analytic arguments are available for com- Xlr?wQ(X)—qw+qle at--, (4.6b
parison.
im w(X)=jproo— pur€Mut - . (4.60
10 =
o orof Substituting these expressions into E¢s4a, (4.49, and
- u=0 profile . L .
0.8 T - —_ Numerical f(x) (4.5 and recalling the boundary conditions yields
°e — — Numerical E(x
o6 | % (2f2—N; ?)f @M —2f,0.q,% =0, (4.79
—2f..0.f &+ f2q,eMa+ N T, ee=0, (4.7H
044 N ]
N, 2—uf2=0. (4.70
0.2 1
Equation(4.79 provides an expression far,, the electric-
00 - field screening length. Sinck, is always ofO(1), we see

10 5 0 5 10 that A, shrinks asu—c and diverges asi—0, which is
consistent with the behavior seen in Figs. 4 and 5.
More than one decay length appears in Eds73 and
FIG. 5. The stationary NS interface solution wher 1.04 for  (4,70). If they are not equal, the term with the shorter length
which the stall currend* = 0.3836. Shown here are the numerically g exponentially small compared to the oftserand will not
determinedf(x) and E(x), as well as the functiorfo(x), theu  contribute to thex— —o limit. Since none of the terms in
—0 profile, derived from Eq(4.27) wherex=u". Eq. (4.7b can equal zero individually, we conclude that the
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longer two of\¢, Nq, and\, must be equal. Next, because =~ We start by eliminating the superfluid velocity from
the term multiplyinge¥’*a in Eq. (4.7 cannot equal zero on EQgs.(4.4), resulting in
its own, we determine that,<\;, making\; one of the

2¢-3 3_

longer lengths. Finally, if we assume theg=X ,>\,, we fax= (3" + ) “f =+ f=1°=0, (4.113
find thatA;=2"Y%_1 and\ ,=u~ %! and reach a con- )

- B £ . - Myx—Ufu=0. (4.11b
tradiction (except atu=2). Thus, provided the original as-
sumption of an exponential approach is valid, we conclude.et us consider first the slowly varying, superconducting re-
that gion. We saw in the preliminary analysis that for lange

©(X) is exponentially small, and so we drop it. Next, let us
M=Ng=hy. (4.8 assume thal* is small and drop it; we can verify in the end

This equa"ty Of)\f and )\q is reasonable given that both that this is self-consistent. The reduced equation is
and q are related to the complex order paramaferAlso,

3.
having \;>\, is consistent with the large-data seen in Fact T =17~0, 412
Fig. 4. If A, #\¢, then with solution f(x) = — tanh(x//2).
5 ) 72 Moving in from the left toward the interfacénto the
A "=6fL—4=NL- (4.9 boundary-layer region f becomes small, and the second

We identify this length scale as_, since it coincides with  term in Eq.(4.113 which was subdominant becomes domi-

that occurring in the solution of Eqé4.4) without any elec-  nant. In this inner regioff is small but rapidly varying; thus
tric field [ w(x)=0], the dominant terms are

