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Linear arrays of Josephson junctions: A stability analysis of characteristic modes
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We have performed a linear stability analysis of two arrays of resistively shunted Josephson junctions: a
ladder array and a so-called modified linear array. We find the periodic solutions to be linearly stable for a wide
range of bias currents in the absence of a load. This is contrasted with the well-studied globally coupled linear
array, where stability of the periodic solutions is a sensitive function of bias current and load parameters. For
the ladder array, we have studied the nature of the mesh currents for the different decay modes. Numerical
evidence leads us to conclude that the branches of the ladder parallel to the bias current play an important role
in helping to damp out perturbed currents. We also compare the long-time dynamics of these Josephson-
junction arrays with that of an RL network, which is a ladder of resistors and inductors, and for which the
decay rates and mesh currents are calculated exactly. We finak floag timeshe dynamics of all three arrays
are basically identical.S0163-18208)01809-§

I. INTRODUCTION grounded, leaving a problem in which the superconducting
phases at the 2\— 1) remaining nodes are to be calculated.

The dynamics of linear arrays ®f Josephson junctions Harris and Garland discovered that the total ac voltage across
globally coupled to a load of impedan@ehas been of inter- the backbond/,g(t) varied between zero arid times the ac
est to researchers for basically two reasons: technologicafoltage across a single junction, as a function of the size of
applications;? and the opportunity to study a nonlinear sys- the transverse magnetic field applied to the circuit. This was
tem with many degrees of freedot™ Of interest here have Wwithout a load connected to the circuit and so is a measure of
been periodic solutions in which the voltages across the jundhe intrinsic behavior of the array. It was also discovered that
tions all oscillate with the same frequency and a fixed phaséhe backbone voltage was quite robust to critical current dis-
difference between neighboring junctions. The simplest oprder among the junctioriS.
these, the so-calleth-phasemode, corresponds to the case  The goal of our work has been to understand as much as
where phase differences between neighboring junctions ige can about the dynamics of the characteristic modes of the
zero. The linear stability of this mode was found to be veryMLA and the ladder array. In Sec. Il of this paper, we report
sensitive to circuit parameters such as the bias current arthle results of a Floquet analysis of the array, in which we
the impedance of the lode. (See the figures in Ref. 4 or)5. demonstrate that, unlike in the globally coupled case, the
From a numerical calculation of the Floquet exponents, Haperiodic solutions are indeed linearly stable over a wide
dley, Beasley, and Wiesenfeld discovered thatithphase

mode is most stable with a McCumber paramgtgs1 and A L s
with bias currents of the order of the junction critical 2 X X
current® In the splay-phasenode, the voltages across neigh- 2 X X X 3
boring junctions all have the same wave form but are shifted 4 3 s
in time by T/N, whereT is the period. A linear stability X 6 X X
analysis indicated that this mode is neutrally stalale indi- 2ls 7
cated by a Floquet exponent efl) in at leastN—2 direc- X X 9 X
tions in theN-dimensional phase space of the sysfefirhe 8)( X X 2
upshot here is that neither the-phase nor splay-phase o 10 11
modes of the globally-coupled array show evidence of sta- X X
bility against perturbations for a wide range of circuit param- y B 12 Is
eters. l ;

Recently, Harris and Garlatftihave studied a modified X

linear a_rray(MLA) of JosephSO!’I Jun_Ct'onS’ as ShOV\f‘n in Fig. FIG. 1. Modified linear arrafMLA) with six backbone junc-

1. In this geometry, there ai junctions along the “back-  jons N=6. Al junctions parallel to the backbone are shunt junc-
bone” of the array, 2l —1) shunt junctions, W_h'Ch are par- tons. Any applied magnetic fields are assumed uniform in-ttze
allel to the backbone and serve to couple pairs of backbongirection. The numbers 1 through 12 label the nodes of the array,
junctions, and & nodes, as shown in the figure. Bias cur- and so the voltage across the top junction in the backbone, for
rents of eitheil g or 2l are injected and removed as shown. example, would be labeled; , as it is the difference in voltage
As is standard practice, one of the nodes of the circuit ibetween nodes 1 and 2. All junctions are resistively shunted.
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range of bias currents. We also compare our results for the TABLE I. Floguet multipliersu and the corresponding expo-
Floguet exponents with those of Harris and Garland, whaents\ for the modified linear array withN=8, f=1/2 andlg /I
performed a heuristic analysis of the stability of the solu-=38. The multiplier equal to one reflects the neutral stability of the
tions. In Sec. Il we compare the dynamics of the MLA with System when perturbed along a direction tangential to the periodic
that of a geometrically simpler ladder array of Josephsor?_rbit- We are mgstly interested in the next row of_the table, which
junctions, which allows us to study the physical distributionsgives the multiplier and exponent for the Ionge;t-l_lved mo_de of the
of currents corresponding to each of the characteristic mode¥ray- Note the seven nearly degenerate multipliers, which corre-
of the system(Each characteristic mode has its own FloquetSPond to physically similar, rapidly decaying modes.

