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Nonlinear generalization of the Bardeen-Stephen model and the Hall angle anomaly
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The two classical models for the moving vortex, one suggested by Bardeen and S®@fhand the other
by Noziges and Vinen(NV), are incompatible regarding the nature of normal core current upon which the
dissipation characteristics depend. In order to resolve this ambiguity, we generalize the BS model by including
the nonlinear convection term. This nonlinear generalization leads to an additional electric field inside and
outside the core which was not accounted for in the BS model. The electric force field in the core is found to
be identical to the NV model. Using this field, we determine the normal core current and the rate of energy
dissipation in the core. The rate of energy dissipation allows us to determine the drag coefficients proposed by
Hagenet al. From these coefficients, we demonstrate the appearance of the negative Hall angle if the effective
pinning force is small compared to the Lorentz forc80163-182@8)03609-1]

I. INTRODUCTION lattice. In the NV modélthe force balance equation for the
normal region of an isolated vortex as a consequence of
A correct account of the normal core current in a movingH<H,, is

vortex core is essential for understanding vortex dynamics
and the nature of energy dissipation. Two of the widely stud- 1 ne nm
ied classical models for the dissipative vortex dynamics are 7 ¢ Ve V)Xo 7wa2v0+0
one developed by Bardeen and Steph@®) and the other
by Noziges and Vinef (NV). In both models, the normal
core current is determined from the force balance equatio
between the driving force which acts on the bulk of the vor-, applied uniform current=nevs . In Eq. (49) of Ref. 2,

tex core and the dissipative force which results in energy, : ;

T ) . of Eq. (2) is taken to be equal tog;. Accordingly the
d;}ssma{;m dr! to the brI:rystr?I IatPcle.t.Hovxéever, g_]ese mOdﬁlﬁormal core currenty.) of the NV model has an additional
showed disagreeable characteristics, demanding us a firg omponent proportional t§(ne/c) vy X ¢, which is parallel

principles-type investigation. : ) i,
In the BS mode[Eq. (4.4) in Ref. 1], the force balance tov, if the Hall angle is negligible.

equation for the normal region of the isolated vortex can be Here we focus on the force field generated outside the
q 9 core of a moving vortex in order to explain differences in the

c2

H —

with v.=vg, for a homogeneous material. Hevg, is the
fbcal superfluid velocity field that can be set\ag=vy for

written as normal core currents of the two models mentioned above.
According to the BS model, the force field around a moving
vortex core i$
1 ne nm_, L0 H 0 0
[ X —_—— —_— =
2 C VL ¢ T ma VC HC2 ’ oV
f(ry=m—. 3
(N=m— 3

wheren is the charge densityg is the size of the coré¢of

Orderg, the coherent |eng)hand m, e, and r are the mass As well summarized in Ref. 3, the force field above is based
of charge carrier, charge, and electron-lattice collision timeon the local London theory where the local electric field is
respectivelyv, andv, are the uniform velocities of the nor- defined by the partial time derivative ofi(nse?) Js, where

mal charge carriers and the vortex, respectivellys the flux ~ Ns is the charge density of superelectrons dgds the den-
quantum hc/2e) with its direction parallel to the vortex line. sity of supercurrent. But the contribution to the eIeEtric field
The first and second terms describe the force balance in cofrom the nonlinear convective derivatii®lCD) vg- Vvg is
nection with the motion of the vortex and the normal chargeabsent in Eq(3) as noticed by Ref. 4p. 84). The NCD may
carriers in the core accompanying momentum dissipation. Abe negligible ifvg is small or uniform. However, if we con-
shown in Egs.(3.8) and (3.11) of Ref. 1, the third term sider the dynamics of the superfluid around the vortex core,
represents the higher-order correction due to the presence @f(r) is neither small nor uniform(with the values of
the magnetic field in the core. According to the BS model,10°~10’ cm/sec near the coreThus, in order to fully ac-
the electric force field inside the core is proportional tocount for the contribution of the NCD to the electric field and
v, X ¢p and the normal core current is parallglithin the  the dynamics of the superfluid, we use the method developed
Hall anglg to the transport current. On the other hand, No-by BS (Ref. 1) and Vijfeijken and Niessen.Using the hy-
zieres and Vinen found that half of the Magnus force drodynamic result on the flow pattern of the incompressible
[(ne/c) (ve1— V) X ] drives the normal charge carriers fluid, we express the electric field in terms of the superfluid
through the core against the dissipative force from the crystalelocity field around the moving vortex core. From this ap-
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proach, we find that there exists an additional electric fieldHere u is the chemical potential per unit mass in the ab-
originated from the NCD in addition to the dipolar force field sence of currents and fields and is set to be a corstamt

