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Nonlinear generalization of the Bardeen-Stephen model and the Hall angle anomaly
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Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea

~Received 20 June 1997!

The two classical models for the moving vortex, one suggested by Bardeen and Stephen~BS! and the other
by Noziéres and Vinen~NV!, are incompatible regarding the nature of normal core current upon which the
dissipation characteristics depend. In order to resolve this ambiguity, we generalize the BS model by including
the nonlinear convection term. This nonlinear generalization leads to an additional electric field inside and
outside the core which was not accounted for in the BS model. The electric force field in the core is found to
be identical to the NV model. Using this field, we determine the normal core current and the rate of energy
dissipation in the core. The rate of energy dissipation allows us to determine the drag coefficients proposed by
Hagenet al. From these coefficients, we demonstrate the appearance of the negative Hall angle if the effective
pinning force is small compared to the Lorentz force.@S0163-1829~98!03609-1#
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I. INTRODUCTION

A correct account of the normal core current in a movi
vortex core is essential for understanding vortex dynam
and the nature of energy dissipation. Two of the widely st
ied classical models for the dissipative vortex dynamics
one developed by Bardeen and Stephen1 ~BS! and the other
by Noziéres and Vinen2 ~NV!. In both models, the norma
core current is determined from the force balance equa
between the driving force which acts on the bulk of the v
tex core and the dissipative force which results in ene
dissipation to the crystal lattice. However, these mod
showed disagreeable characteristics, demanding us a
principles-type investigation.

In the BS model@Eq. ~4.4! in Ref. 1#, the force balance
equation for the normal region of the isolated vortex can
written as

2
1

2

ne

c
vL3f2

nm

t
pa2vc1OS H

Hc2
D50, ~1!

wheren is the charge density,a is the size of the core~of
orderj, the coherent length!, andm, e, andt are the mass
of charge carrier, charge, and electron-lattice collision tim
respectively.vc andvL are the uniform velocities of the nor
mal charge carriers and the vortex, respectively.f is the flux
quantum (hc/2e) with its direction parallel to the vortex line
The first and second terms describe the force balance in
nection with the motion of the vortex and the normal cha
carriers in the core accompanying momentum dissipation
shown in Eqs.~3.8! and ~3.11! of Ref. 1, the third term
represents the higher-order correction due to the presenc
the magnetic field in the core. According to the BS mod
the electric force field inside the core is proportional
vL3f and the normal core current is parallel~within the
Hall angle! to the transport current. On the other hand, N
zières and Vinen found that half of the Magnus for
@(ne/c) (vs12vL)3f# drives the normal charge carrie
through the core against the dissipative force from the cry
570163-1829/98/57~9!/5369~7!/$15.00
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lattice. In the NV model2 the force balance equation for th
normal region of an isolated vortex as a consequence
H!Hc2 is

1

2

ne

c
~vs12vL!3f2

nm

t
pa2vc1OS H

Hc2
D50, ~2!

with vc5vs1 for a homogeneous material. Herevs1 is the
local superfluid velocity field that can be set asvs15vT for
the applied uniform currentJ5nevT . In Eq. ~49! of Ref. 2,
vc of Eq. ~2! is taken to be equal tovs1 . Accordingly the
normal core current (vc) of the NV model has an additiona
component proportional to12 (ne/c) vT3f, which is parallel
to vL if the Hall angle is negligible.

Here we focus on the force field generated outside
core of a moving vortex in order to explain differences in t
normal core currents of the two models mentioned abo
According to the BS model, the force field around a movi
vortex core is1

f~r !5m
]vs

]t
. ~3!

