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Linear arrays of Josephson junctions: A stability analysis of characteristic modes
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Department of Physics and Astronomy, Ohio Wesleyan University, Delaware, Ohio 43015
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~Received 28 July 1997!

We have performed a linear stability analysis of two arrays of resistively shunted Josephson junctions: a
ladder array and a so-called modified linear array. We find the periodic solutions to be linearly stable for a wide
range of bias currents in the absence of a load. This is contrasted with the well-studied globally coupled linear
array, where stability of the periodic solutions is a sensitive function of bias current and load parameters. For
the ladder array, we have studied the nature of the mesh currents for the different decay modes. Numerical
evidence leads us to conclude that the branches of the ladder parallel to the bias current play an important role
in helping to damp out perturbed currents. We also compare the long-time dynamics of these Josephson-
junction arrays with that of an RL network, which is a ladder of resistors and inductors, and for which the
decay rates and mesh currents are calculated exactly. We find thatat long timesthe dynamics of all three arrays
are basically identical.@S0163-1829~98!01809-8#
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I. INTRODUCTION

The dynamics of linear arrays ofN Josephson junction
globally coupled to a load of impedanceZ has been of inter-
est to researchers for basically two reasons: technolog
applications,1,2 and the opportunity to study a nonlinear sy
tem with many degrees of freedom.3–9 Of interest here have
been periodic solutions in which the voltages across the ju
tions all oscillate with the same frequency and a fixed ph
difference between neighboring junctions. The simplest
these, the so-calledin-phasemode, corresponds to the ca
where phase differences between neighboring junction
zero. The linear stability of this mode was found to be ve
sensitive to circuit parameters such as the bias current
the impedance of the load.4,5 ~See the figures in Ref. 4 or 5!
From a numerical calculation of the Floquet exponents, H
dley, Beasley, and Wiesenfeld discovered that thein-phase
mode is most stable with a McCumber parameterbc51 and
with bias currents of the order of the junction critic
current.5 In thesplay-phasemode, the voltages across neig
boring junctions all have the same wave form but are shif
in time by T/N, where T is the period. A linear stability
analysis indicated that this mode is neutrally stable~as indi-
cated by a Floquet exponent of11! in at leastN22 direc-
tions in theN-dimensional phase space of the system.6–9 The
upshot here is that neither thein-phase nor splay-phase
modes of the globally-coupled array show evidence of s
bility against perturbations for a wide range of circuit para
eters.

Recently, Harris and Garland10 have studied a modified
linear array~MLA ! of Josephson junctions, as shown in F
1. In this geometry, there areN junctions along the ‘‘back-
bone’’ of the array, 2(N21) shunt junctions, which are par
allel to the backbone and serve to couple pairs of backb
junctions, and 2N nodes, as shown in the figure. Bias cu
rents of eitherI B or 2I B are injected and removed as show
As is standard practice, one of the nodes of the circui
570163-1829/98/57~9!/5425~7!/$15.00
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grounded, leaving a problem in which the superconduct
phases at the 2(N21) remaining nodes are to be calculate
Harris and Garland discovered that the total ac voltage ac
the backboneVAB(t) varied between zero andN times the ac
voltage across a single junction, as a function of the size
the transverse magnetic field applied to the circuit. This w
without a load connected to the circuit and so is a measur
the intrinsic behavior of the array. It was also discovered t
the backbone voltage was quite robust to critical current d
order among the junctions.10

The goal of our work has been to understand as much
we can about the dynamics of the characteristic modes of
MLA and the ladder array. In Sec. II of this paper, we rep
the results of a Floquet analysis of the array, in which
demonstrate that, unlike in the globally coupled case,
periodic solutions are indeed linearly stable over a w