shown in the BS model. this work. Using the identity
By using this electric field together with a proper bound-
ary condition for the interface between inside and outside the dvg  dvg . avg vl -
core, we determine the electric field in the normal core of a di- ot Vs VWsm o TV Ve X VX (6)

moving vortex. The electric field is found to be identical to
that of NV (Refs. 2 and Beven if our approach differs from and the London equation, E(p) can be rewritten as
the NV model which is based on Bernoulli's theorem. We
determine the normal core current from the force balance Ns =
equation between the electric field and other necessary dis- ot
sipative forces including the effective pinning force. In addi-
tion to the normal core current of BS parallel to the externalThis equation can also be derived from the Navier-Stokes
current J;), an additional component perpendiculadiois ~ €duations describing the dynamics of two fluids by taking the
found to exist. We also determine the rate of energy dissipdoW-temperature limif p,(T=0)=0].*° In the BS model the
tion (W;s) by assuming that the normal core current is thelinear London equatiordvs/dt= (e/m) E (Ref. 3 is used.
primary source of energy and momentum dissipation re|atea-hUS the effect of the NCD is negleCtEd in association with
to the motion of the vorteXW,is found to depend not only  the electric field, even ¥(r) around a vortex is not uniform
onv, as in the BS model but also on and the effective in general. On the other hand, recently researchérave
pinning force. paid more attention to the effect of the NCD for various
Since the predicted energy dissipation rate differs fromProblems of vortex dynamics.
that of the BS model, the drag force is expected to be differ- We solve this equation by a perturbation method similar
ent. Hagenet al’® presented a conjecture regarding theto that used by BSRef. 1 and Vijfeijken and Niessen\We
proper form of the drag force acting on a unit length of adivide Eq.(7) into a contribution for a stationary vorterep-
moving vortex. They proposed that the Hall ang|e anoma|yesented by the subindex O) and a |eading'0rder correction

can be explained if the drag force is expressed by due to the vortex motion and the transport curréepre-
sented by the subindex 1),

2
Us

2

. e
= EE' (7

farag™ — mvL—avy. 4

Using our expression folss, we determine the drag coef-
ficients » and a. By using these results, we can explain Here,vy, andE, denote the velocity field of the circulating
qualitatively the Hall angle anomaly from the force balancediamagnetic current and the electric field, respectively, of an
equation on a single vortex. We find that the effective pin-isolated stationary vortex,; and E; stand for the leading
ning force and the Hall angle anomaly are closely relatedcorrections due to the vortex motion. Accordingly we can
This finding differs from the theory of Wang and Tifd®  rewrite Eq.(7) as
According to our result, the negative Hall angle appears only

if the effective pinning force is much smaller than the Lor- dvgy dvg -
entz force. o

VS:V50+V31, E:E0+ El' (8)

1)2
sO
7 +Vgo- Va1

e
+0(v2)= —(Eo+ E,).
9

This can be separated into two equations, a zeroth-order

In order to describe the dissipation associated with theequation for the stationary vortex and another for the
vortex motion, we need to determine the force field generieading-order correction terms.
ated around a moving vortex. According to the two-fluid  The zeroth-order equation describing the relation between
model proposed by Landdd; *3this force field is related to  the superfluid flow pattern and the local electric field in the
the motion of the superfluid and the normal fldfdivhen the  stationary vortex is
temperature is not low and the normal fluid density is not
small, the normal fluid may strongly interact with the super- Ngy = vio
fluid. In principle, we need to solve the complicated coupled ot +V
equations of motion for both fluids simultaneously. How-
ever, at very low temperatur¢3 <T,, p,(T)=0], we can  From the fact that, is constant in time, we obtain
assume that only the dissipationless superfluid exists outside
the normal core. All the dissipation is attributed to the nor- m. ,
mal core where excited quasiparticles are confined. The clas- eEO:EVUso- 1D
sical models for the vortex dynamics by NV and BS take this
simplification in the low-temperature limit. We also deter- A result similar to this, only different by the factoig/n on
mine the force field governing the motion of superfluid in thethe right-hand side, was derived by Vijfeijken and Stass

II. NONLINEAR GENERALIZATION OF THE BS MODEL

_eE 10
2 _m 0- ( )

low-temperature limit. who used Navier-Stokes equations.
The equation of motion for the charged superfluid is The equation for the leading order correction is
dvg - e 1 Ngi = e
H:_VMO+E E_E(VSXH) . (5) at +V(V30~V31)ZEE1. (12
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TABLE I. Estimations ofV; andV,,.