As well summarized in Ref. 3, the force field above is bas
on the local London theory where the local electric field
defined by the partial time derivative of (m/nse

2) Js , where
ns is the charge density of superelectrons andJs is the den-
sity of supercurrent. But the contribution to the electric fie
from the nonlinear convective derivative~NCD! vs•¹W vs is
absent in Eq.~3! as noticed by Ref. 4~p. 84!. The NCD may
be negligible ifvs is small or uniform. However, if we con
sider the dynamics of the superfluid around the vortex co
vs(r ) is neither small nor uniform~with the values of
106– 107 cm/sec near the core!. Thus, in order to fully ac-
count for the contribution of the NCD to the electric field an
the dynamics of the superfluid, we use the method develo
by BS ~Ref. 1! and Vijfeijken and Niessen.5 Using the hy-
drodynamic result on the flow pattern of the incompressi
fluid, we express the electric field in terms of the superflu
velocity field around the moving vortex core. From this a
5369 © 1998 The American Physical Society
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5370 57KWANGYL PARK AND SUNG-HO SUCK SALK
proach, we find that there exists an additional electric fi
originated from the NCD in addition to the dipolar force fie
shown in the BS model.

By using this electric field together with a proper boun
ary condition for the interface between inside and outside
core, we determine the electric field in the normal core o
moving vortex. The electric field is found to be identical
that of NV ~Refs. 2 and 6! even if our approach differs from
the NV model which is based on Bernoulli’s theorem. W
determine the normal core current from the force bala
equation between the electric field and other necessary
sipative forces including the effective pinning force. In ad
tion to the normal core current of BS parallel to the exter
current (JT), an additional component perpendicular toJT is
found to exist. We also determine the rate of energy diss
tion (Wdiss) by assuming that the normal core current is t
primary source of energy and momentum dissipation rela
to the motion of the vortex.Wdiss is found to depend not only
on vL as in the BS model but also onvT and the effective
pinning force.

Since the predicted energy dissipation rate differs fr
that of the BS model, the drag force is expected to be dif
ent. Hagenet al.7,8 presented a conjecture regarding t
proper form of the drag force acting on a unit length o
moving vortex. They proposed that the Hall angle anom
can be explained if the drag force is expressed by

fdrag52hvL2avT . ~4!

Using our expression forWdiss, we determine the drag coe
ficients h and a. By using these results, we can expla
qualitatively the Hall angle anomaly from the force balan
equation on a single vortex. We find that the effective p
ning force and the Hall angle anomaly are closely relat
This finding differs from the theory of Wang and Ting.9,10

According to our result, the negative Hall angle appears o
if the effective pinning force is much smaller than the Lo
entz force.

II. NONLINEAR GENERALIZATION OF THE BS MODEL

In order to describe the dissipation associated with
vortex motion, we need to determine the force field gen
ated around a moving vortex. According to the two-flu
model proposed by Landau,11–13 this force field is related to
the motion of the superfluid and the normal fluid.14 When the
temperature is not low and the normal fluid density is n
small, the normal fluid may strongly interact with the sup
fluid. In principle, we need to solve the complicated coup
equations of motion for both fluids simultaneously. Ho
ever, at very low temperatures@T!Tc , rn(T).0], we can
assume that only the dissipationless superfluid exists out
the normal core. All the dissipation is attributed to the n
mal core where excited quasiparticles are confined. The c
sical models for the vortex dynamics by NV and BS take t
simplification in the low-temperature limit. We also dete
mine the force field governing the motion of superfluid in t
low-temperature limit.

The equation of motion for the charged superfluid is

dvs

dt
52¹W m01

e

mFE2
1

c
~vs3H!G . ~5!
d

-
e
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Here m0 is the chemical potential per unit mass in the a
sence of currents and fields and is set to be a constant15 in
this work. Using the identity

dvs

dt
5

]vs

]t
1vs•¹W vs5

]vs

]t
1¹W

vs
2

2
2vs3¹W 3vs ~6!

and the London equation, Eq.~5! can be rewritten as

]vs

]t
1¹W Fvs

2

2 G5
e

m
E. ~7!

