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Dispersion of a single hole in an antiferromagnet

Andrey V. Chubukov and Dirk K. Morr
Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706

~Received 2 September 1997!

We revisit the problem of the dispersion of a single hole injected into a quantum antiferromagnet. We
applied a spin-density-wave formalism extended to a large number of orbitals and obtained an integral equation
for the full quasiparticle Green’s function in the self-consistent ‘‘noncrossing’’ Born approximation. We found
that for t/J@1, the bare fermionic dispersion is completely overshadowed by the self-energy corrections. In
this case, the quasiparticle Green’s function contains a broad incoherent continuum which extends over a
frequency range of;6t. In addition, there exists a narrow region of widthO(JS) below the top of the valence
band, where the excitations are mostly coherent, though with a small quasiparticle residueZ;J/t. The top of
the valence band is located at (p/2,p/2). We found that the form of the fermionic dispersion, and, in particular,
the ratio of the effective masses near (p/2,p/2) strongly depend on the assumptions one makes for the form of
the magnon propagator. We argue in this paper that two-magnon Raman scattering as well as neutron-
scattering experiments strongly suggest that the zone-boundary magnons are not free particles since a substan-
tial portion of their spectral weight is transferred into an incoherent background. We modeled this effect by
introducing a cutoffqc in the integration over magnon momenta. We found analytically that for smallqc , the
strong-coupling solution for the Green’s function is universal, and both effective masses are equal to (4JS)21.
We further computed the full fermionic dispersion forJ/t50.4 relevant for Sr2CuO2Cl2, and t8520.4J and
found not only that the masses are both equal to (2J)21, but also that the energies at (0,0) and (0,p) are equal,
the energy at (0,p/2) is about half of that at (0,0), and the bandwidth for the coherent excitations is around 3J.
All of these results are in full agreement with the experimental data. Finally, we found that weakly damped
excitations only exist in a narrow range around (p/2,p/2). Away from the vicinity of (p/2,p/2), the excita-
tions are overdamped, and the spectral function possesses a broad maximum rather than a sharp quasiparticle
peak. This last feature was also reported in photoemission experiments.@S0163-1829~98!02209-7#
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I. INTRODUCTION

The dispersion of a single hole in a quantum antifer
magnet is one of the issues in the field of high-tempera
superconductivity which has attracted a substantial amo
of interest over a number of years.1–20 The parent com-
pounds of the high-Tc materials are quantum Heisenberg a
tiferromagnets as was demonstrated by neutron scatteri22

NMR,23 and Raman24 experiments. The antiferromagnet
spin ordering strongly modifies the electronic dispers
which by all accounts is very different from what one wou
expect from band theory calculations. Upon hole dopi
short-range antiferromagnetism gradually disappears, and
overdoped cuprates possess an electronic dispersion wh
consistent with band theory predictions.26 How the electronic
spectrum evolves with doping is currently a subject of inte
sive experimental and theoretical studies.27–30 As an impor-
tant input for these studies, one needs to know what happ
in the limit of zero doping when a single hole is injected in
a quantum antiferromagnet.

The dispersion of a single hole in an antiferromagnet
been intensively studied experimentally and theoretica
Experimental information comes from photoemission exp
ments on the half-filled Sr2CuO2Cl2 which is not a high-Tc
superconductor, but contains the same CuO2 planes as the
high-Tc materials.32,33 Most of the theoretical analysis wa
performed in the framework of thet-J and Hubbard models
which are widely believed to adequately describe the lo
energy physics of the underlying three-band model.1–14,16–20
570163-1829/98/57~9!/5298~14!/$15.00
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Early analytical and numerical computations were perform
in the antiferromagnetically ordered phase and for the c
when a hopping is only possible between near
neighbors.1–3,5,13,14 These studies have shown that in t
strong-coupling limit~large-U limit in the Hubbard model or
t@J limit in the t-J model!, the Green’s function of a single
hole has the form

