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Interplay of the specular and diffuse scattering at interfaces of magnetic multilayers
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~Received 23 May 1997; revised manuscript received 14 October 1997!

Both specular and diffuse scattering at interfaces of magnetic multilayers play a significant role in their
resistivity and magnetoresistance. Within the framework of the semiclassical Boltzmann approach, we show
that the resistance across an interface for currents perpendicular to the plane of the layers is sensitive to the
nature of the scattering and that perturbative treatments of diffuse interface scattering break down. Depending
on reflection coefficients diffuse scattering canassistor suppressconduction across interfaces.
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Giant magnetoresistance~GMR! has been observed i
transition-metal magnetic multilayers in two principal geo
etries. For the current parallel to the plane of the lay
~CIP!, a number of authors1–4 have studied the interfac
roughness from different angles. Noticeably, Hood, Falic
and Penn3 considered the relation between the structures
roughness and its effect on resistivity in detail. Recen
much attention has centered on currents perpendicular to
plane of the layers~CPP! since the magnitude of the GMR i
larger in this geometry. One of the most important issues
this geometry is the origin of interface resistance. Valet a
Fert5 introduced a phenomenological potential drop at int
face due to diffuse scattering but without potential steps,
Stiles6 considered realistic specular reflection but witho
diffuse scattering. Vedyaevet al.7 evaluated effects of inter
ference between incident and reflected electrons for an i
interface. Dugaevet al.,8 and Barnas and Fert9 considered
the effects of diffuse scattering at interfaces in the prese
of potential steps, but they limited their calculations to s
ond order of the scattering potential. Finally, Ustinov a
Kravtsov10 made a study similar to the one presented here
we discuss later on they made an assumption about the v
tion of the electric field that is in general unwarranted.

In the transition-metal magnetic multilayers, diffuse sc
tering is strong and specular reflection at interfaces is sig
cant as shown in Refs. 11,12. What is needed is a gen
analysis which can assess the interplay of the putativ
strong diffuse and specular scattering at interfaces. By
tending the semiclassical Boltzmann treatment of Hood
Falicov3 to the CPP geometry we find~1! a term exists in the
boundary conditions for the CPP geometry which is absen
CIP, ~2! while diffuse scattering increases resistance
small reflection coefficients at interfaces, it canassistcon-
duction for large reflection coefficients, i.e., it can indu
impurity assisted conduction, and~3! while general solutions
are difficult to obtain, an exact solution of the interface
sistance is found for a special form of the specular and
fuse coefficients; with this special solution, we show the
terplay of the specular and diffuse scattering on the interf
resistance.

The semiclassical linearized Boltzmann equation for m
tallic layered structures is
570163-1829/98/57~9!/5336~4!/$15.00
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~2p!3E d3k8d~ek2ek8!Wkk8~z!

3@ f ~k,z!2 f ~k8,z!#, ~1!

whereEz is the external electric field applied in the directio
perpendicular to the plane of the layers,f is the distribution
function (f 0 is the equilibrium distribution function!, vz
5]ek /]kz is the velocity inz direction, and it is assumed
that the collision islocal and elastic. One can greatly sim-
plify the above equation when the scattering probabi
Wkk8(z)5W0(z) is independent of momentak and k8.
Following,5 we can separate the distribution function as f
lows:

f ~k,z!5 f 0~k!1S 2
] f 0

]e D @g~k,z!1em~z!#, ~2!

where the condition*g(k,z)d3k50 is imposed. By placing
Eq. ~2! into Eq.~1! with the above constraint ong(k,z), one
arrives at

vz

]g

]z
1

g

t~z!
5evzE~z!; ~3!

the effective electric fieldE(z)5Ez2(]/]z)m and the relax-
ation timet(z) is defined ast21(z)5pN(e)W0(z), where
N is the local density of states at the Fermi level. A co
monly used approximation for the relaxation timet(z) is to
assume that it is layerwise constant, and here we adopt
convention. In the absence of spin-flip scattering Eq.~3! can
be applied independently to each spin channel; as we are
stressing the implication of our analysis solely on GMR w
omit the spin index for simplicity of notation.

