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Single-particle properties of a two-dimensional Fermi liquid at finite frequencies
and temperatures

Jungsoo Kim and D. Coffey
Department of Physics, State University of New York, Buffalo, New York 14260

~Received 8 May 1997!

We review the leading momentum, frequency, and temperature dependences of the single-particle self-
energy and the corresponding term in the entropy of a two-dimensional Fermi liquid~FL! with a free-particle
spectrum. We calculate the corrections to these leading dependences for the paramagnon model and the
electron gas and find that the leading dependences are limited to regions of energy and temperature which
decrease with decreasing number density of fermions. This can make it difficult to identify the frequency- and
temperature-dependent characteristics of a FL ground state in experimental quantities in low-density systems
even when complications of band structure and other degrees of freedom are absent. This is an important
consideration when the normal-state properties of the undoped cuprate superconductors are analyzed.
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I. INTRODUCTION

The two-dimensional~2D! nature of the cuprate oxide su
perconductors and the fact that their normal-state prope
do not exhibit leading Fermi liquid~FL! behavior have lead
to the suggestion that the ground state is not a FL. In a
the resistivity should follow aT2 dependence as the temper
ture T goes to zero in the absence of impurities and it h
been argued that the absence of this characteristic FL be
ior in several experiments for the cuprate superconductor1–4

is evidence that there is a qualitative difference between
normal state of cuprates and that in the other metallic syst
Anderson5 has argued that the ground state of cuprate
close to the one-dimensional system in which the elemen
excitations are collective modes, spinons, and holons, w
spin and charge degrees of freedom decoupled as in the
Luttinger liquid. Varmaet al.6 have put forward a model in
which the weight in the quasiparticle pole vanishes logar
mically at p5pf . This is similar to the case of the Luttinge
liquid although in that case the weight in the quasiparti
poles at the Fermi surface vanishes aszF;(p2pf)

a,
1.a.0.7 The stability of the FL ground state has been
vestigated in perturbation theory,8–11 by renormalization-
group calculations12 and bosonization of the fermions.13,14

These approaches have not revealed any sign of FL br
down other than due to the instabilities of the FL grou
state familiar from the three-dimensional case: BCS, cha
density wave~CDW!, or spin density wave~SDW!. Metzner
et al.have reviewed work on the role of strong forward sc
tering in determining the ground state of Fermi systems
different dimensions.15 As they point out for short interac
tions or the Coulomb interaction the properties of Fermi s
tems in dimensions greater than one are those of usual F
liquid. More recently Castellaniet al.16 have suggested tha
the anomalous normal-state properties of the cuprates are
to quantum critical points associated with antiferroma
netism and charge density wave instabilities in different d
ing ranges. In the region of a quantum critical point tempe
ture provides the only energy scale which it is argued
570163-1829/98/57~1!/542~8!/$15.00
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consistent with data on the cuprates.
An alternative explanation is that, although the grou

state develops from a FL atT50, the characteristic FL tem
perature dependence is restricted to low temperatures c
pared to the high superconducting transition temperatureTc

or compared to small energy scales given by large variati
in the density of states due to band structure effects such
Van Hove singularity.17