This equation can also be derived from the Navier-Sto
equations describing the dynamics of two fluids by taking
low-temperature limit@rn(T.0)50#.16 In the BS model the
linear London equation]vs /]t5 (e/m) E ~Ref. 3! is used.
Thus the effect of the NCD is neglected in association w
the electric field, even ifvs(r ) around a vortex is not uniform
in general. On the other hand, recently researchers17 have
paid more attention to the effect of the NCD for vario
problems of vortex dynamics.

We solve this equation by a perturbation method sim
to that used by BS~Ref. 1! and Vijfeijken and Niessen.5 We
divide Eq.~7! into a contribution for a stationary vortex~rep-
resented by the subindex 0) and a leading-order correc
due to the vortex motion and the transport current~repre-
sented by the subindex 1),

vs5vs01vs1 , E5E01E1 . ~8!

Here,vs0 andE0 denote the velocity field of the circulatin
diamagnetic current and the electric field, respectively, of
isolated stationary vortex.vs1 and E1 stand for the leading
corrections due to the vortex motion. Accordingly we c
rewrite Eq.~7! as

]vs0

]t
1

]vs1

]t
1¹W S vs0

2

2
1vs0•vs1D 1O~vs1

2 !5
e

m
~E01E1!.

~9!

This can be separated into two equations, a zeroth-o
equation for the stationary vortex and another for t
leading-order correction terms.

The zeroth-order equation describing the relation betw
the superfluid flow pattern and the local electric field in t
stationary vortex is

]vs0

]t
1¹W S vs0

2

2 D 5
e

m
E0 . ~10!

From the fact thatvs0 is constant in time, we obtain

eE05
m

2
¹W vs0

2 . ~11!

A result similar to this, only different by the factorns /n on
the right-hand side, was derived by Vijfeijken and Stas15

who used Navier-Stokes equations.
The equation for the leading order correction is

]vs1

]t
1¹W ~vs0•vs1!5

e

m
E1 . ~12!
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57 5371NONLINEAR GENERALIZATION OF THE BARDEEN- . . .
This equation provides a relationship between the elec
field E1 and the superfluid flow pattern as a result of t
leading-order correction. From the information onvs1 , this
equation determinesE1 . The classical models1,2 treatvs1 by
using the well-known hydrodynamical result for the flo
pattern of the incompressible fluid outside the rigid cylind
cal core of radiusa. According to these models, we write th
total velocity field of a vortex in the vortex frame as

vs0
tot5vs01vT1vB0 ,

~13!

vB05¹W F ~vT2vc0!•
a2

r 2
r G ,

wherevB0 andvc0 represent the velocity fields of the bac
flow and the normal core current in the vortex frame, resp
tively. At this point,vB0 andvc0 are to be determined. Th
superfluid velocity field in the laboratory frame can be o
tained fromvs0

tot and the principle of Galilean invariance as

vs~r ,t !5vs0
tot~r2vLt !. ~14!

From this, we writevs1 as

vs15vT1vB02vLt•¹W vs01O@~vLt !2,vLvT ,vLvc0#.
~15!

This expression is meaningful only when the expansion
rameter ofvs

tot is small, that is,vLt!j as in the BS model.
Using Eq.~15!, the expression~12! can be rewritten as

2vL•¹W vs01¹W ~vs0•vs1!5
e

m
E1 . ~16!

This equation shows that (e/m) E1 arises from two contribu-
tions. The first term on the left-hand side is identical to t
dipolar force field of the BS model.1 On the other hand, the
second term, originating from the NCD and absent in the
model, allows the modification of the electric field if th
superfluid flow pattern changes fromvs0 to vs01vs1 . Real-
izing from Eq. ~4.14! of Ref. 1, which can be rewritten a
vT5vc2tvL (vc2 is the cyclotron frequency at the upp
critical field Hc2), together with the fact tha
vc2t.0.1–0.01 for most of type-II superconductors exce
in the clean limit, we notice the fact that BS considered o
the case withvL@vT . However, as shown in Table I, from

TABLE I. Estimations ofVT andVLy.

Sample JT (A/cm2) rxx ~mV cm! Reference
Tc VT ~cm/sec! VLy ~cm/sec!