(‘J*"'/"Lx)2

3f2-2 -
x), (4.10 b=z (4.13

2

which was found by Langer and Ambegad¥an their study ~ along with Eg. (4.119. Having identified the dominant
of phase slippage. The asymptotic form of F4.10 looks terms, now we must make certain they balance. We assume
like Eq. (4.6 with \¢ given by Eq.(4.9). As a matter of fact that in the boundary layer, all the quantities scale as powers
because\;>\ , in the largeu limit, the profile of f(x) is of u:
only imperceptibly different from the Langer-Ambegaokar W _ _ _
(LA) solution in the superconducting region and deviates feu™ p~uth U, x-uTt (414
from it only in the boundary layer, as is shown in Fig. 4.  Balancing terms in Eq4.13), we find 2= y+ 8, while bal-
Recall thath , diverges asu—0; the inequalityh\;=\ ,  ancing terms in Eq(4.11h yields 2(@+ 8)=1. Next, we
implies that\y must diverge as fast or faster in this limit. need to ensure that the solutions in the boundary layer match
This scenario is consistent with the smalldata shown in  onto the solutions in the superconducting and normal re-
Fig. 5 in whichf(x) and E(x) vary on long length scales. gions. By expanding the superconducting solution near the
Equation (4.9 suggests that a diverging; implies that interface, we see thd{x)~ —x/+/2 as the boundary layer is
f.—+/2/3 and in turn thatt—J; as u—0, which is also  approached; matching to the boundary layer requiigesd,
consistent with what is found numerically. so that a=v. In the normal region,u~—J*x, so that
In the other asymptotic limit, deep in the normal regime, matching to the boundary layer requirgs,~J*, and
¢ is very small and hence the nonlinear terms in B85  g=y+ 5. Solving this set of equations, we conclude that
can be dropped as was done for the bumps in the shall-4=y=$§=1/4 andB=1/2, i.e., the stall curreni* ~u~*
limit. The result is a complex Airy equation, the asymptotic for large u. Note thatJ* —0 asu—x, so that we were
analysis of which was supplied in E.7), where we saw justified in droppingd*%/f3 from Eq. (4.12. Substituting
the length scale piy, ~(uJ*) "% Somewhat like\,, Aary — J*~u~4 into Naiy 9IVES Napy~U~ M4, indicating that it
shrinks asu—c« and expands as—0 but with different may be identified as the boundary-layer thickness.
powers ofu. The presence of the disparate length scales, In order to determine the coefficient of the ¥ in the
N, andhapy , in the larged limit, motivates the use of the  stall current we need to solve the boundary-layer problem.

boundary-layer analysis that comes next. We will see thatet us rescale in the way suggested above:
M airy SCales in the same way as the boundary-layer thickness.

f2(x)=f§o—(3fi—2)secﬁ<

f=u""F, w=u""M(X),
C. Asymptotic behavior of the stall current asu—o

_ -4y _ 14
We have already seen in Fig. 4 that the latgprofile can J=uTTL x=uEEX (4.19
be divided into two regions—one slowly varying, one rap- Substituting these rescaled variables into Edsl1a and

idly varying, also known as theuter and inner regions, (4.11D, and then expanding, M, andJ in powers ofu™ Y2,
respectively. Furthermore, it has been suggested that the rgse optain at the lowest order

tio of the length scales characterizing these regions decreases

asu—x. These features make the problem ideally suited for (To+Mox)?
boundary-layer analysis, in which one identifies the terms Foxx=———=——=0, (4.163
that dominate the differential equation in each region, ana- Fo

lyzes the reduced equations consisting of dominant terms, )
and then matches the behavior in some intermediate region. Moxx—FoMo=0, (4.16b
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o] J*=0.584 491 **-0.117 461~ ¥-0.124 o9& >
{- <. 0.584491u™ _ _
o1, — Numerical Results +0.163 043~ "4+ 0(u~%"). (420
0.4 -
% D. Asymptotic behavior of the stall current asu—0
£ 0.2
3 Now let us examine the opposite limit of—0. In this
g 01 . case the electric-field screening length becomes long, and
0.08 | Ivlev et al?® have proposed that this makes the sroalimit
0.06 - useful for modeling gapped superconductors. As already
0.04 suggested the inequality of length scalag=\, implies

; ' ' ' ' = thatJ* —J.. We will begin our small analysis by putting
10° 101 102 108 104 105 . . .
this result on firmer ground and extracting as a by-product
theu—0 limit of the interface profile.