The energy- and temperature-dependent characteristic
a FL arise from quasiparticle interactions. Corrections
these dependences also arise from the quasiparticle inte
tions themselves at energy and temperature scales which
pend on the nature of the interactions. The corrections li
the characteristic FL dependences to the vicinity of the Fe
surface and to low temperature even in the absence of b
structure and other effects. We investigate the correction
these leading FL energy and temperature dependences
a parabolic band in order to isolate the effects of band str
ture. It is useful to investigate the leading corrections for
FL with a simplest model where nonessential complicatio
are absent. Here we calculateS8(p,E) andS9(p,E) for the
paramagnon model18 and the electron gas. The paramagn
model describes the physical system close to a ferromagn
instability where the self-energy contribution comes from
coherent long-wavelength spin fluctuations through partic
hole (ph) channel. The closer the system is to the instabi
the stronger are the leading corrections to FL behavior si
they come from the long-wavelength limit of the effectiv
interaction. This makes the paramagnon model ideal for
vestigating corrections and the regions of energies and t
peratures over which they can characterize calculated q
tities. Since the 2D electron liquid has recently been use
investigate the corrections to FL behavior, we also calcu
these corrections for the Coulomb interaction. In these c
culationsS(p,E) is approximated by theph channel contri-
bution. Unlike 3D this channel remains important at lo
densities in 2D so that our results can also be applied to
densities. The difference between 2D and 3D is that the d
sity of states for a parabolic band at the Fermi surface
542 © 1998 The American Physical Society
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57 543SINGLE-PARTICLE PROPERTIES OF A TWO- . . .
independent of density in 2D. Consequently repeated sca
ing in the ph channel remains important at low density
2D.20

In Sec. II we introduce the paramagnon model and in S
III discuss the results for the single-particle self-energy a
thermodynamic properties. In Sec. IV we discuss the sa
kind of corrections for the 2D electron gas. We give o
conclusions in Sec. V.

II. MODEL

To calculate the leading corrections to the single-part
self-energy we first use a short-range interaction betw
fermions. The Hamiltonian is

H5(
p,s

jpcp,s
† cp,s1 (

p,q,s,s8
I ~q!cp,s

† cp8,s8cp82q,s8
† cp1q,s ,

~1!

wherejp5(p22pf
2)/2m, m is the mass of the fermions,pf

is the Fermi momentum, andI is the strength of the interac
tion with a cutoff qc . This model, called the paramagno
model, was used by Doniach and Engelsberget al.18 to cal-
culate the corrections to the linear temperature depende
in specific heat of normal liquid3He. Within this model the
leading corrections to FL behavior come from low-ener
long-wavelength paramagnons. The importance of param
nons in liquid 3He was suggested by the enhancement of
observed static paramagnetic susceptibility and were sh
to provide an explanation of the size of corrections to
linear temperature dependence of the specific heat.
single-particle self-energy is given by the repeated scatte
of ph pairs which leads to an effective interactio
Veff(q,v):

S~p,ıEn!52T(
q,v l

G~p2q,ıEn2ıv l !V
eff~q,v l !, ~2!

whereG(p,ıEn) is the unperturbed temperature Green fun
tion and v l is Bose Matsubara frequencies.Veff(q,v) has
two independent channels, the symmetric (s) and the anti-
symmetric (a) channels corresponding to spin exchanges
0 or 1 and is given by

Veff~q,v!5
1

2

Vs
2x~q,v!

12Vsx~q,v!
1

3

2

Va
2x~q,v!

12Vax~q,v!
, ~3!

where Vs5I and Va52I . Here x~q,v! is the polarization
function for a 2D parabolic band.19 At T50 the self-energy
contribution from the real and imaginary parts on sh
(E5jp) is

S~p,jp!5(
q

@Q~jp2jp2q!2Q~2jp2q!#Veff~q,jp2jp2q!

1E
2`

` dh

2p (
q

G~p2q,jp2ıh!Veff~q,ıh!, ~4!

with x(q,v)5x8(q,v)1ıx9(q,v) in Veff(q,v). The lead-
ing corrections inS(p,E) of interest here comes from th
long-wavelength limit and are contained in the first te
since the second term, the line integral along the imagin
frequency axis,v5ıh, does not contribute to the energ
er-
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dependence in the long-wavelength limit. The line integra
Eq. ~4! does not contribute to theS9(p,E) since the imagi-
nary part of the integrand is odd inh and gives contributions
to S8(p,jp) which are proportional toqc

2 .