FIG. 1. Modified linear array~MLA ! with six backbone junc-
tions, N56. All junctions parallel to the backbone are shunt jun
tions. Any applied magnetic fields are assumed uniform in the1z
direction. The numbers 1 through 12 label the nodes of the ar
and so the voltage across the top junction in the backbone,
example, would be labeledV1,2 as it is the difference in voltage
between nodes 1 and 2. All junctions are resistively shunted.
5425 © 1998 The American Physical Society
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range of bias currents. We also compare our results for
Floquet exponents with those of Harris and Garland, w
performed a heuristic analysis of the stability of the so
tions. In Sec. III we compare the dynamics of the MLA wi
that of a geometrically simpler ladder array of Joseph
junctions, which allows us to study the physical distributio
of currents corresponding to each of the characteristic mo
of the system.~Each characteristic mode has its own Floqu
exponent, although some exponents may be degenerate! In
Sec. IV we make a comparison between the MLA and
basic RL network,11 for which an analytic result for the Flo
quet exponents is possible.

II. FLOQUET EXPONENTS FOR THE MLA

From Fig. 1 and conservation of charge, we can see
the current entering nodej is given by

I j5(̂
k&

I c jk sin~f j2fk1Ajk!1
F0

2pRjk

d

dt
~f j2fk!,

~1!

wheref j is the phase of the superconducting wave funct
at nodej , I j is the bias current entering nodej , and the sum
is over nodes that are connected to nodej by a single junc-
tion. I c, jk is the critical current for the junction betwee
nodesj andk; for simplicity, we took all junctions to have
the same critical current (I c, jk51.0mA). We worked within
a resistively shunted-junction~RSJ! model, and soRjk is the
effective resistance of the junction between nodesj and k;
again, for simplicity we took all junctions to have the sam
resistance (Rjk51.0 mV). F05h/2e is the flux quantum,
and Ajk is the line integral of the vector potential betwe
nodesj andk:

Ajk5
2p

F0
E

j

k

A•dl.

All applied magnetic fields were taken to be uniform in thez
direction,B5Bẑ, which corresponds to a vector potential
A5Bxŷ. We solved Eq.~1! numerically for the phasesf j (t)
using a fourth-order Runge-Kutta algorithm. The time ste
were taken to be approximately 0.002tc , where tc is the
characteristic time scale of a single junction,tc5F0 /I cR.

For the stability analysis, suppose thatf0 j (t) is a solution
to Eq. ~1!, found numerically by iterating the Runge-Kut
algorithm for many time steps.~Typically, we would run the
program for at least 500 000 time steps.12! Then, we perturb
the solution by a small amount,h j (t), so that the new phas
at nodej is f j (t)5f0 j (t)1h j (t). Linearizing Eq.~1! with
respect toh j , we arrive at the following:

05(̂
k&

F I c jk cos~f0 j2f0k1Ajk!~h j2hk!

1
F0

2pRjk

d

dt
~h j2hk!G . ~2!

Equation~2! is solved numerically forh j (t). On an intuitive
level, we know that if the perturbations decay with time, t
original solutionf0 j (t) is linearly stable. Of course, the for
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malism of Floquet analysis gives us a mathematically rig
ous method for determining stability.13 We look for solutions
of the form

h j~ t1T!5mh j~ t !, ~3!

where T is the period to the solution of Eq.~1! and m is
called the Floquet multiplier. Ifm.1, the perturbations grow
with time, and ifm,1 the perturbations diminish with time
The special case ofm51 corresponds to a neutrally stab
solution. An array withN backbone junctions, will have
2N21 nodes and thus it will yield 2N21 multipliers. At
least one of these multipliers must equal one; in the langu
of phase space, this corresponds to a perturbation tange
the periodic orbit.

As discussed in Ref. 8 we find the Floquet multipliers
our system as follows. We perturb in one direction in pha
space, that is, we start withh j51 andhk50 (kÞ j ). We
use the Runge-Kutta algorithm to find the values ofhk and
all theh j one period later. These 2N21 quantities then con-
stitute one column of a (2N21)3(2N21) matrix, the other
columns coming from perturbing the solution at a differe
value of j . The eigenvalues of the resulting matrix will the
be the Floquet multipliers of the system.14

