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Paramagnetic current and dissipative vortex motion in type-Il superconductors
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In order to find the microscopic origin of the components of the paramagnetic current generated in a moving
vortex core, we present a perturbation method to solve the Bogoliubov—de Gennes equations for a moving
vortex in clean type-Il superconductors. The paramagnetic current and its associated dissipation at the moving
vortex core are shown to result from intrinsic concommitant effects. From the present perturbation approach
involving no presupposition of the Magnus force, the long-standing problem of the validity of the two different
classical models is discussed. The components of the derived paramagnetic current are found to be identical to
the classical model of Nozies and Vinen[S0163-1828)03809-0

I. INTRODUCTION II. BOGOLIUBOV —de GENNES EQUATIONS
FOR A MOVING VORTEX

A correct _account Qf the normal core _current In‘a moving Superconductivity concerned with the order parameter
vortex core IS e_sse_nt|al for qnderstandlng VQ”GX dynamllci(r) prompted Bogoliubov to introduce the well-established
and energy dissipation. Ignoring the contribution of the diagqyojiuboy equationd® These equations are essentially a
magnetic current in the core, we consider thel normal Corgeneralization of the ordinary Hartree-Fock equation for
current only from the paramagnetic currdfC).” Two of  many-pody systems into superconductivity by introducing
the well-known classical models for the dissipative motionthe effects of the superconducting pair potentidlr), in
of vortex are one developed by Bardeen and Stept®8)  addition to the ordinary scalar Hartree-Fock poteritia(r).
and the other by Nozies and Vinef(NV). In both models, By solving the Bogoliubov equations involving a magnetic
the normal core current is determined from the force balancield, that is, the BdG equatiofis, Caroli et al.”® were able
equation between the driving force which acts on the bulk ofo describe the low-lying excited states of quasiparticles in
the vortex core and the dissipative force which results inthe core of a vortex line. The Hamiltonian for the BdG equa-
energy dissipation to the crystal lattice. In the subsequertions are written as
paper, we largely focus, on the nature of energy dissipation,
the drag force, and Hall angle anomaly, based on the macro- . 1 ~,€ 2 0 A(r)
scopic classical descriptions depending on the superfluid Ho 2m p-o EA(r) —Er A*(ry 0 |
hydrodynamic$. (1)

In the present paper, we focus on the microphysical ori- .
gins of the components of the normal current in order to find1€rep andA are the momentum of charge carriers and the
differences between the two well-known classical modelselectromagnetic vector potential, respectivedy. is the z
For this cause, we resort to the application of thecomponent of the Pauli matrix art is the Fermi energy.
Bogoliubov—de Genne$BdG) equation®® for a moving  Considering the cylindrical symmetry of the vortex structure,
vortex. Earlier, in their pioneering works Caroli, De Gennes,Caroli etal. chose a gauge such that the pair potential
and Matricort® showed that the BdG equations can be used(r)=|A(r)|e™'*"), with the anglef(r) about the center of
for the microscopic descriptions of quasiparticle low-energythe vortex measured from theaxis as shown in Fig. 1. The
excitations in the core of an isolated stationary vortex "nesolutéc;r;s of the BdG equations are given by the spinor
for extreme type-Il superconductors. Their work became 7 of
basis of the well-known normal core model of the stationary N
vortex, upon which the two classical modéBS and NVj 3 (r):(ua(r,z) fa(f))
are founded. In this paper we present a generalized perturba- " °¢ v,(r,z) f(r))’
tion approach of solving the BdG equations by directly treat- (2)
ing a moving vortex on the basis of a unitary transformation ) i )
involving a Galilean transformation between the laboratoryVhereke is the Fermi wave vectog an arbitrary angle, and
frame and the moving vortex frame. We find from this ap-2# an odd integer. The explicit forms of the radial function
proach that the physics of a moving vortex can be naturallf» andf, are given by Eqs(4)—(8) of Ref. 7. From this
decomposed into a part associated with a stationary vortesolution, Caroliet al. found that forA2/Ex < e<A., the den-
and the other related to the motion of the vortex. The lattesity of states associated with the energy levels of a bound
involves various concommitant effects which can be deterquasiparticle is the same as that in a normal region of a
mined from the perturbation terms. From each perturbativeadius close to the coherence lengthThe vortex core may
effect linear in the velocity of the vortex, the PC componentsbe approximated by a normal region of sigzeThis simpli-
in the core of the moving vortex will be determined. fied approximation of the complicated vortex core structure

