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Interplay of the specular and diffuse scattering at interfaces of magnetic multilayers
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Both specular and diffuse scattering at interfaces of magnetic multilayers play a significant role in their
resistivity and magnetoresistance. Within the framework of the semiclassical Boltzmann approach, we show
that the resistance across an interface for currents perpendicular to the plane of the layers is sensitive to the
nature of the scattering and that perturbative treatments of diffuse interface scattering break down. Depending
on reflection coefficients diffuse scattering cassistor suppressconduction across interfaces.
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Giant magnetoresistancé&sMR) has been observed in 90 of
transition-metal magnetic multilayers in two principal geom- eUzEza_'H)za_: - 3
etries. For the current parallel to the plane of the layers € z (2)
(CIP), a number of authots* have studied the interface X[f(k.2)— (K", 2)], 2
roughness from different angles. Noticeably, Hood, Falicov,
and Penh considered the relation between the structures ofvhereE, is the external electric field applied in the direction
roughness and its effect on resistivity in detail. Recentlyperpendicular to the plane of the layefsis the distribution
much attention has centered on currents perpendicular to tHgnction (f° is the equilibrium distribution function v,
plane of the layer§CPP since the magnitude of the GMR is = d€x/dk; is the velocity inz direction, and it is assumed
larger in this geometry. One of the most important issues ifhat the collision idocal and elastic One can greatly sim-

this geometry is the origin of interface resistance. Valet an@!fy the above equation when the scattering probability

Ferf introduced a phenomenological potential drop at inter-Wkk’(Z)z\éVO(Z) is independent of momenta and k'.

face due to diffuse scattering but without potential steps, an OHO_W'ng' we can separate the distribution function as fol-
Stile€ considered realistic specular reflection but without ows:

diffuse scattering. Vedyaest al.” evaluated effects of inter-

ference between incident and reflected electrons for an ideal f(k,z)= f°(k)+(
interface. Dugae\et al.® and Barnas and Férconsidered

the effects of diffuse scattering at interfaces in the presenc@here the conditiorf g(k,z)d®k=0 is imposed. By placing
of potential steps, but they limited their calculations to sec£q. (2) into Eq.(1) with the above constraint ag(k,z), one
ond order of the scattering potential. Finally, Ustinov andarrives at

Kravtsov*’ made a study similar to the one presented here; as

we discuss later on they made an assumption about the varia- 79 g .

tion of the electric field that is in general unwarranted. Vg, T H_eUZE(Z)’ )

In the transition-metal magnetic multilayers, diffuse scat- ) o
the effective electric fieldE(z) =E,— (d/ 9z) u and the relax-

tering is strong and specular reflection at interfaces is signifi*' ) g : 1
ion time 7(z) is defined asr™ ~(z) = wN(€)Wy(2), where

cant as shown in Refs. 11,12. What is needed is a generﬁf_ - (
N is the local density of states at the Fermi level. A com-

analysis which can assess the interplay of the putativel)(n | q imation for th laxation ti is 1
strong diffuse and specular scattering at interfaces. By ex- only used approximation for the relaxation timgz) is to

tending the semiclassical Boltzmann treatment of Hood an§>sume that it is layerwise constant, and here we adopt this

) ! L convention. In the absence of spin-flip scattering j.can
Falicov’ to the CPP geometry we fir(d) a term exists in the .be applied independently to each spin channel; as we are not

boundary conditions for the CPP geometry which is absent 'gtressing the implication of our analysis solely on GMR we
CIP, (2) while diffuse scattering increases resistance forOmit the spin index for simplicity of notation

small reflection coefficients at interfaces, it cassistcon- In the presence of specular reflectiand diffuse scatter-
duction for large reflection coefficients, i.e., it can inducejng 4t interfaces, solutions for the electric field and distribu-
impurity assisted conduction, aii@) while general solutions  tjon functions are highly nontrivial. In the absence of the
are difficult to obtain, an exact solution of the interface re-cyrrent, a dipole layer forms at an interface, this comes from
sistance is found for a special form of the specular and difthe charge redistribution at the interface to insure a common
fuse coefficients; with this special solution, we show the in-chemical potential across layers. This dipole layer does not
terplay of the specular and diffuse scattering on the interfacgive rise to a voltage drop at the interface. What we are

f dak, 5(Ek_ Ekr)Wkkr(Z)

0
)[g(k,z)+e,u,(z)], v

e

resistance. interested in is the current-drivemonequilibrium) dipole
The semiclassical linearized Boltzmann equation for medayer at an interface which comes from charge transport
tallic layered structures is across the interface. Such a dipole layer, which does not exist
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in CIP geometry, leads to finite voltage drops at interfaces in (a) (b)
the CPP geometry. Our goal is to find this voltage drop in the
presence of arbitrary strong diffuse scattering and specular
reflections.