III. RESULTS

A. Self-energy at zero temperature

The leading dependence onjp in the imaginary part of the
self-energy inS(p,E)5S8(p,E)1ıS9(p,E) on shell is

S9~p,jp!5bjp
2 lnUjp

j0
U1O~jp

4!, ~5!

whereb is independent of the direction for a parabolic ba
and given by

b52E
0

1 dm

A12m2 S 1

2

As
3

@~12m2!1~Asm!2#

1
3

2

Aa
3

@~12m2!1~Aam!2#
D '2

~11 Ī 1 Ī 2!

~12 Ī 2!2

Ī 2

4Ef

,

~6!

As5 Ī /(11 Ī ), Aa5 Ī /(12 Ī ), and Ī 5N(0)I , where
N(0)5m/2p\ is the density of states at the Fermi surfa
for a 2D parabolic band for up or down spins. The real p
of the self-energy for a parabolic band is

S8~p,jp!52ajp2
p

2
bjpujpu2gujpu5/21O~jp

3!, ~7!

where, for the paramagnon model,

a'
~21 Ī !

~12 Ī 2!

Ī 2 min@qc,2pf #

ppf

, ~8a!

g'
Ī

4pEf
3/2, ~8b!

where Ef5pf
2/2m and j0}pf for qc.2pf and j0}qc

otherwise.20 The logarithmic behavior is restricted t
ujpu,j0 . In the random phase approximation~RPA! the
largest contribution comes from the antisymmetric chan
since the contribution of the channel is enhanced by
1/(12 Ī )2 factor in the case of a repulsive interaction. T
generic FL behavior inS9(p,jp) is shown in Fig. 1 with a
log fit. Figure 2 shows an interactionĪ dependence in the
logarithmic scale ofjp andqc dependence. The cut off en
ergy j0 depends only onqc and the slopeb depends onĪ .
The q sum in Eq.~4! has a limit of min@qc,2pf #, so that the
log fit for qc53.0pf and 5.0pf has the same cutoff in the lo
dependence. The log fit is good to within 10% up
jp50.2Ef which, however, depends onqc . Thejpujpu term
in S8(p,jp) is related to thejp

2 lnujpu term in the imaginary
part through the Kramers-Kronig relation11 and also depends
only on long-wavelength properties. In Fig. 3 thejpujpu term
has been isolated in the logarithmic scale, so that slop
indicatesjp

2 in lnuS81ajpu. This contribution comes from
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544 57JUNGSOO KIM AND D. COFFEY
the dependence ofVeff(q,v) on the variables5v/qv f ,21

wheres is the variable which appears inx~q,v! in the long-
wavelength limit,

lim
q→0

x~q,v!5x~s!5N~0!F211
s

As221
Q~ usu21!

1ı
s

A12s2
Q~12usu!G . ~9!

As in S9(p,jp), the coefficient is independent ofqc and the
log fit survives up tojp'j0 . The term is present both fo
jp.0 and jp,0. The intercept point of the vertical axi
shows the coefficient (p/2)b and the curve forjp,0 ends at
j52Ef in lnujpu. The ujpu5/2 term is the leading zero-soun
contribution. This term has a corresponding (j2j th)

3/2 term
in S9(p,jp),20 wherej th5(vzs2v f), determined by the ve

locity of the zero-sound mode,vzs5@(11 Ī )/A112 Ī #v f .
In 3D the leading dependence inS9(p,jp) is jp

2 and the
leading correction to this,ujpu3, corresponds to the term

FIG. 1. S9(p,jp) on a linear energy scale forqc55.0pf and

3.0pf when Ī 50.7.