We calculated the multipliers for arrays with varyingN.
~The largest array had 30 backbone junctions.! We also var-
ied the bias current, allowing for values ofI B /I c52 and
I B /I c58, the latter being too large for the globally couple
array to exhibit stable solutions. Lastly, we allowed for eith
zero external magnetic field, or a field characterized b
frustration parameter of f 51/2 or f 51/3, where f
5BS/F0 , andS is the area of a cell~a cell being formed by
two backbone and two shunt junctions!. For example, Table
I shows all the Floquet multipliers for the MLA withN58,

TABLE I. Floquet multipliersm and the corresponding expo
nentsl for the modified linear array withN58, f 51/2 andI B /I c

58. The multiplier equal to one reflects the neutral stability of t
system when perturbed along a direction tangential to the peri
orbit. We are mostly interested in the next row of the table, wh
gives the multiplier and exponent for the longest-lived mode of
array. Note the seven nearly degenerate multipliers, which co
spond to physically similar, rapidly decaying modes.

m ltc5 ln(m)/(T/tc)

0.9999 28.031024

0.9458 20.444
0.8366 21.423
0.7405 22.396
0.6746 23.140
0.6332 23.645
0.6085 23.962
0.5953 24.137
0.4560 26.264
0.4560 26.264
0.4559 26.265
0.4559 26.265
0.4559 26.265
0.4559 26.265
0.4559 26.265
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f 51/2, and I B /I c58. The seven smallest multipliers a
nearly degenerate and correspond to a characteristic mo
the array that quickly decays. The longest lived mode, w
m50.9458, is of interest, since physically that mode wou
dominate the long-time behavior of the array. From Eq.~3!,
we see that this multiplier corresponds to a mode that dec
by 5.42% in one period, while the most rapidly decayi
mode decays by 54% in the same amount of time. Tab
also displays the Floquetexponents, l, where the exponent is
related to the multiplier viam5elT.

Figure 2 shows our results for the Floquet exponents a
function of N for f 50, f 51/2, andf 51/3. The solid line is
a linear regression fit for thef 50 case and has a slope
21.99. Thus we see the same dependence on array si
reported by Harris and Garland. Namely, the Floquet ex
nents decrease with increasing array size according to 1N2,
as seen in diffusive transport problems.15 Effectively, as the
array size grows, the mode exhibiting the longest time
havior takes longer to settle down when kicked away fr
equilibrium. This behavior is not observed in the globa
coupled array, where the Floquet exponents showed no
pendence onN.5 Figure 2 also clearly shows that the exp
nents show no significant variation with applied magne
field, at least not for the values off andI B /I c studied so far.
Physically, we know that an external field will certainly a
fect the nature of the periodic solutions for the phases,f j ,
but apparently it does not affect how perturbations aw
from these solutions decay with time.

We have studied, numerically, how the perturbed pha
h j (t) decay as a function of time forI B /I c58. We observe
an exponential decay with small-amplitude oscillations
perimposed. In zero magnetic field, the period of the osci
tions ~which is a function of the bias current! is approxi-
mately 2.5 times shorter than the relaxation tim
characterizing the exponential decay. In the presence o
external magnetic field, the oscillations are shifted in ph
~by an amount dependent on the value of the frustration
rameterf !, but the relaxation time is not affected. This latt
behavior is consistent with field-independent Floquet mu

FIG. 2. Floquet exponents for the MLA as a function of t
number of backbone junctions. The line is a linear regression fi
the f 50 case and has a slope of21.99. The plot shows that th
same exponents occur for magnetic fields corresponding tof 51/2
and f 51/3. In all three cases the exponents depend on array
according tol;1/N2.
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pliers~as observed for bias currents ofI B /I c52 and greater!.
The physics underlying this behavior is under investigatio

We have studied the stability of the array for two bi
currents,I B /I c58 andI B /I c52. Figure 3~a! shows that the
Floquetmultipliers are smaller for the smaller bias curren
That is, forI B /I c52 perturbations decay more in one perio
than for I B /I c58. The period of the solutions, however, d
pends on the bias current via the expression16

T

tc
5

2p

A~ I B /I c!
221

, ~4!

so it is also of interest to calculate the corresponding Floq
exponents, which follow from the expression

ltc5
ln m

T/tc
. ~5!

