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Current patterns in the phonon-maxon-roton excitations in 4He

V. Apaja and M. Saarela
Department of Physical Sciences/Theoretical Physics, University of Oulu, SF-90570 Oulu, Finland

~Received 23 July 1997!

The structure of one- and two-particle currents in liquid4He in the region of the phonon, maxon, and roton
excitations is calculated using linear-response theory. A set of continuity equations is derived from the
minimal-action principle. The two-particle current describes the motion of the4He atoms with respect to each
other and thus enables us to identify topological structures. The optimized functional space makes no assump-
tions on the patterns and we show how a simple sound wave of the phonon excitation develops into an
atomic-size backflow roll above the roton minimum at wave numbersk>2.5 Å21. The roll gets elongated in
the direction of the center-of-mass motion and forms a tubelike structure of atomic diameter whenk>3.0 Å21.
The roton minimum itself is a resonance effect where the wavelength of the excitation matches with the
wavelength of the oscillations caused by the two-particle correlations.@S0163-1829~98!00109-X#
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I. INTRODUCTION

The elementary excitation spectrum of the strongly cor
lated 4He liquid is experimentally well established.1,2 His-
torically different parts of the spectrum have names; pho
refers to the linear long-wavelength part, maxon to the
gion around the maximum, and roton to the region arou
the minimum. Microscopic structures of the maxon and ro
excitations are still under active discussion.3–7 Feynman
originally suggested thatbackflowcurrents8,9 are necessary
to conserve the total current. He assumed that these cur
behave like a smoke ring. Williams then followed th
Onsager-Feynman idea of vortex excitations10,11 and made a
specific assumption that the backflow currents are th
dimensional vortex rings with vorticity equal to one and t
minimum radius of the ring is the radius of a4He atom.
Parameters of the model were fixed in such a way that
energy of a minimum size vortex ring is equal to the ene
of the roton minimum. In more microscopic approaches3,7,4

the starting point is the variational wave function. Ga
et al.3 used the shadow wave function with an explicit bac
flow term and calculated the excitation spectrum in
maxon-roton region which agreed well with experimental
sults near the roton minimum. In their approach no vortic
quantum number is associated with the roton excitation
they conclude that at the roton minimum the local dens
and momentum coincide with those of a single-particle ex
tation.

In this work we study the structure of elementary exci
tions using the linear-response theory and the minimal-ac
principle.7,12,4 We assume that the fluid is driven by a we
external disturbance with a given frequency and wave nu
ber,

Uext~r ;t !5Ũext~k,v!ei ~k•r1vt !, ~1!

and calculate the one- and two-particle currents from
continuity equations. The one-particle current is simply
phase velocity times the density fluctuation, but the tw
particle current determines how atoms move with respec
each other and thus shows the flow patterns.
570163-1829/98/57~9!/5358~4!/$15.00
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II. THEORY

The dynamic, variational theory of excitations in liqu
4He starts from the action integral

L~ t !5E
t0

t

dtK F~ t !UH2 i\
]

]t UF~ t !L , ~2!

which contains the Hamiltonian

H52
\2

2m(
i 51

N

¹ i
21 (

i , j 51

N

V~ ur i2r j u!1(
i 51

N

Uext~r i ;t !,

~3!

where the two-particle interaction is chosen to be the A
potential.13

The variational wave function,

F~r1 , . . . ,rN ;t !5
1

Ne2 iEt/\e~1/2!dU~ t !C~r1 , . . . ,rN!,

~4!

is a product of three terms, the optimized wave function
the ground stateC(r1 , . . . ,rN), akinematicphase factor and

a dynamiccomplex function exp„1
2 dU(t)…, divided with the

normalization factorN5*dtC2eRe@dU(t)#. The function
dU(t) describes fluctuations in the correlation functions d
to the external disturbance,

dU~ t !5(
i

du1~r i ;t !1(
i , j

du2~r i ,r j ;t !. ~5!