FIG. 6. A log-log plot of the stall currert* vsu. The solid line The rescaled equationRecall that deep in the supercon-
shows the numerically determingd’s as a function ofu and the  ducting region\ ,~u~ 2 This observation suggests that we

. . —1/. . . . ~

dotted line is 0.584 491~ (the largeu behavior predicted by (egcale the distancei=u~¥2: furthermore, to ensure that

matched asymptotic analyis the normal current{ u,) scales in the same way as the total

. » . rrent we r lg=u~Y2, . i i
with the boundary conditiondrom the outer regions current we rescalp=u" " as well. These rescalings yield

ufy—g?f+f-f3=0, (4.213
Fox(—%)=—1N2, Mo(-*)=0, (417
uf=2qf;+fqy, (4.21b
FO(+OO):01 MO,X(+OO):_JO- (4.18 J*Zfz(’]\]—/’l;, (4.210
(As before we need an extra boundag/ condition to fix theplacing the small parameterin front of f;&_ If we expand
translational invariancgFor an arbitrary] ; the solutions of  these functions as series in powersuof
Egs.(4.163 and (4.16b cannot satisfy the boundary condi- L R
tions;jo must be tuned to a particular value before all of the f=fotuft--, (4.223
boundary conditions are satisfied, leading toamlinear ei- A a A
genvalue problenfor J,. We have solved this eigenvalue 4=0oF Ut -+, (4.220
problem numerically and find th5t020.584 491. Therefore, - e ~
to leading order we have for the stall current K=o Upa e, (4.229
J*=J35+udi+---, (4.229
J*~0.584 491~ V4 (4.19 °
' ' ' then we find at the lowest order
This prediction agrees well with the numerical results and _02% % f3_
disagrees (}Nith Likharev's conjecture of au dofotfo=fo=0, (4.233
dependencé as can be seen in Fig. 6 and in Table Il. Itis in N S z
principle possible to carry out this procedure to successively #ofo=20ofox* follox, (4.239
higher orders, but the equations become cumbersome. In- I =320 — B (4.230
stead we have simply opted to fit our numerical data to a 0= "ol Hox- '

form inspired by the asymptotic analysis, The solution of Eq.4.233 is eitherfozo (the normal

T o1 _ a1 ;

TABLE II. Representative numerical results for the stall currentPNas@ or fo=(1—0pg) ™ (the superconducting phaseet us
J* and kinetic coefficient;. focus on the superconducting solutions. By eliminatqg
we obtain the first-order equations

u J* J*U1/4 7 nu*3/4

. fovi-Tiuo
1 03838  0.3838 001871  0.01871 form————y— (4.243
5 0.3407 0.5094 0.6400 0.1914 2—-3f;
10 03013  0.5359 1573 0.2797 o _
50 0.2127 0.5655 8.258 0.4315 pos=T3V1-15-35 . (4.24b
100 0.1807 0.5715 15.59 0.4931 Because , ranges front., to 0 andf..=2/3, we know that
500 01224 05788 62.51 05875 . hrougd3. (Strict ¥
1000 0033  0.5807 1113 06259 0 e'th erlg’tgrts a_tt_or %aszes tt{]‘)”l (t ”gt ytSpe"". 'rt‘ﬁ
5000 0.0693  0.5828 407.9 0.6847 Wf Snor n FW” 'T”hg etfhw,o,ff ‘i ‘;";’ES °r| e|:1 Erq':;' 2'2 h €
10000 00583  0.5833 708.4 0.7084  Expansion off...) Thus, the effect of the pole in Eqs.2:
50000 0.0391 0.5840 2487 0.7440  Must be considered. If it is not canceled by a zerggin o3

diverges aff o= \/2/3.
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We can obtain an expression fag(fo) by dividing Eq.  (smallf,) limit. Equation (4.240 leads tomo(X)~—JcX,
(4.24b by Eq. (4.243, which leads to and inserting this into Eq(4.243 reveals thaf ,—0 in the

following way:
[FoV1-15-351(2-3f3) . )
df (4.25 fo(X)~exp(— I X?/4). (4.3D)

