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Nucleation and growth of the superconducting phase in the presence of a current
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We study the localized stationary solutions of the one-dimensional time-dependent Ginzburg-Landau equa-
tions in the presence of a current. Thesethreshold perturbationsseparate undercritical perturbations which
return to the normal phase from overcritical perturbations which lead to the superconducting phase. Careful
numerical work in the small-current limit shows that the amplitude of these solutions is exponentially small in
the current; we provide an approximate analysis which captures this behavior. As the current is increased
toward the stall currentJ* , the width of these solutions diverges, resulting in widely separated normal-
superconducting interfaces. We map out numerically the dependence ofJ* on u ~a parameter characterizing
the material! and use asymptotic analysis to derive the behaviors for largeu (J* ;u21/4) and smallu (J
→Jc , the critical depairing current!, which agree with the numerical work in these regimes. For currents other
thanJ* the interface moves, and in this case we study the interface velocity as a function ofu andJ. We find
that the velocities are bounded both asJ→0 and as J→Jc , contrary to previous claims.
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I. INTRODUCTION

When a superconductor is placed in a magnetic field eq
to its critical field Hc , the normal and superconductin
phases can coexist in a state of equilibrium with the t
phases separated by normal-superconducting~NS! interfaces.
The dynamics of such interfaces is important for vario
nonequilibrium phenomena. For instance, if the applied m
netic field is quenched belowHc , these interfaces mov
through the sample, expelling the magnetic flux so as to
tablish the Meissner phase.1–9 Just as superconductivity ca
be destroyed by applying a magnetic field exceedingHc , it
can also be destroyed by applying a current exceeding
critical depairing currentJc . Thus by analogy with the
magnetic-field case, one might expect a special value of
applied currentJ* ,Jc at which the superconducting an
normal phases coexist, separated by a stationary
interface.10 In contrast to the magnetic-field-induced NS i
terfaces, these current-induced NS interfaces are intrinsic
nonequilibrium entities, and their structure depends upon
dynamicsof the order parameter and magnetic field. T
evolution and dynamics of these nonequilibrium interfac
are the subject of this paper.

The current-induced NS interfaces arise in several c
texts. First, they are known to be important in understand
the dynamics of the ‘‘resistive state’’ in superconducti
wires and films~for a review see Ref. 11!, and in determin-
ing the global stability of the normal and superconduct
phases in the presence of a current.12 Second, Aranson
et al.13 have recently studied the nucleation of the norm
phase in thin type-II superconducting strips in the prese
of both a magnetic field and a transport current. They fou
that a sufficient current produced large normal droplets c
570163-1829/98/57~9!/5432~12!/$15.00
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taining multiple flux quanta. Without a current one finds s
tionary, singly quantized vortices, with a larger amount
NS interface per flux quantum than a multiply quantiz
droplet. They conclude that the current produces an effec
surface tension for the NS interface which is positive, sta
lizing the interface and producing larger droplets w
smaller surface area. Motivated in part by its role in th
phenomenon we wanted to reexamine the nonequilibr
stabilizing effects of current.

Even when the superconducting phase is ostensibly
equilibrium phase, a current makes the normal phase m
stable, i.e., linearly stable to infinitesimal superconduct
perturbations. A localized superconducting perturbation
finite amplitude, on the other hand, has one of two fates:~1!
Its amplitude may ultimately shrink to zero, restoring t
normal phase~undercritical!, or ~2! it may grow, eventually
establishing the superconducting state~overcritical!. Separat-
ing these two possibilities are thecritical nuclei or threshold
perturbations, for present purposes stationary solutions
the time-dependent Ginzburg-Landau~TDGL! equations lo-
calized around the normal state. As one raises the current
amplitude of the threshold solution grows, implying that t
normal phase becomes increasingly stable.

At very low currents, the widths of the critical nucle
shrink as the current is increased, but eventually this tren
reversed and the width grows as the current is increased
ther. In fact, as the current approaches a particular valueJ*
~the ‘‘stall current’’13!, the width diverges, resulting in two
well-separated, stationary NS interfaces. The interface s
tions have been studied numerically by Likharev,10 who
found that the interfaces were stationary atJ* '0.335 for
u55.79, whereu characterizes the material and is 5.79 f
nonmagnetic impurities.14 They were also studied by Krame
5432 © 1998 The American Physical Society
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57 5433NUCLEATION AND GROWTH OF THE . . .
and Baratoff,12 who foundJ* '0.291 foru512 ~correspond-
ing to paramagnetic impurities15!. However, we know of no
systematic study of the dependence ofJ* upon u. In this
work we remedy this situation by using a combination
numerical methods and analysis including match
asymptotic expansions.16 We show thatJ* ;u21/4 for large
u in contrast to a previous conjecture,10 and we find howJ*
approachesJc in the small-u limit.

At currents other thanJ* , the interfaces move with a con
stant velocity with the superconducting phase invading
normal phase forJ,J* and vice versa forJ* ,J,Jc . At
currents close toJ* , the interface velocity is proportional t
(J2J* ). Likharev10 defined the constant of proportionality
h5(dc/dJ)21uJ5J* , where c is the interface speed; h
found h'0.7 for u55.79. In the extreme limits,J→0 and
J→Jc Likharev predicted that the speedc diverges. We find
c to be bounded in both cases and provide an analytic
pression for it asJ→0.

The results of this work are summarized in Table I. T
rest of the paper is organized as follows. After briefly r
viewing the TDGL equations and the approximations used
this work ~Sec. II!, we study the critical nuclei, focusing o
their size and shape in the limitJ→0 ~Sec. III!. We then
move on to consider the stationary interface solutions;
particular we map out the dependence of the stall currenJ*
on u and supplement the numerical work with analysis of
u→` andu→0 limits ~Sec. IV!. Next, we examine moving
interfaces first in the linear response regime and then in
limits J→0 andJ→Jc ~Sec. V!. The Appendix contains a
calculation of the amplitudes of the critical nuclei in theJ
→0 limit.

II. TDGL EQUATIONS

The starting point for our study is the set of TDGL equ
tions for the order parameterc, the scalar potentialF, and
the vector potentialA:

\gS ] t1
ie* F

\ Dc5
\2

2m S “2
ie* A

\c D 2

c1uauc2bucu2c,

~2.1!

