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Single-particle properties of a two-dimensional Fermi liquid at finite frequencies
and temperatures
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We review the leading momentum, frequency, and temperature dependences of the single-particle self-
energy and the corresponding term in the entropy of a two-dimensional Fermi (Fjuidvith a free-particle
spectrum. We calculate the corrections to these leading dependences for the paramagnon model and the
electron gas and find that the leading dependences are limited to regions of energy and temperature which
decrease with decreasing number density of fermions. This can make it difficult to identify the frequency- and
temperature-dependent characteristics of a FL ground state in experimental quantities in low-density systems
even when complications of band structure and other degrees of freedom are absent. This is an important
consideration when the normal-state properties of the undoped cuprate superconductors are analyzed.
[S0163-182¢08)05201-1

I. INTRODUCTION consistent with data on the cuprates.
An alternative explanation is that, although the ground
The two-dimensional2D) nature of the cuprate oxide su- state develops from a FL dt=0, the characteristic FL tem-

perconductors and the fact that their normal-state propertigserature dependence is restricted to low temperatures com-
do not exhibit leading Fermi liquidFL) behavior have lead pared to the high superconducting transition temperafyre
to the suggestion that the ground state is not a FL. In a Flor compared to small energy scales given by large variations
the resistivity should follow &2 dependence as the tempera-in the density of states due to band structure effects such as a
ture T goes to zero in the absence of impurities and it has/an Hove singularity’
been argued that the absence of this characteristic FL behav- The energy- and temperature-dependent characteristics of
ior in several experiments for the cuprate superconductbrs a FL arise from quasiparticle interactions. Corrections to
is evidence that there is a qualitative difference between ththese dependences also arise from the quasiparticle interac-
normal state of cuprates and that in the other metallic systentions themselves at energy and temperature scales which de-
Anderson has argued that the ground state of cuprates ipend on the nature of the interactions. The corrections limit
close to the one-dimensional system in which the elementarthe characteristic FL dependences to the vicinity of the Fermi
excitations are collective modes, spinons, and holons, witlsurface and to low temperature even in the absence of band
spin and charge degrees of freedom decoupled as in the 18ructure and other effects. We investigate the corrections to
Luttinger liquid. Varmaet al® have put forward a model in these leading FL energy and temperature dependences using
which the weight in the quasiparticle pole vanishes logarith-a parabolic band in order to isolate the effects of band struc-
mically atp=p;. This is similar to the case of the Luttinger ture. It is useful to investigate the leading corrections for the
liquid although in that case the weight in the quasiparticleFL with a simplest model where nonessential complications
poles at the Fermi surface vanishes as~(p—p;)*, are absent. Here we calculdié(p,E) and"(p,E) for the
1>a>0. The stability of the FL ground state has been in-paramagnon mod& and the electron gas. The paramagnon
vestigated in perturbation thedfy!! by renormalization- model describes the physical system close to a ferromagnetic
group calculation and bosonization of the fermiodd!* instability where the self-energy contribution comes from in-
These approaches have not revealed any sign of FL breakoherent long-wavelength spin fluctuations through particle-
down other than due to the instabilities of the FL groundhole (ph) channel. The closer the system is to the instability
state familiar from the three-dimensional case: BCS, chargthe stronger are the leading corrections to FL behavior since
density wavg[CDW), or spin density wavéSDW). Metzner  they come from the long-wavelength limit of the effective
et al. have reviewed work on the role of strong forward scat-interaction. This makes the paramagnon model ideal for in-
tering in determining the ground state of Fermi systems investigating corrections and the regions of energies and tem-
different dimension$® As they point out for short interac- peratures over which they can characterize calculated quan-
tions or the Coulomb interaction the properties of Fermi systities. Since the 2D electron liquid has recently been used to
tems in dimensions greater than one are those of usual Fernmvestigate the corrections to FL behavior, we also calculate
liquid. More recently Castellarét al'® have suggested that these corrections for the Coulomb interaction. In these cal-
the anomalous normal-state properties of the cuprates are dualations (p,E) is approximated by theh channel contri-
to quantum critical points associated with antiferromag-bution. Unlike 3D this channel remains important at low
netism and charge density wave instabilities in different dopdensities in 2D so that our results can also be applied to low
ing ranges. In the region of a quantum critical point temperadensities. The difference between 2D and 3D is that the den-
ture provides the only energy scale which it is argued issity of states for a parabolic band at the Fermi surface is
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independent of density in 2D. Consequently repeated scattedependence in the long-wavelength limit. The line integral in

