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Large-q neutron inclusive-scattering data from liquid “He
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We report dynamical calculations for largestructure functions of liquid*He atT=1.6 and 2.3 K and
compare those with recent MARI data. We extend those calculations far beyond the experimentgkrafge
A~Lin order to study the approach of the response to its asymptotic limit for a system with interactions having
a strong short-range repulsion. We find only small deviations from theoretigddetiavior, valid for smooth
V. We repeat an extraction by Glya@e al. of cumulant coefficients from data which are invariably very well
reproduced. We argue that fits determine the single atom momentum distribution, but express doubt as to the
extraction of meaningful final state interaction parameters.
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[. INTRODUCTION have recently been approached in an entirely different fash-
ion with the purpose of determining in a model-independent
way the dominant coefficients in the cumulant expansions of
the asymptotic and FSI parts of the respotfsg:*Good fits

In the following we discuss different aspects of the re-
sponse of liquid*He to density fluctuations which is mea-

sured in largeg neutron inclusive scattering against liquid to the data were obtained, but those have little in common

4 . . .
He. The linear response is a function of two parameters with dynamic calculations. The latter useiaput n(p), ad-

andw, which in the scattering experiment are the momentum,... . : k
- ditional ground-state information, and whereas, ideally,
and energy transferred from the projectile to the target. For

medium and large those responses contain information onn(p) and properties ol areextractedfrom cumulant fits.
the target, such as the momentum distribution of the con- As a major result of the above analysis, Glyeleal. re-

. . ; . L . port the reconstruction of the single-atom momentum distri-
stituents and prescribed manifestations of their mteractloﬁ) 9

; . . . bution n(p) in good agreement with accurate theoretical
which are commonly known as final-state interactiggSI). . 314 . .
' . redictions:>* However, a less satisfactory feature is the
The state of the art of the field and extensive references have . - :
. extracted dominant FSI cumulant coefficient which, depen-
recently been reviewed by Glyde.

First we report predictions which are compared with rnostdent on the analysis, is reported to be less than 0.65 times the

recent data. Next, we compute the responseyfeB800 A 1 calc_ulatgd value. One then wonders whether th@T apparent
in order to study how FSI effects vanish for large In the partial fit may have consequences on the precision of the
end we present results of a model-independent cumulafgconstructea(p). We shall demonstrate that in spite of the
analysis of data in order to extract the single-atom momenm'Sf!t_ of FSI parameters, their minor role hardly affects the
tum distribution and interaction parameters. stability of the extraqteah(p), at least forT>T,. when the
Recent precision data for temperatures below and abovgPndensate fraction is absent.
the transition temperaturg, have been taken at the Ruther-  The following program emerges from the above observa-
ford ISIS facility by means of the MARI spectrometer. tions. In Sec. Il we outline an approach to highesponses.
Those by Andersest al. span neutron momentum transfers In Sec. lll we report computations of the highmeasure-
3<q(A Y)=<10 for T=1.42 K and 3=q(A H)=<17 for T ments using the MARI spectrometer and compare those pre-
=25 K2 while Azuah's measurements covered dictions with the data. In addition we interpret responses
10<q(A Y =<29 for T=1.6 and 2.3 The present results computed out to very higig<300 A~1. The results enable
expand in scope previous information taken a few years agthe study of the approach of the response to its asymptotic
at the IPNS facility at Argonne fog<23.1 A™1.4 limit for systems with a strong short-range repulsion in the
To our knowledge n@b initio calculations of the MARI interaction between the constituents. In Sec. IV we present
data have previously been performed. Such calculations rdits for cumulant parameters far= 2.3 K and compare those
quire as input the atom-atom interaction and ground-statith similar results by Glydeet al°~*>We discuss the dis-
information, which for the abovg regime are primarily the crepancy between the calculated and the extracted FSI pa-
single-atom momentum distributior(p) and the semidiago- rameters and attribute it to the truncation of the cumulant
nal two-particle density matrix. series. In the conclusion we estimate that both experimental
Using variations of much the same theory, predictionsand theoretical studies of the response of ligtiite at high
have been made before for medign-as well as for the g may have reached a degree of sophistication, beyond
higherg Argonne datd~° The above-mentioned MARI data which there is little prospect to gain new information.

0163-1829/98/5(®)/534711)/$15.00 57 5347 © 1998 The American Physical Society



5348

Il. DESCRIPTIONS OF THE LINEAR RESPONSE
FOR HIGH Q

Consider for infinitely extended liquidHe the response
per atom in the form

sa.0)=A"2m [ ate0lp}0p0)[0)
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~ 1 s .
x(q,r,s)=— U—q[ jods’V(r—s’q)

—s\(r—sg)| ..., etc. (4d)

The function’y in Eq. (4d) resembles an eikonal phase. It

oy differs from it because the integration limits on the line in-
tegral over the first component &f are not (~,%), as is

with M the mass of &He atom.py(t) above is the density

#(q,y)=(a/M)S(q,w),

appropriate for on-shell scattering. The finite limits corre-
spond to off-shell scattering described in the coordinate rep-
resentation. Moreover a second interaction is implicit in Eq.
(4d). In the following we shall allude to the total expression
(4d) as the generalized eikonal phase.