Vso
Sample J1 (Alcm?) Pyx (u) cm) Reference Voo + Ve e
T, V1 (cm/seg Vi, (cm/se¢ %%
TIBaCaCyOy  ~10°  ~0.1atT=80-95K _____
104K ~10 1 7 7 ) ¥
YBa,Cuw,0;, 10°-10¢ ~10 atT=86 K
89 K 1-100 10-1® 8
2H-NbSg ~10° ~1latT=42K FIG. 1. The schematic description of the origin for BS's force
72K ~1 1 19 field.
TI,BaCaCuO;,,  ~10 ~10 atT=100 K
107K ~01 1 26 estimations forw; andv in some experimentally observed
YBa;Cus07-5 ~10° ~10 atT=85K cases, we find that; is not always negligible compared with
93K ~10 100 27

v, - In such cases, the physical effect%@vso-vsl) needs to
be properly taken into account by using Efj6) above.

This equation provides a relationship between the electric The physical origins of the two terms on the Ieft_-hand side
field E; and the superfluid flow pattern as a result of theOf Eq. (16) can be .und.erstood by consujenr_]g the isotropy of
leading-order correction. From the information e, this the sup_erflwd’s kinetic energy. The.klneth e”efgy."f .the
equation determinel;. The classical model$ treatvg; by S“p‘grf'“'d changgs from ~the |sotr_op|c _d|str|but|on
using the well-known hydrodynamical result for the flow [Ocvso(r)] for a stauonary vortex to an anisotropic one.for.a
pattern of the incompressible fluid outside the rigid cylindri-MOVing vortex. The motion of a vortex makes the kinetic

cal core of radiug. According to these models, we write the €N€r9y of the superfluid anisotropic as schematically de-
total velocity field of a vortex in the vortex frame as scribed in Fig. 1. It results from the first term of EQ.6)
above. As shown in Fig. 2, the change of the velocity field

vg%‘: Vgo+ Vr+Vgg, 19 5\1/%% results in additional anisotrogyhe second term in Eq.

VBOZV

a2
(VT_VCO)' _2r ,

r I1l. NORMAL CORE CURRENT
wherevg, andv, represent the velocity fields of the back-  |n the previous section, we expressed the electric field
flow and the normal core current in the vortex frame, respecpytside the normal cor&= E,+ E,, with the consideration
tively. At this point, vgo andvc, are to be determined. The of hoth vy, andvy, . E;, combined with a proper boundary
superfluid velocity field in the laboratory frame can be 0b-condition for the interface between inside and outside the
tained fromvgy and the principle of Galilean invariance as normal core, can be used to determine the electric field inside
the normal core of a moving vortéxSeveral different

_tot . . .
Vs(F, 1) =Vo(r = Vi t). (14 poundary conditions have been adopted in flux flow
From this, we writev, as models™*°For example, BS assumed that the total chemical
potential is continuous at the core boundary. However, as
Vo1 =V +Vgo— Vi t- VVg+ O[(v t)2,0 07,0 o). clearly shown by N\2 BS’s condition implies that there ex-

(15) ists a contact force at the boundary. Equivalently, it implies
) o ) . that the Lorentz forcd (ne/c) viX ¢] is dissipated at the
This Expression IS meaningful only when the expansion paggre houndary. Currently no dissipation mechanism confined
rameter ofvg™ is small, that isp t<¢ as in the BS model. g the boundary surface is reported, and it is hard to accept
Using Eq.(15), the expressioiil2) can be rewritten as  Bs's condition as a general one. Here we will use a continu-
ity condition resulted from the Maxwell's equation

> > e
=V Vgt V(Veo- V1) = EEl- (16)