ing in the ph channel remains important at low density in Eg. (4) does not contribute to thE”(p,E) since the imagi-

2D nary part of the integrand is odd ipand gives contributions
In Sec. Il we introduce the paramagnon model and in Sedo '(p,&,) which are proportional ttqﬁ.

[l discuss the results for the single-particle self-energy and

thermodynamic properties. In Sec. IV we discuss the same IIl. RESULTS
kind of corrections for the 2D electron gas. We give our
conclusions in Sec. V. A. Self-energy at zero temperature
The leading dependence gpin the imaginary part of the
Il. MODEL self-energy in%(p,E)=2"'(p,E) +1%"(p,E) on shell is
To calculate the leading corrections to the single-particle &
self-energy we first use a short-range interaction between 2”(p,§p)=,8§§ In % +O(§S), (5)
fermions. The Hamiltonian is 0
where g is independent of the direction for a parabolic band
dgi b
H:pzo Epc;gcpfr 2 , l(Q)Cg,vcp’,o’cg’—q,a'Cp+q,a’ and given by
e ® fl du (1 A

where&,=(p?—pf)/2m, m is the mass of the fermiong; 0 V1—p2\ 2 [(1-u?)+(Ag)?]
is the Fermi momentum, ardis the strength of the interac- o
tion with a cutoff q.. This model, called the paramagnon N 3 Ag (A+1+1°) 1
model, was used by Doniach and Engelsbetrgl!® to cal- > 2 7ol it E————

. . 1- +(A — 2 AE
culate the corrections to the linear temperature dependences [(A=p5+ (Aaw)’] (1=-19 f
in specific heat of normal liquidHe. Within this model the (6)
leading corrections to FL behavior come from low-energy — — — — —
long-wavelength paramagnons. The importance of paramaﬁs: 1/(1+1), Ag=1/(1-1), and 1 =N(0)I, where
nons in liquid *He was suggested by the enhancement of th (0)=m/27h is the density of states at the Fermi surface

observed static paramagnetic susceptibility and were show®" @ 2D parabolic band for up or down spins. The real part
to provide an explanation of the size of corrections to the?f the self-energy for a parabolic band is

linear temperature dependence of the specific heat. The

single-particle self-energy is given by the repeated scattering 3 (p,&y) = — aty— Zﬁgp|§p| _ 7|§p|5’2+ 0(§§), 7

of ph pairs which leads to an effective interaction, 2

Vei(q,w): where, for the paramagnon model,
S(p,IE) =T G(p—q,IE~10)V*(qw), (2 (24 1) 17 min(qe,2p(] @9
qvwl ~ - ]
. (1-13?) mPs
whereG(p,1E,,) is the unperturbed temperature Green func-
tion and w, is Bose Matsubara frequencie¢®™(q,w) has T
two independent channels, the symmetisd and the anti- ~
Y AnET (8b)

symmetric @) channels corresponding to spin exchanges of

0 or 1 and is given by where E;=p?/2m and £yxp; for q.>2p; and &y*q;

