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Paramagnetic current and dissipative vortex motion in type-II superconductors
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Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea

~Received 4 June 1997!

In order to find the microscopic origin of the components of the paramagnetic current generated in a moving
vortex core, we present a perturbation method to solve the Bogoliubov–de Gennes equations for a moving
vortex in clean type-II superconductors. The paramagnetic current and its associated dissipation at the moving
vortex core are shown to result from intrinsic concommitant effects. From the present perturbation approach
involving no presupposition of the Magnus force, the long-standing problem of the validity of the two different
classical models is discussed. The components of the derived paramagnetic current are found to be identical to
the classical model of Nozie´res and Vinen.@S0163-1829~98!03809-0#
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I. INTRODUCTION

A correct account of the normal core current in a movi
vortex core is essential for understanding vortex dynam
and energy dissipation. Ignoring the contribution of the d
magnetic current in the core, we consider the normal c
current only from the paramagnetic current~PC!.1 Two of
the well-known classical models for the dissipative moti
of vortex are one developed by Bardeen and Stephen2 ~BS!
and the other by Nozie´res and Vinen3 ~NV!. In both models,
the normal core current is determined from the force bala
equation between the driving force which acts on the bulk
the vortex core and the dissipative force which results
energy dissipation to the crystal lattice. In the subsequ
paper, we largely focus, on the nature of energy dissipat
the drag force, and Hall angle anomaly, based on the ma
scopic classical descriptions depending on the superfl
hydrodynamics.4

In the present paper, we focus on the microphysical
gins of the components of the normal current in order to fi
differences between the two well-known classical mode
For this cause, we resort to the application of t
Bogoliubov–de Gennes~BdG! equations5,6 for a moving
vortex. Earlier, in their pioneering works Caroli, De Genn
and Matricon7,8 showed that the BdG equations can be us
for the microscopic descriptions of quasiparticle low-ene
excitations in the core of an isolated stationary vortex l
for extreme type-II superconductors. Their work becam
basis of the well-known normal core model of the station
vortex, upon which the two classical models~BS and NV!
are founded. In this paper we present a generalized pertu
tion approach of solving the BdG equations by directly tre
ing a moving vortex on the basis of a unitary transformat
involving a Galilean transformation between the laborat
frame and the moving vortex frame. We find from this a
proach that the physics of a moving vortex can be natur
decomposed into a part associated with a stationary vo
and the other related to the motion of the vortex. The la
involves various concommitant effects which can be de
mined from the perturbation terms. From each perturba
effect linear in the velocity of the vortex, the PC compone
in the core of the moving vortex will be determined.
570163-1829/98/57~9!/5362~7!/$15.00
s
-
re

e
f

n
nt
n,
o-
id

i-
d
.

,
d
y
e
a
y

a-
-
n
y
-
ly
ex
r

r-
e
s

II. BOGOLIUBOV –de GENNES EQUATIONS
FOR A MOVING VORTEX

Superconductivity concerned with the order parame
D(r ) prompted Bogoliubov to introduce the well-establish
Bogoliubov equations.5,6 These equations are essentially
generalization of the ordinary Hartree-Fock equation
many-body systems into superconductivity by introduci
the effects of the superconducting pair potentialD(r ), in
addition to the ordinary scalar Hartree-Fock potentialU0(r ).
By solving the Bogoliubov equations involving a magne
field, that is, the BdG equations,6,7 Caroli et al.7,8 were able
to describe the low-lying excited states of quasiparticles
the core of a vortex line. The Hamiltonian for the BdG equ
tions are written as

Ĥ05ŝzF 1

2m S p2ŝz
e

c
A~r ! D 2

2EFG1S 0 D~r !

D* ~r ! 0 D .

~1!