We include the time dependence in both one- and tw
particle correlation functions. If onlydu1(r i ;t) is included
one obtains the Feynman spectrum.8

The variation of the action integral with respect
du1(r1 ;t) and du2(r1 ,r2 ;t) leads to linearized one- an
two-particle continuity equations, respectively,7,12
5358 © 1998 The American Physical Society
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57 5359CURRENT PATTERNS IN THE PHONON-MAXON-ROTON . . .
¹1• j1~r1 ;t !1dṙ1~r1 ;t !5D1~r1 ;t !,

¹1• j2~r1 ,r2 ;t !1dṙ2~r1 ,r2 ;t !1~1↔2!5D2~r1 ,r2 ;t !,
~6!

with the time-dependent parts of the one- and two-part
densitiesdṙ1(r1 ;t) anddṙ2(r1 ,r2 ;t), and the currents

j1~r1 ;t !5
\ r̄

2miF¹1du1~r1 ;t !1 r̄ E d3r 2g~ ur12r2u!

3¹1du2~r1 ,r2 ;t !G ,
j2~r1 ,r2 ;t !5

\ r̄ 2

2miFg~ ur12r2u!¹1@du1~r1 ;t !

1du2~r1 ,r2 ;t !#

1 r̄ E d3r 3g3~r1 ,r2 ,r3!¹1du2~r1 ,r3 ;t !G .
~7!

Here r̄ is the density of the ground state,m is the mass of
the 4He atom,g(ur12r2u) is the radial distribution function
of the ground state, andg3(r1 ,r2 ,r3) is the ground-state trip
let distribution function related to the three-particle dens
by r3(r1 ,r2 ,r3)5 r̄ 3g3(r1 ,r2 ,r3).

Since the external disturbance drives the fluid with
given frequency and wave number defined in Eq.~1! both
dr1(r1 ;t) anddu1(r1 ;t) fluctuate in phase with that. Fluc
tuations of the two-particle density are more complicated
come out as a solution of the continuity equations. The d
ing termsD1 andD2 are proportional to the external distu
bance and their expressions are found in Ref. 7.

The exact Born-Green-Yvon~BGY! equations connec
the gradients of the correlation functions and densit
Keeping only the linear terms in the fluctuations of the
quantities we can write the currents entirely in terms of
density fluctuations

j1~r1 ;t !5
\

2miF¹1dr1~r1 ;t !2E dr2dr2~r1 ,r2 ;t !

3¹u2~ ur12r2u!G , ~8!

j2~r1 ,r2 ;t !5
\

2miF¹1dr2~r1 ,r2 ;t !2dr2~r1 ,r2 ;t !

3¹1u2~ ur12r2u!2E dr3dr3~r1 ,r2 ,r3 ;t !

3¹1u2~ ur12r3u!G , ~9!

whereu2(ur12r2u) is the two-particle correlation function o
the ground state. Since only the exact definitions are used
currents satisfy the sequential condition*dr2j2(r1 ,r2 ;t)
5(N21)j1(r1 ;t).
e
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We calculate the currents created at the frequencies
wave numbers of the lowest excitation modes where
linear-response function,

x~k,v!5
dr~k,v!

Ũext~k,v!
~10!

has poles. That is done by taking the Fourier transform of
continuity equations~6! and searching for the solution
where the driving termsD1 andD2 are equal to zero.

The functional space in the minimization of the actio
integral is limited to the fluctuating one- and two-partic
correlations in Eq.~5!. A similar approximation was also
used in the Feynman-Cohen wave function9

fF5C(
l

eik•r lei ( j Þ lk~ ur j 2r l u!. ~11!

On the other hand, we do not make any parametrized
sumptions of the backflow patterns and thus their appeara
is determined by the continuity equations.