In current experimental realizations of metallic multilay-
ered structures, speculgvotential stepand diffuse scatter-
ing coexist. There are two limiting cases. When the layer
thickness is much smaller than the mean free path, one needs
to calculate the electronic structure of the multilayer in the
present of potential steps. The coherent scattering from dif-
ferent interfaces leads to superlattice bands which are weakly
perturbed by diffuse scattering either in the layers or at the
interfaces. Schept al,*® and Mertigls have performed such FIG. 1. Models for diffuse scatteringg) For short range rough-
calculations. ness isotropic impurity scatteringo) For large-scale roughness.

The case most relevant to current experimental realization
is that of layer thickness comparable to the mean free pathgcattered by an interface via reflecti®R, in the direction
in the layers. The interference of scattering from differentof v;), transmission(ST, in the direction of/;), and isotro-
interfaces is unimportarit:*>'#and one can single out each pic diffuse scattering (15, in all directions. Figure 1b) is a
interface separately as suggested by Barnas and Fethe ~ model for large scale geometric roughness, in which the dif-
following, we consider two semi-infinite layeftayer 1 for  fuse scattering is not isotropic in all directions; we discuss it
z<0 and layer 2 foz>0). The dipole layer, of atomic di- later on. These two scattering processes are described by the
mensions, is assumed to be small compared to the mean fréglowing equations. For Fig. (&)
paths in the layers; in a first approximation we assume it

infinitely thin. To solve the Boltzmann equation, one must @_ L aui - , -

specify boundary conditions at the interfage-0, which F1 _ﬁj d*k"[Jv 2,/ f(v2™) + v/ f(vi7)] (6)
have the following generalized forms in the presence of dif-

fuse and specular scattering: and FP=F®, whereQ=[d%'|v}| is the normalization

factor of the incoming particle flux to the interface. For Fig.
f(v3)=S(v1,Vo)R(V1, Vo) F(V3 )+ S(vy, V) T(vy, Vo) f(vy) 1(b), we have

+[1—=S(v1,v2) F1(f) (4)
d F(b)_ij d3k/ " IRV, VI (VLS
an 170 (w2, R(vy Vo) F(v57)
f(V1<):S(VlvVZ)R(Vl1V2)f(vl>)+S(V11V2)T(V11V2)f(\/2<) +o TV, VY TV @
+[1—S(vy1,v2) JFa(f), 5