We recall the interpretation of the lowest-order terms. For
sufficiently large momentum transfgr an atom with initial
momentump recoils withp’ =|p+ g|~qg>(p?)*2, which is
larger than the average momentum of an atom in the medium
and is moreover in excess of any inverse length in the sys-
tem. The recoiling atom moves therefore too fast to be af-
fected by atom-atom collisions and the response is the

operator
(t) — efth (O)e“'”,
Pq Pq ®)
pq(o)zz glar(0).
]
Strictly speaking, the symbdD| ... |0) should stand for a

asymptotic limitFy(y) for q,w— oo at fixedy. Equation(4b)

canonical average at giveh, but we shall use instead the shows its expression in terms of the single-atom momentum

ground state in conjunction withi-dependent quantities.

In the last line of Eq.(1) we introduce the reduced re-
sponsegp(q,y) with the energy los®, replaced by an alter-
native kinematic variablg=y(q,w) (Refs. 15,16

distribution, normalized agdp/(27)3n(p)=1.

Although the GRS theory is not a perturbation theory in
the interactiorV, the second term in the serie®), linear in
V, is entirely due to binary collision€8C) between the hit

and any other atom. It accounts for the dominant FSI collect-

M q?
|-l @

Upon substitution of Eq(2) into Eq. (1) one generates
two components of the response. In the incoherent part, one
tracks the same particle when propagating in the medium,
while in the coherent part one transfers momentum and en-
ergy to a particle distinct from the struck one. Fpe8 A™1
the response is dominated by the incoherent part and the
coherent part can be safely disregarded.

For the description of the largg-response we shall ex-
ploit the theory of Gersch, Rodriguez, and SMi@RS for
smooth interaction® which leads to the following expan-
sion for the reduced response in inverse poweis of of the
recoil velocity vq=q/M (Ref. 15 (we use unitsh=c=1

ing all contributionse1/q. This is achieved at the price of
introducing the semidiagonal two-particle density magix
in Eq. (40).

In another publication Gersch and Rodriguez suggested
an alternative representation for the reduced respgénse

¢>(q.y>=f dy'Fo(y—y")R(q,y")

dp
=f (ZW)gn(p)R(q.y—pz), (5a)

- » . 1\"_
¢(q,s)=f mdye"ysd)(q,y):; (U—q) Fn(s)

=Fo(s)R(q,5)=Fy(s)exd(q,s)].  (5b)

causing all quantities to have dimensions of powers of A ofn Ed. (53 the response is written as a convolution of its

AY:

asymptotic limit and a FSI factoR(q,y). It is frequently

convenient to use Fourier transforrks(q,s),R(q.,s) . .. .

> 4
d(a,y)=2> (—) Fa(y), (43)

n=0 \Uq

Fo<y>=lim¢><q,y>=<4w2>1f;dppn<p>, (4b)

q—o

In particular for the first two terms in Edq5b) one haqcf.
Egs.(4b) and(40)]

_ pa(s,0) :f : dp e*ipasn(p): (6a

2m)3

1. i . ~
U_qFl(S):;f drp,(r—s0,0;r,0) x(q;r,s), (6b)

with pl(s,0)=p1(r—sfq,r), the single-atom density matrix

1 ) ® .
U—Fl(y)=l(277p)_1f dse’®
q —o0

X j drp,(r,0;r—sq,0) x(q;r,s),

(40)

and p=p4(r,r), the number density.

We shall restrict ourselves below to various descriptions
of FSI due to BC, starting from the corresponding cumulant
form (5b) and using Eq(6a (Ref. 19
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_ p1(s,0)~ p1(s,0) _ blurring of the original 14 dependence. This raises the ques-
#(q,s)= R2(g,8)= exQ2(q,s)], tion how the response approaches its asymptotic limit.
P We start with a theoretical analysis of the first cause of
_ additional q dependence and focus diHe-*He scattering
Qz(q,s)zipf drZ,(r,s)w»(q,r,S), (7) for high lab momentay. The latter is of a distinctly diffrac-
tive nature, typical for interactions with a strong, short-range

whereR,(q,s) and(),(q,s) are the BC approximation to the repulsion. F(_)r those,.the dominant imagina}r%/ part of the on-
corresponding quantities defined in Eq5a) and (5b). 7,  shell scattering amplitudg(q) ~Imf(q)=iqoy", where the

above is defined by total ;‘He—“He cross sectionr, varies much slower thag
itself.
pz(r—sa,o;r,o) Without entering into details, we state that the off-shell
{o(rs)= pp(s0) (8a) T=Vg in w,, Eq.(7), can approximately be related to the
on-shell scattering amplitude for elastic scatterif®@ee Ref.
£o(r,00=0a(r) (8b) 21 for a more extensive treatment of the parallel discussion

for atomic nuclei. It can then be shown that the rigorous
proportionality of the dominant BC FSI phaﬁazvoc 1/q for

a smooth, bar&/ still holds approximately fof),; .