The second approximation concerns the fluctuations
the triplet distribution function in Eq.~9!. Here we also fol-
low the approach taken by Feynman and Cohen and use
superposition approximation, r3(r1 ,r2 ,r3)
5 r̄ 3g(r1 ,r2)g(r2 ,r3)g(r1 ,r3). Linear fluctuations inr3
can then be expressed as a sum of fluctuations in the ra
distribution functions. Thirdly, we have to evaluate th
gradient of the two-particle correlation function in th
ground state. That can be expressed entirely in terms of
radial distribution function or the structure functionS(k)
in the momentum space by using the hypernetted ch
equations g(r )¹u2(r )5¹@X(r )2E(r )#2(g(r )21!¹@N(r )
1E(r )]. HereX(r ) is the direct correlation function,N(r ) is
the sum of nodal diagrams, andE(r ) is the sum of elemen-
tary diagrams.14,15

III. RESULTS

The input into the continuity equations is the static stru
ture functionS(k) of the ground state. It can be taken fro
experiments or from theoretical calculations. We have tes
the sensitivity of the results by using the measuredS(k) of
Ref. 16 and the one from our variational ground-sta
calculation14 ~see Fig. 1!. The resulting spectra differ some
what in the maxon-roton region. When the experimen
S(k) is used the roton minimum is atk51.93 Å21 with the
energy 8.74 K and the maxon maximum atk51.19 Å21 with
the energy 13.80 K. That compares very well with differe
experiments.2 Woods et al.17 find the roton minimum atk
51.92660.005 Å21 with the energy 8.61860.009 K and
Svenssonet al.18 find the maxon peak atk51.13 Å21 with
the energy 13.82 K. The agreement suggests that right ph
cal ingredients are included in our approximations. Since
peak of the variational structure function is slightly low
and at a slightly higherk than the experimental one the us
of variationalS(k) moves the roton minimum to the energ
9.16 K at 1.98 Å21 and raises the maxon peak to 14.85 K
1.21 Å21. At wave numbersk.2.5 Å21 we find the flatten-
ing of the dispersion relation due to opening of the dec
channel into two rotons.3,19 The comparison of the full, cal-
culated excitation spectra with experiments is shown in F
1. We have also calculated the strength of the pole,Z(k), of
the elementary excitation, in the dynamic structure funct
S(k,v). That gives a more stringent test than the excitat
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5360 57V. APAJA AND M. SAARELA
spectrum to the solution of the continuity equations. T
results agree very well with experiments for the full range
wave numbers as shown also in Fig. 1.

From the continuity equations we also solve thelocal-
density fluctuations and the currents at wave numbers
frequencies along the elementary excitation curve. The o
particle current,

j1~k;v!5
v

k
dr1~k,v!, ~12!

is proportional to the phase velocity, in the long-wavelen
limit that is determined by the speed of sound.

We have chosen to present our results for the real pa
the two-particle current of Eq.~9! in the mixed representa
tion as a function of center-of-mass momentum and rela
coordinate. It can then be written in the form

FIG. 1. In the upper figure we show the elementary excitat
spectra calculated from the present theory using the measured s
ture function from Ref. 16~full line! and the calculated structur
function from Ref. 14~dashed line!. The diamonds with error bar
give the measured spectrum of Ref. 1. The structure functionS(k)
and the strength of the elementary excitationsZ(k) are shown in the
lower figure. The diamonds are the results from the experiment
Ref. 16 forS(k) and the squares and crosses for theZ(k) from Ref.
1. The solid line is the calculated result forZ(k) using the experi-
mentalS(k), the upper dashed line is the calculatedS(k) and the
lower one the correspondingZ(k).
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j2~k,r ,v!5 r̄ g~r !F j1~k,v!cosS 1

2
k•r D1

\ r̄

2mi
T̃~k,r ,v!G .

~13!