In the presence of specular reflectionand diffuse scatter-
ing at interfaces, solutions for the electric field and distrib
tion functions are highly nontrivial. In the absence of t
current, a dipole layer forms at an interface, this comes fr
the charge redistribution at the interface to insure a comm
chemical potential across layers. This dipole layer does
give rise to a voltage drop at the interface. What we
interested in is the current-driven~nonequilibrium! dipole
layer at an interface which comes from charge transp
across the interface. Such a dipole layer, which does not e
5336 © 1998 The American Physical Society
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57 5337INTERPLAY OF THE SPECULAR AND DIFFUSE . . .
in CIP geometry, leads to finite voltage drops at interface
the CPP geometry. Our goal is to find this voltage drop in
presence of arbitrary strong diffuse scattering and spec
reflections.

In current experimental realizations of metallic multila
ered structures, specular~potential step! and diffuse scatter-
ing coexist. There are two limiting cases. When the la
thickness is much smaller than the mean free path, one n
to calculate the electronic structure of the multilayer in t
present of potential steps. The coherent scattering from
ferent interfaces leads to superlattice bands which are we
perturbed by diffuse scattering either in the layers or at
interfaces. Schepet al.,15 and Mertig16 have performed such
calculations.

The case most relevant to current experimental realiza
is that of layer thickness comparable to the mean free p
in the layers. The interference of scattering from differe
interfaces is unimportant,3,13,14 and one can single out eac
interface separately as suggested by Barnas and Fert.9 In the
following, we consider two semi-infinite layers~layer 1 for
z,0 and layer 2 forz.0). The dipole layer, of atomic di
mensions, is assumed to be small compared to the mean
paths in the layers; in a first approximation we assum
infinitely thin. To solve the Boltzmann equation, one mu
specify boundary conditions at the interfacez50, which
have the following generalized forms in the presence of
fuse and specular scattering:

f ~v2
.!5S~v1 ,v2!R~v1 ,v2! f ~v2

,!1S~v1 ,v2!T~v1 ,v2! f ~v1
.!

1@12S~v1 ,v2!#F1~ f ! ~4!

and

f ~v1
,!5S~v1 ,v2!R~v1 ,v2! f ~v1

.!1S~v1 ,v2!T~v1 ,v2! f ~v2
,!

1@12S~v1 ,v2!#F2~ f !, ~5!

where the subscript ofv represents the electron in layer 1
2, while the superscripts. and , refer to vz.0 and vz
,0; R(v1 ,v2) and T(v1 ,v2) are reflection and transmis
sion coefficients, 12S(v1 ,v2) describes the diffuse scatte
ing. The functionF1 and F2 are defined below in Eqs.~6!
and ~7!. All the coefficientsS, T, and R are unchanged
when one exchanges their argumentv1 and v2 or when
one reverses the sign of velocity, i.e.,v1 is replaced by
2v1, and v2 is replaced by2v2, due to microscopic
reversibility. The velocity in layers 1 and 2 is related via t
electron refraction law. For example, for a free electron w
different potentials in layer 1 (U1) and layer 2 (U2), one
has mv1z

2 /21U15mv2z
2 /21U2 , T(v1 ,v2)54uv1zv2zu/

(v1z1v2z)
2, andR512T. The physical processes underl

ing Eq. ~4! @and similarly Eq.~5!# is rather transparent: th
outgoing particle fluxf (v2) comes from the reflected particl
flux ~the first term!, the transmitted particle flux~the second
term!, and the particle flux from all directions diffusely sca
tered intov2 ~last term!.

There are two broad categories of interface roughnes
lattice matched metallic multilayers, e.g., Co/Cu and Fe/
they are depicted in Fig. 1. Figure 1~a! is a model for short
range impurity scattering at the interface which neglects p
sible short range order inherent to the interface, e.g., pairw
interdiffusion.17 In this model, an incoming electron (v1

.) is
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scattered by an interface via reflection~SR, in the direction
of v1

,), transmission~ST, in the direction ofv2
.), and isotro-

pic diffuse scattering (1-S, in all directions!. Figure 1~b! is a
model for large scale geometric roughness, in which the
fuse scattering is not isotropic in all directions; we discus
later on. These two scattering processes are described b
following equations. For Fig. 1~a!