TABLE I. Summary of the primary results.

~I! Critical nucleus
Small-J width W;(uJ)21/2 Sec. III B
Small-J amplitude c0;exp$2A/uJ% Sec. III B
~II ! Stall currentJ*
Largeu J* 50.584 491u21/4 Sec. IV C
Small u

J* 5Jc

(12u/8)1/2

(12u/24)3/2

Sec. IV D

~III ! Kinetic coeff.h
Largeu h50.797u3/4 Sec. V
Small u h;u3/2 Sec. V
~IV ! Interface speed
J→0 c→2/u Sec. V
J→Jc c;u1/2 (u→0) Sec. V

c;u20.85 (u→`) Sec. V
f
d

e

x-

-
n

n

e

e

-

“3“3A5
4p

c
~Jn1Js!, ~2.2!

where the normal currentJn and the supercurrentJs are
given by

Jn5s~n!~2] tA/c2“F!, ~2.3a!

Js5
\e*

2mi
~c* “c2c“c* !2

e* 2

mc
ucu2A, ~2.3b!

and whereg ~which is assumed to be real! is a dimensionless
quantity characterizing the relaxation time of the order p
rameter, s (n) is the normal conductivity, and
a5a0(12T/Tc0). From these parameters we can form tw
important length scales, the coherence len
j5\/(2muau)1/2 and the penetration dept
l5@mbc2/4p(e* )2uau#1/2.

These equations assume relaxational dynamics for the
der parameter as well as a two-fluid description for the c
rent. With somewhat restrictive assumptions, they can
derived from the microscopic BCS theory.14,15 Further sim-
plification is possible in the limit of a thin, narrow film, tha
is, when the thickness is less than the coherence len
d,j, and the width is less than the effective penetrat
depth,17 w!l2/d. In this case the current carried by the fil
or wire is small, and we need not worry about the fields
produces. Therefore, Eq.~2.2! may be dropped, and we nee
only specify the total currentJ5Jn1Js ~subject to¹•J50),
along with the order-parameter dynamics, Eq.~2.1!. This ap-
proximation is commonly used for superconducting wire11

and can be justified mathematically for superconduct
films.18 In addition, we will be considering processes in t
absence of an applied magnetic field, so that we may
A50. With these simplifications, we can now rewrite th
equations in terms of dimensionless~primed! quantities,

c5Auau
b

c8, F5
\e* uau

mbs~n!
m8,

x5jx8, t5
mbs~n!

e* 2uau
t8,

J5A2

m

e* uau3/2

b
J8, ~2.4!

which leads to

u~] t81 im8!c85~¹82112uc8u2!c8, ~2.5a!

J85Im~c8* “8c8!2“8m8, “8•J850. ~2.5b!

Note that length is measured in units of coherence lengt19

We will drop the primes hereafter. The only parameters
maining in the problem are the scaled currentJ and a dimen-
sionless material parameteru5tc /tJ , wheretc5\g/uau is
the order-parameter relaxation time andtJ5s (n)mb/e* 2uau
is the current relaxation time. We will treatu as a phenom-
enological parameter and study the nucleation and gro
process as a function ofu. The microscopic derivations o
the TDGL equations predict thatu55.79 ~nonmagnetic
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5434 57DOLGERT, BLUM, DORSEY, AND FOWLER
impurities!,14 and u512 ~paramagnetic impurities!,15 but
small u is also useful for modeling gappe
superconductors.20

III. NUCLEATION OF THE SUPERCONDUCTING PHASE
FROM THE NORMAL PHASE

In the presence of an applied current the normal phas
a wire is linearly stable with respect to superconducting p
turbations forany value of the current.21,22 The reason for
this stability is that any quiescent superconducting fluct
tion will be accelerated by the electric field, its veloci
eventually exceeding the critical depairing velocity, resulti
in the decay of the fluctuation. The growth of the superc
ducting phase therefore requires a nucleus of sufficient
that will locally screen the electric field and allow the sup
conducting phase to continue growing; smaller nuclei w
simply decay back to the normal phase. The amplitude of
‘‘critical’’ nucleus should decrease as the current approac
zero, reaching zero only atJ50. We expect thecritical nu-
clei to be unstable, stationary~but nonequilibrium! solutions
of the TDGL equations, which asymptotically approach t
normal solution asx→6`. These ‘‘bump’’ solutions of the
TDGL equations are the subject of this section. We inclu
here an extensive numerical study of the amplitudes
widths of the critical nuclei, as well as some analytical es
mates for these quantities.

A. Numerical results

Let us start by discussing the numerical work on the cr
cal nuclei. For the analytic work, we often find it convenie
to use the amplitude and phase variables, i.e.,c5 f eiu, but
they are ill suited for the numerical work, since the calcu
tion of the phase becomes difficult when the amplitude
small. Following Likharev10 we use insteadc5R1 i I , with
R and I real, and in one dimension Eqs.~2.5! become

uRt5Rxx1umI 1R2~R21I 2!R, ~3.1a!

uIt5I xx2umR1I 2~R21I 2!I , ~3.1b!

J5RIx2IRx2mx . ~3.1c!

Since the nuclei are unstable stationary states, they
investigated only by time-independent means. Such solut
require a particular gauge choice—in this casem(x)50
where c(x) has its maximum amplitude; they are the
sought using a relaxation algorithm.23 Figure 1 shows a typi-
cal bump’s amplitude,f 5AR21I 2, the associated superflui
velocity q5(RIx2IRx)/ f 2, and the electric field
E(x)52mx(x). The figure shows only half of the solution
f (x), q(x), andE(x) are even aboutx50. In Fig. 2 we plot
the bump’s maximum amplitudec0 as a function ofJ; it
grows as the current rises, indicating the increasing stab
of the normal phase. In the data presented by Watts-To
et al.24 c0 appears to vary linearly withJ for small J. How-
ever, in our numerical calculations at very small currents
dependence deviates from linearity~see the inset of Fig. 2!,
and c0 drops rapidly to zero asJ→0, consistent with the
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exponential behavior suggested in Refs. 11 and 25. M
precisely our small-J data (0.008<J<0.015) atu55.79 are
fit by

c0~J!5B exp~2A/uJ!, ~3.2!

with A50.042 andB50.19. A somewhat similar depen
dence~with A52/3) was suggested by Ivlevet al.;11,25 they
were considering a distinct quantity but one also related
critical fluctuations about the normal phase~see the Appen-
dix for more details!.