From Fig. 3~c!, we see that the exponents are roughly t
same for the two bias currents studied so far. Thus, from
~5!, we hypothesize that lnm has the same dependence
the bias current as does the period.17 Based on Fig. 3, we
expect that the Floquet exponents are independent of
current and thus the stability is independent of bias curre

III. COMPARISON OF MLA AND LADDER ARRAY

We have also studied the dynamics of the modes o
ladder array of Josephson junctions with the bias curre
injected perpendicular to the long axis of the ladder.~See
Fig. 4.! Numerical simulations show that those junctions p
pendicular to the injected bias currents behave analogo
to the shunt junctions in the MLA. See Ref. 10 for a discu
sion of the role of the shunt junctions in the MLA. Interes
ingly, we find that the dynamics driving the decay charact
istics of the ladder are the same as for the MLA, since
find the same Floquet exponents for both types of arra
~See Fig. 5, which shows results forf 51/2 andI B /I c58.!

Furthermore, for a ladder of a given size we find it eas
to comprehend physically the nature of the currents flow
for each of the decay modes than is the case for the MLA.
see what we mean, consider an array with seven cells~or
meshes!, which we label asM57. There will be 2M11
515 Floquet multipliers, signifying 15 characteristic dec
modes of the system. From Fig. 5, it should not be surpris
that these multipliers agree with those in Table I to with
0.5%. Ignoring the case of a multiplier equal to unity, so
we have only discussed the multiplier corresponding to
slowest-decaying mode~in this case,m50.9458!. But now
let us ask how the mesh currents flow around each of
cells for all of the 14 remaining multipliers in Table I. Th
currents are computed numerically for the ladder, by find
the eigenvectors of the (2M11)3(2M11) matrix, the for-
mation of which is described in Sec. II. The components
the vectors give the values of the phases at the 14 nodes
from these the perturbed currents flowing in each cell can
calculated.

First, consider the decay modes represented by the s
nearly degenerate Floquet multipliers. These are the m
rapidly decaying modes. We have studied one of these
detail. Figure 6~a! shows that this mode corresponds to
situation where two nodes at the samey value experience

o
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FIG. 3. ~a! Natural logarithm of the Floquet multipliers for the MLA as a function of the number of backbone junctions. The two
sets correspond to bias currents ofI B /I c58 andI B /I c52. It is clear that for the smaller bias current, perturbations will decay more in
period than for the larger bias current.~b! Period of the solutions to the MLA as a function of bias current for six backbone junctions
zero applied magnetic field. The straight line is a linear regression fit to the data points and has a slope of20.5, demonstrating the perio
and bias current are related by the expressionT/tc 5 2p/A(I B /I c)

221 .~c! Floquet exponents of the MLA as a function of the number
backbone junctions for the same bias currents as used in~a!. This figure demonstrates that theexponentsare independent of the bias current
whereas~a! shows that themultipliers do depend on the bias current. This must mean that the multipliers and the period have th
dependence on bias current.@See~d!.# ~d! Natural logarithm of the Floquet multipliers of the MLA as a function of the bias current for
backbone junctions and zero applied magnetic field. The line is a linear regression fit to the data points and has a slope of20.495. This is
numerical evidence that the logarithm of the multipliers and the period have the same dependence on bias current.
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perturbed currents flowing into them from both directio
along the ladder. If we define a vorticity of11 (21) for
each cell in which the mesh currents flow clockwise~coun-
terclockwise!, and 0 otherwise, then two cells have a vort
ity of zero. The overall ladder, in this mode, has a vortic
of 21.

Now, consider thenext fastest-decaying mode, with
multiplier of 0.5953. Figure 6~b! shows that the decayin
currents in this case all correspond to a well-defined clo
wise or counterclockwise flow in each cell. Inspection of t
figure shows that the mesh currents are arranged so a
maximize the amount of current flowing in the horizon
branches~x direction! of the ladder. We are lead to conje
ture that large horizontal currents are a very effective way
damp out perturbations. An analysis of the currents for
multipliers ranging from 0.8366 to 0.5953 shows that
correspond to three clockwise and four counterclockw
mesh currents, or vice versa, with the slowest of these mo
(m50.8366) having only one horizontal branch where t
-

to
l

o
e
l
e
es
e

mesh currents from neighboring cells flow in the same dir
tion. This is shown in Fig. 6~c!.