Tl2Ba2CaCu2O8 ;103 ;0.1 atT580– 95 K
104 K ;10 1 7

YBa2Cu2O7 102– 104 ;10 atT586 K
89 K 1 – 100 10– 103 8

2H-NbSe2 ;102 ;1 at T54.2 K
7.2 K ;1 1 19

Tl2Ba2Ca2Cu3O10 ;10 ;10 atT5100 K
107 K ;0.1 1 26

YBa2Cu3O72d ;103 ;10 atT585 K
93 K ;10 100 27
ic

c-

-

-

e

S

t
y

estimations forvT andvL in some experimentally observe
cases, we find thatvT is not always negligible compared wit

vL . In such cases, the physical effect of¹W (vs0•vs1) needs to
be properly taken into account by using Eq.~16! above.

The physical origins of the two terms on the left-hand s
of Eq. ~16! can be understood by considering the isotropy
the superfluid’s kinetic energy. The kinetic energy of t
superfluid changes from the isotropic distributio
@}vs0

2 (r )# for a stationary vortex to an anisotropic one for
moving vortex. The motion of a vortex makes the kine
energy of the superfluid anisotropic as schematically
scribed in Fig. 1. It results from the first term of Eq.~16!
above. As shown in Fig. 2, the change of the velocity fie
(vs1) results in additional anisotropy@the second term in Eq
~16!#.

III. NORMAL CORE CURRENT

In the previous section, we expressed the electric fi
outside the normal core,E5E01E1 , with the consideration
of both vs0 andvs1 . E1 , combined with a proper boundar
condition for the interface between inside and outside
normal core, can be used to determine the electric field ins
the normal core of a moving vortex.1 Several different
boundary conditions have been adopted in flux flo
models.1,2,9 For example, BS assumed that the total chemi
potential is continuous at the core boundary. However,
clearly shown by NV,2 BS’s condition implies that there ex
ists a contact force at the boundary. Equivalently, it impl
that the Lorentz force@(ne/c) vT3f# is dissipated at the
core boundary. Currently no dissipation mechanism confi
to the boundary surface is reported, and it is hard to acc
BS’s condition as a general one. Here we will use a conti
ity condition resulted from the Maxwell’s equation

¹W 3E1
1

c

]B

]t
50.

This equation implies that the tangential components of e
tric fields are continuous across any boundary if]B/]t is
bounded. The boundary condition used in the NV model,
continuity of the electric potential, implies also that the ta
gential components of electric fields are equal at the bou
ary.

Using Eq.~16! and our boundary condition, we determin
the electric field inside the normal core~see Appendix A for
details!,

FIG. 1. The schematic description of the origin for BS’s for
field.
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eEc5
e

2pa2c
~2vT2vL2vc02a ẑ3vL!3f, ~17!

wherea5 \t/2ma2. In the expression ofa, we replacet by
the relaxation timet by making use of the assumption ma
by BS that the normal core is in the steady state via
charge carrier’s relaxation to the crystal. We find from
simple vector algebra~see Appendix A for details! that vc0

and a ẑ3vL are related to the velocity of the core curre
observed in the laboratory frame,vc , as

vc5vc01a ẑ3vL . ~18!

Thus Eq.~17! can be written in terms of vectors in the lab
ratory frame as

eEc5
e

2pa2c
~2vT2vL2vc!3f. ~19!

This result is a generalization of the BS’s core fie
eEc

BS52 (e/2pa2c) vL3f with additional contributions
from vT andvc to eEc . WhenvL is much greater thanvT and
vc , Eq. ~19! reduces toeEc

BS. Vinen and Warren derived a
identical result as~19! using a Bernoulli equation.6 However,
their electric field in the core is determined in the vort
frame, while ours in the laboratory frame. The equivalen
of the two results for the core electric field, one observed
the vortex frame and the other in the laboratory frame, i
manifestation of the Galilean invariance.