Additional g dependence is due to the use of the cumulant
representatiori7) but it will be small to the extent that FSI
are. In conclusion, the reduced response described by Egs.
(5) and (7) is expected to approximately preserve thg 1/
signature of the dominant binary collision contribution. We
shall return below to a numerical confirmation.

with g, the pair-distribution function.
Equation(7) is the most general cumulant form in the BC

approximation for the FSI phage,(q,s)=In[R,(q,s)], and
distinguishes throughw, between different dynamical ap-
proaches. For instance, for smooth interactidhswhich
would allow for an expansion of the exponential in Ed),
comparison of Eqs(7), (5b), and (4d) showsw, to be the
generalized eikonal phase

w,\(Q,1,5)= x(q,r,S). 9
2v(41:8)=x(q.1.) © I1l. DYNAMICAL CALCULATIONS
For interactions with a strong short-range repulsion, the line OF SELECTED MARI “He DATA

integral overV in the (off-shell) phase(4d) which enters the _ . . ) )

dominant BC FSI contributioR, (s), Eq. (6b), may produce We first mention and discuss the input elements which
: 10K 1(S), EQ. » may p suffice for the BC approximation in any of the forms de-

large and even divergent integrals. The standard method {0

tackle those difficulties is by partial summation of selectedscnbed in Sec. I . . 22
higher-order terms (a) The atom-atom interactioW ;.

(b) The single-atom momentum distributiorip, T):

ooy —iwy =1, (10 N(p;T)=(2m)*8(PINo(T) +[1-no(T)IN"(p; T),
which amounts to replacing the baxé by a g-dependent T NO(§ 0T
effective interactiorV— V() =t (q), the latter being the M:nomﬂl_no(mm_ (12)
off-shell t matrix, in turn generated by. Moreover the P p

propagation in between collisions is described in the eikonaﬁo(Tch) is the fraction of atoms in the condensed state,

: : ,18
approximatior. nNO(p; T) andp°(s,0;T)/p above are, respectively, the mo-

In an alternative regularization for an atom-atom interaC-antum distribution of the normélincondensadatoms and

tion with a strong short-range repulsion, one replaces thgs Foyrier transform. Path integral Monte CatRIMC) cal-
generalized eikonal phase4d) by a semiclassical culations have shown moderafedependence afiNo(p;T)

approximatiof®2° for T<4 K 13.25
(c) The least accessible ground-state property required in
S m R . . . P .
i / N the BC approximation is the semidiagonal, two-body density
©25d0.1:5) |qf0ds \/1 7 V(I—s'a matrix which weights the dominant BC FSI terms in Egs.

(4c) or (5h). Calculations based on a variationally deter-
mined ground-state wave function in the hypernetted chain
: (1D (HNC) formalism produce fot,, Eq. (8) (Refs. 26 and @

q
2m -
- \/1— — V(r—saq)
q

For (2m/g?V) <1, w, coincides withw,,,, Eq. (9). How-
ever, in classically forbidden regions rt2q%)V>1, Wosc

CENC(r,5;€) = Guwa(1) Gwa(| T —sa exd A(r,S) ]

describes damping, as the dominant imaginary part of ~Gud(") Gud(|r —sal exd €A4(r,s)],
Ver(Q) in (10) is expected to do. This will be borne out by
calculations. _ f / PN "_
Ayr,8)= dr r'—s 1 r 1
Whereasw,,, is strictly proportional to I, this is no a(rs)=p (G A= 11 Guelr) = 1]

more the case fow,, after the replacemet—V4(q). The x[g(r' —r))—1] (13)
above manifestly introduces dependence in coefficients of '

the GRS serie$4a),(5b) and in particular in the BC approxi- 0gwq(r) is an auxiliary function related to what in HNC for-
mation. Taking the latter in the cumulant foxi?) adds to the malism is called a form factdf The functionA(r,s) for-
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mally adds all so-called Abe diagrams and is approximateanatrices, or equivalently the momentum distributions as the
in Eq. (13) by the four-body Abe diagram,(r,s), using in  only T-dependent quantities in the present analysis. We took

addition a scaling parametér®?” no(T=1.6 K)=0.087 and pY°(0s;T=1.6 K)=p,(0s;T
Far less sophisticated and simpler is the GRS=2.3 K) from calculations fofT =1.54 and 2.5 K-3%°
approximatiof® The expression for the predicted response is therefore

{S™r,s)=+g(ng(r—sg), (14)

which interpolateg, betweers=0 and the Hartree limit for

dp
#(Q,y;T=Te)= J (ZW)3n(p:T)R(q,y— P2),

larges.® (17
Both options have drawbacks and fail for instance the d(q,y; T<Te)=no(T)R(Q,y) +[1—ng(T)]
extended unitarity test
dp
. Xf sMP TR(G,Y = pY),
f drp,(r—sq,0;r,00=(A—1)p4(s,0), (15) (2m)

which can be written as which in order to enable a comparison with data, has to be
folded into ER