The width of the bump diverges in the small-J limit like
(uJ)21/2, as can be seen from the analysis below. So asJ is
increased from zero, the width initially shrinks, but even
ally the width begins to grow again, diverging as the curre
approaches the stall currentJ* . In this limit the bump trans-
forms into two well-separated interfaces~see Fig. 3!.

B. Analysis in the J˜0 limit

The equations for nuclei centered at the origin are

cxx2 iumc1c2ucu2c50, ~3.3a!

m52Jx1E
0

x

Im~c* cx8!dx8, ~3.3b!

FIG. 1. The bump’s amplitudef (x), its superfluid velocityq(x),
and the electric fieldE(x) for u55.79 andJ50.2.

FIG. 2. The maximum amplitude of the bumpsc0 as a function
of J for u55.79. The inset shows the exponential dependence
the small-J data; see Eq.~3.2!.
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57 5435NUCLEATION AND GROWTH OF THE . . .
where we have dropped the termc t and selected the gaug
m(0)50. We saw in Fig. 2 thatc0 becomes very tiny in the
small-J limit; thus the nonlinear terms can be neglecte
leading to

cxx1 iuJxc1c50, ~3.4!

a complex version of the Airy equation. Applying the WK
method results in the approximate solution

c;@11~uJx!2#21/8

3expH 2

3uJ F @11~uJx!2#3/4cos
3a

2
21G J

3expH i F 2

3uJ
@11~uJx!2#3/4sin

3a

2
2

a

4G J , ~3.5!

wherea5tan21(uJx). The numerical data agree quite we
with this predicted shape in the small-J limit. For smallx the
expression can be approximated by

c;exp@ i ~12uJ/4!x2uJx2/4#. ~3.6!

We see here that the width of the bump varies like (uJ)21/2

in this limit and that the superfluid velocityq'(12uJ/4).
For largex, on the other hand, wherea'p/2, the expression
becomes

c;~uJx!21/4expF2
A2uJ

3
uxu3/2~12 i !G , ~3.7!

as one expects for the Airy function. Note that deep in
tail of the solution, we see a different length sca
lAiry;(uJ)21/3 arising.

Since the above analysis is of a linear equation, it can
determine the amplitude of the nucleus; for this purpose
nonlinearities must be considered. In the Appendix we o
line an ad hoccalculation of the small-J limit of the bump
amplitude. We take ac of an unknown amplitude but of a
fixed shape inspired by the above analysis and assume t
is a stationary solution of the full TDGL equation. We the
determine its amplitude self-consistently. The resulting a
plitude is

FIG. 3. The bump profiles forJ* 2J51023 ~solid line!,
J* 2J51025 ~dashed line!, and J* 2J51027 ~dotted line! at
u55.79.
,
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ucu'S 2J

puD 1/4S 9

8
2

1

uD 21/2

expS 2
16

81uJD . ~3.8!

The factorA516/81 is within a few percent of that extracte
from the numerical data.

IV. STATIONARY INTERFACES

As the current is raised, the width of the critical nucle
grows and ultimately diverges as the stall current is reach
resulting in well-separated, stationary interfaces. These in
face solutions will be the subject of the rest of this work.

A. Numerical methods and results

Let us first discuss the numerical work on the interfa
solutions. For given values ofu andJ we evolved the TDGL
equations from an initial guess which is purely superco
ducting on the left,c(x)5 f `eiq`x andmx(x)50, and purely
normal on the right,c(x)50 andmx(x)52J. The valuesf `

andq` are related to the applied current through

J5 f `
2A12 f `

2 , ~4.1a!

q`5A12 f `
2 . ~4.1b!

Stability requires taking the larger positive root of the form
equation26 which places the following bounds onJ, f ` , and
q` :

0<J<Jc5A4/27'0.3849, ~4.2a!

1> f `>A2/3'0.8165, ~4.2b!

0<q`<A1/3'0.5774. ~4.2c!

We employed several schemes to integrate the equation
time including both explicit ~Euler! and implicit
~Crank-Nicholson!.23

Initially the front moves and changes shape but eventu
it reaches a steady state in which the interface moves
constant velocity without further deformation. By the tim
dependent means we found locally stable, constant-velo
solutions for currents less thanJc . To examine these solu
tions more accurately, we adopted a time-independ
method. First, we transformed coordinates to a mov
frame,x85x2ct; next, we chosem5cq` asx→2` which
allows for a truly time-independent solution~i.e., one with
both amplitude and phase time independent!. Then we
searched for stationary solutions using a relaxat
algorithm23 where (u,J) are input parameters andc is treated
as an eigenvalue. This approach requires an additio
boundary condition to fix translational invariance; we elec
to fix m on the rightmost site. To find the stall currentsJ* we
can setc50 and takeJ or u as the eigenvalue.

Figures 4 and 5 show the order-parameter amplitudef and
the electric-field distributionE52mx of the stalled interface
determined foru5500 andu51.04, respectively. Note tha
while f is very flat in the superconducting region, the re
and imaginary parts,R and I oscillate with a wavelength
2p/q` . Because of this additional length scale inherent inR
andI , there is little to be gained from varying the mesh siz
In fact, this length scale is compressed as we move to
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5436 57DOLGERT, BLUM, DORSEY, AND FOWLER
right, and we are only saved from the difficulties of handli
rapidly oscillating functions by the fact that the amplitud
decay so quickly.

In the large-u case~see Fig. 4!, E(x) remains flat through-
out most of the space; it changes abruptly from one cons
to another only afterf (x) has become small. The variation
of f (x) are more gradual; however, the greatest changesf x

occur in that same small area. This region of rapid chang
known as aboundary layer; it marks where the current sud
denly changes from superconducting to normal, i.e., the
sition of the NS interface. Asu increases, the longer lengt
scale over whichf varies on the superconducting side r
mains essentially fixed, while the boundary-layer thickn
shrinks to zero. In the opposite limit, the small-u case~see
Fig. 5!, f (x) and E(x) appear to vary together even in th
superconducting region; moreover, the length scale o
which they vary grows asu is decreased. We will postpon
providing more of the numerical results on the interfac
until some of the analytic arguments are available for co
parison.