Herep andA are the momentum of charge carriers and
electromagnetic vector potential, respectively.ŝz is the z
component of the Pauli matrix andEF is the Fermi energy.
Considering the cylindrical symmetry of the vortex structu
Caroli et al. chose a gauge such that the pair poten
D(r )5uD(r )ue2 iu(r ), with the angleu(r ) about the center of
the vortex measured from thex axis as shown in Fig. 1. The
solutions of the BdG equations are given by the spin
form6,7,9 of

f̂0a~r !5S ua~r ,z!

va~r ,z!
D 5eikFz cosbei ~m2ŝz/2!u~r !S f a

1~r !

f a
2~r !

D ,

~2!

wherekF is the Fermi wave vector,b an arbitrary angle, and
2m an odd integer. The explicit forms of the radial functio
f a

1 and f a
2 are given by Eqs.~4!–~8! of Ref. 7. From this

solution, Caroliet al. found that forD`
2 /EF,e!D` the den-

sity of states associated with the energy levels of a bo
quasiparticle is the same as that in a normal region o
radius close to the coherence lengthj. The vortex core may
be approximated by a normal region of sizej. This simpli-
fied approximation of the complicated vortex core structu
5362 © 1998 The American Physical Society
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57 5363PARAMAGNETIC CURRENT AND DISSIPATIVE VORTEX . . .
is known as the normal core model and is widely used
various researchers~including BS and NV!.

In order to find the origin of the PC without any presum
tion, we introduce the unitary operator10

Û5expS i

\
vLt•p2

i

\
mvL•r D , ~3!

which involves a Galilean transformation between the la
ratory frame and the frame of the moving vortex. This tra
formation allows the invariance of the BdG equations. Th
introducing the transformationĤ(p,r )5Û†ĤoÛ, we obtain
the following effective Hamiltonian for a vortex movin
with a small velocityvL :

Ĥ~p,r !.Ĥ01ĤD1Ĥu1ĤvL
1ĤA11ĤA21ĤAp

1O„~vLt/j!2
…, ~4!

where the perturbation terms linear invL are

ĤD5S 0 2vLt•¹W D~r !

2vLt•¹W D* ~r ! 0
D ,

Ĥu5S 0
2mi

\
D~r !vL•r

2
2mi

\
D* ~r !vL•r 0

D ,

ĤvL
5S 2p•vL 0

0 p•vL
D , ~5!

ĤA15S e

mc
@vLt•¹W A~r !#•p 0

0
e

mc
@vLt•¹W A~r !#•p

D ,

FIG. 1. Geometry used in this work.
y

-
-
,

ĤA25S e

c
vL•A~r ! 0

0
e

c
vL•A~r !

D ,

andĤ0 is given by Eq.~1!. The perturbation terms above a
valid only for the condition ofvLt!j for a slowly moving
vortex.ĤD above shows the contribution of the spatial var
tion of the order parameter.Ĥu represents the small phas
shift of the order parameter due to the slow motion of t
vortex. ĤvL

introduces the coupling of the motion of quas

particles to the motion of the vortex alongvL . The vortex
frame is assumed to move with uniform velocityvL with
respect to the laboratory frame.ĤA1 and ĤA2 represent the
coupling of the vortex motion with the magnetic field. Th
magnetic field effect was ignored in the original work
Caroli et al.,7 since it is of orderH/Hc2!1.

III. ANALYSIS OF PERTURBATION TERMS

We first explore the first perturbative Hamiltonian ter
ĤD . In this work, we assume that the time required for
laxation of the vortex motion to a steady state is of the or
of the electron scattering timet as in the BS model. The
basis$f̂0a% of Ĥ0 obtained by Caroliet al.7,8 will be used
for the perturbation treatment of (Ĥ01ĤD)f̂5ef̂. ĤD can
be decomposed into two parts in association with the p
potentialD(r )5uD(r )ue2 iu(r ):

ĤD5ĤD11ĤD2 ,

ĤD1[S 0 ivLt•@¹W ~u!#uD~r !ue2 iu

2 ivLt•@¹W ~u!#uD~r !ueiu 0
D ,

~6!