This equation shows thae{m) E; arises from two contribu- VXE+ — —B= 0.
tions. The first term on the left-hand side is identical to the ¢
dipolar force field of the BS modélOn the other hand, the
second term, originating from the NCD and absent in the BSThis equation implies that the tangential components of elec-
model, allows the modification of the electric field if the tric fields are continuous across any boundaryBf Jt is
superfluid flow pattern changes frong, to vgo+Vg;. Real-  bounded. The boundary condition used in the NV model, the
izing from Eq.(4.14 of Ref. 1, which can be rewritten as continuity of the electric potential, implies also that the tan-
vr=wemvL (we iS the cyclotron frequency at the upper gential components of electric fields are equal at the bound-
critical field Hg,), together with the fact that ary.

we>7=0.1-0.01 for most of type-Il superconductors except Using Eq.(16) and our boundary condition, we determine
in the clean limit, we notice the fact that BS considered onlythe electric field inside the normal cofgee Appendix A for
the case withv, >v+. However, as shown in Table I, from detailg,
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samples without pinning. Considering the fact that the effec-
tive pinning force prevents the motion of vort&%%%°
Fp=—vL, we writef, as

1
fo=——yw=—7"v. (21)
a

a2
Herey andy' are introduced in order to denote the intensity

of the effective pinning. From the use of Eq%9) and (21),
we rewrite

e
eE.+f,=———B(2viX ) — V| +V,.) X @,
Hlp= 5 BRI B)— o (VL V) X

Voo — Wl (22)

FIG. 2. The schematic description of the origin for the addi-\yhere we introduced the phenomenological constant
tional force field due tal;.

_27Ta2C Yoo fo

=1 =1- .
(17) A € 2vut¢h fLorentz

€= (2Vr—V_ —Vgo— aZX V) X &,
2ma‘c Thus rewriting Eq.(20) above, we obtain

wherea= % 7/2ma’. In the expression ok, we replacé by

the relaxation timer by making use of the assumption made

by BS that the normal core is in the steady state via the 2 ralc

charge carrier's relaxation to the crystal. We find from a

simple vector algebrésee Appendix A for detaijsthatv,, andv is determined assee Appendix B for details

and azx v, are related to the velocity of the core current

(2BVi—V~V X b= =0, (23

observed in the laboratory frame,, as Ve=UeX Ty,
Ve=Veo+ azXV . (18) Vo= ©c2TUL - (24
Thus Eq.(17) can be written in terms of vectors in the labo- Vey= 3 Bweam(207)+ O (7)),

ratory frame as
According to Eqgs(24), 8 andv, become small if , and the

e magnitude of the Lorentz force fieldl,ren, are comparable.
eEC=2 a2C(2VT_VL_VC)X ¢ (19)
v

_ _ o _ IV. ENERGY DISSIPATION AND DRAG FORCE
This result is a generalization of the BS’s core field

eEZS= — (e/2ma’c) v X ¢ with additional contributions ~ From the expression of the normal core current &4),

from vy andv, to eE,. Wheno,_ is much greater than; and ~ We can determine the rate of energy dissipation. We assume
Eq. (19) reduces tcEECBS_ Vinen and Warren derived an that_the dissipation is via the relax_atlon_ of the nqrmal charge

identical result ag19) using a Bernoulli equatioHowever, ~ C&Tiers to the crystal with relaxation time We find from

their electric field in the core is determined in the vortextn€ use of Eq(24)

frame, while ours in the laboratory frame. The equivalence

of the two results for the core electric field, one observed in

the vortex frame and the other in the laboratory frame, is a

manifestation of the Galilean invariance.

Now v, can be determined from E¢L9) by setting up a Comparing with the energy dissipation rate of the BS model,
force balance equation to be satisfied by the normal charg‘élggg nmwh?rv?/2ma?, we find that the numerical coeffi-
carriers in the core. In general, we can establish the followeient ofvf in Eq. (25) is different only by factor of;. And
ing force balance equation for each charge carrier per unihere exists an additional dissipationy(2), which becomes

Ve,

) nwh?r 5 )
Wiiss= 7a nch'Ec:—z[UL"'(ZBUT) 1. (29
4ma

length in thez direction: negligible if f, is comparable Withf | ent,-
The expression (25) can be used to determine the drag
eE +fy— Tvc=0. (20) force preventing thg motion of vortex. BS asBsSumed that the
drag force was a viscous force nv, from WgZ,. On the