F1
~a!5

1

VE d3k8@ uv2z8 u f ~v28
,!1uv1z8 u f ~v18

.!# ~6!

and F2
(a)5F1

(a) , whereV[*d3k8uvz8u is the normalization
factor of the incoming particle flux to the interface. For Fi
1~b!, we have

F1
~b!5

1

VE d3k8@ uv2z8 uR~v18 ,v28! f ~v28
,!

1uv1z8 uT~v18 ,v28! f ~v18
.!# ~7!

and a similar expressionF2
(b) .

The key difference in the boundary conditions for the C
and CPP geometries is thatF1 andF2 in Eqs.~4! and~5! are
absent in CIP because the distribution function is prop
tional to vx (x is the direction of the electric field in the
plane of the layers! and thusF1 andF2 are identically zero.
For CPP, current conservation requires the presence of
F1 andF2. It is this boundary condition and the presence
the nonequilibrium dipole layer~as well as charge and spi
accumulations! which make the CIP and CPP transport qu
different.

The Boltzmann equation~3! along with the boundary con
ditions, Eqs.~4! and ~5!, determine interface resistance. U
to this point, our formulation is quite general and valid f
arbitrary strengths of diffuse scattering; however, solutio
of these equations are difficult to obtain for arbitraryT(v)
since electric fields~chemical potentials! and distribution
function g(v,z) must be determined self-consistently. Ev
without diffuse scattering, various approximations have to
made in order to solve the Boltzmann equation. In gene
the self-consistent chemical potentialm(z) has two length
scales: a rapid change occurs within a screening length f
the interface; then there is a gradual change within a m
free path of the interface.18–20This gradual change was ove
looked in an earlier study.10 In Fig. 2, we illustrate this pro-
file of the chemical potential; bothDm andDm8 contribute

FIG. 1. Models for diffuse scattering.~a! For short range rough-
ness isotropic impurity scattering.~b! For large-scale roughness.
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to the interface resistanceRs5(Dm12Dm8)/ j for identical
layers. Without diffuse scattering (S51), several
groups21,18,19find approximate expressions for the interfa
resistance in terms of arbitrary transmission coefficientT(v).
In the presence of diffuse scattering one can solve the B
zmann equation with the additional terms in the bound
conditions given by Eqs.~4! and~5! by a rather tedious self
consistent calculation. Instead of doing so in this paper,
examine a special case where an exact solution can be fo
Our purpose is to demonstrate that diffuse and specular s
tering are inseparable, i.e., one cannot treat them inde
dently. For example, we show below, diffuse scattering c
enhance or diminish conductance depending on the spe
scattering. However, since we have not solved the bound
equations~4!–~7! for arbitrary reflection and transmissio
coefficients, which in general are functions of the velociti
but rather have resorted to the free electron approximat
the solutions obtained below should not be regarded as q
titative answers to these general cases. Rather these tran
ent solutions provide insight to what happens in more re
istic situations. More importantly, we alert the reader th
interface scattering problems are more complicated t
Matthiessen’s rule which envisages resistance as the su
individual contributions from diffuse and specular scatterin

We choose a simple solution such that the long ra
variation of the chemical potential,Dm8 is zero, see Fig. 2,
i.e., the electric field is constant outside a screening len
from the interface. Then the distribution function is simp
g(v)5evztE1em(06), where6 is for z:0, where we as-
sume an equal relaxation time and identical electronic st
tures for both layers22 so that one can simply labe
T(v1 ,v2)[T(vz), and similarly forS andR. By placing this
trial function into Eq.~6!, we find the diffuse scattering term
is F1

(a)5@m(01)1m(02)#/2. Then, from the boundary
conditions, Eqs.~4! and ~5!, we arrive at

m~02!2m~01!52vztE
11S~vz!22S~vz!T~vz!

12S~vz!12S~vz!T~vz!
. ~8!