modpo= — 0-
foV1-18 This same de ier i [
pendence was seen earlier in the analysis of the
Integrating both sides and recalling the boundary conditioPump shapes in the smalltimit, Eq. (3.6).
1.=0, we find What is surprising here is that what are ostensibly the
“outer” equations for the superconducting region also sat-
pe 3. 3 isfy the boundary conditions in the normal region and inter-
?=f§— ng—fi+ Zfi polate in between. This is consistent with the numerical ob-
servation that there does not seem to be a boundary layer at
_32 small u, that theuf,, term is apparentlyot a singular per-
HA—lfol — 335112 turbation. With this in mind, we pursue the perturbative ex-
0 pansion to higher orders.
The Q(u) equations.The eigenvalugly was determined
x 7 by examining the behavior deep in the superconducting re-
3% vi-fL, (4.26 gion and did not require imposing the boundary conditions
on the normal side. Furthermore, the spatial dependence of
whereJ§ :fi\/l—fi_ To keepfoyx from diverging, we insist  the solution in this region is of the form assumed in Egs.
that,&o(fo= \/%)=O which can be shown from Ed4.26 (4.6). We exploit these features to obtain higher-order terms.

to imply f..= \2/3; i.e., the smalls limit of the stall current 1€ O(U) equations are
is the critical depairing current. Note that the pole in Eq.

(4.243 and the compensating zero po(f,) occur at the
boundary k— — ).

1+1-f2
fo

—23;51n

fo,;;—Zﬁofoal—aéfl—3f3f1=0, (4.323

pof 1+ Foma=200f 1xt Zfo,;dﬁ f06113("‘ ao,%ﬁ )

We can rearrange E@4.243 as follows: (4.320
foo (2—3fA)df . F Qe+ F200— fn s
J‘Afo(x) ( A) % (4.27 Jr =2%,00f 1+ 301 — 1z (4.329
10(0) f\/l—fz,uo(f)

The asymptotic form of o(x) is

Then we can substitute in E4.26) for ,&o(f), numerically R . . o _

integrate the resulting expression, and finally invert it in or- fo(x) =T + N O+ F(Pe?! by ... (4.33
der to calculatef o(x), theu—0 profile. Figure 5 includes a

: 0% _ _ and similarly forgg(x) and uo(x). Equations(4.32) can be
comparison off o(x) and the profile of a small- numerical

satisfied if the asymptotic form cffl(x) is

solution.
To find the asymptotic behavior df and uo in the su-  F,(x) =19+ (FP+g{Px)e¥ B+ (F2 + §@%)e?/ T+ ..,
perconducting region, Taylor expandy(f,) aroundf., : (4.34

R 2 o2 and similarly forg,(x) and uq(x). At O(u?), f,(x) would
wo(fo)==3V2(Fo— 2737+, (428 ave second-order polynomials multiplying the exponentials,
Notice thatu,(,) is a second-order zero, so tHat=0, as  a@nd so on. Substituting these expressions into the differential

it should at the boundary. As a consequence, the integr@duations allows us to determine the unknown constanxts

ing the expression in its neighborhood yields For f« it yields the series
J6 In(y2/3—1,), leading to

2 u u?
A R fmz\/:+—+—+~-, (4.39
fo(X)~2/13— Ag exp(x/\/6), (4.29 3 246 768/6
whereA, is an integration constant undetermined because a#hich corresponds to
the translational invariance. Notky(X) has the form as- 5 5 s
sumed in the preliminary analysis witty o= yu/6. Putting J* = v e, (4.36
this result into Eq(4.243 leads to 3J3 576J3 51843

Note that the first correction to the—0 limit of J* is of

~ e 5 -
o(X)~ = 3\2A5 exp(2X/6), (4.30 O(u?), since the lowest terml, is at the maximum of

Where)\mozul’zfx, in agreement with the expression found J*(fw)zfi\/l—fmz.