Lastly, the slowest mode, which we focused on in Sec.
is depicted in Fig. 6~d! and corresponds to seven clockwi
mesh currents and a vorticity of17. In this case, all hori-
zontal branches have mesh currents from neighboring c
flowing in opposite directions. To generalize what we see
Fig. 6, the fastest nondegenerate mode is that with the h
est spatial frequency in the flow direction of mesh curren
and the slowest mode has the lowest spatial frequency.
parently, the slowest modes do not make effective use of
junctions in the horizontal branches of the ladder to h
dissipate perturbed currents.

IV. COMPARISON OF MLA WITH RL NETWORK

An analytically tractable problem results if we replace t
biased junctions~those parallel to the bias currents! of the
ladder with resistors and the shunt junctions~those perpen-
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57 5429LINEAR ARRAYS OF JOSEPHSON JUNCTIONS:A . . .
dicular to the bias currents! with inductors. For the shun
junctions, this must be reasonable, since we know that t
carry small currents, and forI !I c a junction behaves induc
tively, with an effective inductance ofFc/2pI c .18 The ge-
ometry is shown in Fig. 7. We find some interesting parall
between the two kinds of arrays, which we now discuss.
search for solutions for the mesh currents of the form

i k5I ke
lt, ~6!

wherek ranges from 1 toM and indexes the mesh current
This is actually just a normal-mode problem,19 and so we

FIG. 4. Ladder array of resistively shunted Josephson junct
with four cells, or meshes,M54. We calculate the phases at th
nodes of the array and the bias currents are injected and rem
parallel to the horizontal~x direction! branches.
y

s
e

shall merely state our results. The characteristic decay r
and the currentsI k are given by

ln524S R

L D sin 2F pn

2~M11!G
where

n51,2,...,M , ~7!

s

ed
FIG. 5. Floquet exponents as a function of the effective dim

sionality d of the MLA and the ladder array withI B /I c58 and f
51/2. For the MLA,d52N21, and for the ladder array,d52M
11, whereN is the number of backbone junctions andM is the
number of meshes. The plot shows that the dynamics of the long
lived decay mode is the same for both geometries.
e absence
ng
y
g
ize the

he currents
total
l
out.
FIG. 6. This figure characterizes the perturbed currents for four of the 15 decay modes in a ladder array with seven meshes in th
of an external magnetic field. In~a!, the mode depicted has a Floquet multiplier ofm50.4559 and is one of seven similar, rapidly decayi
modes. Note that two of the cells do not have a well-defined vorticity. Taking clockwise~counterclockwise! mesh currents to have a vorticit
of 11(21), this mode corresponds to an array with total vorticity of21. ~b! corresponds tom50.5953 and is the next fastest decayin
mode after that shown~a!. The current in each cell has a well-defined vorticity, and in fact the currents are arranged so as to maxim
number of horizontal branches in which the currents from neighboring cells flow in the same direction.~c! corresponds tom50.8366 and is
the next to slowest decaying mode. The mesh currents now are arranged so as to have only one horizontal branch through which t
from neighboring cells flow in the same direction.~d! corresponds tom50.9458 and depicts the slowest decaying mode. The array has a
vorticity of 17 and clearly minimizes the amount of current flowing through the horizontal branches.~b!–~d! demonstrate that the horizonta
branches~analogous to the shunt junctions of the MLA! are important in those modes where perturbations are more rapidly damped
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I k
~n!55

I , k51

I
sin@kpn/~M11!#

sin@pn/~M11!#
, 2<k<M21

I
sin@~M21!pn/~M11!#

sin@2pn/~M11!#
, k5M ,

~8!

whereI is an arbitrary current. In Eqs.~7! and~8!, n indexes
the normal modes. In this work, we have been most in
ested in the slowest decay mode, which correspondsn
51 for a given array size. Interestingly, when we comp
the decay rate for the RL network using Eq.~7! with the
numerically obtained Floquet exponent for the MLA for
given array size, we get excellent agreement.20 This is dem-
onstrated in Fig. 8. It seems that the long-time dynamics
the MLA and the RL network indeed are the same.