=g? +

) — eike2 cosﬁei(M—ZrZ/Z)(i(r)(
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andH, is given by Eq(1). The perturbation terms above are
valid only for the condition ofv t<¢ for a slowly moving
vortex.H, above shows the contribution of the spatial varia-
tion of the order parametelzlt9 represents the small phase
shift of the order parameter due to the slow motion of the
vortex. I:|,,L introduces the coupling of the motion of quasi-
particles to the motion of the vortex along. The vortex
frame is assumed to move with uniform velocity with
respect to the laboratory framéI.A1 and H A2 Fepresent the
FIG. 1. Geometry used in this work. coupling of the vortex motion with the magnetic field. The
magnetic field effect was ignored in the original work of
is known as the normal core model and is widely used bycaroli et al,” since it is of ordeH/Hg,<1.
various researcheficluding BS and NV.

In order to find the origin of the PC without any presump-
tion, we introduce the unitary operatbr

Tr

Ill. ANALYSIS OF PERTURBATION TERMS

We first explore the first perturbative Hamiltonian term
. i i |3|A. In this work, we assume that the time required for re-
U=exg zvit-p—zmv-r, (3)  laxation of the vortex motion to a steady state is of the order
of the electron scattering time as in the BS model. The

. ~ " . . 7’8 .
which involves a Galilean transformation between the laboPasis{doa; of Ho obtained by Carolit al."® will be used
ratory frame and the frame of the moving vortex. This transfor the perturbation treatment oHg+H,)¢=€¢. H, can
formation allows the invariance of the BdG equations. Thuspe decomposed into twtg parts in association with the pair
. . Y AN A . i — —16(r).
introducing the transformatiod (p,r)=0"A,0, we obtain  PotentialA(r)=[A(r)[e "
the following effective Hamiltonian for a vortex moving

with a small velocityv, : Ay=H+H,,
H(plr)zHO_I_HA+H0+HUL+HA1+HA2+HAP ﬂ _( 0 |V|_T[€((9)]|A(f)|em)
+0((v,t/§)?), @ i [Va))]awme? 0 |
where the perturbation terms linearvp are (6)
A 0 wtvAm : ( 0 —vm[v*m(r)l]e”)
AT > ) Hpo= R , .
—v t-VA* (1) 0 SRR NG K 0
2mi The first termH ,; represents the contribution of the diamag-
0 Ay netic current {4,) around the vortex line, since the gradient
|2|0: - , of the phasé is proportional to the superfluid velocity. The
— %A*(r)vr r 0 microscopic origin of the force fielfi=—mv, - Vvg, in the

BS model is related td A1 above. Both the perturbative
treatment ofd ,, and the BS model are physically valid only
i :( —p-vp. O ) ®) for v, 7<¢. H,, is associated with the spatial variation of

’ the amplitude of the order parameter. Here we assume that
H,, vanishes, considering the uniform normal core. It will
e be of great interest. to treat this term more accurately using a
—[v.t-VA()]p 0 numerical method in the future.
me In the expressiof6) above, we notd (4) = (1/r) & for the
0 mi(:[VLt‘ﬁA(r)] -p ’ a(_@:jlgometric configuration shown in Fig. H,, is then written
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By using the solution of Carokt al.” shown in Eq.(2), we
obtain (see Appendix A for detailed derivatipn

ULTkFLAOZO
Ee

where A, is the order parameter far away from the vortex,
that is, r=>¢. A similar result in form was obtained by
Simanek’ and Hsut'!? using different approachesletailed
discussions are presented in Appendix A