ĤD2[S 0 2vLt•@¹W uD~r !u#e2 iu

2vLt•@¹W uD~r !u#eiu 0
D .

The first termĤD1 represents the contribution of the diama
netic current (vs0) around the vortex line, since the gradie
of the phaseu is proportional to the superfluid velocity. Th
microscopic origin of the force fieldf52mvL•¹W vs0 in the
BS model is related toĤD1 above. Both the perturbative
treatment ofĤD1 and the BS model are physically valid on
for vLt!j. ĤD2 is associated with the spatial variation
the amplitude of the order parameter. Here we assume
ĤD2 vanishes, considering the uniform normal core. It w
be of great interest to treat this term more accurately usin
numerical method in the future.

In the expression~6! above, we note¹W (u)5(1/r )û for the
geometric configuration shown in Fig. 1.ĤD1 is then written
as



x
y

w

a

to

el

f t

n
th
-

een
el.

,

n-

nt

x

e

at

t-

-

C at
ged

5364 57KWANGYL PARK AND SUNG-HO SUCK SALK
ĤD15S 0
i

r
vLtuD~r !ucosue2 iu

2
i

r
vLtuD~r !ucosueiu 0

D .

~7!

By using the solution of Caroliet al.7 shown in Eq.~2!, we
obtain ~see Appendix A for detailed derivation!

^f̂0auĤD1uf̂0b&.6 idma ,mb61

vLtkF'D`
2

EF
, ~8!

whereD` is the order parameter far away from the vorte
that is, r @j. A similar result in form was obtained b
Šimánek9 and Hsu,11,12 using different approaches~detailed
discussions are presented in Appendix A!.

Using this matrix element and the perturbation theory,
expandf̂a in terms off̂0a and obtain~see Appendix A for
derivation!,

f̂a.f̂0a1A~f̂0a111f̂0a21!, ~9!

whereA52 ivLtkF' . These eigenvectors are orthonorm
to leading order,

E f̂a* f̂bd3r 5dab1O„~vLt/j!2
…. ~10!

From the explicit relation between the quasiparticle opera
ga

†(ga) and the solutionsf̂a ,11,13 we obtain~see Appendix
B for details!

ga
†.g0a

† 1A~g0a11
† 1g0a21

† ! for all a. ~11!

These operators satisfy the required anticommutation r
tion to leading order,

$ga ,gb
†%5dab1O„~vLt/j!2

…. ~12!

We can determine the paramagnetic current at the core o
moving vortex, by using the expression~C4! shown in Ap-
pendix C and the relations~9!–~12! shown above. We obtain
the spatially averaged PC due to the vortex motion,

K E n•Jpd2r L .2
ie\kF'

2m (
b

~eiu^gb
†gb11&

2e2 iu^gb11
† gb&!

.2
ie\kF'

2m (
b

$eiu@A* f ~e0b!1A f~e0b11!#

2e2 iu@A f~e0b!1A* f ~e0b11!#%

5
e\kF'

2 vLt

2m
cosu(

b
@ f ~e0b!2 f ~e0b11!#,

~13!

where the Fermi distribution function f (e0b)5 1/1
1ee0b /(kBT) and n is a unit vector with an angleu with
respect tox̂. In the low-temperature limit, the summatio
over b becomes 1. The dashed lines in Fig. 2 depict
computed PC due toĤD1 for u50°, 30°, 60°. The angular
,

e

l

rs

a-

he

e

averaged PC, represented by the solid lines in Fig. 2, is s
to be parallel with the normal core current of the BS mod
Thex component of the normal core current,vnx , in the BS
model is proportional tovL ,2 vnx5vc2tvL , with the cyclo-
tron frequencyvc25 eHc2 /mc. Using the relation

\t

m
5

t

m

ef

pc
.

et

mc
Hc2j2,

we obtain from Eq.~13! the PC in the low temperature limit

U K E x̂•Jpd2r L U.ne~vc2tvL!pj2.nevnxpj2. ~14!