FIG. 4. The stationary NS interface solution whenu5500 for
which the stall currentJ* 50.122 52. Shown here are the nume
cally determinedf (x) andE(x), as well as the Langer-Ambegaoka
~LA ! solution@Eq. ~4.10!, the solution with no electric field# corre-
sponding to the same current.

FIG. 5. The stationary NS interface solution whenu51.04 for
which the stall currentJ* 50.3836. Shown here are the numerica

determinedf (x) and E(x), as well as the functionf̂ 0( x̂), the u

→0 profile, derived from Eq.~4.27! wherex̂5u1/2x.
nt

is

o-

s

er

s
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B. Asymptotic analysis of the interface solutions: Preliminaries

Before addressing the large-u and small-u limits sepa-
rately, let us put the TDGL equations into a form convenie
for analysis and derive expressions for the length scales d
in the superconducting and normal regions. The disparity
these length scales in the large-u limit will motivate the
boundary-layer analysis in that regime, while an inequa
they satisfy will lead to the conclusion thatJ*→Jc in the
small-u limit.

We make the substitutionc5 f eiu, which yields

u ft5 f xx2 f ~ux!
21 f 2 f 3, ~4.3a!

u~u t1m! f 52 f xux1 f uxx , ~4.3b!

J5 f 2ux2mx . ~4.3c!

Next we restrict our attention to stationary solutions. No
that only spatial derivatives ofu appear now, allowing us to
work with the superfluid velocityq5ux instead ofu. The
equations become

f xx2q2f 1 f 2 f 350, ~4.4a!

um f 52 f xq1 f qx , ~4.4b!

J* 5 f 2q2mx , ~4.4c!

where J* replacesJ as these equations apply to the st
situation. Next multiply Eq.~4.4b! by f and note that the
right-hand side is now (f 2q)x which we can express in term
of m by differentiating Eq.~4.4c!; these steps lead to

mxx5u f2m. ~4.5!

Now let us assume the following asymptotic forms asx
→2`:

lim
x→2`

f ~x!5 f `2 f 1ex/l f1•••, ~4.6a!

lim
x→2`

q~x!5q`1q1ex/lq1•••, ~4.6b!

lim
x→2`

m~x!5m`2m1ex/lm1••• . ~4.6c!

Substituting these expressions into Eqs.~4.4a!, ~4.4c!, and
~4.5! and recalling the boundary conditions yields

~2 f `
2 2l f

22! f 1ex/l f22 f `q`q1ex/lq50, ~4.7a!

22 f `q` f 1ex/l f1 f `
2 q1ex/lq1lm

21m1ex/lm50, ~4.7b!

lm
222u f`

2 50. ~4.7c!

Equation~4.7c! provides an expression forlm , the electric-
field screening length. Sincef ` is always ofO(1), we see
that lm shrinks asu→` and diverges asu→0, which is
consistent with the behavior seen in Figs. 4 and 5.

More than one decay length appears in Eqs.~4.7a! and
~4.7b!. If they are not equal, the term with the shorter leng
is exponentially small compared to the other~s! and will not
contribute to thex→2` limit. Since none of the terms in
Eq. ~4.7b! can equal zero individually, we conclude that th
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57 5437NUCLEATION AND GROWTH OF THE . . .
longer two ofl f , lq , andlm must be equal. Next, becaus
the term multiplyingex/lq in Eq. ~4.7a! cannot equal zero on
its own, we determine thatlq<l f , making l f one of the
longer lengths. Finally, if we assume thatl f5lm.lq , we
find that l f5221/2f `

21 and lm5u21/2f `
21 and reach a con

tradiction ~except atu52). Thus, provided the original as
sumption of an exponential approach is valid, we conclu
that

l f5lq>lm . ~4.8!

This equality ofl f and lq is reasonable given that bothf
and q are related to the complex order parameterc. Also,
having l f.lm is consistent with the large-u data seen in
Fig. 4. If lmÞl f , then

l f
2256 f `

2 245lLA
22 . ~4.9!

We identify this length scale aslLA since it coincides with
that occurring in the solution of Eqs.~4.4! without any elec-
tric field @m(x)50#,

f 2~x!5 f `
2 2~3 f `

2 22!sech2SA3 f `
2 22

2
xD , ~4.10!

which was found by Langer and Ambegaokar26 in their study
of phase slippage. The asymptotic form of Eq.~4.10! looks
like Eq. ~4.6a! with l f given by Eq.~4.9!. As a matter of fact
becausel f@lm in the large-u limit, the profile of f (x) is
only imperceptibly different from the Langer-Ambegaok
~LA ! solution in the superconducting region and devia
from it only in the boundary layer, as is shown in Fig. 4.

Recall thatlm diverges asu→0; the inequalityl f>lm
implies thatl f must diverge as fast or faster in this limi
This scenario is consistent with the small-u data shown in
Fig. 5 in which f (x) and E(x) vary on long length scales
Equation ~4.9! suggests that a divergingl f implies that
f `→A2/3 and in turn thatJ→Jc as u→0, which is also
consistent with what is found numerically.

In the other asymptotic limit, deep in the normal regim
c is very small and hence the nonlinear terms in Eqs.~2.5!
can be dropped as was done for the bumps in the smaJ
limit. The result is a complex Airy equation, the asympto
analysis of which was supplied in Eq.~3.7!, where we saw
the length scalelAiry;(uJ* )21/3. Somewhat likelm , lAiry
shrinks asu→` and expands asu→0 but with different
powers ofu. The presence of the disparate length scales,l f ,
lm , andlAiry , in the large-u limit, motivates the use of the
boundary-layer analysis that comes next. We will see t
lAiry scales in the same way as the boundary-layer thickn

C. Asymptotic behavior of the stall current asu˜`

We have already seen in Fig. 4 that the large-u profile can
be divided into two regions—one slowly varying, one ra
idly varying, also known as theouter and inner regions,
respectively. Furthermore, it has been suggested that th
tio of the length scales characterizing these regions decre
asu→`. These features make the problem ideally suited
boundary-layer analysis, in which one identifies the ter
that dominate the differential equation in each region, a
lyzes the reduced equations consisting of dominant ter
and then matches the behavior in some intermediate reg
e

s

,

-

at
s.