Using this matrix element and the perturbation theory, w

expandd,, in terms of,, and obtain(see Appendix A for
derivation),

<97>0a||:|A1|97>03>2ii5ﬂa,u +1 (8)

B

&aza)Oa—i_A(a)OaJrldl_&Oa*l)l (9)

where A= —iv 7Kg, . These eigenvectors are orthonormal
to leading order,

| #1d07=s,p+ 00D, (10

e
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FIG. 2. The paramagnetic current due qu. Dashed lines
represent only the selected values for the magnitude of the PC at
#=0°, 30°, 60°, respectively. Solid lines are the angular-averaged
uniform PC.

averaged PC, represented by the solid lines in Fig. 2, is seen
to be parallel with the normal core current of the BS model.
Thex component of the normal core current,, in the BS
model is proportional t@, ,? v = wc,7v, , With the cyclo-

tron frequencyw.,= eH;,/mc. Using the relation

fm'_ T ed

m mac mc

er
HC2§21

From the explicit relation between the quasiparticle operatorgye obtain from Eq(13) the PC in the low temperature limit,

7’2(7,1) and the solutiongp,, , '3

B for detailg

we obtain(see Appendix

V= Voat A Va1t You-1) for all a. (1D

=ne(w¢7U|) mé?=nev &, (14)

[

Thus the relation betwean,, andv, , determined from our

These operators satisfy the required anticommutation relgyicroscopic investigation of the PC, is obtained to be iden-

tion to leading order,

{Ya Vi = Sapt O 1/£)?). (12)

tical to that of the BS model.
Using the geometry shown in Fig. 1, the matrix element

of H, is (see Appendix A for derivation

We can determine the paramagnetic current at the core of the

moving vortex, by using the expressio84) shown in Ap-
pendix C and the relation®)—(12) shown above. We obtain
the spatially averaged PC due to the vortex motion,

I

_e_i0<'y;3+l'yﬂ>)
iefikg,
2m

ie

fike, ot
5m 2'8: (€ vpyps1)

; {€'[A*f(ep) + Af(€0ps1)]

_efiB[Af(EOB)—i—A*f(€0,3+1)]}

efikd v, 7
=~ m c0s02 [f(eop)~T(eopr0)],
(13
where the Fermi distribution functionf(epg)= 1/1

+es/(eT) and n is a unit vector with an angle with
respect toX. In the low-temperature limit, the summation

(hoalHl &0B>25#a,y5tlﬁULkFL- (15

The perturbationd, displays nonzero off-diagonal matrix
elements foru,=uz* 1.
The matrix elements in Eq15) can be used to determine

the eigenvectorp,(r) satisfying the equationHy+H,) ¢
=e<}. We find, using a perturbation method similar to that
described in Appendix A,

Go(1)= boa—Boas+1+Bdoa_1+0((v /)2, (16)

with B= %v kg, Er, /A2. The eigenstates found above sat-
isfy the orthonormality condition to leading ordern ,

f bl pd3r = 8,5+ O((v, t/€)?). 17)

The quasiparticle operatoryi and vy, which diagonalize the
HamiltonianH=H,+H , can be determined from the eigen-
state¢; and are expressed in terms gf, and yo,,

over B becomes 1. The dashed lines in Fig. 2 depict the

computed PC due tbl,, for §=0°, 30°, 60°. The angular-

Y= You—BYoar1TBYoa_1+O((0 t/€)D). (18



57 PARAMAGNETIC CURRENT AND DISSIPATIVE VORTEX ... 5365

We also analyze other perturbation terﬁt§L, Has, and

H A, in order to assess their contribution to the PC. As shown
in Appendix D, the off-diagonal matrix elements of these
perturbations are negligible compared with other terms de-
scribed above.