Another benefit of looking at the RL network, is that u
ing Eqs.~7! and ~8!, it is possible to reproduce analyticall
the same behavior we saw from the numerical study of
ladder array of Josephson junctions. Namely, the fast
decaying mode in the RL network corresponds to mesh
rents in neighboring cells flowing in opposite senses, wh
the slowest-decaying mode means the currents are all fl
ing in the same sense, again pointing to the fact that curr
in the horizontal branches are effective at returning a p
turbed array to equilibrium. Given the observed similarity
the dynamics of the RL and ladder arrays, the result is
more than just passing interest. For the mathematical de
see the Appendix.

V. CONCLUSIONS

We have studied the stability of the periodic solutions
three linear arrays: the modified linear array of Joseph
junctions, the ladder of Josephson junctions, and a lad
array of resistors and inductors. We find the long-time d
namics that drives the systems back to equilibrium wh
perturbed are all identical, as evidenced by approxima

FIG. 7. An RL ladder array. For comparison with the ladd
array of Josephson junctions the shunt junctions have been rep
by inductors and the biased junctions have been replaced by r
tors. Note that there is one inductor and two resistors per cell.
r-

e

f

e
t-
r-
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w-
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r-

f
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n
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-
n
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numerically equal Floquet exponents. We also discove
dependence on the Floquet exponents with array size th
similar to that observed in diffusive transport problems,
reported previously.10 For the ladder of Josephsen junctio
we were able to characterize numerically the nature of
decay modes and found that the fastest-decaying mode
responds to neighboring cells with opposite flowing me
currents, while the slowest mode corresponded to cells w
all mesh currents flowing in the same sense, leading u
conclude that currents in the horizontal branches of the
der ~parallel to the direction of the injected bias currents! are
efficient at damping out perturbations. Lastly, we were a
to calculate the Floquet exponents and decay currents f
‘‘simple’’ RL ladder and compare them with the results f
the MLA. We find identicallong-timebehavior for both cir-
cuits, indicating that, once perturbed, the same dynam
drive the linearized Josephson arrays and the linear RL
der back to their steady-state behavior.
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APPENDIX

In this appendix we want to note two of the consequen
of Eqs.~7! and~8!. First, consider the mode with the faste
decay rate, corresponding ton5M . We want to show that
this represents mesh currents in neighboring cells that flow
opposite senses. In Eq.~8! we can takeI .0, corresponding
to a clockwise mesh current in the first cell. Next, consid
cells 2 throughM21. The sign of the currents follows from
the expression

sin@kpM /~M11!#

sin@pM /~M11!#
. ~A1!

ed
is-

FIG. 8. Comparison of the Floquet exponents, as calculated
merically for the MLA, and the decay rates, as calculated anal
cally for the RL network, as a function of the number of backbo
junctions ~for the MLA! or the number of cells~for the RL net-
work!. For a givenN we are looking at only the longest-lived mod
The agreement is surprisingly good.
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Clearly, the denominator is positive, since the argumen
the sine function is greater than 0 but less thanp. The nu-
merator will in fact alternate in sign ask steps through its
allowed values as long as

~k21!p,
kpM

M11
,kp,

which is equivalent to the requirement thatk,M11. Since
the largest value ofk is k5M , this inequality is indeed sat
isfied. Thus, forI .0, the current in the second cell flow
counterclockwise; the current in the third cell flows cloc
wise, etc. up through cellM21. It remains to show that th
current in the last cell~with k5M ! flows oppositely to the
current in cellM21. From Eqs.~8! and ~A1! we see that
both expressions forI M21 and I M have the same numerato
The denominator forI M21 is shown above. In the expressio
for I M , the denominator is

sin@2pM /~M11!#.