and a similar expressioRy” .
where the subscript of represents the electron in layer 1 or  The key difference in the boundary conditions for the CIP
2, while the superscripts- and < refer tov,>0 andv,  and CPP geometries is thaj andF, in Egs.(4) and(5) are
<0; R(vy,v2) andT(vy,v,) are reflection and transmis- absent in CIP because the distribution function is propor-
sion coefficients, +S(vy,v,) describes the diffuse scatter- tional to v, (x is the direction of the electric field in the
ing. The functionF; andF, are defined below in Eq$6)  plane of the layelsand thusF; andF, are identically zero.
and (7). All the coefficientsS, T, and R are unchanged For CPP, current conservation requires the presence of the
when one exchanges their argument and v, or when  F, andF,. It is this boundary condition and the presence of
one reverses the sign of velocity, i.e; is replaced by the nonequilibrium dipole layefas well as charge and spin
—vy, and v, is replaced by—wv,, due to microscopic accumulationswhich make the CIP and CPP transport quite
reversibility. The velocity in layers 1 and 2 is related via the different.
electron refraction law. For example, for a free electron with  The Boltzmann equatiof8) along with the boundary con-
different potentials in layer 14,) and layer 2 U,), one  ditions, Egs.(4) and(5), determine interface resistance. Up
has mviZ/2+ U1=mv§Z/2+ Uy, T(Vq,Vo)=4|v1,02|/ to this point, our formulation is quite general and valid for
(v1,+tv5,)? andR=1—T. The physical processes underly- arbitrary strengths of diffuse scattering; however, solutions
ing Eq. (4) [and similarly Eq.(5)] is rather transparent: the of these equations are difficult to obtain for arbitrarv)
outgoing particle fluxX(v,) comes from the reflected particle since electric fields(chemical potentiajsand distribution
flux (the first term, the transmitted particle flug¢he second function g(v,z) must be determined self-consistently. Even
term), and the particle flux from all directions diffusely scat- without diffuse scattering, various approximations have to be
tered intov, (last tern). made in order to solve the Boltzmann equation. In general,
There are two broad categories of interface roughness ithe self-consistent chemical potentia(z) has two length
lattice matched metallic multilayers, e.g., Co/Cu and Fe/Crscales: a rapid change occurs within a screening length from
they are depicted in Fig. 1. Figurdal is a model for short the interface; then there is a gradual change within a mean
range impurity scattering at the interface which neglects posfree path of the interfac®2°This gradual change was over-
sible short range order inherent to the interface, e.g., pairwistoked in an earlier studdf. In Fig. 2, we illustrate this pro-
interdiffusion’” In this model, an incoming electrowvy) is file of the chemical potential; both x andAu’ contribute



5338 SHUFENG ZHANG AND PETER M. LEVY 57

4

Interface resistance
N

FIG. 2. The general chemical potential profile near an interface.
A is the voltage drop across the dipole layscreen lengthand
Ap' is the voltage drop across the diffusion layer due to detailed
balancing with a length scale of the mean free path.

to the interface resistand®,=(Au+2Au")/j for identical
layers. Without diffuse scattering SE1), several _ ; o >
group§l'18'19find approximate expressions for the interfacete”ng parameter for a set of fixed transmission coeﬁuél’ngps
resistance in terms of arbitrary transmission coeffickfw). O 1/4 1/2,3/4, and 1; see E(LD). Note thatS, =0 represents
In the presence of diffuse scattering one can solve the Bolft@! diffuse scattering, while f, =1 there is no diffuse scatter-
zmann equation with the additional terms in the boundary"9-

conditions given by Eqg4) and(5) by a rather tedious self-

consistent calculation. Instead of doing so in this paper, wé|v |+ a) satisfies this condition for any positive constant
examine a special case where an exact solution can be found.® If we continue to use =|v,|/(|v |+ «) in the presence
Our purpose is to demonstrate that diffuse and specular scapf the diffuse scatterings must take the form

tering are inseparable, i.e., one cannot treat them indepen-

dently. For example, we show below, diffuse scattering can B— v, a+]|v,

enhance or diminish conductance depending on the specular S(UZ)Z,B+—|U| a_—|v| 9
scattering. However, since we have not solved the boundary z z

equations(4)—(7) for arbitrary reflection and transmission . .

cgeﬁicients, which in genera)llare functions of the veIocities,Where'B is restricted to value_s such thaﬁ@sl. Fc_)r these
but rather have resorted to the free electron approximatior{f)rmS of S(vz) andT(v,) the interface resistance is
the solutions obtained below should not be regarded as quan-

titative answers to these general cases. Rather these transpar- _ m(07)— ©(07)
ent solutions provide insight to what happens in more real- Re= g
istic situations. More importantly, we alert the reader that

interface scattering problems are more complicated thaghere o, is the conductivity of the bulk layers. One might
Matthiessen’s rule which envisages resistance as the sum gfmediately notice that Eq9) is different from the diffuse
individual contributions from diffuse and specular scattering.scattering found for the model of correlated roughness con-
We choose a simple solution such that the long rangjdered in Ref. 3. Our choice of the form E) stems from
variation of the chemical potentiah " is zerq see Fig. 2,  our requirement of obtaining an exact solution of the Boltz-
I.e., the electric field is constant outside a screening lengtfhann equation for CPP.
from the interface. Then the distribution function is simply  \whnile this solution gives us some insight into the inter-
g(v)=ev,mE+eu(07), where+ is for z=0, where we as-  play of specular and diffuse scattering in producing interface
sume an equal relaxation time and identical electronic StrucresistanceS(v,) and T(v,) vary between zero and one, as
tures for both layefd so that one can simply label the component of the velocity perpendicular to the interface
T(v1,v2)=T(v7), and similarly forS andR. By placing this  varies, and we cannot speak of cases where there is little or
trial function into Eq.(6), we find the diffuse scattering term pq diffuse or specular scattering. To confB@,) andT(v,)
is F{®=[u(0+)+u(0—)1/2. Then, from the boundary to a narrow range we consider a case where conduction is