FIG. 2. S9(p,jp) on a logarithmic energy scale for parabol

band ~for the sameqc’s but different Ī ’s the cutoffsj0 are the
same; the energies are in units ofEf!.
jp
2 ln jp in 2D. The ujpu3 depends only on long-wavelengt

behavior22 and has a correspondingjp
3 lnu jp /j0 u term in

S8(p,jp). The cutoff in the log,j0 , depends on both
Ī 5N(0)I and qc because of the strongerq dependence in
real part ofx3D(q,v). The magnitude of thesejp

2 ln jp and
jpujpu terms in 2D and theujp

3u andjp
3 ln jp terms in 3D are

enhanced by repeated scattering ofph pairs. The strength of
the repeated scattering depends on the coupling constanĪ ,
which is independent ofpf in 2D but goes to zero in 3D a
pf→0. As a result unlike, the case in 3D, where theph
channel is not important for low densities, the enhancem
is independent of density in 2D and the results derived h
for 2D remain the leading corrections even in low densiti
However, both in 2D and 3DS(p,E)→0 as the phase spac
for holes vanishes. The leading correction term of a 2D FL
limited to a small energy region which vanishes aspf de-
creases in the low density limit.

The dependences ofS(p,E) on the variablesp andE are
very different. For instance,S9(p,E) has aE2 ln(uEu/E6)
behavior only forp5pf , whereE15E25j0 are cutoffs for
E.0 and E,0, respectively. In Figs. 4 and 5 we sho
S8(p,E) andS9(p,E) vs E for p5pf and 1.1pf . As p goes
away frompf , the structure of the self-energy vanishes
side the Fermi surface~for p,pf the structure vanishes ou
side the surface! due to the step function in the zero
temperature self-energy expression in Eq.~4! and so there is
a threshold in the self-energy foruEu,ujp2qumin . The sharp
threshold effect is absent for interaction without a cutoffqc .
However, if Veff(q,v) falls off with increasingq, then there
is an effectiveqc and associated with that there is an effe
tive cutoff in E beyond whichS(p,E) is reduced in magni-
tude. The most direct probe of theE dependence ofS(p,E)
is in angle-resolved photoemission spectroscopy in which
spectral density is measured. The quasiparticle peak in
data depends on theE dependence ofS(p,E) and has been
analyzed for the cuprate superconductors in both the nor
and superconducting states.23 It has been found that the line
width of the quasiparticle peak does not vary asE2 which
has been pointed as not being the FL dependence.24 The
strong p and E dependence ofS(p,E) found here for a

FIG. 3. Thejpujpu term in the real part ofS(p,jp) ~energies are
in units of Ef!.
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57 545SINGLE-PARTICLE PROPERTIES OF A TWO- . . .
simple parabolic band shows that deviations from a sim
E2 dependence are to be expected. This is especially the
for cuprates with strong band structure effects and quasi
ticle interactions giving rise to low-energy sp
fluctuations.25

B. Self-energy at finite temperature

At finite temperatureS9(p,jp) is

S9~p,jp!52(
q

@ f ~2jp2q!1n~jp2jp2q!#

3Im Veff~q,jp2jp2q!, ~10!

where n and f are Bose and Fermi distribution function
respectively. The temperature dependence ofS9(pf ,jpf

) is

plotted for different values ofqc in Fig. 6; S9(p,jp) calcu-
lated withx(q,v) evaluated at zero temperature is the so
lines and with temperature-dependentx9(q,v,T) is the
circles. As can be seen from Fig. 6, the temperature dep

FIG. 4. S9(p,E), the off-shell self-energy, forp5pf and 1.1pf .
S9(p,E) has a very different form fromS9(p,jp). The structure of
S9(p,E) has aqc dependence through the step function in Eq.~4!.

FIG. 5. S8(p,E), off-shell real part of the self-energy, forp5pf

and 1.1pf . The structure ofS8(p,E) also has aqc dependence
through the step function in Eq.~4!.
le
se
r-

n-

dence in thex9(q,v,T) does not affect the cutoffT0 since
the x(q,v,T) does not vary much with respect toT for
T!Ef in the long-wavelength limit. The leading dependen
of S9(p,jp) on p andT is given by

S9~p,jp!5b~jp
21p2T2!ln~max@jp ,T#/T0!, ~11!

which is shown in Fig. 7. The zero- and finite-temperatu
cutoffs j0 and T0 are shown in Fig. 8. They have simila
values and increase forqc<2pf and are independent ofqc
for larger values ofqc . Although the self-energy at finite
temperature does not have explicit step functions as in
zero-temperature case, the finite-temperature cutoffs are
dependent ofqc>2pf since the log behavior comes from
low temperatures. Since bothj0 and T0 are proportional to
pf at low densities, the leading FL behavior in the tempe
ture case is also limited to a region which depends on
density of the system.