-

ra-
ses
r
s
-
s,
n.

We start by eliminating the superfluid velocityq from
Eqs.~4.4!, resulting in

f xx2~J* 1mx!
2f 231 f 2 f 350, ~4.11a!

mxx2u f2m50. ~4.11b!

Let us consider first the slowly varying, superconducting
gion. We saw in the preliminary analysis that for largeu,
m(x) is exponentially small, and so we drop it. Next, let
assume thatJ* is small and drop it; we can verify in the en
that this is self-consistent. The reduced equation is

f xx1 f 2 f 3'0, ~4.12!

with solution f (x)52tanh(x/A2).
Moving in from the left toward the interface~into the

boundary-layer region!, f becomes small, and the secon
term in Eq.~4.11a! which was subdominant becomes dom
nant. In this inner regionf is small but rapidly varying; thus
the dominant terms are

f xx'
~J* 1mx!

2

f 3
, ~4.13!

along with Eq. ~4.11b!. Having identified the dominan
terms, now we must make certain they balance. We ass
that in the boundary layer, all the quantities scale as pow
of u:

f ;u2a, m;u2b, J* ;u2g, x;u2d. ~4.14!

Balancing terms in Eq.~4.13!, we find 2a5g1d, while bal-
ancing terms in Eq.~4.11b! yields 2(a1d)51. Next, we
need to ensure that the solutions in the boundary layer m
onto the solutions in the superconducting and normal
gions. By expanding the superconducting solution near
interface, we see thatf (x);2x/A2 as the boundary layer i
approached; matching to the boundary layer requiresf x;1,
so that a5g. In the normal region,m'2J* x, so that
matching to the boundary layer requiresmx;J* , and
b5g1d. Solving this set of equations, we conclude th
a5g5d51/4 andb51/2, i.e., the stall currentJ* ;u21/4

for large u. Note thatJ*→0 as u→`, so that we were
justified in droppingJ* 2/ f 3 from Eq. ~4.12!. Substituting
J* ;u21/4 into lAiry gives lAiry;u21/4, indicating that it
may be identified as the boundary-layer thickness.

In order to determine the coefficient of theu21/4 in the
stall current we need to solve the boundary-layer proble
Let us rescale in the way suggested above:

f 5u21/4F, m5u21/2M ~X!,

J5u21/4J̃ , x5u21/4X. ~4.15!

Substituting these rescaled variables into Eqs.~4.11a! and
~4.11b!, and then expandingF, M , and J̃ in powers ofu21/2,
we obtain at the lowest order

F0,XX2
~ J̃01M0,X!2

F0
3

50, ~4.16a!

M0,XX2F0
2M050, ~4.16b!
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with the boundary conditions~from the outer regions!

F0,X~2`!521/A2, M0~2`!50, ~4.17!

F0~1`!50, M0,X~1`!52 J̃0 . ~4.18!

~As before we need an extra boundary condition to fix
translational invariance.! For an arbitraryJ̃0 the solutions of
Eqs.~4.16a! and ~4.16b! cannot satisfy the boundary cond
tions; J̃0 must be tuned to a particular value before all of t
boundary conditions are satisfied, leading to anonlinear ei-

genvalue problemfor J̃0. We have solved this eigenvalu
problem numerically and find thatJ̃050.584 491. Therefore
to leading order we have for the stall current

J* '0.584 491u21/4. ~4.19!

This prediction agrees well with the numerical results a
disagrees with Likharev’s conjecture of au21/3

dependence,10 as can be seen in Fig. 6 and in Table II. It is
principle possible to carry out this procedure to successiv
higher orders, but the equations become cumbersome
stead we have simply opted to fit our numerical data t
form inspired by the asymptotic analysis,

FIG. 6. A log-log plot of the stall currentJ* vs u. The solid line
shows the numerically determinedJ* ’s as a function ofu and the
dotted line is 0.584 491u21/4 ~the large-u behavior predicted by
matched asymptotic analysis!.

TABLE II. Representative numerical results for the stall curre
J* and kinetic coefficienth.

u J* J* u1/4 h hu23/4

1 0.3838 0.3838 0.01871 0.01871
5 0.3407 0.5094 0.6400 0.1914
10 0.3013 0.5359 1.573 0.2797
50 0.2127 0.5655 8.258 0.4315
100 0.1807 0.5715 15.59 0.4931
500 0.1224 0.5788 62.51 0.5875
1000 0.1033 0.5807 111.3 0.6259
5000 0.0693 0.5828 407.9 0.6847
10000 0.0583 0.5833 708.4 0.7084
50000 0.0391 0.5840 2487 0.7440
e

d

ly
In-
a

J* 50.584 491u21/420.117 461u23/420.124 98u25/4

10.163 043u27/41O~u29/4!. ~4.20!

D. Asymptotic behavior of the stall current asu˜0

Now let us examine the opposite limit ofu→0. In this
case the electric-field screening length becomes long,
Ivlev et al.20 have proposed that this makes the small-u limit
useful for modeling gapped superconductors. As alre
suggested the inequality of length scales,l f>lm implies
that J*→Jc . We will begin our small-u analysis by putting
this result on firmer ground and extracting as a by-prod
the u→0 limit of the interface profile.

The rescaled equations.Recall that deep in the supercon
ducting regionlm;u21/2. This observation suggests that w
rescale the distance,x5u21/2x̂; furthermore, to ensure tha
the normal current (2mx) scales in the same way as the to
current we rescalem5u21/2m̂ as well. These rescalings yiel

u f̂ x̂x̂2q̂2 f̂ 1 f̂ 2 f̂ 350, ~4.21a!

m̂ f̂ 52q̂ f̂ x̂1 f̂ q̂x̂ , ~4.21b!

J* 5 f̂ 2q̂2m̂ x̂ , ~4.21c!

placing the small parameteru in front of f̂ x̂x̂ . If we expand
these functions as series in powers ofu,

f̂ 5 f̂ 01u f̂11•••, ~4.22a!

q̂5q̂01uq̂11•••, ~4.22b!

m̂5m̂01um̂11•••, ~4.22c!