Now vc can be determined from Eq.~19! by setting up a
force balance equation to be satisfied by the normal cha
carriers in the core. In general, we can establish the follo
ing force balance equation for each charge carrier per
length in thez direction:

eEc1fp2
m

t
vc50. ~20!

Here fp is the effective pinning force field acting on th
normal charge carriers, and the third term denotes the den
of the momentum dissipated inside the normal core per
time. fp was first introduced by NV~Ref. 2! and widely used
in vortex dynamics.9,10,18,19The expression~20! is a gener-
alization of Eq. ~4.4! of Ref. 1 which is valid only for

FIG. 2. The schematic description of the origin for the ad
tional force field due toJT .
e

e
n
a

ge
-
it

ity
it

samples without pinning. Considering the fact that the eff
tive pinning force prevents the motion of vortex,2,9,10,20

Fp52gvL , we write fp as

fp52
1

pa2
gvL52g8vL . ~21!

Hereg andg8 are introduced in order to denote the intens
of the effective pinning. From the use of Eqs.~19! and~21!,
we rewrite

eEc1fp5
e

2pa2c
b~2vT3f!2

e

2pa2c
~vL1vc!3f,

~22!

where we introduced the phenomenological constant

b512
2pa2c

e

g8vL

2vTf
512

f p

f Lorentz
.

Thus rewriting Eq.~20! above, we obtain

e

2pa2c
~2bvT2vL2vc!3f2

m

t
vc50, ~23!

andvc is determined as~see Appendix B for details!

vc5vcxx̂1vcyŷ,

vcx5
1
2 vc2tvL . ~24!

vcy5
1
2 bvc2t~2vT!1O„~vc2t!2

…,

According to Eqs.~24!, b andvcy become small iff p and the
magnitude of the Lorentz force field,f Lorentz, are comparable

IV. ENERGY DISSIPATION AND DRAG FORCE

From the expression of the normal core current Eq.~24!,
we can determine the rate of energy dissipation. We ass
that the dissipation is via the relaxation of the normal cha
carriers to the crystal with relaxation timet. We find from
the use of Eq.~24!

Wdiss5pa2nevc•Ec5
np\2t

4ma2
@vL

21~2bvT!2#. ~25!

Comparing with the energy dissipation rate of the BS mod
Wdiss

BS 5 np\2tvL
2/2ma2, we find that the numerical coeffi

cient of vL
2 in Eq. ~25! is different only by factor of12. And

there exists an additional dissipation (}vT
2), which becomes

negligible if f p is comparable withf Lorentz.
The expression (25) can be used to determine the d

force preventing the motion of vortex. BS assumed that
drag force was a viscous force2hvL from Wdiss

BS . On the
other hand, our generalized result in~25!, including the con-
tribution from the NCD and the effective pinning, depen
additionally onvT

2 . In the theory of superfluidity, a more

generalized drag forcefdrag52h(vn2vL)2h8ẑ3(vn2vL),
where vn is the local normal fluid velocity, has been pro
posed and investigated.21–25 Based on this theory, Hage

-
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et al.7,8 made a conjecture that the drag force acting on v
tices in the type-II superconductors can be described by

fdrag52hvL2avT ~26!

in order to explain the Hall angle anomaly.7,8,26,27In support
of the conjecture of Hagenet al., Ferrell proposed a micro
scopic theory29 showing a possible dissipative mechanis
leading to2avT . His theory showed that thermally excite
quasiparticles can interact with vortices via the Andreev
flection by a screening current. Apart from Ferrell’s theo
details of the damping force2avT are not fully understood
yet.

Here we determineh and a of Eq. ~26! in a consistent
way, by assuming that the relaxation of the normal cha
carriers in the core is the only energy dissipation process
moving vortex. By treatingvL and vT as independent vari
ables, we obtain fromWdiss

2
]Wdiss

]vL
52

np\2t

2ma2
vL , 2

]Wdiss

]vT
52

np\2t~2b!2

2ma2
vT .

~27!