B(s)= dr[1—¢,(r;s)]=1. 16 ®
= ert1zaso) Y seaym= [ dyE@y-ymeaym
Using a typical pair-distribution functiorg(r), Z(s)
above C(imput_ed witliSRS, Eq. (14), produces values up to :(277)—1J°° dsdVE(q,s,T)B(q.s:T).
1.7 fors=2.0 instead of the exact value 1.0, independent of —
s.28 In the HNC case, approximations involved in the evalu- (18)
ation of the Abe termg13) are responsible for similar devia-
tions of Z(s) from 1. The violation of condition(16) is  For future reference we emphasize here that the FSI féttor
intrinsic in the GRS approximatiofi4), no matter whag(r)  is, from Egs.(7) and (8), seen to be independent of the
is used. single-particle density matrig;(s,0)/p. In particular for all
Another important constraint is the fact that the diagonalout pure hard-core interactions
two-body density matrix should coincide with the pair- —
distribution function: Z,(r,0)=g(r), Eq. (8b). While the lim R(q,s)=1. (19
GRS approximation fulfills that condition by construction, a 4=
full evgluation of thg Abe terms is necessary in. 'Fhe HNC We thus computed the reduced resporis€q,y:T), for
ol emanding he beunday vl condton 10 Sene q-21,23.25:20 A" sample out of the MARI dta. I
o . € Yiew of the steady decrease of FSI, tigjgange and steps
parameteg: by minimizing the following quantity: seems to be sufficient for our study. We emphasize in par-
ticular the case=23 A1, considered because it is the larg-

a(g):f dr|Z"NC(r,0;6) —g(r) |2 estq in the older Argonne data sétsnd for it we shall
compare our results with others.
A patrticular choice o/, presumably matters for mediuq We start with a comparison of our predictions for 2.3

but for increasingg=20 A~! FSI contributions decrease in K and the corresponding datEFigs. (a)—1(d)]. The overall
importance relative to the asymptotic response. A few-agreementis very good. One notices that, whereas the central
percent spread, due to uncertainty in the choiceZ.gfin  value for the theoretical response hardly changes for
already small FSI terms will go unnoticed. We thus opted for21<q(A1)<29, the data for the same, folded in the ER,
expression14) which is numerically much easier to handle ¢¢(q,0) showq dependence present i(q,y).

than Eq.(13). The agreement foiT=1.6 K [see Figs. &@)—2(d)] is

(d) Finally, for a comparison of actual data with predic- slightly worse. The slight staggering in the central region for
tions the latter have to be folded into the experimental resog=21 A~1is probably of instrumental origin, but contrary to
lution function (ER) E(q,y;T) of the instrument. The theT=2.3 K case, differences iB(q,y) for q=21,29 A™?
E(q,y;T) corresponding to thg=20 A~! MARI data are do not explain the small discrepancies in their central re-
given in Azuah's thesisand have been fitted to the sum of gions. We recall that exactly the same input is used as for
two off-center gaussians. No ER, pertinent to logerwere  T=2.3 K and that the only extra parameter is the condensate
available to us, thus precluding an analysis dez20 A2, fractionng(T=1.6 K).

Until this point we did not specify th& dependence of We now reach our second topic. In spite of the fact that
the theoretical responses. In fact one ought to employ quamo data exist fog=29 A~1, we have extended calculations
tities computed for give. Actually, there exist experimen- up toq=300 A% The purpose of the exercise is to obtain
tal dat&® and also PIMC studié&?>on theT dependence of theoreticalinformation on the approach of the response to its
the pair-distribution functiorg(r,T). However, in view of asymptotic limit.
the above arguments we shall use the oneTfel0. By the In Fig. 3(@ we presen®'*1q,y,T= 2.3 K) which is the
same toker?,, Eq. (14), and consequently FSI effects will part of the response, even in and computed in the BC
be independent of. This leaves the single-particle density approximation(7),(10). Even in the wings out tg~3.5 A™?
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FIG. 1. (a)—(d) Predictions for the respongs),(7) of liquid *He atT=2.3 K for q=21,23,25,29 A from Eq.(7) using the ladder
approximation(10) for binary collisions. Those results have been folded with the experimental resolutions from Azuah'’s thesis, which is also

the the source of datdRef. 3.

those coincide within 1% among themselves and with the We conclude this section by a discussion and comparison

asymptotic respons€y(y), Eq. (4b). The above appears
hardly changed, when predictions for2¢(A~1) <29 are
included: only in the immediate neighborhood w0, is
there a<2.5% difference.

In Fig. 3(b) we showq ¢ q,y, T=2.3 K), the part of the
response which is odd i, multiplied ¢°by q. The latter
is the signature of the dominant FS. Some residudépen-
dence is then apparent in Figib3 in the extrema as well as

of predictions forq=23 A™! by other authors. Since the
various studies refer to differefit and data have been taken
at different instruments, the natural quantity to compare is
the FSI factorR(q,y) assumed to b& independent.