Assuming that the interaction between the PC and the
crystal lattice is the only source of momentum loss by a
moving vortex, we define the drag force preventing the mo-
tion of vortex to befyg=—J (nm/'7) Vned?r.® From Egs.
(14) and(21) for thex andy components of the orientation-
averaged PC, we find the drag force,

_ nm ,.nm A A 5
~ 1:drag__ Tvncd r=- T(Unxx+vnyy)775
FIG. 3. The paramagnetic current dueHg. Dashed lines rep-
resent only the selected values for the magnitude of the PC at nle| ¢
6=0°, 30°, 60°, respectively. Solid lines are the angular-averaged =— v

uniform PC due tcH ,.

X— nlel¢ vLy. (22)

L

C C(l)czT

This result is qualitativelybut not quantitatively consistent
These operators satisfy the required anticommutation relawith the conjecture of Hageet al!>'® regarding the Hall
tion to the leading order, angle anomaly’~2% They suggested that, if the drag force
+ . 2 has components along andv, Xz analogous to the theor
Var v6}= dap T O((w L UE)). 19 5t the su?oerfluicf,‘“”r:%e HaIILangIe invgrsion can then ge
The off-diagonal matrix elements of E{.5) cause the PC to explained simply from the force balance equation for a single
be different from that of a stationary vortex. Similarly to the vortex, assuming that the NV result for a very-low-

previous case off ,;, we obtain the PC due td,, temperature region is valid for the high-temperature region
nearT.. Contrary to the Ferrell's theof§ which assumes

e(fike )% Ef, that there exists a drag force due to the Andreev reflection of

< f n~de2f> = T quasiparticles by the diamagnetic current outside the vortex

core, our theory, based on no presumption, shows that dissi-
pation due to the drag force occurs in the normal core alone.

X sin 02 [f(eop) —T(egp+1)]- (20 The core contributions to the damping tesyp and the Hall

B force coefficienty, were obtained from the Green’s function

In Fig. 3 we show the angular-averaged PC values of th@pproactt? We find that, in the limitw,7>1 5. and y,
expressior(20) which are parallel wittv, . In addition to the ~ of Otterlo et al. become identical to our drag coefficients as
component of the normal core current parallel withthat ~ shown in Eq.(22).
we obtained earlier, this result shows that there exists an
additional PC component parallel with as in the NV IV. DISCUSSION
model. Using the relationsn=kZ /27 and AZ/Eg,
= #2/m¢&? the angular averaged PC from the expres$Ri)
is reduced to, in the low-temperature limit,

In order to study the dissipation mechanism in type-II
superconductors, we examined the PC generated in a moving
vortex core based on a first-principles microscopic approach.

. For such study we solved the Bogoliubov—de Gennes equa-
‘<f Y'de2f>2nevL7T§2- (21)  tions for a moving vortex via a perturbative approach. We
find from this perturbation method that the PC and its asso-
The physical origin of the,, component here, with charac- ciated dissipation at the vortex core result from the following
teristics different from the BS model, lies in the phase shiftmicroscopic concomitant effectgl) The PC component
of the order parameter due to the motion of the vortex withalongv; was shown to originate from the spatial variation of
velocity v, as discussed in Sec. Il. Thu$, is shown to the phase in the order parameter, #®dthe additional com-
allow an additional velocity component of charge carriersponent of the PC along the direction of the vortex motion,
induced by the motion of vortex. The Galilean boost ap-v, , is caused by the phase shift of the order parameter due to
proach of the guasiparticle wave function considered bythe motion of vortex. Thus this finding clarifies the cause of
Hsu'! yielded an identical component of to the one shown the paramagnetic current as a result of vortex motion. From
in Eg. (21). In the present study we solved the effectivethe present investigation involving no presumption, we ob-
Hamiltonian for the moving vortejEg. (4)] in the laboratory  tained an additional component of the PC along the direction
frame, while Clear} discussed the core current in a frame atof the vortex motiony, , which was absent in the BS model.
rest with the vortex by the Green’s function method. AsThe PC was found to be qualitatively equivalent to the clas-
pointed out by Cleary the relative velocity of scatterers duesical NV model but not in their magnitudes. In addition we
to the vortex motion is neglected in his study. We found thafound a drag force which validates the conjecture of Hagen
the phase shift of the order parameter is responsible for thet al.
component of the core current parallel to the vortex motion. In this work, we used a time-independent perturbation
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theory for the study of the paramagnetic core current. Howtook Bessel functions fof ; (r),*? while the solution ob-
ever, a time-dependent perturbation approach is needed tained by Caroliet al.” was used in our andi®anek’s ap-

include dynamic effects on normal current, vortex motion,proach.