1 V(g 3 Vi) otherwise?® The logarithmic behavior is restricted to
5 1=V 21V , 3 |€pl<&o. In the random phase approximatigRPA) the
sx(Q,®) ax(0, @) largest contribution comes from the antisymmetric channel
whereV =1 andV,=—1. Here x(q,w) is the polarization since the contribution of the channel is enhanced by a
function for a 2D parabolic band.At T=0 the self-energy 1/(1— 1)2 factor in the case of a repulsive interaction. The
contribution from the real and imaginary parts on shellgeneric FL behavior i%"(p,£p) is shown in Fig. 1 with a

(E=¢&p) is log fit. Figure 2 shows an interactioh dependence in the
logarithmic scale o, andq. dependence. The cut ofﬂan—
3P =2 [O(&—Ep-g)—O(— &g IVEM(q,6,—&,-q)  ergy & depends only o, and the slopes depends on .
d The g sum in Eq.(4) has a limit of miiq,,2p;], so that the

Ve(g,w)=

= dy log fit for g,= 3.0p; and 5.®; has the same cutoff in the log
+f EE G(p—d.&—1m)V(q,1m), (49  dependence. The log fit is good to within 10% up to

- a £,=0.2E¢ which, however, depends ap. The &,|£,| term

with x(g,)=x'(d,w) +1x"(q,0) in Ve(g,w). The lead- in X'(p,&,) is related to theg,zj In|¢,| term in the imaginary

ing corrections in%(p,E) of interest here comes from the part through the Kramers-Kronig relatfdrand also depends

long-wavelength limit and are contained in the first termonly on long-wavelength properties. In Fig. 3 thg¢,| term

since the second term, the line integral along the imaginarjias been isolated in the logarithmic scale, so that slope 2

frequency axis,w=17, does not contribute to the energy indicates§p2 in In[2'+ag,|. This contribution comes from
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FIG. 1. 2"(p,é,) on a linear energy scale faj,=5.0p; and

3.0p; when| =0.7.

the dependence 0¥°f(q,w) on the variables= w/qu;,*
wheres is the variable which appears j(q,o) in the long-

wavelength limit,

S
I = X(8)=N(0)| —1+ ——0(|s| -1
qILnOX(q,w) X(s) (0) +\/ﬁ®(|5| )
S
+1 ﬁ@(1—|5|) . (9)

As inX"(p,&,), the coefficient is independent gf and the
log fit survives up toé,~§&,. The term is present both for
§,>0 and §,<0. The intercept point of the vertical axis
shows the coefficientr/2) 8 and the curve fo€,<0 ends at
£=—Ey in In|&)|. The|&,|*? term is the leading zero-sound
contribution. This term has a corresponding—(£,,) % term
in 3"(p,&y),%° where&y=(v,s—vy), determined by the ve-

locity of the zero-sound mode,=[(1+ 1 )/\1+21 Ju;.

In 3D the leading dependence XT(p,&p) is 5‘23 and the
leading correction to thisl§p|3, corresponds to the term
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180 |t
160 [ ™\
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FIG. 3. The,|£,| term in the real part oE (p, &,) (energies are
in units of E¢).

5;‘; In & in 2D. The|£,|® depends only on long-wavelength
behaviof* and has a corresponding;, In| £,/&| term in
2'(p,é,). The cutoff in the log,&,, depends on both
I_=N(0)I and g, because of the stronger dependence in
real part ofx*°(q, ). The magnitude of thes&, In &, and
£l €yl terms in 2D and théy| and &} In &, terms in 3D are
enhanced by repeated scatteringptf pairs. The strength of

the repeated scattering depends on the coupling conktant
which is independent gb; in 2D but goes to zero in 3D as
ps—0. As a result unlike, the case in 3D, where thh
channel is not important for low densities, the enhancement
is independent of density in 2D and the results derived here
for 2D remain the leading corrections even in low densities.
However, both in 2D and 3D.(p,E)—0 as the phase space
for holes vanishes. The leading correction term of a 2D FL is
limited to a small energy region which vanishesmsde-
creases in the low density limit.