As T increases beyond the degenerate temperature reg
the Bose distribution term dominates the contribution fro

FIG. 6. The temperature dependentS9(pf ,jpf
) on a logarithmic

T scale @the circles calculated by the temperature-depend
x9(q,v)#.

FIG. 7. The temperature-dependentS9(p,jp) on a logarithmic
energy scale atT50.001Ef , 0.005Ef , and 0.01Ef .
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546 57JUNGSOO KIM AND D. COFFEY
the Fermi Dirac distribution term in Eq.~10!. In the high-
temperature limitS9(pf ,jpf

) is approximated by

S9~pf ,jpf
!'2b

8 min@qc,2pf #

pf
T1OS 1

TD , ~12!

where the linear term inT comes from the Bose contribution
S9(pf ,jpf

) has been graphed in two ways,S9(pf ,jpf
)/T2 vs

ln T and ln@S9(pf ,jpf
)# vs lnT in Fig. 9 for qc50.1pf and

qc51.0pf . The dashed lines are the logarithmic and line
temperature dependence determined from Eqs.~11! and~12!.
The size of the crossover region from the low-temperat
limit to the high-temperature limit is small as can be seen
the figure and is fromT50.02Ef /kB to T50.03Ef /kB . This
is estimated by considering 10% deviation from the fits. A
though the linearT dependence comes from the hig
temperature limit, as soon as the temperature depend

FIG. 8. The cutoffsj0 from S9(p,jp) at zero temperature an
T0 from S(p5pf ,jp ,T); asqc approaches zeroj0 andT0 have a
linear dependence inqc .

FIG. 9. T2 ln T and linearT dependence inS9(pf ,jp). The
dotted lines are the fits from Eqs.~11! and ~12!. The left solid line
is S(pf ,jp)/T2 and the right is ln@S(pf ,jp)#. The crossover from the
T2 ln T to T behaviors has been marked by↔. The width of the
cross region is;0.01Ef for qc50.1pf .
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behavior leaves theT2 ln T behavior it tends to reach th
linear temperature dependence rapidly. SinceT0 is propor-
tional to density, the leading FL behavior survives in a lo
temperature region which shrinks with decreasing den
and the linear high-temperature behavior is followed at low
and lower temperatures. The size of the crossover also
creases with density. The same behavior is seen in 3D w
similar crossover properties. Consequently this behavio
not determined by band structure or low dimensionality a
it may be misleading to refer to it as Luttinger-like.17

C. Thermodynamic properties

The contribution from quasiparticle interactions to t
thermodynamic potential,DV, can be calculated by linked
cluster expansion.26 After analytic continuation to the realv
axisDV can be split up intoDVqp from a quasiparticle con-
tribution andDVcm from a collective mode:

DV~T!52T(
ıvn

(
q
E

0

1 dh

h
x~h,q,ıvn!Veff~h,q,ıvn!

5DVqp1DVcm. ~13!

First, DVqp is

DVqp~T!5 (
uqu,qc

E
0

` dv

p
n~v!@F~q,v!12I 2x9~q,v!#,

~14!

where

F~q,v!5 (
l5s,a

nl tan21F 2Vlx9~q,v!

12Vlx8~q,v!G . ~15!

By taking a derivativeDVqp with respect toT, the shift in
the entropy,DSqp, is

DSqp~T!52 (
uqu,qc

E
0

` ]n~v!

]T
@F~q,v!12I 2x9~q,v!#

2 (
uqu,qc

E
0

` dv

2p
n~v!F]F~q,v!

]T

12I 2
]x9~q,v!

]T G . ~16!