previously. The series found through the asymptotic perturbative ex-

Let us examine Eqs(4.243 and (4.24h, which are pansion above can be obtained by another method. Looking
strictly speaking superconducting solutions, in the normaback at Eqs(4.29 and(4.30, we note that the ratio of decay
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FIG. 7. (J.—J) for the numerical datésolid line) and for the

. . FIG. 8. A log-log plot of the numerically determined kinetic
result of the smalls analysis, Eq(4.38 (dashed ling

coefficient as a function af (solid line) along with an asymptotic

: . fit of 0.797u%* (dotted ling.
lengths\¢/\ ,=2. If we insert the expressions we have for ( 9

these length scales, Eqg.70 and(4.9), we find asu—0 conjectured that the interface speed diverges in both of these
2 712 limits; we find that it is bounded.
ﬁ: ufs =2 (4.37) The J-0 limit. The moving interface equations, Egs.
N, |6f2-4 ' ' (5.1), simplify in theJ— 0 limit, since that limit implies that

. _ . bothg—0 andu—0, leaving only
Solving for f,,, and then calculating*, we find

3_
I =3(1-uB)YH1-us % (439 Pack Ueht =120, ©3
with J.=\/4/27, which when expanded for smail agrees
with the serieg4.36 found above. We plot the smallnu-
merical data and this expression together in Fig. 7. The fit i
surprisingly good at smalli, suggesting to us that the cor-
rections to Eq(4.38 are exponentially small as— 0.

If we replaceuc in the above equation by a speegthen we
have the steady-state version of Fisher's equatiavhich is
known to have propagating front solutions with=2.28 In

ur case this implies that as—0, c=2/u, which is in good
agreement with the numerical data shown in Fig. 9.

We can combine the above result with an earlier one to

suggest thaty~u®* asu—o. In the larged limit, we have
V. MOVING INTERFACES information on the following two points(1) the stalled in-

At currents other thad*, the NS interfaces move with a terface §=J*~u"*",c=0) and(2) the interface in the ab-
constant velocity. For such solutions the operatocan be ~ Sénce of currentd=0,c=2/u). In going from(1) to (2), the

replaced by—cd,, so that Eqs(4.3) become changes in current and velocity akd~u~Y*andAc~u~1.

As u—o, both of these changes are small so thahight be

—cuf,=f,—fg?+f—f3 (5.1a  approximated by
—cq+pu)f=2fq+f 1 AJ
u(—cq+u) «a+fay, (5.1b ~ A_c““m’ (5.4
J=12q— puy. (5.109
) - ] yielding the behavior seen in the numerical dé&tee Fig. 8
While the boundary conditions ohandq remain the same, 3nq Taple I).
that on the scalar potential becomes=cq... Actually, it is The J—J. limit. The numerical work indicates that the

more convenient to use instead=x—cq, which is the velocity is finite asl—J.: the limiting velocity is shown in
gauge-invariant potential in the constant-velocity case.

The superconducting phase invades the normal phase if 04
J<J* and vice versa ifJ>J*. For currents nead*, the 2/5.79 7
interface speed is proportional td<J*). In this linear re- 031
sponse regime, one can define a kinetic coefficiartich 02
LikhareV!® refers to as a “viscosity) )

z
do) i
. R
dJ/ . :
Figure 8 shows the numerically determined kinetic coeffi- -0.1 1
cient as a function ofi. For largeu, we find »~u®?, for 0
which we provide an argument below. “oo o1 02 03 04

Farther from the stall current, the velocities deviate from
this linear behavior, as seen in Fig. 9. The greatest departure
occurs in the limitsJ—0 andJ—J.. In fact, Likharev® FIG. 9. The velocity of the front vs the currehtfor u=5.79.