We start with predictions by Mazzangit al® which are
based on exactly the same BC approximation in\pgver-
sion (10), employing however the variationally derived
ZINC ) Eq. (13). Next we mention Silvérwho used, what

in the wings. However, the true measure for the size of FSliimounts to the cumulant fornf7) with w,— w,,; and

the ratio $°°Y ¢°¥*" which is at most a few percent. The ¢,—g,, the pair-distribution function. In his hard-core per-
conclusion is clear: Neither the strong short-range repulsiofurbation theory he disregarded the second part of the total
in the atom-atom interaction which forces the use ofphasey, Eq. (4d), which is only permissible for gure
V()= t(q), nor the effect of the cumulant representation,hard-core interaction. However, Silver actually constructed

much changes the dsignature of the dominant FSI term in
the GRS serie#ta) for smoothV. The above agrees with our
arguments in Sec. Il and with our previous resilts.

All reported predictions are based on the use of the
matrix, i.e., on Eq.(10). In Sec. Il we also mentioned a
semiclassical approximatidi 1) for FSI and found that, ex-

the off-shellt matrix in Eq.(10), corresponding to the first
part in Eq.(4d) from JWKB partial wave phase shifts for a
realisticV, which in addition to strong short-range repulsion
also included attractive components. Nevertheless, he ne-
glected the second component in E¢) which does not
vanish when an attraction is present. We conclude with a

cept for smalls, there are considerable differences betweerpath-integral method by Carraro and Koonin, who computed

the BC phases, calculated by means of EG4) and (10).

high-g FSI using a fixed scattering approximation for the

Ultimately excellent agreement is obtained between the corentire system with a large, finite number of atoinshe

responding responses, computed with E{S. and (7).

method requires the parallel calculation of the ground-state

Clearly both thet-matrix and the semiclassical method accu-wave function in order to construct tié-body density ma-
rately describe the binary collision phase in the salient regiotrix, diagonal except for one particle, witk the number of

just inside the classically forbidden region. Contributionsatoms in the sample and which averages the response for
from deeper penetration distances are strongly suppressedfixed scatterers.
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FIG. 2. (a)—(d) Same as Figs.(&)-1(d), for T=1.6 K, computed fony,(T=1.6 K)=0.087.

Results forR(q,y) for all cases discussed are assembled 1 © —
in Fig. 4 and show occasionally substantial differences. Exp(an)‘:’;Ref ds€’°pe(s,[un(a)]), (21
However, those are considerably smoothened by the single- 0
particle momentum distributiofEq. (5)] or density matrix in - \yhere, as in Eq(18) the right-hand side in Eq209 in-
Eq. (6), and ultimately produce quite similar respon$8s.  cludes ER. In principle, n@ priori knowledge, or even
meaning of the cumulant coefficient functiong(q) is nec-
IV. CUMULANT EXPANSIONS OF THE RESPONSE essary for a search. However, it is natural to use motivated

We consider below a method which has extensively beet!{"t'aI va_Iues, such as calculate_d Ones. .
applied in the pad? before the rediscovery of thed/lGRS .Con5|der the  normal ﬂl{@’ _n Wh'Ch_ case the
expansion of the respons@a.’® Recently it has been g-independent culnulant coefficients, originating in the
brought to the fore again in an attempt to parametrize datasymptotic part otp(q,s) can simply be expressed in terms
without the intervention of a theory. The method uses cumuef averages of even powers of the momentum of an atom,
lant expansions of the Fourier transforms of the separate.g.,
asymptotic and FSI parts of the resporgse), with coeffi-

cient functions related to moments of the respdhse — 1<p2>
ar=75 )
- (—is)"— 3
dla.9)=exg 2 ——nn(@) |, (200 L
ay=g(p*)— 3(p?)? etc. (22)
—~ —is)"
Fo(s)=exg >, ( ,) apl, (20b) L
n=2 N The g-dependent coefficient8,(q) relate to the FSI factors
(—isy" R(q,s),0(q,s) in Eq. (5b) and may be written 3%
- ~ —is)"—
R(q,s)=exriﬂ(q,5)]=exr{n§>)3 o Bn(q)} B [(-172 | 4 \n-2m
(200 Bn(a) = mzzl (v_q) Bn.om

Using Eg.(5b) the various coefficient functions are related

_= -7 - [(n—1)/2] 1 n—2m
by un(0) = an+ Bn(q).3 Data for the respons¢*® are then = > (_) Zn - (23
compared with the parametrizatigp0) m=1 \qg* ‘
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For convenience we usg', the momentum transfer param-
eterq in units of 10 A", Equation(23) displaysq depen-
dence and defines coefficierts,,, which have the same
dimensions and may be expressed in the same unig,as
The above are operators for dynamical variables of the sys-
tem, averaged ovediagonal Fbody density matrices and
their derivatives of ordet<n. For the lowest-order cumu-
lant coefficient functions one has

B3(q)=6 lim[ImQ(q,s)/s?]=6 lim[ImQ,(q,s)/s3]
s—0 s—0
(249

1 2
=5 (V3V),, (24b)
q

B4(q)=24 lim[Re)(q,5)/s%], (240

0.10 s—0

3

Bs(q)= _:354"' Bsa- (240

Contrary to the GRS series ingl/with coefficients depend-
ing on nearly-diagonal n-particle density matrices

pn(rl—sﬁ,rz, ...Mhifq, .. .1y, the moment approach un-
derlying the cumulant expansion does not produce a system-
atic q dependence of the coefficient functions. For instance,