The second term is negligible since, as shown in the previ
section, the temperature dependence inx~q,v! is weak in the
long-wavelength limit. The temperature dependence in
tropy mainly comes from the first term. The entropy fro
quasiparticle contribution is

DSqp~T!5G1T1G2T21O~T3!, ~17!

G15
p

6Tf
~As1Aa!

qc

pf
, ~18a!

G252
6z~3!n

pTF
2 b, ~18b!

where n is density of particles andz is the Riemann zeta
function.11 Figure 10 shows theT2 dependence forqc50.1pf
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57 547SINGLE-PARTICLE PROPERTIES OF A TWO- . . .
andqc5pf . The qc-dependent linearT term has been sub
tracted. As in Fig. 3, the slope of the term does not dep
on qc . This term can also be calculated by includin
S8(p,jp) in the quasiparticle spectrum and using the expr
sion for the entropy of a noninteracting gas. The quasipa
cle spectrum has thejpujpu term which is directly connected
to T2 term in the entropy.11 This T2 describes the correction
to the G1T dependence inDSqp to better than 10% up to a
temperatureTS for entropy in Fig. 10 which follows the
same trend asT0(;j0) in Fig. 8 but is smaller.

The collective mode contributionDVcm(T) is given by
the zero-sound pole in the symmetric channel inVeff(q,v).
Taking a derivative with respect toT, one has aT2 depen-
dence inDScm. In Fig. 10, DScm is compared withDSqp.
The contribution toT2 from the collective mode is about 1%
of the quasiparticle contribution.

The calculations discussed so far using the paramag
model have shown that FL behavior is limited to regions
low energy and temperature which shrink with decreas
density. The cutoffsj0 andT0 are determined by the finite
momentum dependence of the quasiparticle interaction.
now turn to the 2D electron gas which has recently been
experimental and theoretical interest.

IV. 2D ELECTRON GAS

Murphy et al.27 have compared their data on the tunneli
conductance in 2D quantum well systems to the expres
for the single-particle lifetime expression derived by Giulia
and Quinn28 using a long-wavelength approximation an
found quantitative agreement if they multiplied this expre
sion by 6.3. Jungwirth and MacDonald29 have investigated
the same calculation with an effective interaction sugges
by MacDonald and Geldart30 between fermions with a stati
long-wavelength limit inVeff and they obtained good fits t
the data. We calculate the imaginary part of the self-ene
for the quasiparticles inn-type doped GaAs using the RPA

Instead of applying a static approximation calculated

FIG. 10. T2 contributions in entropy from quasiparticle scatte
ing with the continuum and with the collective mode in entropy; t
solid line is theT2 fit, and theT dependence term has been su
tracted fromDSqp(T). The continuum contribution is;102 larger
than the zero sound contribution.
d
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the RPA with local corrections inVeff(q,v), we use the
frequency-dependent effective interaction

Vq
eff~q,v!5

I q
2x~q,v!

12I qx~q,v!
, ~19!

where I q52pe2/esq or Ī q52pe2N(0)/esq50.02 Å21/q
~Ref. 27! @N(0) is density of states at Fermi level#. For GaAs
the static dielectric constantes is about 10 and
m* /m50.067. The only free parameter ispf . As pointed
out in the discussion of the contact interaction the coeffici
of the (jp

21p2T2)ln(max@jp ,T#/T0) dependence inS9(p,jp)
is determined by the long-wavelength properties ofVeff(q,v).

There are two contributions toS(p,E). One comes from
the interaction of the quasiparticles with incoherentph pairs.
This contribution gives the leading FL corrections and w
discussed in detail above for the contact interaction. The s
ond contribution comes from the interaction of quasipartic
with the plasmon mode. Although it does not contribute

FIG. 11. The incoherentph pair and plasmon contributions t
S9(p,E) for p5pf andp51.1pf .