exponent, although some exponents may be degenehate.

Sec. IV we make a comparison between the MLA and a ® Me=In(/(T7t)
basic RL network! for which an analytic result for the Flo- 0.9999 —8.0x10°4
guet exponents is possible. 0.9458 —0.444
0.8366 —1.423
Il. FLOQUET EXPONENTS FOR THE MLA 0.7405 —2.396
. . 0.6746 —3.140
From Fig. 1 and conservation of charge, we can see that 0.6332 3645
the current entering nodgeis given by 0.6085 3062
® d 0.5953 —4.137
. 0

=2 lejk sin(¢j— ¢kt A+ 55— g7 (4~ P, 0.4560 —6.264
(k) jk 0.4560 —6.264
(1) 0.4559 —6.265
where ¢; is the phase of the superconducting wave function 0.4559 —6.265
at nodej, 1; is the bias current entering nogleand the sum 0.4559 —6.265
is over nodes that are connected to ngdsy a single junc- 0.4559 —6.265
tion. I is the critical current for the junction between 0.4559 —6.265

nodesj andk; for simplicity, we took all junctions to have
the same critical current { ;, =1.0 uA). We worked within

a resistively shunted-junctioiRSJ model, and s&; is the
effective resistance of the junction between nofesdKk;
again, for simplicity we took all junctions to have the same
resistance R =1.0 m1). ®,=h/2e is the flux quantum,

malism of Floquet analysis gives us a mathematically rigor-
ous method for determining stability We look for solutions
of the form

and A is the line integral of the vector potential between 7 (TET)=pay(0), ©)
nodesj andk: where T is the period to the solution of Eq1) and u is
called the Floquet multiplier. If.>1, the perturbations grow
A _2_7T kA~dI with time, and ifu<<1 the perturbations diminish with time.
K", i ' The special case gfi=1 corresponds to a neutrally stable

solution. An array withN backbone junctions, will have
All applied magnetic fields were taken to be uniform in the 2N—1 nodes and thus it will yield I®—1 multipliers. At
direction,B=BZ, which corresponds to a vector potential of least one of these multipliers must equal one; in the language
A=BxYy. We solved Eq(1) numerically for the phases;(t) of phase space, this corresponds to a perturbation tangent to
using a fourth-order Runge-Kutta algorithm. The time stepgshe periodic orbit.
were taken to be approximately 0.@92 wheret, is the As discussed in Ref. 8 we find the Floquet multipliers of
characteristic time scale of a single junctiogs ®o/1R. our system as follows. We perturb in one direction in phase
For the stability analysis, suppose tly#;(t) is a solution  space, that is, we start wit;=1 and »,=0 (k#j). We
to Eqg. (1), found numerically by iterating the Runge-Kutta use the Runge-Kutta algorithm to find the valuesygfand
algorithm for many time stepsTypically, we would run the  all the »; one period later. TheseN2-1 quantities then con-
program for at least 500 000 time stépsThen, we perturb  stitute one column of a (2— 1) (2N— 1) matrix, the other
the solution by a small amoun;(t), so that the new phase columns coming from perturbing the solution at a different
at nodej is ¢;(t) = ¢o;(t) + »;(t). Linearizing Eq.(1) with  value ofj. The eigenvalues of the resulting matrix will then
respect top;, we arrive at the following: be the Floquet multipliers of the systéth.
We calculated the multipliers for arrays with varyihg
(The largest array had 30 backbone junctipige also var-
lcjk O Poj— Pokt Aji) (17, — 1) ied the bias current, allowing for values b§/l.=2 and
Ig/1.=8, the latter being too large for the globally coupled
o d array to exhibit stable solutions. Lastly, we allowed for either
+ TRjka (7= 70 |- @ zero exteral magnetic field, or a field characterized by a
frustration parameter off=1/2 or f=1/3, where f
Equation(2) is solved numerically for;(t). On an intuitive = =BS®,, andSis the area of a cella cell being formed by
level, we know that if the perturbations decay with time, thetwo backbone and two shunt junction&or example, Table
original solutiongy;(t) is linearly stable. Of course, the for- | shows all the Floquet multipliers for the MLA withi=8,