Here f, is the effective pinning force field acting on the other hand, our generalized result(&b), including the con-
normal charge carriers, and the third term denotes the densifjjoution from thg NCD and the effective pinning, depends
of the momentum dissipated inside the normal core per unfdditionally onvz. In the theory of Superfl9|d|ty, a more
time. f, was first introduced by NVRef. 2 and widely used generalized drag forcgy.g= — 7(Va—VL) — 7' ZX (V= VL),

in vortex dynamics:1>81%The expressiori20) is a gener- wherev,, is the local normal fluid velocity, has been pro-
alization of Eq.(4.4) of Ref. 1 which is valid only for posed and investigatéd.?®> Based on this theory, Hagen
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et al.”® made a conjecture that the drag force acting on vortion for the negative Hall angle within the frame work of
tices in the type-Il superconductors can be described by Hagenet al. We set up the force balance equations corre-
sponding to Eq(29) as
fdrag: — 7V —avy (26)

in order to explain the Hall angle anom&K2%?’In support ns€

of the conjecture of Hageat al,, Ferrell proposed a micro- c
scopic theor$ showing a possible dissipative mechanismThe driving force in this equation is assumed to be the Mag-

leading to—avy. His theory showed that thermally excited s force. We use Eq27) for the coefficients of the drag
guasiparticles can interact with vortices via the Andreev reorce. To be consistent with E¢20) where we considered
flectl.on by a screening current. Apart from Ferrell's theory,the effective pinning force, an additional force termyv,

details of the damping force-avr are not fully understood  giq1q in Eq(31). After a simple vector algebra together with

yet. anda in Eq. (27), we find that the negative Hall angle
Here we determine; and a of Eq. (26) in a consistent gccurs if a. (27, ¢ g

way, by assuming that the relaxation of the normal charge

carriers in the core is the only energy dissipation process in a Ne

moving vortex. By treating, andv; as independent vari- F< WP
ables, we obtain fronW s

(Vi—Vv ) X d—(n+ y)vp—avr=0. (31

12
(32)

1+7
7

This condition shows clearly that the effective pinning force,

~ MWaiss nmh’r ~ MWaiss nmh?r(2pB)? represented by andp, is a key factor for the occurrence of
N.  2ma? VL vy oma? VT the negative Hall angle. The expressi@2) implies that the

(27) negative Hall angle cannot occur in the BS limit where the
] ] o effective pinning force balances the Lorentz force, making
Comparing Eqsi27) with Eq. (26), we deducey and write it 30 On the other hand, the inequali2) holds for certain
in a more familiar form ng(T) if the effective pinning force becomes small compared
with the Lorentz force, resulting iB=1. In the flux flow
= nwhzr:nwﬁw — 1hcHe nezT= 1 $H2(0) limit where 8= 1, expressior(32) implies that the negative
oma? ©2°722e 2 m 2 pnc? Hall angle occurs if the temperature-dependent superelectron
(28)  density satisfies the inequalityy(T) <w,7n. This qualita-

This is identical to the result of BEEQ. (4.12 of Ref. 1 Ezg zgr:nenlvte sauppe(;r;t: ;Z%exheélrr;ttaﬁéal i?:itnth?st Iizivcsga-
except for the constant factor of. We also deduce gc app € P 9

. T to be ineffective.
a=7(2B)?. This result shows that the longitudinal drag Wang and Ting™® related the Hall angle anomaly with
force —avy depends on both, and f| en-

pinning effects. By generalizing the NV theory, they pro-
posed that the negative Hall angle appears if the effective
pinning force density is larger than the Lorentz force density.

For a unit length of the single vortex, Hagehal® set ~ Contrary to the conclusion of Wang and Ting, our theory

up the force balance equation between the Magnus force &¥€dicts that the negative Hall angle appears if the effective
the driving force and the drag forde6), pinning force is much smaller than the Lorentz force density.

Two measurements on the Hall angle in the mixed state, one
nee by Budhaniet al?® and the other by Kunchuet al,?” sup-
—~ (Vv X é— v —avr=0. (29 port our theory. Budhaneét al. tried to find correlation be-
tween the Hall angle anomaly and the number of defects
They obtained the following condition for the negative Hall induced by heavy ion irradiation. They found that the Hall

V. HALL ANGLE ANOMALY

angle from the above force balance equation: angle anomaly diminishes as the concentration of defects
1 ) increases. The experiment of Kunchetral. showed that the
(—nse¢>) <7a. (30) increment of the applied curred{ induces an enhancement
c of the Hall angle anomaly.