FIG. 12. The spectral functionA(p,v) when p5pf and
p51.1pf . As p is away from the Fermi surface, asymmetry occu
A(p,v) in the figure hasph and plasmon contributions. The featu
at v/Ef'0.6 comes from the plasmon contribution.

-
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548 57JUNGSOO KIM AND D. COFFEY
the leadingp and E dependence ofS9(p,E), it is compa-
rable in magnitude to that from the incoherentph pairs at
finite E. These contributions andS9(p,E) are plotted in Fig.
11 for p5pf andp51.1pf at T50. HereS9(pf ,E) is sym-
metric and leads to a spectral density which is symmetric
Fig. 12. ForpÞpf , S9(p,E) is no longer symmetric inE as
was pointed out in the discussion of the contact interacti

Using the parameters for quasiparticles inn-type doped
GaAs quantum wells the temperature dependence
S9(p,E5jp) is shown in Fig. 13 forn51.6310211 cm22

which givespf50.01 Å21 and Ef5pf
2/2m* 55.7 meV. As

in the contact interaction case there is a cross over f
T2 ln T to linearT behavior which depends on density. Th
T2 ln T dependence is followed forT1,8 K and theT de-
pendence forT2.156 K for thepf50.01Å21 system. These
values of T1 and T2 were determined by requiring th
S9(pf ,jpf

) to fit theT2 ln T andT dependences to 10%. Th

T2 ln T dependence in the Coulomb interaction is also li
ited by the low-density limit as in the contact interactio
case. The crossover region~T1 to T2! has been estimated fo
different densities and is shown in Table I. The size of t
region decreases with decreasing density system as in
contact interaction case but is larger.

Quasiparticle interactions of an isotropic electron gas
not contribute to the transport relaxation time.26 However,
the results of the calculations discussed here suggest tha
important to take into account thep and E dependences o
S9(p,E) and the plasmon contribution when comparing c
culations of single-particle properties in the 2D electron g
with experiment data.

FIG. 13. Extended plot ofS9(pf ,jpf
,T) for 2D quasiparticles

for the n-typed doped GaAs system withn51.631011 cm22. The
inset is plotted by a logarithmic scale and shows a crossover.
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V. CONCLUSION AND SUMMARY

We calculated the corrections to FL behavior in t
single-particle self-energies and in entropy using a con
and Coulomb interaction. We demonstrated that these
rections take the formsjpujpu in S8(p,jp) and jp

2 lnujpu in
S9(p,jp) in a region close to the Fermi surface whic
shrinks with decreasing density and increasing temperat
In particular we have shown that at finite temperatu
S9(pf ,jpf

) rapidly goes over to a linearT dependence even
for a parabolic band. This type of linear temperature lead
a resistivity}T which has been taken as evidence agains
FL ground state in the cuprate superconductors. Our res
suggest that an alternative explanation may be that the t
perature below which FL behavior is seen is below the
perconducting transition temperature. This has also b
suggested by Aristovet al.17 on the basis of band structur
effects in a 2D Hubbard Hamiltonian.

This point has been addressed by Andoet al.3 who have
applied magnetic fields to suppress superconductivity
transport measurements on the cuprates at low temperat
It is claimed that this reveals the normal state. They find t
the non-FL behaviors persists. However, recent work
Chan et al.31 suggests that single-particle properties of 2
electron systems are very sensitive to modest applied m
netic fields. They found that a pseudogap appears in the
sity of states in applied fields. A similar resistivity was al
found in transport properties of 2D electron systems in se
conductor heterostructures by Simonianet al.32 We will ad-
dress the influence of magnetic fields on a 2D FL in a for
coming paper.
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TABLE I. Crossover temperatures fromT2 ln T behavior (T1)
to T behavior (T2) in the temperature dependence ofS9(pf ,jpf

) of
the 2D electron gas.T1 andT2 are defined by a 10% deviation from
the fitting curves.

Density (31011 cm22) T1 ~K! T2 ~K!

6.37 25 231
3.58 20 236
3.12 16 258
1.93 12 185
1.59 8 156
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