The dependences &f(p,E) on the variablep andE are
very different. For instance}”(p,E) has aE? In(|EJ/E..)
behavior only forp=p;, whereE, =E_= &, are cutoffs for
E>0 and E<O, respectively. In Figs. 4 and 5 we show
3'(p,E) andX"(p,E) vs E for p=p; and 1. . As p goes
away fromp;, the structure of the self-energy vanishes in-
side the Fermi surfacdor p<p; the structure vanishes out-
side the surfagedue to the step function in the zero-
temperature self-energy expression in Etj.and so there is
a threshold in the self-energy fOE|<[&,_q|min. The sharp
threshold effect is absent for interaction without a cutpff
However, if Ve(q,w) falls off with increasingg, then there
is an effectiveq, and associated with that there is an effec-
tive cutoff in E beyond which (p,E) is reduced in magni-
tude. The most direct probe of tfiedependence &t (p,E)
is in angle-resolved photoemission spectroscopy in which the
spectral density is measured. The quasiparticle peak in the
data depends on tHe dependence ak(p,E) and has been
analyzed for the cuprate superconductors in both the normal
and superconducting stat&st has been found that the line-

FIG. 2. 3"(p,£p) on a logarithm

band (for the sameq.’s but differen
same; the energies are in unitsky).

ic energy scale for parabolic
t 1's the cutoffs&, are the

width of the quasiparticle peak does not varyEswhich
has been pointed as not being the FL dependé&hdée

strongp and E dependence of(p,E) found here for a
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FIG. 4.X"(p,E), the off-shell self-energy, fqp=p; and 1.5 .

2"(p,E) has a very different form frorl”(p, £,). The structure of
3"(p,E) has ag. dependence through the step function in 4.

ticle interactions

FIG. 6. The temperature depend&it(p; .ép,) on a logarithmic
T scale [the circles calculated by the temperature-dependent
x"(q,0)].

simple parabolic band shows that deviations from a simplgjence in they”(q, »,T) does not affect the cutoff, since
E? dependence are to be expected. This is especially the cage x(q,0,T) does not vary much with respect ® for

for cuprates with strong band structure effects and quasipafr < E; in the long-wavelength limit. The leading dependence
fluctuations®

B. Self-energy at finite temperature
At finite temperaturex”(p, £p) is

2"<p,§p>=—§ [f(—&pq)+N(Ep—Epqg)]

XM Ve, &~ &_q),

giving rise to low-energy spin f 3"(p,&,) onp andT is given by

3"(p,&p) = B(éq+ 7 TAIn(max &, T1/To),  (11)
which is shown in Fig. 7. The zero- and finite-temperature
cutoffs &, and Ty are shown in Fig. 8. They have similar
values and increase fay,<2p; and are independent of;

for larger values ofg.. Although the self-energy at finite

temperature does not have explicit step functions as in the
(10)

zero-temperature case, the finite-temperature cutoffs are in-

o . dependent ofg.=2p; since the log behavior comes from
wheren and f are Bose and Fermi distribution functions, low temperatures. Since botl and T, are proportional to
respectively. The temperature dependence. tfps 1ép,) is

plotted for different values of; in Fig. 6;2"(p,£p) calcu-

ps at low densities, the leading FL behavior in the tempera-

ture case is also limited to a region which depends on the
lated with x(q,») evaluated at zero temperature is the soliddensity of the system.
lines and with temperature-dependegt(q,w,T) is the
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FIG.5.%'(p,E), off-shell real part of the self-energy, fpr=p;
and 1.p;. The structure of¥'(p,E) also has ag. dependence

through the step function in E¢4).
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25 . =T . behavior leaves th@2 In T behavior it tends to reach the
linear temperature dependence rapidly. Sifigeis propor-
tional to density, the leading FL behavior survives in a low-

20+ . temperature region which shrinks with decreasing density
and the linear high-temperature behavior is followed at lower
and lower temperatures. The size of the crossover also de-

w15 creases with density. The same behavior is seen in 3D with
& similar crossover properties. Consequently this behavior is
z ol not determined by band structure or low dimensionality and
© it may be misleading to refer to it as Luttinger-like.