Thus the relation betweenvnx andvL , determined from our
microscopic investigation of the PC, is obtained to be ide
tical to that of the BS model.

Using the geometry shown in Fig. 1, the matrix eleme
of Ĥu is ~see Appendix A for derivation!

^f̂0auĤuuf̂0b&.dma ,mb61\vLkF' . ~15!

The perturbationĤu displays nonzero off-diagonal matri
elements forma5mb61.

The matrix elements in Eq.~15! can be used to determin
the eigenvectorf̂a(r ) satisfying the equation (Ĥ01Ĥu)f̂
5ef̂. We find, using a perturbation method similar to th
described in Appendix A,

f̂a~r !5f̂0a2Bf̂0a111Bf̂0a211O„~vLt/j!2
…, ~16!

with B5 \vLkF'EF' /D`
2 . The eigenstates found above sa

isfy the orthonormality condition to leading order invL ,

E f̂a
†f̂bd3r 5dab1O„~vLt/j!2

…. ~17!

The quasiparticle operatorsga
† andga which diagonalize the

HamiltonianĤ5Ĥ01Ĥu can be determined from the eigen
statef̂b and are expressed in terms ofg0a

† andg0a ,

ga
†5g0a

† 2Bg0a11
† 1Bg0a21

† 1O„~vLt/j!2
…. ~18!

FIG. 2. The paramagnetic current due toĤD1 . Dashed lines
represent only the selected values for the magnitude of the P
u50°, 30°, 60°, respectively. Solid lines are the angular-avera
uniform PC.
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57 5365PARAMAGNETIC CURRENT AND DISSIPATIVE VORTEX . . .
These operators satisfy the required anticommutation r
tion to the leading order,

$ga
† ,gb%5dab1O„~vLt/j!2

…. ~19!

The off-diagonal matrix elements of Eq.~15! cause the PC to
be different from that of a stationary vortex. Similarly to th
previous case ofĤD1 , we obtain the PC due toĤu ,

K E n•Jpd2r L 5
e~\kF'!2vLEF'

mD`
2

3sin u(
b

@ f ~e0b!2 f ~e0b11!#. ~20!

In Fig. 3 we show the angular-averaged PC values of
expression~20! which are parallel withvL . In addition to the
component of the normal core current parallel withJT that
we obtained earlier, this result shows that there exists
additional PC component parallel withvL as in the NV
model. Using the relationsn5 kF'

2 /2p and D`
2 /EF'

5 \2/mj2 the angular averaged PC from the expression~20!
is reduced to, in the low-temperature limit,

U K E ŷ•Jpd2r L U.nevLpj2. ~21!

The physical origin of thevL component here, with charac
teristics different from the BS model, lies in the phase sh
of the order parameter due to the motion of the vortex w
velocity vL as discussed in Sec. II. ThusĤu is shown to
allow an additional velocity component of charge carrie
induced by the motion of vortex. The Galilean boost a
proach of the quasiparticle wave function considered
Hsu11 yielded an identical component ofvL to the one shown
in Eq. ~21!. In the present study we solved the effecti
Hamiltonian for the moving vortex@Eq. ~4!# in the laboratory
frame, while Cleary14 discussed the core current in a frame
rest with the vortex by the Green’s function method.
pointed out by Cleary the relative velocity of scatterers d
to the vortex motion is neglected in his study. We found t
the phase shift of the order parameter is responsible for
component of the core current parallel to the vortex moti

FIG. 3. The paramagnetic current due toĤu . Dashed lines rep-
resent only the selected values for the magnitude of the PC
u50°, 30°, 60°, respectively. Solid lines are the angular-avera

uniform PC due toĤu .
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We also analyze other perturbation termsĤvL
, ĤA1 , and

ĤA2 in order to assess their contribution to the PC. As sho
in Appendix D, the off-diagonal matrix elements of the
perturbations are negligible compared with other terms
scribed above.