015 \Q\\//@: — e all E(q) with odd n contain FSI contributions 1/g. Equa-
N/ A s tions (249 and (24d) illustrate this for the dominant FSI

N7 g=29
020 . —— =50

A coefficient functionsB,,(q). Thus Bs(q)x=1/q draws exclu-
e sive_ly on the BC contributioii7), while the two components

00 10 20 30 40 50 60 of Bs are proportional to 3 and (16)2 due to binary, re-
(®) YA spectively, higher-order collision contributions, etc. It is the

FIG. 3. (@ ¢°°(q,y), part of the response even i for ~ expansion of the semidiagonal,(r;—sq,rj;ry,rj) in s
21=<q(A"1)=<300. Forg=25 A those cannot be distinguished which produces an infinite number of contributions
from the asymptotic limito(y), Eq. (6). (b) q¢°*(q,y), q imes g, . .(q), all of which have parts<1/q with coefficients
the response, odd i for 21<q(A™*)<300. depending ondiagonal densities[cf. Eq. (24b)] and their
derivatives.

- We start with the threshold behavior of the FSI phase
Q(q,s), Egs.(7),(10), and in particular of its imaginary part
which, according to Eq(24a, produces the dominant FSI

a1 A! parameter@(q). We checked that, within a few percent

—— MPB
- CK

Sitver qlmQ,(q,s) is, out tos~0.8 A, independent of. In par-
B ticular we could extract the theoretical threshold value
23=q* B3%(q) =60* limg_o[Im{},(q,s)/s%]=0.565 A3
which over the entire rangg=<300 A~ is, to better than
1%, independent of]. For the above reason one cannot
determine the next order odd<coefficientszs with reason-
able precision.

We return to Eq(24b) which seems to provide an inde-
pendent way to calculatg;(q). However, one can actually
derive it from Eq.(24a, using Eq.(7) for , in either ver-
sion (9) or (10) for the generalized eikonal phasgq,s). It
05 - - _ : holds for arbitrary semidiagonal, which exactly satisfies

‘ . - y(A’l) 4 Eq (8b .33
Using the sameg(r) as in {57° Eq. (14) we compute

. _ . 5
FIG. 4. FSI functionR(q=23 A™ly) in Eq. (58, computed q*EV V(q)—O 56 A3 The agreement betweeql*_V %
with the GRS choice fop, as well as for other descriptions. The

drawn line is our result. Long dashes, short dashes, and dots afdd” 33 is very good, especially in view of the sensitivity
from Refs. 9, 8, and 5, respectively. of q*_V V on the precise shape gfr) where the Laplacian

46" (q,y.T=2.5K)

2.0

=3

R(q.y) A)

=4
i

00 57
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TABLE I. Cumulant coefficient functions from data @t=2.3 K. The second column gives theoretical
values. The third column gives seven-parameter fits with prescribeoehavior from(renormalized data.
Column 4 give fits whem* 85(q) is fixed at its starting values. Column 5 are fits if in additapt? 8,(q) is
fixed. In the last column are results by Glyefeal., who fitted . ,(q) from a large set of data for differeqt

Cumulant Computed Seven-parameter Six-parameter Five-parameter  eblgte
coefficient starting fit for prescribed fit; fixed fit; fixed (Refs. 10,11
values g dependence a* B3 9* B3,9%28,
ay(A7d) 0.916 0.910 0.913 0.914 0.897
a4(/3(4) 0.470 0.553 0.594 0.781 0.46
aG(A*G) 0.337 0.535 0.613 0.700 0.38
q* ,33(,&—3) 0.555 0.237 0.555 0.555 0.33
q*2B,(A~% —2.268 —0.698 —0.993 —2.268 0
q* Bsl(A~9) 0 0.416 0.851 0.615 0
q*3Bs(A°) 0 —-0.152 1.32 3.23 0.201
q*?Bes(A°) ~-31.0 1.539

of V is large. The extraordinary stability of the extractedthe data there appear for @lto be approximately 1.4% in
q*Eg confirms the numerical Consistency of the calculation.€XCess of the exact result 1. By construction that demand is

As has been mentioned before, all FSI functions haveéxactly fulfilled by a cumulant expansid@0g in, no matter
been assumed to Beindependent and we have used valueswhat approximation. We also considered data, cut at
for T=0. In order to estimate the influence of the temperay~3.0-3.4 A where statistical noise in very small re-
ture we have also calculateﬁﬁgzv using ag(r) obtained SPONSes, may cause those to have negative values. The latter
with PIMC at T=2.8 K2 The resultq*_gzv(T=2.8 K) apEl)_iar to hardly affect t.he extrgcted parameters. ' '
o 3 , . - . e above source of information does not contain numeri-
=0.47 A3 confirms its sensitivity on the precise shape of

() cal data} a_nd ER for the lowery data. As a consequence we
gtr). . . ' had to limit ourselves to a small data base which is bound to

Regarding parameters of even ordemirone finds from . . L .