J* 5J0* 1uJ1* 1•••, ~4.22d!

then we find at the lowest order

2q̂0
2 f̂ 01 f̂ 02 f̂ 0

350, ~4.23a!

m̂0 f̂ 052q̂0 f̂ 0,x1 f̂ 0q̂0,x , ~4.23b!

J0* 5 f̂ 0
2q̂02m̂0,x̂ . ~4.23c!

The solution of Eq.~4.23a! is either f̂ 050 ~the normal
phase! or f̂ 05(12q̂0

2)1/2 ~the superconducting phase!. Let us

focus on the superconducting solutions. By eliminatingq̂0,
we obtain the first-order equations

f̂ 0,x̂5
f̂ 0A12 f̂ 0

2m̂0

223 f̂ 0
2

, ~4.24a!

m̂0,x̂5 f̂ 0
2A12 f̂ 0

22J0* . ~4.24b!

Becausef̂ 0 ranges fromf ` to 0 andf `>A2/3, we know that
f̂ 0 either starts at or passes throughA2/3. ~Strictly speaking
we should be writing heref `,0 , the lowest order term in the
expansion off ` .) Thus, the effect of the pole in Eq.~4.24a!
must be considered. If it is not canceled by a zero inm̂0, f̂ 0,x̂

diverges atf̂ 05A2/3.

t
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We can obtain an expression form̂0( f̂ 0) by dividing Eq.
~4.24b! by Eq. ~4.24a!, which leads to

m̂0dm̂05
@ f̂ 0

2A12 f̂ 0
22J0* #~223 f̂ 0

2!

f̂ 0
A12 f̂ 0

2
d f̂0 . ~4.25!

Integrating both sides and recalling the boundary condit
m`50, we find

m̂0
2

2
5 f̂ 0

22
3

4
f̂ 0

42 f `
2 1

3

4
f `

4

12J0* lnF11A12 f̂ 0
2

f̂ 0
G23J0*A12 f̂ 0

2

22J0* lnF11A12 f `
2

f `
G13J0*A12 f `

2 , ~4.26!

whereJ0* 5 f `
2A12 f `

2 . To keepf̂ 0,x from diverging, we insist

that m̂0( f̂ 05A2/3)50 which can be shown from Eq.~4.26!
to imply f `5A2/3; i.e., the small-u limit of the stall current
is the critical depairing current. Note that the pole in E
~4.24a! and the compensating zero inm̂0( f̂ 0) occur at the
boundary (x→2`).

We can rearrange Eq.~4.24a! as follows:

E
f̂ 0~0!

f̂ 0~ x̂! ~223 f 2!d f

fA12 f 2m̂0~ f !
5 x̂. ~4.27!

Then we can substitute in Eq.~4.26! for m̂0( f ), numerically
integrate the resulting expression, and finally invert it in
der to calculatef̂ 0( x̂), theu→0 profile. Figure 5 includes a
comparison off̂ 0( x̂) and the profile of a small-u numerical
solution.

To find the asymptotic behavior off̂ 0 and m̂0 in the su-
perconducting region, Taylor expandm̂0( f̂ 0) aroundf ` :

m̂0~ f̂ 0!523A2~ f̂ 02A2/3!21•••. ~4.28!

Notice thatm̂0( f̂ 0) is a second-order zero, so thatf̂ 0,x̂50, as
it should at the boundary. As a consequence, the inte
supplying the inverse profile, Eq.~4.27!, has a pole; integrat
ing the expression in its neighborhood yiel
A6 ln(A2/32 f̂ 0), leading to

f̂ 0~ x̂!;A2/32A0 exp~ x̂/A6!, ~4.29!

whereA0 is an integration constant undetermined becaus
the translational invariance. Notef̂ 0( x̂) has the form as-
sumed in the preliminary analysis withl f ,05Au/6. Putting
this result into Eq.~4.24a! leads to

m̂0~ x̂!;23A2A0
2 exp~2x̂/A6!, ~4.30!

wherelm,05u1/2f ` , in agreement with the expression foun
previously.

Let us examine Eqs.~4.24a! and ~4.24b!, which are
strictly speaking superconducting solutions, in the norm
n

.

-

al

of

l

~small-f̂ 0) limit. Equation ~4.24b! leads to m̂0( x̂)'2Jcx̂,
and inserting this into Eq.~4.24a! reveals thatf̂ 0→0 in the
following way:

f̂ 0~ x̂!;exp~2Jcx̂
2/4!. ~4.31!

This same dependence was seen earlier in the analysis o
bump shapes in the small-J limit, Eq. ~3.6!.

What is surprising here is that what are ostensibly
‘‘outer’’ equations for the superconducting region also s
isfy the boundary conditions in the normal region and int
polate in between. This is consistent with the numerical
servation that there does not seem to be a boundary lay
small u, that theu fxx term is apparentlynot a singular per-
turbation. With this in mind, we pursue the perturbative e
pansion to higher orders.

The O(u) equations.The eigenvalueJ0* was determined
by examining the behavior deep in the superconducting
gion and did not require imposing the boundary conditio
on the normal side. Furthermore, the spatial dependenc
the solution in this region is of the form assumed in Eq
~4.6!. We exploit these features to obtain higher-order term
The O(u) equations are

f̂ 0,x̂x̂22q̂0 f̂ 0q̂12q̂0
2 f̂ 123 f̂ 0

2 f̂ 150, ~4.32a!

m̂0 f̂ 11 f̂ 0m̂152q̂0 f̂ 1,x̂12 f̂ 0,x̂q̂11 f̂ 0q̂1,x̂1q̂0,x̂ f̂ 1 ,
~4.32b!

J1* 52 f̂ 0q̂0 f̂ 11 f̂ 0
2q̂12m̂1,x̂ . ~4.32c!