and other properties such as the Hall anomaly and drag Co- The matrix element( o, |F 4| &503> can be calculated
efficients. The time-dependent BAG equations can be used @mjjarly. We write

order to study the reactive effects of core fermion excitations

on the inertial mass of a vortex and to predict anomalous . . | i2mou N ) ig
velocity-dependent inertial mask. (boalHol bog)= 7 f [us(r)vg(N]A(r)]r sin de
ACKNOWLEDGMENTS —Ug(Nvk(r)|A(r)[r sin 6e'*]dr
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_ei(l’-ﬁ_ﬂa_l)a]daf |A(r)|

X[=f (O g+ (nfg(r)]r3dr.
APPENDIX A (A4)

The matrix elememéi)Oa'HAﬂa)Oﬁ) can be calculated us- We perform the radial integration using the above step pair

ing the analytic expressions fdth of Caroli et al.” Using potential(A2) and obtain
Egs.(2) and(7), we write

<$Oa||:|v|_|a)03>z 5Ma,uﬂt1ﬁvaFJ_ . (A5)
<&Oa|HA1|(}OB>:iULtf uZ(r)vB(r)lA(r)ﬁ cos fe ¢ Here we prove the relatio(®) in Sec. Il. Defining the pro-
r jection operators,

1 )
—ug(Ny (N[AM)]~ cos #e'?|d3r P o5} (Fosl Q:C;ﬁ ool .
=ithLZ%f [el(up=rat DO and using
- 1 )
+e|(ﬂﬁiﬂa*1)9]d0‘[ |A(r)| |¢B>:mHAl|¢'B>' (A?)

we write
X[=f (N g+ (nfg(r)]dr,
(A1) |¢p)=(P+Q)|dp)=|dop)Posldp)
whereL, is the length of vortex. The angular integration part 5 | boa) PoalHatll bon) )
gives the selection rul@, , .i. In order to perform the +a#ﬁ P +O((Ha1)9)-
analytic integration of the radial part, we need a simplified (A8)

model for the order parameter:
Using the matrix element(A3) above and setting

(A2) <9?)05|<3>ﬁ>=1, we obtain,

bs=boptAlbogi1t dos-1)+O((Ha1)?), (A9

, whereA= —iv tkg, . In the expression above, we used the
o e _ Cu tkg, AZ following approximatiofy®
<¢Oa|HA1|¢OB>:iIg,ua,MBtIE—F

0 ifr<g

A=A i e

and we obtain

AZ
L CutA., €p €op-1= €op~ €op-1= - (A10)
:_I5'U“a‘ll“ﬁtlT (A3)

HereC is a humerical constant depending on the parameters APPENDIX'B

oflthe s¥stemh "kehlthv § A, andEg, . Usir:jg typical The quasiparticle operatosg,; andy!, (Refs. 11 and 18
values for the high-temperature superconductors, e.g aL .

A./Eg, =0.1 andkg, £=10, we obtainC=0.1. Smanek’ are related tap,, in Eq. (2) in Sec. Il,
also used the above step pair potentia?) (Ref. 13 and Y s w(n
found C=0.35° Hsu foundC=0.5 by using a method based ( “T) = f r( 1 ! ) b,
on the integration by parts. For the radial integration, Hsu i (r) = y(r)

(B1)
YI@
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Wheredf}r'l .., are the field operators. Using E§) of Sec. APPENDIX D

I, we obtain , ~ .
The matrix element oH, can be calculated using the

eigenstates}soﬁ. For the geometric configuration shown in
Fig. 1, we have

O T T
yaT_70aT+A(’YOa+1T+7001—1T)1 (BZ)