The radial distribution function of the ground stateg(r )
gives the probability of finding another particle at the d
tancer away from a given particle. We locate particle on
into the origin and because of the repulsive core of the in
action other particles are repelled outside the radius of ab
2 Å. This ‘‘correlation hole’’ is clearly seen in Figs. 2 and 3

FIG. 3. The short-range part of the two-particle current~a! at the
maxon regionk51.0 Å21, ~b! near the roton minimumk52.0 Å21,
~c! at k52.5 Å21, and~d! in the asymptotic regionk53.0 Å21. The
center-of-mass oscillations have been subtracted. The directionk
is upwards and the tickmark spacing is 1 Å.
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FIG. 2. Thez component of the two-particle current~a! at the
maxon regionk51.0 Å21, ~b! near the roton minimumk52.0 Å21,
~c! at k52.5 Å21, and~d! in the asymptotic regionk53.0 Å21. The
direction ofk is alongx axis.
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57 5361CURRENT PATTERNS IN THE PHONON-MAXON-ROTON . . .
We also separate out the oscillating behavior of the sou
like wave where particles move towards each other and a
from each other with the wavelength determined by
center-of-mass motion in the cosine term. The more com
cated flow patterns are collected intoT̃(k,r ,v). The coordi-
nate system is such that the center-of-mass momen
points to thez direction.

In Fig. 2 we have plotted thez component of the two-
particle current in four typical cases of the center-of-m
motion with the wave numbersk51.0 Å21 ~maxon!, 2.0
Å21 ~roton!, 2.5 and 3.0 Å21 ~the asymptotic region!. Be-
sides the center-of-mass oscillations there are oscillat
due to interparticle correlations. The most pronounced
Fig. 2 is the nearest neighbor peak. From Fig. 2~a! one can
see that in the maxon region these two kinds of oscillati
are out of phase whereas in the roton region of Fig. 2~b! they
are in phase. That is why the roton region is energetic
favored and the minimum corresponds to the wave num
of the peak of the structure functionS(k). This is already
well known from the Feynman spectrum\2k2/2mS(k).
When the wavelength becomes shorter than the size of
correlation hole the simple wave pattern breaks down@see
Figs. 2~c! and 2~d!#.

A more detailed structure of the current flow is shown
Fig. 3 where we have subtracted the center-of-mass osc
tions. The current flows to the direction of arrows and sin
it has cylindrical symmetry we show only thex2z plane
with x>0. In the maxon and roton regions@Figs. 3~a! and
3~b!# the dominant feature is the oscillation of the rad
distribution function, though some interesting topologic
structures could be identified. The pattern, however, chan
completely at 2.5 Å21. A clear backflow loop is formed
around each atom in Fig. 3~c!. The radius of the circulation is
of the order of atomic radius~compare with the white area i
the figures!. Whenk.2.5 Å21 the loop gets elongated wit
p.
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increasing wave number and forms a tubelike structure w
a diameter of atomic size. A typical case at 3.0 Å21 is shown
in Fig. 3~d!.

IV. SUMMARY

As a summary we have shown that the linear-respo
theory based on the time-dependent variational wave fu
tion gives very good results for the elementary excitat
spectrum and its strength inS(k,v). The equations of mo-
tion which minimize the action integral enable us to calcul
the one- and two-particle currents. The one-particle curren
proportional to the phase velocity, whereas the two-part
current shows the flow patterns of the relative motion b
tween 4He atoms. At the roton minimum the size of th
correlation hole created by an atom matches with the wa
length of the center-of-mass motion. The topological str
ture of the two-particle current shows a complicated patt
of atomic size, but no backflow motion is visible. The bac
flow rolls, like smoke rings, appear at short waveleng
whenk>2.5 Å21 and get elongated into tubes with decrea
ing wavelengths.

In our wave function we have not put in quantize
vortices20,21 and the structures seen in Figs. 3~c! and 3~d!
come out of the full optimization of the action integral wit
respect to the fluctuating one- and two-particle correlat
functions. They do not carry any conserved vorticity qua
tum number. The relation between these excitations and
vortex excitations will be investigated further.
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