Comparing Eqs.~27! with Eq. ~26!, we deduceh and write it
in a more familiar form

h5
np\2t

2ma2
.np\vc2t.

1

2

hc

2e

Hc2

c2

ne2t

m
.

1

2

fHc2~0!

rnc2
.

~28!

This is identical to the result of BS@Eq. ~4.12! of Ref. 1#
except for the constant factor of12. We also deduce
a5h(2b)2. This result shows that the longitudinal dra
force 2avT depends on bothf p and f Lorentz.

V. HALL ANGLE ANOMALY

For a unit length of the single vortex, Hagenet al.7,8 set
up the force balance equation between the Magnus forc
the driving force and the drag force~26!,

nse

c
~vT2vL!3f2hvL2avT50. ~29!

They obtained the following condition for the negative H
angle from the above force balance equation:

S 1

c
nsef D 2

,ha. ~30!

Inserting the value of

h5
fHc2~0!

rnc2
.

nef

c
vc2t

derived by BS and their own estimation ofa. nsef/cvc2t,
Hagenet al. concluded that the negative Hall angle is po

sible forns(T), 1
2 n. One noticeable problem in the result

Hagenet al. is thata@h in most of superconductors exce
the extremely pure samples ofvc2t@1.

Since we obtained reasonable expressions forh and a
~unlike the estimation of Hagenet al., our a is not larger
thanh) in a systematic way, we try to determine the con
r-

-
,

e
a

as

-

-

tion for the negative Hall angle within the frame work o
Hagenet al. We set up the force balance equations cor
sponding to Eq.~29! as

nse

c
~vT2vL!3f2~h1g!vL2avT50. ~31!

The driving force in this equation is assumed to be the M
nus force. We use Eq.~27! for the coefficients of the drag
force. To be consistent with Eq.~20! where we considered
the effective pinning force, an additional force term2gvL
exists in Eq.~31!. After a simple vector algebra together wit
h and a in Eq. ~27!, we find that the negative Hall angl
occurs if

ns

n
,vc2tbS 11

g

h D 1/2

. ~32!

This condition shows clearly that the effective pinning forc
represented byg andb, is a key factor for the occurrence o
the negative Hall angle. The expression~32! implies that the
negative Hall angle cannot occur in the BS limit where t
effective pinning force balances the Lorentz force, mak
b.0. On the other hand, the inequality~32! holds for certain
ns(T) if the effective pinning force becomes small compar
with the Lorentz force, resulting inb.1. In the flux flow
limit where b51, expression~32! implies that the negative
Hall angle occurs if the temperature-dependent superelec
density satisfies the inequalityns(T),vc2tn. This qualita-
tive argument supports the experimental fact that the ne
tive Hall angle appears nearTc where the pinning is known
to be ineffective.

Wang and Ting9,10 related the Hall angle anomaly wit
pinning effects. By generalizing the NV theory, they pr
posed that the negative Hall angle appears if the effec
pinning force density is larger than the Lorentz force dens
Contrary to the conclusion of Wang and Ting, our theo
predicts that the negative Hall angle appears if the effec
pinning force is much smaller than the Lorentz force dens
Two measurements on the Hall angle in the mixed state,
by Budhaniet al.26 and the other by Kunchuret al.,27 sup-
port our theory. Budhaniet al. tried to find correlation be-
tween the Hall angle anomaly and the number of defe
induced by heavy ion irradiation. They found that the H
angle anomaly diminishes as the concentration of defe
increases. The experiment of Kunchuret al. showed that the
increment of the applied currentJT induces an enhancemen
of the Hall angle anomaly.