G~k,v!5
Z

v2Ek
1Ginc~k,v!, ~1!

where the coherent part is confined to scales smaller thanJ,
while the incoherent background stretches up to a fewt. The
quasiparticle residue of the coherent piece is small and sc
as Z}J/t in the limit t@J. The dispersionEk has a maxi-
mum atk5(p/2,p/2) and symmetry-related points. All ca
culations have demonstrated that the dispersion around
point is very anisotropic with a substantially larger ma
along the (0,p) to (p,0) direction than along the Brillouin-
zone diagonal. Fort/J52.5 relevant to cuprates, the ratio o
the masses is about 527 in the t-J model ~without a three-
site term!,3 and it is even larger in the Hubbard model due
the presence of the bare dispersionJ(coskx1cosky)

2 which
yields an extra contribution to the mass along the zo
diagonal.21

It turns out, however, that the experimental results
Sr2CuO2Cl2 ~Refs. 33,32! are rather different from these pre
dictions. Although the photoemission data have dem
strated that the maximum ofEk is atk5(p/2,p/2) consistent
5298 © 1998 The American Physical Society
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57 5299DISPERSION OF A SINGLE HOLE IN AN ANTIFERROMAGNET
with the theory, the experimentally measured ratio of
masses is close to one in clear disagreement with the t
retical predictions. Moreover, the data show that the cohe
peak in the spectral function exists only in a narrow reg
around (p/2,p/2), while away from this region the hol
spectral function is nearly featureless. This implies that
fermionic excitations become overdamped already at e
gies which are substantially smaller than 2J.

After the data were reported, several attempts have b
made to improve the agreement between theory and ex
ment. One scenario was put forward by researchers wor
on the ‘‘gauge theory’’ approach to cuprates,34 most recently
by Laughlin.35 He argued that the isotropy of the dispersi
together with the observed mostly incoherent nature of
electronic excitations are signatures of a spin-charge sep
tion. For a state where spin and charge degrees of free
are described by separate quasiparticles~spinons and holons
respectively!, the electron Green’s function is just a conv
lution of the spinon and holon propagators. It does not h
a pole which normally would be associated with the coher
part ofG(k,v), but rather a branch cut which describes fu
incoherent excitations. Laughlin argued that since spinon
holon energies are well separated@the spinon energy has a
overall scale ofJ, while the holon energy isO(t)#, the po-
sition of the branch cut virtually coincides with the spino
dispersion. In the mean-field theory for the spin-charge se
rated state, the spinon energy has the form

Ek
spinon52Csw~cos2kx1cos2ky!1/2, ~2!

where Csw;1.6J is the spin-wave velocity in a two
dimensional~2D! S51/2 antiferromagnet. This dispersio
has an isotropic maximum atk5(p/2,p/2), a bandwidth of
2.2J and equal energies fork5(0,0) and (0,p)—all of these
features are consistent with the data together with the n
absence of the quasiparticle peak.

An obvious weakness of the mean-field analysis
spinons and holons is that it neglects the effects due
gauge field. Beyond the mean-field level, a gauge field m
glue spinons and holons into a bound state thus rendering
electron as a coherent quasiparticle. Laughlin conjectu
that the confinement takes place only belowTN , while the
experimental data were actually collected atT5350 K which
is 100 K above the Ne´el temperature. He then proposed th
if measurements are done at much lower temperatures,
should yield an anisotropic dispersion consistent with
results obtained in the ordered state with no spin-cha
separation.