0=2>

(k)




57 LINEAR ARRAYS OF JOSEPHSON JUNCTIONS:A. .. 5427

0.5 ; , ——— T pliers(as observed for bias currentslgf/| .= 2 and greater
- \\ : The physics underlying this behavior is under investigation.
=1/3 | We have studied the stability of the array for two bias
g:(l}/z currents,lg/1.,=8 andlg/I,=2. Figure 3a) shows that the

- Floquetmultipliers are smaller for the smaller bias current.
That is, forlg/1,=2 perturbations decay more in one period
than forlz/1.=8. The period of the solutions, however, de-
pends on the bias current via the expres¥ion

0.2 -

At

0.1

T 2
Modified Linear Array —_— (4)

g | e g/l)®-1’

. | PSR so it is also of interest to calculate the corresponding Floquet
10 20 30 exponents, which follow from the expression

uy”
FIG. 2. Floquet exponents for the MLA as a function of the Me=7 6)
C

number of backbone junctions. The line is a linear regression fit to

the f=0 case and has a slope 6f1.99. The plot shows that the From Fig. 3c), we see that the exponents are roughly the

same exponents occur for magnetic fields correspondirfg=tt/2 ~ same for the two bias currents studied so far. Thus, from Eq.

andf=1/3. In all three cases the exponents depend on array siz5), we hypothesize that Ip has the same dependence on

according tox~ 1/N. the bias current as does the perfddBased on Fig. 3, we
expect that the Floguet exponents are independent of bias

f=1/2, andlg/l.=8. The seven smallest multipliers are cyrrent and thus the stability is independent of bias current.
nearly degenerate and correspond to a characteristic mode of

the array that quickly decays. The longest lived mode, with
wu=0.9458, is of interest, since physically that mode would
dominate the long-time behavior of the array. From E3), We have also studied the dynamics of the modes of a
we see that this multiplier corresponds to a mode that decayiadder array of Josephson junctions with the bias currents
by 5.42% in one period, while the most rapidly decayinginjected perpendicular to the long axis of the ladd&ee
mode decays by 54% in the same amount of time. Table Fig. 4) Numerical simulations show that those junctions per-
also displays the Flogueponents\, where the exponent is pendicular to the injected bias currents behave analogously
related to the multiplier vigu=e¢. to the shunt junctions in the MLA. See Ref. 10 for a discus-
Figure 2 shows our results for the Floquet exponents as sion of the role of the shunt junctions in the MLA. Interest-
function of N for f=0, f=1/2, andf=1/3. The solid line is ingly, we find that the dynamics driving the decay character-
a linear regression fit for thé=0 case and has a slope of istics of the ladder are the same as for the MLA, since we
—1.99. Thus we see the same dependence on array size fasd the same Floquet exponents for both types of arrays.
reported by Harris and Garland. Namely, the Floquet expo¢See Fig. 5, which shows results fb+1/2 andlg/1.=8.)
nents decrease with increasing array size accordingNg, 1/ Furthermore, for a ladder of a given size we find it easier
as seen in diffusive transport problem<Effectively, as the to comprehend physically the nature of the currents flowing
array size grows, the mode exhibiting the longest time befor each of the decay modes than is the case for the MLA. To
havior takes longer to settle down when kicked away fromsee what we mean, consider an array with seven ¢etls
equilibrium. This behavior is not observed in the globally meshes which we label asM =7. There will be M +1
coupled array, where the Floquet exponents showed no de=15 Floquet multipliers, signifying 15 characteristic decay
pendence om.® Figure 2 also clearly shows that the expo- modes of the system. From Fig. 5, it should not be surprising
nents show no significant variation with applied magneticthat these multipliers agree with those in Table | to within
field, at least not for the values dfandl g /1. studied so far. 0.5%. Ignoring the case of a multiplier equal to unity, so far
Physically, we know that an external field will certainly af- we have only discussed the multiplier corresponding to the
fect the nature of the periodic solutions for the phaggs,  slowest-decaying modén this caseu=0.9458. But now
but apparently it does not affect how perturbations awayet us ask how the mesh currents flow around each of the
from these solutions decay with time. cells for all of the 14 remaining multipliers in Table I. The
We have studied, numerically, how the perturbed phasesurrents are computed numerically for the ladder, by finding
n;j(t) decay as a function of time fdi /1, =8. We observe the eigenvectors of the (2 + 1) (2M + 1) matrix, the for-
an exponential decay with small-amplitude oscillations su4mation of which is described in Sec. Il. The components of
perimposed. In zero magnetic field, the period of the oscillathe vectors give the values of the phases at the 14 nodes, and
tions (which is a function of the bias currénis approxi- from these the perturbed currents flowing in each cell can be
mately 2.5 times shorter than the relaxation timecalculated.
characterizing the exponential decay. In the presence of an First, consider the decay modes represented by the seven
external magnetic field, the oscillations are shifted in phas@early degenerate Floquet multipliers. These are the most
(by an amount dependent on the value of the frustration parapidly decaying modes. We have studied one of these in
rameterf), but the relaxation time is not affected. This latter detail. Figure 6a) shows that this mode corresponds to a
behavior is consistent with field-independent Floquet multi-situation where two nodes at the samersalue experience