As long asm(02)2m(01) is independent ofvz , a constant
electric field is a solution of this equation. For examp
without diffuse scattering, i.e., S(vz)51, T5uvzu/

FIG. 2. The general chemical potential profile near an interfa
Dm is the voltage drop across the dipole layer~screen length! and
Dm8 is the voltage drop across the diffusion layer due to deta
balancing with a length scale of the mean free path.
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(uvzu1a) satisfies this condition for any positive consta
a.6 If we continue to useT5uvzu/(uvzu1a) in the presence
of the diffuse scattering,S must take the form

S~vz!5
b2uvzu
b1uvzu

a1uvzu
a2uvzu

, ~9!

whereb is restricted to values such that 0<S<1. For these
forms of S(vz) andT(vz) the interface resistance is

Rs[
m~02!2m~01!

j
52bt/s0 , ~10!

wheres0 is the conductivity of the bulk layers. One migh
immediately notice that Eq.~9! is different from the diffuse
scattering found for the model of correlated roughness c
sidered in Ref. 3. Our choice of the form Eq.~9! stems from
our requirement of obtaining an exact solution of the Bol
mann equation for CPP.

While this solution gives us some insight into the inte
play of specular and diffuse scattering in producing interfa
resistance,S(vz) and T(vz) vary between zero and one, a
the component of the velocity perpendicular to the interfa
varies, and we cannot speak of cases where there is littl
no diffuse or specular scattering. To confineS(vz) andT(vz)
to a narrow range we consider a case where conductio
quasi one dimensional so that we are limited to electr
with kz nearkF . Then interface resistance has a simple re
tion with SkF

andTkF
,

Rs52
tkF

s0

11SkF
22SkF

TkF

12SkF
12SkF

TkF

. ~11!

FIG. 3. Interface resistanceRs as a function of the diffuse scat
tering parameter for a set of fixed transmission coefficientsTkF

50, 1/4, 1/2, 3/4, and 1; see Eq.~11!. Note thatSkF
50 represents

total diffuse scattering, while forSkF
51 there is no diffuse scatter

ing.

e.

d



s

s
ca
-

a

ar

r

i
e.
t

t
t

fla
es
s
re
te

e-
ing
er-
li-

e in
ter-
ary
the
fuse
are
ffi-
duc-
ne
the
re-

ance

sor
ed
6-
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For TkF
51 ~complete transmission!, resistance increases a

diffuse scattering increases (SkF
decreases!, while for TkF

50, resistance decreases as diffuse scattering increase
Fig. 3, we show the resistance as a function of diffuse s
tering parameterSkF

for several fixed transmission coeffi
cients. As seen from Fig. 3, diffuse scattering canassistcon-
duction through interfaces. Although this conclusion w
derived from this simple special case, Eq.~11!, it holds for
realistic specular and diffuse scattering coefficientsT(vz)
and S(vz) by the following argument. For small specul
reflection coefficients~nearly perfect transmission! diffuse
scattering is the sole source of interface resistance; for la
specular reflection coefficients~nearly no transmission! dif-
fuse scattering is the sole source of conduction because w
out diffuse scattering electrons cannot cross the interfac

For large scale geometric roughness interfaces are fla
the scale of atomic dimensions, and one haslocally perfect
reflections and transmissions. However, on a larger scale
locally flat regions are at an angle to one another, so that
specular reflections and transmissions from the locally
regions are partially randomized by large scale roughn
this is depicted in Fig. 1~b!. The diffuse scattering that come
from this process only redistributes the original specular
flection and transmission in such a way that the integra
backscattering is given by* uvzuR(v)d3k, and the forward
ys
. In
t-

s

ge

th-

on

he
he
t
s;

-
d

transmission is given by* uvzuT(v)d3k. WhenT(vz)50 the
interface resistance is infiniteregardlessof the diffuse scat-
tering parameterS(vz) because all electrons are totally r
flected by the interface, i.e., there is no diffuse scatter
assisted conduction. While such diffusive scattering is c
tainly unacceptable for scattering from impurities it is app
cable to large scale geometrical roughness.

In summary, we have considered interface resistanc
the presence of both specular and diffuse scattering at in
faces. In the presence of diffuse scattering, new bound
conditions are required for the current perpendicular to
plane of the layers. These two sources of resistance, dif
and specular scattering, are not additive, rather they
strongly coupled. Depending on specular reflection coe
cients, diffuse scattering can either assist or suppress con
tion. Our nonperturbative results alter the conclusions o
derives from perturbative treatments which considered
effects of diffuse scattering in the presence of specular
flections, e.g., that diffuse scattering increases the resist
from an interface. For large reflectionR ~small T) this no
longer holds; diffuse scatteringdecreasesthe resistance.
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