~ i - influence the FSI parameter functions which increases with
Re,(q,s), Eq. (240 for the leading coefficient decreasingj
20 - : :

Za2= q*zﬁz(mz_z'% A% The  next-to-leading Our results forT=2.3 K are assembled in Table I. We
Z6~0*2Bes(q)~—31 A% has been estimated from entered in column 2 theoretical values for the parameters,
Re(),(s,q) for s=0.1 A. calculated as indicated in E¢R4), or set to 0 when impos-

An important remark is in order here. Whilgs, the lead-  SiPle to evaluate reliably. Notice that the negatig ob-
ing FSI coefficient of odd order, is entirely given by the BC tained from a limiteds range, will generate an unbounded
approximation, the first nonvanishing, even order coefficienRR(q,s), barring a convergent Fourier transform Rfq,s).
3, has additional contributions from higher-order FSI. Di- Actually we did not considegs in the fits and restrict our-
rect evidence for their existence is provided by the exacfelves to a maximum of seven parameters as discussed be-

L= . low.
expressionB,=((VV)?), i.e., the average of the squared . i , i
force on the struck atom. The latter is positive defffité Column 3 is the result of a seven-parameter fit for cumu

. ) ) " lant coefficients functions with theoreticaldependence and
whereas in the above-mentioned BC approximalifi<0. encompasses therefore all ten data sets inqoange. Col-

We recall that the latter derives from Re, with Re  umns 4 and 5 are six-, respectively, five-parameter fits like in

Q,<Im{,. It is therefore plausible that higher-order FSI column 3, when first* 85(q) alone and then alsg*283,(q)
contributions overwhelm the small BC part, leading to anare held at their theoretical values.

overall positiveg,. Notice, that not only the extracte)Eﬁ?2 [EqQ. (240)] in the

At this point we recall the comment in the Introduction on BC approximation, but also fitted values are negative, at least
FSI parameters, based on the outcome of the cumulant analythen higher-order even coefficients in the cumulant series
sis by Glydeet al!>** At first sight the misfit of, specifically are neglected. This can be understood if one tries to fit the
B3, may conceivably affect the parameters for the momendata for allq using a polynomial irs with a finite number of

tum distribution and, if true, put in question a successfulg, (q) as coefficients. However, those no more reproduce the
determination ofn(p). This was the main reason why we |4, s pehavior of the FSI phas(q,s). It is also clear that

wanted to repeat the analysis. fit | ible if I B 0F .
We report below several results for fits of cumulant pa—a It1S only possibie MMy ... (qﬂ_’ - FOran expansion

rameters to the experimental respof@#. Those have been UP ton=4 this implies a negativg,(q).

obtained with thecERN MINUIT code, as applied to the ten ~ We now reach the extraction gf,(q) for eachqg and the
T=2.3 K data sets in the range €hj(A"1)=<29 from determinationas opposed to the aboessumptionof their
Azuah’s thesis.We first note that the integrated strengths ofq dependence. This appeared to be impossible for the limited
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FIG. 5. (a) Comparison of the single atom density maisix 0,s)/p and its sixth-order cumulant expansigh) Real and imaginary parts
of the BC FSI phasé),(q,s) (q=21 A~ from theory and represented by a fifth-, respectively, sixth-order cumulant expatwione
same for the FSI factdR(q,s).

data set available to us. Howevgr, Gl}deal had access to of ﬁ(qys) ins produceS, in princip|e’ the cumulant coeffi-
far more data and we enter their results in the last COIqu:ients and in particular the FSI parametﬁg(q)

taken from Table | of Ref. 11. As the reporteg is zero, a L :
The complete cumulant series is of course equivalent to

positive value ofzg is required to give a convergent Fourier —~ _ )
transform ofﬁ(q S) the exaci, but a truncation at sontreobviously reproduces
" é)ehavior up to some relatively lo&« The crucial question is

First we remark that the parameters, resulting from the fit h q hould dth learlv d q
from columns 38, all produce good fits to the response datd® What order one should go, and the answer clearly depends

However, those fits do not resolve the disagreement betwedf! the effectives range of each of the component factors.
theoretical and extracted FSI parameters. Table | shows evel{10se are according to Eqb), (18), and(21) the single-
smaller values forzz=q*B5(q) than reported in Refs. atom density distributiop4(0,8)/p, the FSI interaction fac-

10,11. tor R(q,s) [or Q(q,s)], and the Fourier transfor&(q,s) of
In fact, we find the results of column 5 in Table | most the ER function.
telling. Fixing the dominant FSI parametezs, at their the- Next, we report on tests where we compare not data, but

oretical values, one expects,,a to settle close to their theoretical values of the input factops(0,s),R,Q and their

starting values. This appears not to be the case: Column mulant approximation&°“", Q14" to ordern. The coef-
appears to produce the poorest agreement between any of the '

reconstructed and the computetp) (see Fig. 6 below icients definingR°“", Q" are given in column 2 of Table
To understand the above, we turn again to the calculatelj Figure 3& shows over the relevard range reasonable

Q(q,s) which we recall, produces very good fits to the data"idequale of .the cumulant _expansmn Fa(0:5)/p E) order
(Figs. 1,2. Although not called for in calculations using a N=6. Next, Figs. &), 5(c) give Re and Im parts df)(q,s),
dynamic theory, Eqg5b) and(20¢) show that the expansion respectivelyR(q,s) g=23 A1 and shows that the FSI cu-



5356 A. S. RINAT, M. F. TARAGIN, F. MAZZANTI, AND A. POLLS 57

a parameters in that column are based on the computed dis-
tribution n(p, T=2.5 K),'® marked by circles. The neverthe-
less imperfect fit for the reconstructedp) is again due to

the finite-order expansion of,(0,s) causing a moderate
misfit for larges. Otherwise all reconstructed distributions
are of comparable qualitya(p) is clearly well determined

by the data.