III. COMPARISON OF MLA AND LADDER ARRAY
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FIG. 3. (a) Natural logarithm of the Floquet multipliers for the MLA as a function of the number of backbone junctions. The two data
sets correspond to bias currentslgf1.=8 andlg/l.=2. It is clear that for the smaller bias current, perturbations will decay more in one
period than for the larger bias currefiv) Period of the solutions to the MLA as a function of bias current for six backbone junctions and
zero applied magnetic field. The straight line is a linear regression fit to the data points and has a sl@pg, demonstrating the period
and bias current are related by the expresditty = 27//(15/1.)?—1 .(c) Floquet exponents of the MLA as a function of the number of
backbone junctions for the same bias currents as us@. ifihis figure demonstrates that tegponentsire independent of the bias currents,
whereas(a) shows that themultipliers do depend on the bias current. This must mean that the multipliers and the period have the same
dependence on bias currefsee(d).] (d) Natural logarithm of the Floquet multipliers of the MLA as a function of the bias current for six
backbone junctions and zero applied magnetic field. The line is a linear regression fit to the data points and has a §l@{8& ot his is
numerical evidence that the logarithm of the multipliers and the period have the same dependence on bias current.

perturbed currents flowing into them from both directionsmesh currents from neighboring cells flow in the same direc-
along the ladder. If we define a vorticity of 1 (—1) for  tion. This is shown in Fig. @).
each cell in which the mesh currents flow clockwiseun- Lastly, the slowest mode, which we focused on in Sec. Il,
terclockwise, and 0 otherwise, then two cells have a vortic-is depicted in Fig. @) and corresponds to seven clockwise
ity of zero. The overall ladder, in this mode, has a vorticity mesh currents and a vorticity of 7. In this case, all hori-
of —1. zontal branches have mesh currents from neighboring cells
Now, consider thenext fastest-decaying mode, with a flowing in opposite directions. To generalize what we see in
multiplier of 0.5953. Figure @) shows that the decaying Fig. 6, the fastest nondegenerate mode is that with the high-
currents in this case all correspond to a well-defined clockest spatial frequency in the flow direction of mesh currents,
wise or counterclockwise flow in each cell. Inspection of theand the slowest mode has the lowest spatial frequency. Ap-
figure shows that the mesh currents are arranged so as parently, the slowest modes do not make effective use of the
maximize the amount of current flowing in the horizontal junctions in the horizontal branches of the ladder to help
branchegx direction of the ladder. We are lead to conjec- dissipate perturbed currents.
ture that large horizontal currents are a very effective way to
damp out perturbations. An analysis of the currents for the
multipliers ranging from 0.8366 to 0.5953 shows that all
correspond to three clockwise and four counterclockwise An analytically tractable problem results if we replace the
mesh currents, or vice versa, with the slowest of these moddsiased junctiongthose parallel to the bias currentsf the
(#=0.8366) having only one horizontal branch where theladder with resistors and the shunt junctigtisose perpen-