The asymptotic form off̂ 0(x) is

f̂ 0~x!5 f̂ 0
~0!1 f̂ 0

~1!ex/A61 f̂ 0
~2!e2x/A61••• ~4.33!

and similarly forq̂0(x) and m̂0(x). Equations~4.32! can be
satisfied if the asymptotic form off̂ 1(x) is

f̂ 1~x!5 f̂ 1
~0!1~ f̂ 1

~1!1ĝ1
~1!x̂!ex/A61~ f̂ 1

~2!1ĝ1
~2!x̂!e2x/A61•••,

~4.34!

and similarly for q̂1(x) and m̂1(x). At O(u2), f̂ 2(x) would
have second-order polynomials multiplying the exponentia
and so on. Substituting these expressions into the differen
equations allows us to determine the unknown constants~ex-
cept for those associated with the translational invarian!.
For f ` it yields the series

f `5A2

3
1

u

24A6
1

u2

768A6
1•••, ~4.35!

which corresponds to

J* 5
2

3A3
2

u2

576A3
2

u3

5184A3
1••• . ~4.36!

Note that the first correction to theu→0 limit of J* is of
O(u2), since the lowest termJc is at the maximum of
J* ( f `)5 f `

2A12 f `
2 .

The series found through the asymptotic perturbative
pansion above can be obtained by another method. Loo
back at Eqs.~4.29! and~4.30!, we note that the ratio of deca
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lengthsl f /lm52. If we insert the expressions we have f
these length scales, Eqs.~4.7c! and ~4.9!, we find asu→0

l f

lm
5F u f`

2

6 f `
2 24

G 1/2

52. ~4.37!

Solving for f ` , and then calculatingJ* , we find

J* 5Jc~12u/8!1/2~12u/24!23/2, ~4.38!

with Jc5A4/27, which when expanded for smallu agrees
with the series~4.36! found above. We plot the small-u nu-
merical data and this expression together in Fig. 7. The fi
surprisingly good at smallu, suggesting to us that the co
rections to Eq.~4.38! are exponentially small asu→0.

V. MOVING INTERFACES

At currents other thanJ* , the NS interfaces move with
constant velocity. For such solutions the operator] t can be
replaced by2c]x , so that Eqs.~4.3! become

2cu fx5 f xx2 f q21 f 2 f 3, ~5.1a!

u~2cq1m! f 52 f xq1 f qx , ~5.1b!

J5 f 2q2mx . ~5.1c!

While the boundary conditions onf andq remain the same
that on the scalar potential becomesm`5cq` . Actually, it is
more convenient to use insteadm̃5m2cq, which is the
gauge-invariant potential in the constant-velocity case.

The superconducting phase invades the normal phas
J,J* and vice versa ifJ.J* . For currents nearJ* , the
interface speed is proportional to (J2J* ). In this linear re-
sponse regime, one can define a kinetic coefficient~which
Likharev10 refers to as a ‘‘viscosity’’!

h5S dc

dJD
J5J*

21

. ~5.2!

Figure 8 shows the numerically determined kinetic coe
cient as a function ofu. For largeu, we find h;u3/4, for
which we provide an argument below.

Farther from the stall current, the velocities deviate fro
this linear behavior, as seen in Fig. 9. The greatest depa
occurs in the limitsJ→0 and J→Jc . In fact, Likharev10

FIG. 7. (Jc2J) for the numerical data~solid line! and for the
result of the small-u analysis, Eq.~4.38! ~dashed line!.
is

if

-

re

conjectured that the interface speed diverges in both of th
limits; we find that it is bounded.

The J→0 limit. The moving interface equations, Eq
~5.1!, simplify in theJ→0 limit, since that limit implies that
both q→0 andm→0, leaving only

f xx1uc fx1 f 2 f 350. ~5.3!

If we replaceuc in the above equation by a speedv, then we
have the steady-state version of Fisher’s equation,27 which is
known to have propagating front solutions withv52.28 In
our case this implies that asJ→0, c52/u, which is in good
agreement with the numerical data shown in Fig. 9.

We can combine the above result with an earlier one
suggest thath;u3/4 asu→`. In the large-u limit, we have
information on the following two points:~1! the stalled in-
terface (J5J* ;u21/4,c50) and~2! the interface in the ab-
sence of current (J50,c52/u). In going from~1! to ~2!, the
changes in current and velocity areDJ;u21/4 andDc;u21.
As u→`, both of these changes are small so thath might be
approximated by

h'
DJ

Dc
;u3/4, ~5.4!

yielding the behavior seen in the numerical data~see Fig. 8
and Table II!.

The J→Jc limit. The numerical work indicates that th
velocity is finite asJ→Jc ; the limiting velocity is shown in

FIG. 8. A log-log plot of the numerically determined kinet
coefficient as a function ofu ~solid line! along with an asymptotic
fit of 0.797u3/4 ~dotted line!.

FIG. 9. The velocity of the front vs the currentJ for u55.79.
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Fig. 10 as a functionu. We can find an analytic bound o
this velocity as follows. First, take Eqs.~5.1!, use the gauge
invariant potentialm̃, and find the constant-velocity analo
of Eq. ~4.5!. Then substitute the asymptotic forms, Eq
~4.6!, into the resulting equations, leading to

~cul f
211l f

2222 f `
2 ! f 1ex/l f52 f `q`q1ex/lq, ~5.5a!

~u f`
2 2lm

22!m̃1ex/lm5cq1lq
22ex/lq, ~5.5b!

2 f `q` f 1ex/l f1~ f `
2 2clq

21!q1ex/lq2m̃1lm
21ex/lm50.

~5.5c!

Arguments similar to those following Eqs.~4.7! lead one to
the conclusion that in this casel f5lq5lm . The above
equations can then be shown to yield the relation

u2c21~2ul2122u f`
2 l2u2f `

2 l!c

1@2~u f`
2 l221!~3 f `

2 22!2u f`
2 1l22#50,

~5.6!

where we have usedq`
2 512 f `

2 . We find the bound by~1!
solving Eq.~5.6! for c, ~2! substituting inf `5A2/3 ~which
corresponds toJ5Jc), and ~3! extremizing that result with
respect to the decay lengthl. The small-u limit of the re-
sulting bound is2A2u/9, and the large-u limit is 21/2A3.
The square-root dependence of the velocity in the smau
limit agrees with the data. Now we can consider going fro
the stall current (J* ,c50) to the critical depairing curren
(Jc ,c;u1/2) which results in changesDJ;u2 andDc;u1/2,
suggesting that the small-u kinetic coefficienth;u3/2, which
is in rough agreement with the numerical data. We have a
observed that as a function ofJ the speed appears to a
proach its bound via a square root dependence

c~J!5A1B~Jc2J!1/2 ~5.7!

for all u.