Now we see that the denominators of the expressions
these two currents are of opposite signs for all values oM
.1, and since they have identical numerators, the curr
of

s
-

.
n

for

nts

themselves have opposite signs. Thus we have demonstr
that the fastest-decaying mode of the RL network cor
sponds to mesh currents flowing in alternating senses.

Next, consider the mode with the slowest time consta
corresponding ton51. We want to show that in this case a
the mesh currents will flow in the same sense. Again, ta
I .0. For 2<k<M21 the currents are given by

sin@kp/~M11!#

sin@p/~M11!#
.

Clearly both the denominator and numerator are positi
since their arguments are between 0 andp. So all of these
currents flow in a clockwise sense, as in the first cell.
remains to check the current in the last cell, for which

I M5
sin@~M21!p/~M11!#

sin@2p/~M11!#
.

The arguments of both sine functions are less thanp for any
M.1, thus I M.0, and the current in the last cells flow
clockwise. Thus we have shown that the slowest mode of
RL network corresponds to mesh currents all flowing in t
same sense.
P.

k,

ell

e.

d J.
a

RL

cell
.
,

*Permanent address: Lucent Technologies, Orlando, FL.
1A. K. Jain, K. K. Likharev, J. E. Lukens, and J. E. Sauvagea

Phys. Rep.109, 310 ~1984!.
2J. B. Hansen and P. E. Lindelof, Rev. Mod. Phys.56, 431~1984!.
3S. Watanabe and S. H. Strogatz, Physica D74, 197 ~1994!.
4P. Hadley and M. R. Beasley, Appl. Phys. Lett.50, 621 ~1987!.
5P. Hadley, M. R. Beasley, and K. Wiesenfeld, Phys. Rev. B38,

8712 ~1988!.
6K. Y. Tsang, R. E. Mirollo, S. H. Strogatz, and K. Wiesenfeld

Physica D48, 102 ~1991!.
7K. Y. Tsang and I. B. Schwartz, Phys. Rev. Lett.68, 2265~1992!.
8S. Nichols and K. Wiesenfeld, Phys. Rev. A45, 8430~1992!.
9S. H. Strogatz and R. E. Mirollo, Phys. Rev. E47, 220 ~1993!.

10E. B. Harris and J. C. Garland, Phys. Rev. B55, 3832~1997!.
11For a brief description of a similar resistive-capacitive networ

see P. M. Chaiken and T. C. Lubensky,Principles of Condensed
Matter Physics~Cambridge University Press, New York, 1995!,
p. 381.

12There are known algorithms for calculating the solutions to pe
odic, steady-state systems. See, for example, K. S. Kunder
K. White, and A. Sangiovanni-Vincentelli,Steady-State Meth-
ods for Simulating Analog and Microwave Circuits~Kluwer
Academic, Boston, 1990!.
u,

,

k,

ri-
t, J.

13Steven Strogatz,Nonlinear Dynamics and Chaos~Addison-
Wesley, Reading, MA, 1994!, p. 281.

14For a mathematical proof see, for example, D. W. Jordan and
Smith, Nonlinear Ordinary Differential Equations~Clarendon,
Oxford, 1977!, pp. 231–234.

15For a discussion of diffusion on a lattice and in an RC networ
see Ref. 11.

16We have checked numerically and found this relation to be w
followed for N56. See Fig. 3~b!.

17Again, forN56 we have shown numerically that this is accurat
See Fig. 3~d!.

18T. van Duzer and C. W. Turner,Principles of Superconducting
Devices and Circuits~Elsevier, New York, 1981!, p. 185.

19The interested reader should consult, for example, A. Fetter an
Walecka, Theoretical Mechanics of Particles and Continu
~McGraw-Hill, New York, 1980!, pp. 108–115.

20Some care must be taken in a quantitative comparison of the
ladder with the MLA. The number of meshesM and the number
of backbone junctions of the MLA,N, are related byM11
5N. Furthermore, because there are two shunt junctions per
of the MLA and only one inductor per cell of the RL ladder, Eq
~8! must be divided by two to compare with the MLA. Lastly
we make the change of variablesL/R with tc/2p.