Inserting the value of
VI. DISCUSSION

n= ¢H02(0): ﬂw r We generalized the BS model by incorporating the effect
pnC2 c of transport currentJ;), that is, the nonlinear contribution
] ) ) ] of convection to the force field generated outside the normal
derived by BS and their own estimation@# nse$/Cwca7,  core. We then determined the electric field in the core and
Hagenet al. concluded that the negative Hall angle is pos-foung that it is identical to that suggested by the NV model.
sible forng(T)<3n. One noticeable problem in the result of This electric field implies that the normal core current in a
Hagenet al. is thata> 7 in most of superconductors except moving vortex core is not necessarily perpendicularto
the extremely pure samples of.,7>1. contrary to the BS model. Another component of the normal
Since we obtained reasonable expressionszfaanda  core current, originated from the NCD, is found to be paral-
(unlike the estimation of Hageat al,, our a is not larger lel to v, . The present study deals with a classical approach
than %) in a systematic way, we try to determine the condi-based on the superfluid hydrodynamics. In the previous
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papef® we studied the normal core current in the moving eE,(a’)-O=eE (a )- O (A3)
vortex core by using the microscopic Bogoliubov—de Gennes ! ¢ '
transformation method. In this microscopic work, in qualita-where r=a*=a—0~. Using Eq.(A2) together with the
tive agreement we also showed that the normal core curreribove boundary condition, we obtain Ed7).
has an other than parallel component to the vortex motion.  The expressiori18) can be obtained by writing the total

In order to explain the Hall angle anomaly, Hagetral.  current observed in the laboratory frafne(r,t)] in differ-
suggested that the drag force has both compongnand  ent ways. As shown in Eq$14) and (15), we can express
vr. By using the drag force suggested by Haggral. and  v(r,t) in terms of the backflow in the vortex frameg),
assuming that coupling between the normal charge carriers
and _the lattice is the onIy_ source of m_omentum Io_ss by a Vs(ryt):Vts%t(r_VLt):V30+VT+VBO_VLt'ﬁVSO-
moving vortex, we determined the coefficienjsanda in a (A4)
systematic way. If these coefficients for the drag force are
used, the Hall angle anomaly can be explained in a selff we write v¢(r,t) in terms of the backflow defined in the
consistent manner. Our calculation shows that the Hall anglgyporatory frameyg=V[(vr—V.)- (a%/r?)r] with v,, the
anomaly appears if the effective pinning force is smaller thamormal core current defined in the laboratory framgr,t)
the Lorentz force. This prediction is well supported by thejs then
experiments by Budharet al?® and Kunchuret al?’ Con-
trary to the theory of Ferréfl which introduces vortex- V(I 1) =Veo+ Vr+Vg. (A5)
guasiparticle interaction, our theory is in agreement with the
conjecture of Hageet al. by considering the energy dissipa- By comparing Eqs(A4) and (A5), we obtain
tion at the normal core alone.

Veo— Vi t-VVg=Vg. (AB6)
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e T
APPENDIX A Vo= —(2BVr—V V)X ¢
) . ) 2mwa’cm
In order to derive Eq(17), we insert Eq.(15) into Eq.
(16) and obtain 1 -
= EwCZT(ZBVT_VL_Vc)X(_Z)- (BY)
e R R - R
mE1= VL Va0t Vr- Vs VIVeo: (Vo= Vit Vo) ] This expression is separated into two parts
(A1)
_1 _1 _
By inserting Vgo=(— h/2mr) @ and Vo 2 @e2TVLTUCY),  Vey=3 weT(2fvT ULX+U("§)2’)
Veo= V[ (Vr—Veo)- (a%/r?) r] into Eq.(A1), we obtain(with
M= HZ, Vr=urk, Veo=van,+ vegyd andv=u5)  andve andug, are
®e,=v o cos 6+ foy sin 6+ ha’ [( )sin 6 _ e ICELE (2 ) (B3)
—E=V|— — vT—U = — ,
m-* 2mr 2mr ame3t T Ve 1+(wc27)2ULy 1+ (wep7)? PoT—vu
2
U|_t . 2
+0coy COS O]+ ———sin0|. (A2) w72 (we27/2)
amer Ucy:—z(ZBUT_ULx)_ T, ULy
1+ (wep7) 1+ (wepT)

As discussed in Sec. lll, the electric force field outside the
coreeE, and the core force fieldE;, which is assumed to For the case of negligibly small Hall angle (<v ,=v)
be uniform, are related by the following boundary conditionand small parameteo.,7, we obtain Eq(24).
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