05 C. Thermodynamic properties

The contribution from quasiparticle interactions to the

00 - thermodynamic potentialA(), can be calculated by linked

cluster expansioff, After analytic continuation to the real
axis AQ) can be split up inta\ ()4, from a quasiparticle con-
tribution andA (), from a collective mode:

FIG. 8. The cutoffsé, from X"(p,&,) at zero temperature and
To from X (p=p;,&,,T); asq. approaches zer§, and T, have a

linear dependence iq . AQ(T)=-T2, 2 —X(7] 0,10,) Ve (9,0, 100,)
log
the Fermi Dirac distribution term in Eq10). In the high- =AQ. +AQ (13)

temperature limif" (ps ,gpf) is approximated by
First, AQ, is

8 mindc,2py]
z"<pf,§pf>~—BTfT+o

]

=, 12 "

T Ag(T)= ; — n(w)[F(q ) +21%("(q,0)],
where the linear term iff comes from the Bose contribution. (14
2"(ps.€p,) has been graphed in two ways;(py ,gpf)/T2 Vs
InT and IHX"(ps.€,)] vs InT in Fig. 9 for q.=0.1p and
q.=1.0p;. The dashed lines are the logarithmic and linear E -y ¢ —Vix"(q,w)
temperature dependence determined from Egg.and(12). (q,w)—xzs,a " an 1-Vyx'(q,m) ]

The size of the crossover region from the low-temperature

limit to the high-temperature limit is small as can be seen inBY taking a derivativeA (), with respect taT, the shift in
the figure and is fronT=0.02; /kg to T=0.0%; /kg. This the entropy AS, is

is estimated by considering 10% deviation from the fits. Al- .
though the linearT dependence comes from the high- g (T)=— ; f
temperature limit, as soon as the temperature dependence v lal<ac

1207 IF(q,w)
%0 ' ' ' ' ' |q;qc f [ aT

— — - Fits from Eq.(11) and Eq.(12)

where

(15

)
;Tw [F(q o) +212¢"(q0)]

30.0 J ”( )
X (0, ®
] +212 50—
250 2 o7 (16)
20.0 b . .. . . .
9c=1.0p, The second term is negligible since, as shown in the previous

1 section, the temperature dependencg(mw) is weak in the
long-wavelength limit. The temperature dependence in en-

(b T

10.0 \ crossover - \ -
) tropy mainly comes from the first term. The entropy from
50 b 5 quasiparticle contribution is
00 |~ ASy(T)=T,T+T,T2+0(T3), 17
S0
100 BT - ' : -7 9e
80  -60  -40 -20 00 20 40 Fl—ﬁ (AstAy) o’ (189
Ln(T/T,) f f
FIG. 9. T2InT and linearT dependence i2"(p;,&,). The [oe 6£(3)n 188
dotted lines are the fits from Eq&l1) and(12). The left solid line 2 77-'|"2: B, (18b)

is 2 (ps ,gp)/TZ and the right is If(py ,&,)]. The crossover from the _ . . _ _
T2InT to T behaviors has been marked by. The width of the =~ wheren is density of particles and is the Riemann zeta
cross region is~0.01E; for g,=0.1p; . function! Figure 10 shows th&? dependence fag,=0.1p;
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FIG. 10. T2 contributions in entropy from quasiparticle scatter-
ing with the continuum and with the collective mode in entropy; the
solid line is theT? fit, and theT dependence term has been sub-
tracted fromA S, (T). The continuum contribution is- 10 larger

FIG. 11. The incoherenph pair and plasmon contributions to
3"(p,E) for p=p; andp=1.1p;.