Applied current, J
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0.20 2 the stall curreng* is approached, leading to the formation of
3 interfaces separating the normal and superconducting phases.
0.16 1 " - Q:xstﬁ'cfzf““ The stall current can be calculated in the limit of lange

JC

using matched asymptotic expansions, demonstrating once
again the utility of this technique for problems in inhomoge-
neous superconductivity. We have also derived an analytic
expression for the stall current for smallwhich we believe

to be correct up to exponentially small corrections. Devia-
tions from the stall current cause the interfaces to move, and
we have calculated the mobility of these moving interfaces

Velocity at J

0.00 ; : : for a wide range ofi. Finally we have shown that the inter-
0 10 20 30 40 face velocityc=2/u as J—0 and thatc is bounded as
u J—J., in contrast to some conjectures in the literature.
FIG. 10. The velocity ad—J. as a function ol. For largeu, AS in thefmﬁgnetlc—ﬁel_d analogy, the |S.;,ue of St_ﬁb'l'ty and
the velocity asymptotically approaches 1995 dynamics of the current-induced NS interfaces will be more

complicated and interesting in the two-dimensional case.

Fig. 10 as a functionu. We can find an analytic bound on Some preliminary work in this direction has been reported by
this velocity as follows. First, take Eq5.1), use the gauge- Aransonet al,® who find that the current has a stabilizing
invariant potentiaiz, and find the constant-velocity analog effect on the NS interface. This can be interpreted as a posi-

. . tive surface tension for the interface, due entirelyptmequi-
of Eq. (4.9. Then _subsﬂtutg the asymptotic forms, Eqs'Iibrium effects. They provide a heuristic derivation of an
(4.6), into the resulting equations, leading to

interesting free-boundary problem for the interfacial dynam-
CUN; TN 2= 262 f, @M i=2f q,q,ea, (5.5 ics (a variant of the Laplacian growth problgmhowever,
( f f )t G=G1 (553 this free-boundary problem is sufficiently complicated that

2 o~ _ > they were unable to solve it to compare with their numerical
(UFZ =N, paePe=caphg “es, (53D esiits. Clearly, further work in this direction would be help-
n ) . Whe ~ s —1oh ful in understanding the nucleation and growth of the super-
2f 0 f 1€+ (fL—Chg 7)€ a—ugN e “_(05- 5 conducting phase in two-dimensional superconducting films.
Arguments similar to those following Eq&t.7) lead one to ACKNOWLEDGMENTS
the conclusion that in this case;=Aq=\,. The above )
equations can then be shown to yield the relation This work was supported by NSF Grant Nos. DMR 96-

28926 and DMR 93-12476.
u2c?+ (2un—t—2ufiN—u?f2))c
APPENDIX: AMPLITUDE OF THE CRITICAL NUCLEI IN

2y2_ 2_ov_1f2 . —27—
+[2(uf2N2—1)(3f2—2)—uf2+1"2]=0, T 10 Ly

6.6 In this appendix we provide a self-consistent calculation
where we have useq?=1—f2. We find the bound byl)  of the amplitude of the critical nuclei in thé—0 limit.
solving Eq.(5.6) for ¢, (2) substituting inf..=\/2/3 (which  Choosing the gauge appropriate for bumps centerec=#t
corresponds td=J;), and(3) extremizing that result with and combining Eqs(2.5) into one equation yields
respect to the decay length The smallu limit of the re-
sulting bound is— \/2u/9, and the large+ limit is — 1/2y/3. [—udi+iudx+ o2+ 1]g(x,t)

The square-root dependence of the velocity in the small- 2

limit agrees with the data. Now we can consider going from =[O0 (x,0)

the stall current J*,c=0) to the critical depairing current

(J.,c~u'?) which results in changesJ~u? andAc~u'?, +iu
suggesting that the smallkinetic coefficienty~ u®?, which

is in rough agreement with the numerical data. We have also (A1)
observed that as a function dfthe speed appears to ap-

proach its bound via a square root dependence The propagator for the linear operator appearing on the left-
hand side of Eq(A1) satisfies the condition

f:dy Im[ g (v, d, 0y, 0] | #(x.b).