Assuming that the interaction between the PC and
crystal lattice is the only source of momentum loss by
moving vortex, we define the drag force preventing the m
tion of vortex to befdrag52* (nm/t) vncd

2r .3 From Eqs.
~14! and~21! for thex andy components of the orientation
averaged PC, we find the drag force,

fdrag52E nm

t
vncd

2r 52
nm

t
~vnxx̂1vnyŷ!pj2

.2
nueuf

c
vLx̂2

nueuf
cvc2t

vLŷ. ~22!

This result is qualitatively~but not quantitatively! consistent
with the conjecture of Hagenet al.15,16 regarding the Hall
angle anomaly.17–23 They suggested that, if the drag forc
has components alongvL andvL3 ẑ analogous to the theory
of the superfluid,24–27 the Hall angle inversion can then b
explained simply from the force balance equation for a sin
vortex, assuming that the NV result for a very-low
temperature region is valid for the high-temperature reg
near Tc . Contrary to the Ferrell’s theory28 which assumes
that there exists a drag force due to the Andreev reflectio
quasiparticles by the diamagnetic current outside the vo
core, our theory, based on no presumption, shows that d
pation due to the drag force occurs in the normal core alo
The core contributions to the damping termhc and the Hall
force coefficientgc were obtained from the Green’s functio
approach.29 We find that, in the limitvc2t@1,30 hc andgc
of Otterlo et al. become identical to our drag coefficients
shown in Eq.~22!.

IV. DISCUSSION

In order to study the dissipation mechanism in type
superconductors, we examined the PC generated in a mo
vortex core based on a first-principles microscopic approa
For such study we solved the Bogoliubov–de Gennes eq
tions for a moving vortex via a perturbative approach. W
find from this perturbation method that the PC and its as
ciated dissipation at the vortex core result from the followi
microscopic concomitant effects:~1! The PC componen
alongvT was shown to originate from the spatial variation
the phase in the order parameter, and~2! the additional com-
ponent of the PC along the direction of the vortex motio
vL , is caused by the phase shift of the order parameter du
the motion of vortex. Thus this finding clarifies the cause
the paramagnetic current as a result of vortex motion. Fr
the present investigation involving no presumption, we o
tained an additional component of the PC along the direc
of the vortex motion,vL , which was absent in the BS mode
The PC was found to be qualitatively equivalent to the cl
sical NV model but not in their magnitudes. In addition w
found a drag force which validates the conjecture of Hag
et al.

In this work, we used a time-independent perturbat

at
d
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5366 57KWANGYL PARK AND SUNG-HO SUCK SALK
theory for the study of the paramagnetic core current. Ho
ever, a time-dependent perturbation approach is neede
include dynamic effects on normal current, vortex motio
and other properties such as the Hall anomaly and drag
efficients. The time-dependent BdG equations can be use
order to study the reactive effects of core fermion excitatio
on the inertial mass of a vortex and to predict anomal
velocity-dependent inertial mass.31
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APPENDIX A

The matrix element̂f̂0auĤD1uf̂0b& can be calculated us
ing the analytic expressions forf̂0a of Caroli et al.7 Using
Eqs.~2! and ~7!, we write

^f̂0auĤD1uf̂0b&5 ivLtE Fua* ~r !vb~r !uD~r !u
1

r
cosue2 iu

2ub~r !va* ~r !uD~r !u
1

r
cosueiuGd3r

5 ivLtLz

1

2E @ei ~mb2ma11!u

1ei ~mb2ma21!u#duE uD~r !u

3@2 f a
2~r ! f b

1~r !1 f a
1~r ! f b

2~r !#dr,

~A1!

whereLz is the length of vortex. The angular integration pa
gives the selection ruledma ,mb61 . In order to perform the
analytic integration of the radial part, we need a simplifi
model for the order parameter:

uD~r !u5H 0 if r ,j,

D` if r .j,
~A2!

and we obtain

^f̂0auĤD1uf̂0b&.6 idma ,mb61

CvLtkF'D`
2

EF

.6 idma ,mb61

CvLtD`

j
. ~A3!