than the zero sound contribution. the RPA with local corrections invef(q,w), we use the
frequency-dependent effective interaction

andqg.=p;. The g.-dependent lineal term has been sub- 12%(q, )

tracted. As in Fig. 3, the slope of the term does not depend Vg“(q,w): l—ql , (19

on g.. This term can also be calculated by including oX(0, @)

2'(p,&p) in the quasiparticle spectrum and using the expreswhere Iq=27-re2/esq or | q=2we2N(0)/eSq:O.02 A Yq
sion for the entropy of a noninteracting gas. The quasiparti{Ref. 27 [N(0) is density of states at Fermi leyeFor GaAs

cle spectrum has th&,|£,| term which is directly connected the static dielectric constante; is about 10 and

to T2 term in the entropy? This T2 describes the corrections m*/m=0.067. The only free parameter j§. As pointed

to theI'; T dependence i Sy, to better than 10% up to a out in the discussion of the contact interaction the coefficient
temperatureTg for entropy in Fig. 10 which follows the of the (§§+ wZTZ)In(ma>{§p,T]/TO) dependence i&"(p,&p)
same trend a3y(~&p) in Fig. 8 but is smaller. is determined by the long-wavelength propertie&/8f(q,w).

The collective mode contributiodQ.(T) is given by There are two contributions tB(p,E). One comes from
the zero-sound pole in the symmetric channeVi(q, w). the interaction of the quasiparticles with incoherghtpairs.
Taking a derivative with respect @, one has &2 depen-  This contribution gives the leading FL corrections and was
dence iNAS.,. In Fig. 10,AS, is compared withAS,. discussed in detail above for the contact interaction. The sec-
The contribution tdT? from the collective mode is about 1% ond contribution comes from the interaction of quasiparticles
of the quasiparticle contribution. with the plasmon mode. Although it does not contribute to

The calculations discussed so far using the paramagnon
model have shown that FL behavior is limited to regions of @=0024" | p=001 A"
low energy and temperature which shrink with decreasing 1.000 '
density. The cutoff§, and T, are determined by the finite-
momentum dependence of the quasiparticle interaction. We
now turn to the 2D electron gas which has recently been of

experimental and theoretical interest. e
—11p,

IV. 2D ELECTRON GAS
|27

0.500

A(p.w)

Murphy et al=" have compared their data on the tunneling
conductance in 2D quantum well systems to the expression
for the single-particle lifetime expression derived by Giuliani
and QuinR® using a long-wavelength approximation and .___.._—/
found quantitative agreement if they multiplied this expres- i
sion by 6.3. Jungwirth and MacDon&lchave investigated 0.000 \ .
the same calculation with an effective interaction suggested =1.00 —0.50 0.00 050 1.00
by MacDonald and Geldaftbetween fermions with a static O
|0ng-WaV€|ength limit inVEEf-f and they obtained gOOd fits to FIG. 12. The Spectra| functiom(p,w) when p=p; and
the data. We calculate the imaginary part of the self-energy=1.1p,. As p is away from the Fermi surface, asymmetry occurs.

for the quasiparticles im-type doped GaAs using the RPA. A(p,) in the figure hagh and plasmon contributions. The feature
Instead of applying a static approximation calculated inat w/E;~0.6 comes from the plasmon contribution.
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4n=002A™ | p=0.01 A TABLE |. Crossover temperatures frofi? In T behavior ;)
8.0 8.0 " . ' i to T behavior ) in the temperature dependenceXsf(p;, &, ) of
60 | e the 2D electron gad:; andT, are defined by a 10% deviation from
25 £ 40 crossover : g the fitting curves.
o0 A summnd 1=
g° NS Density (x 10t cm™2) T, (K) T, (K)
207 Loo
d 20 m ’00 e 6.37 25 231
15 Laamy : 1 3.58 20 236
s 3.12 16 258
ot ] 1.93 12 185
T Ln T behavior T behavior 1.59 8 156
0.5 (> —
0.0 . . . . . V. CONCLUSION AND SUMMARY
~0.0 05 1.0 1.5 20 25 3.0 _ o
TIT, We calculated the corrections to FL behavior in the