c()=A+B(J.—~I*? (5.7
for all u [—ud+iudx+a2+1]1G(x,x";t—t)O(t—t)

VI. SUMMARY AND REMARKS =T udx=x)et-t) (A2)

In this paper we have studied in detail the nucleation an@"d IS given by

growth of the superconducting phase in the presence of a 2 3

current. The finite amplitude critical nuclei grow as the cur- N T T
G(XIX ’ T) - m

rent is increased, with the amplitude eventually saturating as u 12u
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¢S = dr 2472 — 478 -37*
II=——f ex ,  (A6)
uljo J1+37 12uJ(1+37)

Iviev et al?>'* used this linear propagator to evolve pertur-yhere = Jt. We now apply the method of steepest descent
bations having widths ofO(1) and carrying no current. g gbtain
Without the nonlinear terms such perturbations initially grow

but ultimately reach a maximum size and then decay away. \/;ng 32 ]

(A3)

iJ7(x+x')  u(x—x")?2
ex 2 B 47 '

Ivlev et al. suggested that the amplitudes of the critical nu- I~ - ﬁex 813
clei are exponentially small in th&— 0 limit by asking what
sized initial perturbations are @i(1) at their maxima. Their In the third term on the right-hand sidgl) of Eq. (A4),
arguments motivated us to use the propagator in a more car@re make the substitutiog=vx’ and then perform the’
ful estimate of the amplitude that includes the nonlinearintegration, giving
terms as an essential ingredient.

We can convert Eq(Al) into an integral equation by (//8 o 1 (27+ 72
multiplying both sides of Eq(A1) (with x—x' andt—t") = EL deo dv [1+71+209)]°
by G(x,x’;t—t’) and integrating over alt’ and integrating
t’ from 0 tot. After some manipulation these steps lead to p[ 240272 — 473 — (14 2v%) 14

X

(A7)

12uJ[1+(1+2v?) 7]

The maximum of the term in the exponential of Ill occurs at
v=1 (which is an end point Linearizing about that maxi-

t ] (A8)
z//(x,t)zfodt’ﬁxdx’e(x,x’,t—t’)

1 .
X l/i(X/,t,)(s(t_t,)_ G (//(X,,t,) ZlII(X,,t,) mum prOVIdeS
" 1/18 odrr(2+17) Pl 247'2—47'3—37'4}
, ~— ex
_i“: dy Im[* (y,t')dyu(y,t)] w(x',t'>], ud?Jo J(1+37)° 121(1+37)
1 2(2+ 7)%wW
(Ad) X J dwexp{ T S (A9)
wheret>0. 0 uJ(1+37)
In order to estimate the amplitude of the threshold soluwhere w=1—v. After the w integration, we apply the
tions, we will substitute into Eq(A4) the form method of steepest descent to thentegration to obtain
uJx? Jrugd 9 32
X,t)=oexp — —— +ix;. A5 ~s 707 )
H(X,t) =t p[ 7 (A5) 1l NG 8exp{ 81UJ]. (A10)
Note that this form is stationary and has a fixed Gaussiapyting all of these results back into Eé\4) gives
shape[which is inspired by our WKB approximation; see
Eq. (3.6)] but it has an arbitrary amplitude which we will \/Wu,/,g 3219 1
determine self-consistently. 0~ 23 €X sl " ul (A11)
Let us take thg—oo limit and focus onx=0 since our J

interest is in the amplitude. After substituting E&5) into  which provides the expression given in the text, E}8).
Eqg. (A4), we can do both integrals for the first term on the This calculation clearly runs into trouble wher< 8/9; how-
right-hand side exactly, and it can be seen to decay to zero iaver, the numerical coefficients in front of these integrals are
the t—o limit. Next, we perform thex’ integration of the subleading terms, and they can be varied by adding sublead-

second term on the right-hand sidé), which yields ing terms to the initial Gaussian guess.
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