VI. SUMMARY AND REMARKS

In this paper we have studied in detail the nucleation a
growth of the superconducting phase in the presence
current. The finite amplitude critical nuclei grow as the cu
rent is increased, with the amplitude eventually saturating

FIG. 10. The velocity asJ→Jc as a function ofu. For largeu,
the velocity asymptotically approaches 0.92u20.85.
.

o

d
a

-
s

the stall currentJ* is approached, leading to the formation
interfaces separating the normal and superconducting pha
The stall current can be calculated in the limit of largeu
using matched asymptotic expansions, demonstrating o
again the utility of this technique for problems in inhomog
neous superconductivity. We have also derived an anal
expression for the stall current for smallu, which we believe
to be correct up to exponentially small corrections. Dev
tions from the stall current cause the interfaces to move,
we have calculated the mobility of these moving interfac
for a wide range ofu. Finally we have shown that the inter
face velocity c52/u as J→0 and thatc is bounded as
J→Jc , in contrast to some conjectures in the literature.

As in the magnetic-field analogy, the issue of stability a
dynamics of the current-induced NS interfaces will be mo
complicated and interesting in the two-dimensional ca
Some preliminary work in this direction has been reported
Aransonet al.,13 who find that the current has a stabilizin
effect on the NS interface. This can be interpreted as a p
tive surface tension for the interface, due entirely tononequi-
librium effects. They provide a heuristic derivation of a
interesting free-boundary problem for the interfacial dyna
ics ~a variant of the Laplacian growth problem!; however,
this free-boundary problem is sufficiently complicated th
they were unable to solve it to compare with their numeri
results. Clearly, further work in this direction would be hel
ful in understanding the nucleation and growth of the sup
conducting phase in two-dimensional superconducting film
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APPENDIX: AMPLITUDE OF THE CRITICAL NUCLEI IN
THE J˜0 LIMIT

In this appendix we provide a self-consistent calculat
of the amplitude of the critical nuclei in theJ→0 limit.
Choosing the gauge appropriate for bumps centered atx50
and combining Eqs.~2.5! into one equation yields

@2u] t1 iuJx1]x
211#c~x,t !

5uc~x,t !u2c~x,t !

1 iuF E
0

x

dy Im@c* ~y,t !]yc~y,t !#Gc~x,t !.

~A1!

The propagator for the linear operator appearing on the l
hand side of Eq.~A1! satisfies the condition

@2u] t1 iuJx1]x
211#G~x,x8;t2t8!Q~ t2t8!

52ud~x2x8!d~ t2t8! ~A2!

and is given by

G~x,x8;t!5S u

4pt D 1/2

expF t

u
2

J2t3

12u G
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3expF iJt~x1x8!

2
2

u~x2x8!2

4t G . ~A3!

Ivlev et al.25,11 used this linear propagator to evolve pert
bations having widths ofO(1) and carrying no current
Without the nonlinear terms such perturbations initially gr
but ultimately reach a maximum size and then decay aw
Ivlev et al. suggested that the amplitudes of the critical n
clei are exponentially small in theJ→0 limit by asking what
sized initial perturbations are ofO(1) at their maxima. Their
arguments motivated us to use the propagator in a more
ful estimate of the amplitude that includes the nonlin
terms as an essential ingredient.

We can convert Eq.~A1! into an integral equation by
multiplying both sides of Eq.~A1! ~with x→x8 and t→t8)
by G(x,x8;t2t8) and integrating over allx8 and integrating
t8 from 0 to t. After some manipulation these steps lead

c~x,t !5E
0

t

dt8E
2`

`

dx8G~x,x8,t2t8!

3H c~x8,t8!d~ t2t8!2
1

u Uc~x8,t8!U2c~x8,t8!

2 i F E
0

x8
dy Im@c* ~y,t8!]yc~y,t8!#Gc~x8,t8!J ,

~A4!

wheret.0.
In order to estimate the amplitude of the threshold so

tions, we will substitute into Eq.~A4! the form

c~x,t !5c0expH 2
uJx2

4
1 ixJ . ~A5!

Note that this form is stationary and has a fixed Gaus
shape@which is inspired by our WKB approximation; se
Eq. ~3.6!# but it has an arbitrary amplitude which we w
determine self-consistently.

Let us take thet→` limit and focus onx50 since our
interest is in the amplitude. After substituting Eq.~A5! into
Eq. ~A4!, we can do both integrals for the first term on t
right-hand side exactly, and it can be seen to decay to ze
the t→` limit. Next, we perform thex8 integration of the
second term on the right-hand side~II !, which yields
-

y.
-

re-
r

-

n

in

II52
c0

3

uJE0

` dt

A113t
expH 24t224t323t4

12uJ~113t! J , ~A6!

wheret5Jt. We now apply the method of steepest desce
to obtain

II'2
Apc0

3

A2uJ
expH 32

81uJJ. ~A7!

In the third term on the right-hand side~III ! of Eq. ~A4!,
we make the substitutiony5vx8 and then perform thex8
integration, giving

III 5
c0

3

uJ2E0

`

dtE
0

1

dv
~2t1t2!

A@11t~112v2!#3

3expH 24v2t224t32~112v2!t4

12uJ@11~112v2!t#
J . ~A8!

The maximum of the term in the exponential of III occurs
v51 ~which is an end point!. Linearizing about that maxi-
mum provides

III '
c0

3

uJ2E0

`dtt~21t!

A~113t!3
expH 24t224t323t4

12uJ~113t! J
3E

0

1

dwexpH 2
t2~21t!2w

uJ~113t!2 J , ~A9!

where w512v. After the w integration, we apply the
method of steepest descent to thet integration to obtain

III '
Apuc0

3

A2J

9

8
expH 32

81uJJ. ~A10!

Putting all of these results back into Eq.~A4! gives

c0'
Apuc0

3

A2J
expH 32

81uJJF982
1

uG, ~A11!

which provides the expression given in the text, Eq.~3.8!.
This calculation clearly runs into trouble whenu,8/9; how-
ever, the numerical coefficients in front of these integrals
subleading terms, and they can be varied by adding suble
ing terms to the initial Gaussian guess.
tt.
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