FIG. 13. Extended plot oE"(p¢,&,,,T) for 2D quasiparticles  single-particle self-energies and in entropy using a contact
for the n-typed doped GaAs system with=1.6x 10" cm 2 The  and Coulomb interaction. We demonstrated that these cor-
inset is plotted by a logarithmic scale and shows a crossover.  rections ta.\ke the f(?rmgp|§p| in %'(p,&p) a.nd gf) In|§p| in .
2"(p,&p) in a region close to the Fermi surface which
shrinks with decreasing density and increasing temperature.

finite E. These contributions andl”(p,E) are plotted in Fig. Izn” particular V\S‘T have shown thlf’ﬂ ;:[dfinite dtemperatures
11 for p=p; andp=1.1p; at T=0. Here3"(p; ,E) is sym- (ps.£p,) rapidly goes over to a linedl dependence even

metric and leads to a spectral density which is symmetric irfor @ parabolic band. This type of linear temperature leads to
Fig. 12. Forp# ps, 3"(p,E) is no longer symmetric iff as @ resistivityecT which has been taken as evidence against a
was pointed out in the discussion of the contact interactionFL ground state in the cuprate superconductors. Our results

Using the parameters for quasiparticlesnistype doped Suggest that an alternative explanation may be that the tem-

GaAs quantum wells the temperature dependence d?erature beIOW Wh|Ch FL behaVior iS seen iS beIOW the Su-
3"(p,E=¢,) is shown in Fig. 13 fom=1.6x10** cm2 perconducting transition temperature. This has also been

which givesp;=0.01 A~ and E;=pZ/2m* =5.7 meV. As  Suggested by Aristoet all” on the basis of band structure

in the contact interaction case there is a cross over fronf(1€Cts in @ 2D Hubbard Hamiltonian. s
T2 In T to linear T behavior which depends on density. The  11iS point has been addressed by Aretal” who have
T2 In T dependence is followed foF,<8 K and theT de- applied magnetic fields to suppress superconductivity in

pendence foll,>156 K for thep;=0.01A"1 system. These 'Itra_ms?o_rt rr:jez?]sure;]ments OT thhe cuprate;s at Iov#]em?e:jatﬁres.
values of T, and T, were determined by requiring the t is claimed that this reveals the normal state. They find that

"(py to fit the T2 In T andT dependences to 10%. The the non-FL behaviors persi;ts. Howc_aver, recent work by
Ez(pf gpf) I ) P . . ° __ Chanet al® suggests that single-particle properties of 2D
T4 In T dependence in the Coulomb interaction is also lim-

ited by the low-density limi in th ; . _electron systems are very sensitive to modest applied mag-
ited by the low-density .|m|t as in the contact.mteractlon netic fields. They found that a pseudogap appears in the den-
case. The crossover regi¢h, to T,) has been estimated for

i " < <h : | he si ¢ thi sity of states in applied fields. A similar resistivity was also
different densities and is shown in Table 1. The size of thisy, ng in transport properties of 2D electron systems in semi-

region decreases with decreasing density system as in the 4. .~tor heterostructures by Simonietral 32 We will ad-

contact i_nteractiqn case.but Is Iarg(_er. . dress the influence of magnetic fields on a 2D FL in a forth-
Quasiparticle interactions of an isotropic electron gas dQ:oming paper.

not contribute to the transport relaxation tiffeHowever,
the results of the calculations discussed here suggest that it is
important to take into account the and E dependences of
3."(p,E) and the plasmon contribution when comparing cal-
culations of single-particle properties in the 2D electron gas This work was supported by the New York State Institute
with experiment data. for SuperconductvitfNYSIS).

the leadingp and E dependence ot”(p,E), it is compa-
rable in magnitude to that from the incohergatt pairs at
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