HereC is a numerical constant depending on the parame
of the system likekF' , j, D` , and EF' . Using typical
values for the high-temperature superconductors, e
D` /EF'50.1 andkF'j510, we obtainC.0.1. Šimánek9

also used the above step pair potential~A2! ~Ref. 13! and
foundC50.35.9 Hsu foundC50.5 by using a method base
on the integration by parts. For the radial integration, H
-
to

,
o-
in
s
s

-
l
.

t

rs

.,

u

took Bessel functions forf a
6(r ),12 while the solution ob-

tained by Caroliet al.7 was used in our and Sˇ imánek’s ap-
proach.

The matrix element̂ f̂0auĤuuf̂0b& can be calculated
similarly. We write

^f̂0auĤuuf̂0b&5
i2mvL

\ E @ua* ~r !vb~r !uD~r !ur sin ue2 iu

2ub~r !va* ~r !uD~r !ur sin ueiu#d3r

5
mvL

\
LzE @ei ~mb2ma11!u

2ei ~mb2ma21!u#duE uD~r !u

3@2 f a
2~r ! f b

1~r !1 f a
1~r ! f b

2~r !#r 2dr.

~A4!

We perform the radial integration using the above step p
potential~A2! and obtain

^f̂0auĤvL
uf̂0b&.dma ,mb61\vLkF' . ~A5!

Here we prove the relation~9! in Sec. II. Defining the pro-
jection operators,

P5uf̂0b&^f̂0bu, Q5 (
aÞb

uf̂0a&^f̂0au, ~A6!

and using

uf̂b&5
1

eb2H0
HD1uf̂b&, ~A7!

we write

uf̂b&5~P1Q!uf̂b&5uf̂0b&^f̂0buf̂b&

1 (
aÞb

uf̂0a&^f̂0auHD1uuf̂0a&
eb2e0a

1O„~HD1!2
….

~A8!

Using the matrix element ~A3! above and setting

^f̂0buf̂b&.1, we obtain,

f̂b5f̂0b1A~f̂0b111f̂0b21!1O„~HD1!2
…, ~A9!

whereA52 ivLtkF' . In the expression above, we used t
following approximation7,9

eb2e0b21.e0b2e0b21.
D`

2

EF
. ~A10!

APPENDIX B

The quasiparticle operatorsga↑
† andga↓

† ~Refs. 11 and 13!

are related tof̂a in Eq. ~2! in Sec. II,

S ga↑
†

ga↓
† D 5E dr S c↑

†~r ! c↓~r !

c↓
†~r ! 2c↑~r !

D f̂a ~B1!
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57 5367PARAMAGNETIC CURRENT AND DISSIPATIVE VORTEX . . .
wherec↑,↓
† ,c↑,↓ are the field operators. Using Eq.~9! of Sec.

II, we obtain

ga↑
† .g0a↑

† 1A~g0a11↑
† 1g0a21↑

† !,
~B2!

ga↓
† .g0a↓

† 1A~g0a11↓
† 1g0a21↓

† !.

The conventional notation defines a basis from the setf̂a
with positive eigenvaluesea .13 Accordingly the quasiparti-
cle creation operators are defined only for the positive ene
states. Hsu introduced a compact notation,11 where he used a
basis including both positive and negative eigenstates, in
der to eliminate the spin degeneracy. According to Hs
notation, forea.0,

ga
†[ga↑

† ~B3!

and, forea,0,

ga[g2a↓
† . ~B4!

The inverse transformation of Eq.~B1! is

c↑
†~r !5(

a
ga

†ua* ~r !, c↓
†~r !5(

a
gava~r !. ~B5!

Then Eq.~B2! can be rewritten as

ga
†.g0a

† 1A~g0a11
† 1g0a21

† !. ~B6!

APPENDIX C

The paramagnetic current at the moving vortex core
be expressed in terms of the field operator as

Jp~r !52
ie\

2m(
b

cs
†~r !¹W cs~r !1H.c. ~C1!