FIG. 3. Interface resistand®; as a function of the diffuse scat-

=287l oy, (10

conditions, Egs(4) and(5), we arrive at quasi one dimensional so that we are limited to electrons
with k, nearkg . Then interface resistance has a simple rela-
(07)_ (O+)=2v TE1+ S(Uz)_ZS(Uz)T(Uz) (8) tion With Sk ;ndi ,
K H TS 17S(u,) 1 28(0) T(vy) - i
As long asu(07)— «(0") is independent of ,, a constant ke 1+S.—2S Ty
electric field is a solution of this equation. For example, R=2——+ *F F 1y

s 7 .
without diffuse scattering, i.e., S(v)=1, T=|v,// 00 1= S +2S5, Ty,
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For Ty =1 (complete transmissignresistance increases as transmission is given by|v,|T(v)dk. WhenT(v,)=0 the
diffuse scattering increase% decreases while for TkF interface resistance is infinitegardlessof the diffuse scat-

—0, resistance decreases as diffuse scattering increases. [fifing parametef(v,) because all electrons are totally re-

Fig. 3, we show the resistance as a function of diffuse scafleécted by the interface, i.e., there is no diffuse scattering

tering parameteS,_ for several fixed transmission coeffi- assisted conduction. While such diffusive scattering is cer-
F

. . : . . tainly unacceptable for scattering from impurities it is appli-
cients. As seen from Fig. 3, diffuse scattering easistcon- cable to large scale geometrical roughness.

ggfit'/ce)g :gr%u'?hrilslgitrirf?ec ess.eglatﬂhg:gg tgtlusl)cﬁnﬁ(l)lfjlsol?orwas In summary, we have considered interface resistance in
realistic specular andp diffEse scatterin C(;efficie'lﬁtsr ) the presence of both specular and diffuse scattering at inter-
P 9 z faces. In the presence of diffuse scattering, new boundary

?;f?eft(il(})zn) fge;{fri]ge]:qot!?rggg arglrjfr;';nE'ra';(;mssrgs)”rd?fﬁfgglar conditions are required for the current perpendicular to the
yp plane of the layers. These two sources of resistance, diffuse

scattering is the sole source of interface resistance; for Iarggnd specular scattering, are not additive, rather they are
specular reflection coefficientmearly no transmissigrdif- ! '

L ) ..,strongly coupled. Depending on specular reflection coeffi-
fuse scattering is the sole source of conduction because with- gy P P g P

out diffuse scattering electrons cannot cross the interface lents, diffuse scattering can either assist or suppress conduc-
For larae scale gometric rouahness interfaces are ﬂat'otion. Our nonperturbative results alter the conclusions one
9 L9ec ) 9 Jerives from perturbative treatments which considered the
the scale of atomic dimensions, and one loazlly perfect

: o effects of diffuse scattering in the presence of specular re-
reflections and transmissions. However, on a larger scale thﬂe

X ections, e.g., that diffuse scattering increases the resistance
locally flat regions are at an angle to one another, so that th 9 g

specular reflections and transmissions from the locally flaf o 2" interface. For large reflectid? (small T) this no
pe ; . y onger holds; diffuse scatteringecreaseshe resistance.
regions are partially randomized by large scale roughness;
this is depicted in Fig. (b). The diffuse scattering that comes  The authors wish to thank Dr. Mark Stiles and Professor
from this process only redistributes the original specular reAlbert Fert for helpful discussions. This work was supported
flection and transmission in such a way that the integratethy Office of Naval Research through Grant No. NO0014-96-

backscattering is given by|v,|R(v)d3k, and the forward 1-0203.
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