T . f T T
Yal = Y0a, T AYoa+1, T Yoa—1))-

The conventional notation defines a basis from thedset <¢Oa|HvL|¢OB>:<¢Oa|_Uzp‘VL|¢OB>:iﬁULJ (uz vz)
with positive eigenvalues,, .'® Accordingly the quasiparti-

cle creation operators are defined only for the positive energy

states. Hsu introduced a compact notafibwhere he used a X
basis including both positive and negative eigenstates, in or-

der to eliminate the spin degeneracy. According to Hsu's ] ) ] ] ] ]
notation, fore,>0, For the step pair potential defined in Appendix A, we find

that the differential operato? acting on the eigenstate,

y-V 0

~A >

0 —yV

(uﬂ>d2r. (D1)
Up

YZE’}’ZT (B3) “fg(r)“%ﬁ—llz(kar)a U,e“f,;(r)oc%ﬁulz(kar) gives
and, fore, <0,
y-Vu (r)=k£sin 0(e'u, —e uy. )
Yo=Y al- (B4) P2 o e
i i ' k . . A,
The inverse transformation of E@B1) is B % cos f(e ”uB,1+e"”uB+l)+O EFL)'
Pl =2 yhuk(n), ¢l(nN=2 ywar). (B5) (D2)

Here the Bessel function identityJ;;(r)= %[Jg_l(r)
—Js:1(r)] has been used to derive the term proportional to
(B6) sing. Another Bessel function identity B{r)Js(r)
=3[Jp-1(r)+Jg.4(r)] is used to derive the term propor-
tional to cosé. The effect of the differential operator acting
onuv g can be obtained simply by replacing by v in the
The paramagnetic current at the moving vortex core ca@bove result. This relation was first derived by Héwyho
be expressed in terms of the field operator as assumed the quasiparticle distribution functionsandv , to
be Bessel functions through the whole range .obsing the
relation in Eq.(D2), we find the matrix element

Then Eqg.(B2) can be rewritten as
722 ’yga+A(’yga+1+ ’yga*l)'

APPENDIX C

ief -
B(N)= =502 WNVy(D+He. (€Y

A - y 2
The projection of this current on the unit vectoiis (@0l —o*vi- p|¢03>°‘5ua,uﬁtlj {[f521(n)]

ieh R . —[f5.(r)?}rdr=0. (D3
n-Jp(r)=—%z in-Vy,(n+He (C2
p By using similar method, we also determine
Using the relationB5), we obtain

<&$Oa|VL'p|a)Oﬁ>z5ua|;LBil%hULkFJ_- (D4)

LNV (N =—-2 yhygleUiu, . .
p This matrix element is identical to that &f, except for the
numerical coefficieng.

(€3 The matrix element ofl a1 can be rewritten for an iso-
lated vortex withA(r)=—1rH @,

—i6, %
—e UjUy41],

B, ke . _
WO V(D=2 vayile vaoi =il

Here, 0 is the angle of the unit vectar with respect to the |:|A1=1wctvL( X-p AO ) | 05
axis. By inserting Eq(CJ) into Eq.(C2), we obtain, in terms 2 0 xp
of v} andy,,
wherew, is the cyclotron frequency &, the magnetic field
,  iefikgy ot it at the core. From EqD4), we find that({ ¢o,|Haz| bog) is
j n-Jpd’r 2m % (€77pYp:17€ Y pa¥p)- smaller thar( ¢,/ H ¢ o) by a factor ofw,r if t is replaced
(C9 by the proper relaxation time




5368

Using v, -A=3Hur cosé for the magnetic vector field

of the isolated vortex, the matrix elemewg,|Hazl dog)
can be written as

e

A A~ A~ HU|_
(BoalHaol bog) = ¢ f[UZ(r)ug(r)r cos §

+vk(r)vg(r)r cosfld’r.  (D6)
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From the angular integration abofit we obtain the selection
rule 5%#[;1. But the radial integration makes

(@0l Hazl dog) zero since

(Bod il os) = [ (15D + a5 (1)

=0. (D7)
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