IV. COMPARISON OF MLA WITH RL NETWORK
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FIG. 4. Ladder array of resistively shunted Josephson junctions
with four cells, or meshesM =4. We calculate the phases at the £ 5. Floquet exponents as a function of the effective dimen-
nodes of the array and the_ blas_ currents are injected and remov%%nalityd of the MLA and the ladder array withg /1.=8 andf
parallel to the horizontalx direction branches. =1/2. For the MLA,d=2N-1, and for the ladder arragi=2M

+1, whereN is the number of backbone junctions akt is the

dicular to the bias currentswith inductors. For the shunt ymper of meshes. The plot shows that the dynamics of the longest-
junctions, this must be reasonable, since we know that thelyed decay mode is the same for both geometries.

carry small currents, and fok| ; a junction behaves induc-

tively, with an effective inductance ob./2ml..'® The ge-  shall merely state our results. The characteristic decay rates
ometry is shown in Fig. 7. We find some interesting parallelsand the currents, are given by

between the two kinds of arrays, which we now discuss. We

search for solutions for the mesh currents of the form \ 4 R\ , mn
n C|sin 5 M+1)
i=1e", (6)
where
wherek ranges from 1 taM and indexes the mesh currents.
This is actually just a normal-mode probléthand so we n=1,2,..M, (7)

SENGRRSEIcRESERG
SENGNESARNANGNRS
O|0|0|0|O|0

@) ) O

> x @ (b) © (d)

O

FIG. 6. This figure characterizes the perturbed currents for four of the 15 decay modes in a ladder array with seven meshes in the absence

of an external magnetic field. I@@), the mode depicted has a Floquet multiplierpof 0.4559 and is one of seven similar, rapidly decaying
modes. Note that two of the cells do not have a well-defined vorticity. Taking clockedsmterclockwisemesh currents to have a vorticity
of +1(—1), this mode corresponds to an array with total vorticity-of. (b) corresponds tqu=0.5953 and is the next fastest decaying

mode after that showfa). The current in each cell has a well-defined vorticity, and in fact the currents are arranged so as to maximize the

number of horizontal branches in which the currents from neighboring cells flow in the same dir@tmorresponds ta =0.8366 and is

the next to slowest decaying mode. The mesh currents now are arranged so as to have only one horizontal branch through which the currents

from neighboring cells flow in the same directidd) corresponds tg = 0.9458 and depicts the slowest decaying mode. The array has a total
vorticity of +7 and clearly minimizes the amount of current flowing through the horizontal branithe&) demonstrate that the horizontal
brancheganalogous to the shunt junctions of the MLAre important in those modes where perturbations are more rapidly damped out.
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FIG. 8. Comparison of the Floquet exponents, as calculated nu-
merically for the MLA, and the decay rates, as calculated analyti-
X cally for the RL network, as a function of the number of backbone
junctions (for the MLA) or the number of cellgfor the RL net-
FIG. 7. An RL ladder array. For comparison with the ladder work). For a giverN we are looking at only the longest-lived mode.
array of Josephson junctions the shunt junctions have been replacétie agreement is surprisingly good.
by inductors and the biased junctions have been replaced by resis-

tors. Note that there is one inductor and two resistors per cell. numerically equal Floquet exponents. We also discover a
dependence on the Floquet exponents with array size that is

At

T T T

I, k=1 similar to that observed in diffusive transport problems, as
simkzn/(M+1)] reported previously® For thg ladder of Josephsen junctions
m_ )13 , 2sksM-1 we were able to characterize numerically the nature of the
1= sifwn/(M +1)] (8 : i .
(M — 1)/ (M + 1 decay modes and found that the fastest-decaying mode cor
S'r[(_ —DmniM+1)] k=M responds to neighboring cells with opposite flowing mesh
sif2an/(M+1)] ' ' currents, while the slowest mode corresponded to cells with