V. SUMMARY AND CONCLUSIONS

We addressed above three topics regarding the response
of liquid “He, retrieved from the inclusive scattering of neu-
trons. Using dynamics we first made predictions for the re-

00 03 v.ow 0 cent MARI data, taken at temperatures both below and above
P(AD T.. We analyzed the range of momentum transfers

FIG. 6. The single atom momentum distribution fb5=2.3 K, 21=q(A™" =29, for which we had available data and ex-
reconstructed from the various cumulant fits, assembled in Table perimental resolution and obtained good agreement with ex-
including the one from theoretical starting values. The curves, laperiment.
beledc, correspond to increasing column number in Table I, in- A second topic was the approach of the response to its
cluding the fit by Glydeet al. (Glyde). The circles are values cal- asymptotic limit inq for fixed scaling variablg. For smooth
culated in Ref. 13. interactions between constituents, that approach is rigorously

«1/q, but the same is not guaranteed when a strong short-
mulant series, truncated at=>5, rapidly falls short of the range repulsion is present in the atom-atom interaction
computed functions fos=1 A~ Inclusion of the above- We investigated theoretically the response dez300 A~*
mentioned, well-determineds~zz, affects only RE) [cf. for the actualV with its short-range repulsion, and what we
Eg. (20b)]. It extends the agreement between the calculatefound reconfirmed our findings from a few years ago based
and cumulant expansions for the two FSI functions over an mediumg data: final-state-interaction contributions, over
modest additionas range, but does not prevent rapid dete-and above the asymptotic part, still decrease approximately

rioration of R(q,s),0(q,s) from 1.2 AL on. As mentioned as 14. '
before the estimatedg gives rise to a nonboun®(q,s). Regarding they values for which the response has been
Since terms in the cumulant expansions (24) in powers of measured, we repeat what was already evident from the older

have alternating signs, the order®f to be retained depends %??éa;?ﬁre Il:? Tgsg({ﬂg'gnzﬂlgg)gn?}%nnf r?:wrier:;fr\ﬁgtigx
on thes range one wishes, or needs to cover. t all at «q K 0
The given observations do not contradict the high-qualitya all at very highg.

reproduction of the response data, when generated by a b%st OtL." last rt]QIOAC was at _ref|t dOI trjf expansion clogffllc%ntt
fit of the parameters in a polynomial representation of unctions, which parametrize data. A previous analysis ied to

~ a single-atom momentum distribution in good agreement
Q(q,s), Eq. (240, to the data. However, the parameters ob- g g g

) i : . . ~~ with computedn(p,T), but did not produce the main FSI
tained in this way differ considerably from the expansion qeficient function. Its influence in the larggregion is too

coefficients ins of the FSI phasé)(q,s). As has been men- marginal to be extracted from the data with present accura-
tioned above, the failure is due to the insufficiency of finitecies. This does not change our judgment that little can be
order cumulant representatiof®®“",Q2¢%" and will only  added tounderstandingthe data on the response of liquid
disappear if for sufficiently higim, FSI functions will coin-  “He at high momentum.
cide with their cumulant expansion out to the relevant me- In spite of minor discrepancies, a summary of the treat-
dium s. ment of the first two topics is definitely positive. Presumably
The above is, in our opinion, the source of the discrepfor no atomic, molecular, nuclear or subnuclear system for
ancy between calculated and extracted FSI parameters. Which the response has been measured, has one reached as-
spite of correlations between fitted parameters, there is sufimptotia as clearly and as well understood as for ligthte.
ficient meaning to the extracted FSI to justify the above conOf course, asymptotia is not simply the mathematical limit
clusion. Were it not for the overwhelming role of the gq—-oo for fixed y. Increasingqg requires increasing beam
asymptotic part and its representation by a truncated cumwenergy, ultimately beyond the ionization energ89 eV. A
lant series, one could not trust the extractegl description of the response then requires the inclusion of

The sensitivity of the fitting procedure can be judged fromadditional electronic degrees of freedom to translational
Fig. 6, where we reconstruct single-atom momentum distriOnes.
butions from the various fits for,. Dense dots, short Finally we venture an outlook for future explorations of
dashesy and Spaced dots are results using columns 3-5 frdmlusive Scattering which almost Certainly Implles extension
Table I. Long dashes are from the last column, i.e., the fit off experiments to larger momentum transfgrsOur judge-
Glyde et al, while the drawn line corresponds to the theo-ment is based on Eqébb) and(7). In that representation for
retical cumulant parameters in column 2. We recall that thehe response, the FSI fact®(q,s) does not depend on the
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