VI. DISCUSSION

We generalized the BS model by incorporating the eff
of transport current (JT), that is, the nonlinear contribution
of convection to the force field generated outside the nor
core. We then determined the electric field in the core a
found that it is identical to that suggested by the NV mod
This electric field implies that the normal core current in
moving vortex core is not necessarily perpendicular tovL ,
contrary to the BS model. Another component of the norm
core current, originated from the NCD, is found to be par
lel to vL . The present study deals with a classical appro
based on the superfluid hydrodynamics. In the previo
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paper28 we studied the normal core current in the movi
vortex core by using the microscopic Bogoliubov–de Gen
transformation method. In this microscopic work, in quali
tive agreement we also showed that the normal core cur
has an other than parallel component to the vortex motio

In order to explain the Hall angle anomaly, Hagenet al.
suggested that the drag force has both componentsvL and
vT . By using the drag force suggested by Hagenet al. and
assuming that coupling between the normal charge car
and the lattice is the only source of momentum loss b
moving vortex, we determined the coefficientsh anda in a
systematic way. If these coefficients for the drag force
used, the Hall angle anomaly can be explained in a s
consistent manner. Our calculation shows that the Hall an
anomaly appears if the effective pinning force is smaller th
the Lorentz force. This prediction is well supported by t
experiments by Budhaniet al.26 and Kunchuret al.27 Con-
trary to the theory of Ferrell29 which introduces vortex-
quasiparticle interaction, our theory is in agreement with
conjecture of Hagenet al.by considering the energy dissipa
tion at the normal core alone.
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APPENDIX A

In order to derive Eq.~17!, we insert Eq.~15! into Eq.
~16! and obtain

e

m
E152vL•¹W vs01vT•¹W vs01¹W @vs0•~vB02vLt•¹W vs0!#.

~A1!

By inserting vs05(2 \/2mr)û and
vB05¹W @(vT2vc0)• (a2/r 2) r # into Eq.~A1!, we obtain~with
H52HẐ, vT5vTx̂, vc05vc0,xx̂1vc0,yŷ, andvL5vLŷ)

e

m
E15¹W F \vL

2mr
cosu1

\vT

2mr
sin u1

\a2

2mr3
@~vT2vc0,x!sin u

1vc0,y cosu#1
\2vLt

4m2r 3
sin uG . ~A2!

As discussed in Sec. III, the electric force field outside
coreeE1 and the core force fieldeEc , which is assumed to
be uniform, are related by the following boundary conditi
of
s
-
nt
.

rs
a

e
lf-
le
n

e

-
l

e

eE1~a1!•û5eEc~a2!•û, ~A3!

where r 5a65a206. Using Eq. ~A2! together with the
above boundary condition, we obtain Eq.~17!.

The expression~18! can be obtained by writing the tota
current observed in the laboratory frame@vs(r ,t)# in differ-
ent ways. As shown in Eqs.~14! and ~15!, we can express
vs(r ,t) in terms of the backflow in the vortex frame (vB0),

vs~r ,t !5vs0
tot~r2vLt !.vs01vT1vB02vLt•¹W vs0 .

~A4!

If we write vs(r ,t) in terms of the backflow defined in th
laboratory frame,vB5¹W @(vT2vc)• (a2/r 2) r # with vc , the
normal core current defined in the laboratory frame,vs(r ,t)
is then

vs~r ,t !5vs01vT1vB . ~A5!

By comparing Eqs.~A4! and ~A5!, we obtain

vB02vLt•¹W vs05vB . ~A6!

The expression~18! results from the above equation.

APPENDIX B

The expression~23! can be written as

vc5
e

2pa2c

t

m
~2bvT2vL2vc!3f

5
1

2
vc2t~2bvT2vL2vc!3~2 ẑ!. ~B1!

This expression is separated into two parts

vcx5
1
2 vc2t~vLx1vcy!, vcy5

1
2 vc2t~2bvT2vLx1vcx!,

~B2!

andvcx andvcy are

vcx5
vc2t/2

11~vc2t!2
vLy1

~vc2t/2!2

11~vc2t!2
~2bvT2vLx!, ~B3!

vcy5
vc2t/2

11~vc2t!2
~2bvT2vLx!2

~vc2t/2!2

11~vc2t!2
vLy .

For the case of negligibly small Hall angle (vLx!vLy[vL)
and small parametervc2t, we obtain Eq.~24!.
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