all mesh currents flowing in the same sense, leading us to
wherel is an arbitrary current. In Eq$7) and(8), n indexes  conclude that currents in the horizontal branches of the lad-
the normal modes. In this work, we have been most interger (parallel to the direction of the injected bias currgratse
ested in the slowest decay mode, which corresponds to efficient at damping out perturbations. Lastly, we were able
=1 for a given array size. Interestingly, when we comparep calculate the Floquet exponents and decay currents for a
the decay rate for the RL network using E@) with the  “simple” RL ladder and compare them with the results for
numerically obtained Floquet exponent for the MLA for a the MLA. We find identicalong-timebehavior for both cir-
given array size, we get excellent agreenfénithis is dem-  cuits, indicating that, once perturbed, the same dynamics

onstrated in Fig. 8. It seems that the long-time dynamics ofrive the linearized Josephson arrays and the linear RL lad-
the MLA and the RL network indeed are the same. der back to their steady-state behavior.

Another benefit of looking at the RL network, is that us-
ing Egs.(7) and(8), it is possible to reproduce analytically
the same behavior we saw from the numerical study of the ACKNOWLEDGMENTS
ladder array of Josephson junctions. Namely, the fastest- the authors wish to thank David Stroud for helpful con-
decaying mode in the RL network corresponds t0 mesh Culyersations. For part of this work, E.B.H. was supported by
rents in neighboring cells flowing in opposite senses, whilexNse Grant No. DMR-9501272 and by DOBMISCON)

the slowest-decaying mode means the currents are all ﬂo"‘fhrough Contract No. DE-FG02-90ER45427.
ing in the same sense, again pointing to the fact that currents

in the horizontal branches are effective at returning a per-

turbed array to equilibrium. Given the observed similarity in APPENDIX
the dynamics of the RL and ladder arrays, the result is of
more than just passing interest. For the mathematical detai§r
see the Appendix.

In this appendix we want to note two of the consequences

Egs.(7) and(8). First, consider the mode with the fastest
decay rate, corresponding to=M. We want to show that
this represents mesh currents in neighboring cells that flow in

V. CONCLUSIONS opposite senses. In E(B) we can takd >0, corresponding

to a clockwise mesh current in the first cell. Next, consider

cells 2 throughM — 1. The sign of the currents follows from

e expression

We have studied the stability of the periodic solutions to
three linear arrays: the modified linear array of Josephso
junctions, the ladder of Josephson junctions, and a ladder
array of resistors and inductors. We find the long-time dy- )
namics that drives the systems back to equilibrium when sifk7M/(M+1)]
perturbed are all identical, as evidenced by approximately sifmM/(M+1)] "~

(A1)
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Clearly, the denominator is positive, since the argument othemselves have opposite signs. Thus we have demonstrated,

the sine function is greater than 0 but less thariThe nu-
merator will in fact alternate in sign ds steps through its
allowed values as long as

kM

——<kr,

(k—l)77<M+1

which is equivalent to the requirement that M + 1. Since
the largest value df is k=M, this inequality is indeed sat-
isfied. Thus, forl >0, the current in the second cell flows
counterclockwise; the current in the third cell flows clock-
wise, etc. up through ceM — 1. It remains to show that the
current in the last cellwith k=M) flows oppositely to the
current in cellM —1. From Egs.(8) and (A1) we see that
both expressions fdr,_, andly have the same numerator.
The denominator foky,_; is shown above. In the expression
for Iy, the denominator is

siM27M/(M+1)].

that the fastest-decaying mode of the RL network corre-
sponds to mesh currents flowing in alternating senses.

Next, consider the mode with the slowest time constant,
corresponding tm=1. We want to show that in this case all
the mesh currents will flow in the same sense. Again, take
I>0. For 2<k=M—1 the currents are given by

sinkw/(M+1)]

sif@#/(M+1)] "
Clearly both the denominator and numerator are positive,
since their arguments are between 0 andSo all of these

currents flow in a clockwise sense, as in the first cell. It
remains to check the current in the last cell, for which

_sif(M=1)a/(M+1)]
M™ sif2a/(M+1)]

The arguments of both sine functions are less thdar any
M>1, thusly,>0, and the current in the last cells flows

Now we see that the denominators of the expressions fotlockwise. Thus we have shown that the slowest mode of the

these two currents are of opposite signs for all valueMof

RL network corresponds to mesh currents all flowing in the

>1, and since they have identical numerators, the currentsame sense.
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