The projection of this current on the unit vectorn is

n•Jp~r !52
ie\

2m(
b

cs
†~r !n•¹W cs~r !1H.c. ~C2!

Using the relation~B5!, we obtain

c↑
†~r !n•¹W c↑~r !5

kF'

2 (
ab

ga
†gb@eiuua* ua21

2e2 iuua* ua11#,
~C3!

c↓
†~r !n•¹W c↓~r !5

kF'

2 (
ab

gagb
†@e2 iuvava21* 2eiuvava11* #.

Here,u is the angle of the unit vectorn with respect to thex
axis. By inserting Eq.~C3! into Eq.~C2!, we obtain, in terms
of ga

† andga ,

E n•Jpd2r 52
ie\kF'

2m (
b

~eiugb
†gb112e2 iugb11

† gb!.

~C4!
y

r-
s

n

APPENDIX D

The matrix element ofĤvL
can be calculated using th

eigenstatesf̂0b . For the geometric configuration shown
Fig. 1, we have

^f̂0auĤvL
uf̂0b&5^f̂0au2ŝzp•vLuf̂0b&5 i\vLE ~ua* ,va* !

3S ŷ•¹W 0

0 2 ŷ•¹W
D S ub

vb
D d2r . ~D1!

For the step pair potential defined in Appendix A, we fin
that the differential operator¹W acting on the eigenstateub

} f b
1(r )}Jmb21/2(kF'r ), vb} f b

2(r )}Jmb11/2(kF'r ) gives

ŷ•¹W ub~r !5
kF'

2
sin u~eiuub212e2 iuub11!

2
kF'

2i
cosu~eiuub211e2 iuub11!1OS D`

EF'
D .

~D2!

Here the Bessel function identityJb8 (r )5 1
2 @Jb21(r )

2Jb11(r )] has been used to derive the term proportional
sinu. Another Bessel function identity (b/r ) Jb(r )

5 1
2 @Jb21(r )1Jb11(r )# is used to derive the term propo

tional to cosu. The effect of the differential operator actin
on vb can be obtained simply by replacingub by vb in the
above result. This relation was first derived by Hsu,12 who
assumed the quasiparticle distribution functionsua andva to
be Bessel functions through the whole range ofr . Using the
relation in Eq.~D2!, we find the matrix element

^f̂0au2ŝzvL•puf̂0b&}dma ,mb61E $@ f b61
1 ~r !#2

2@ f b61
2 ~r !#2%rdr .0. ~D3!

By using similar method, we also determine

^f̂0auvL•puf̂0b&.dma ,mb61
1
2 \vLkF' . ~D4!

This matrix element is identical to that ofĤu except for the
numerical coefficient12.

The matrix element ofĤA1 can be rewritten for an iso

lated vortex withA(r )52 1
2 rH û,

ĤA15
1

2
vctvLS x̂•p 0

0 x̂•p
D , ~D5!

wherevc is the cyclotron frequency atH, the magnetic field
at the core. From Eq.~D4!, we find that^f̂0auĤA1uf̂0b& is
smaller than̂ f̂0auĤuuf̂0b& by a factor ofvct if t is replaced
by the proper relaxation timet.
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Using vL•A5 1
2 HvLr cosu for the magnetic vector field

of the isolated vortex, the matrix element^f̂0auĤA2uf̂0b&
can be written as

^f̂0auĤA2uf̂0b&5
eHvL

2c E @ua* ~r !ub~r !r cosu

1va* ~r !vb~r !r cosu#d2r . ~D6!
ys

v

v.

.

From the angular integration aboutu, we obtain the selection
rule dma ,mb61 . But the radial integration make

^f̂0auĤA2uf̂0b& zero since

^f̂0auĤA2uf̂0b&}E @ f b11
1 ~r ! f b

1~r !1 f b11
2 ~r ! f b

2~r !#r 2dr

.0. ~D7!
A

ev.

ys.
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