Another, more conventional approach to the single h
problem assumes that there is no spin-charge separatio
any T, and that the experimental data in fact reflect the
havior of the hole dispersion in the antiferromagnetically
dered phase.16–20Within this approach, the discrepancy wi
the data is mainly attributed to the fact that the origin
model did not contain a hopping termt8 between next-
nearest neighbors~and, possibly, also between further neig
bors!. The presence of the a finitet8 term in the Hubbard
model is justified, at least partly, by studies which derived
effective one-band model from the underlying three-ba
model by comparing the energy levels around the cha
transfer gap.36 These studies predicted that the seco
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neighbor hopping is aboutt8520.2t. By itself, this hopping
is small compared tot. However, in an antiferromagneti
background, the hole can only move within the same sub
tice, otherwise the antiferromagnetic ordering is disturb
The hopping termt8 connects the sites within the same su
lattice, and therefore is not affected by antiferromagnetis
On the contrary, thet term contributes to the hopping withi
a sublattice only via the creation of a virtual doubly occupi
state which costs the energyU. As a result, thet part of the
dispersion is rescaled and becomes of ordert2/U5O(J).
One therefore has to comparet8 not with t but rather withJ.
For J/t;0.4, we then obtaint8520.5J, which immediately
implies that the corrections due tot8 are actually quite rel-
evant.

It has been mentioned several times in the literature
the inclusion oft8520.5J into the Hubbard model yields a
good agreement with the experimental data already at
mean-field level.16,17 Indeed, the mean-field spin-density
wave ~SDW! formula for the hole dispersion at largeU is

Ek52J~coskx1cosky!224t8coskxcosky . ~3!

For t8520.5J, this formula transforms into

Ek52J~cos2kx1cos2ky! ~4!

~here we assumed that the chemical potential is at the to
the valence band!. This dispersion possesses two equal eff
tive masses if one expands around the maximum
(p/2,p/2), and has a a local maximum at (0,p/2) with E5
2J. Both of these results are consistent with the most rec
data by LaRosaet al.33 Furthermore, the data show that th
energies at (0,0) and (0,p) are both equal to22J. This also
agrees with the photoemission data.32,33

The conventional mean-field SDW-type approach a
possesses the weakness that it predicts fully coherent ex
tions up to 2J. The data, however, demonstrate that aw
from the vicinity of (p/2,p/2), the coherent part of the dis
persion is almost completely overshadowed by the incoh
ent background. Earlier studies16 which went beyond the
mean-field level have demonstrated that self-energy cor
tions reduce the quasiparticle residue thus transferring pa
the spectral weight into the incoherent background. Ho
ever, these corrections also effectively decreaset8 and thus
render the spectrum more anisotropic~see Fig. 11 and 13
below!. From this perspective, the observed isotropy of
dispersion around (p/2,p/2) is attributed in a conventiona
approach to some fine tuning of bothJ/t and t8/J and is
therefore completely accidental.37

In this paper we show that in a certain limit specifie
below, the near degeneracy of the spectrum aro
(p/2,p/2) turns out to be a fundamental, universal prope
of a single hole in an antiferromagnet, independent of
details of the physics at atomic scales. Our key point is th
in all previous studies which yielded anisotropic spectra
was assumed that magnons behave as free particles fo
momenta. In this case, the integral over the magnon m
menta in the self-energy term runs over the whole magn
Brillouin zone~MBZ!. On the other hand, Raman studies
the two-magnon profile in the insulating parent compoun
of high-Tc materials have demonstrated that the width of
two-magnon peak is much broader than one would expec
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5300 57ANDREY V. CHUBUKOV AND DIRK K. MORR
free magnons.24,25 The dominant contribution to this pea
comes from the magnons near the boundary of the M
Complimenting these findings, neutron-scattering exp
ments on La2CuO4 ~Ref. 38! have shown that about half o
the spectral weight of the quasiparticle peak for the zo
boundary magnons is transferred into a broad incohe
background.

It has been suggested that the broadening is due to
strong interaction between these magnons and phonons39,40

This interaction is finite and not necessary small atT50
contrary to the magnon-magnon interaction which gives
to an incoherent part of the magnon spectral function onl
finite T and is irrelevant forT!J.41

In this situation, it seems reasonable to assume that
contribution from the zone-boundary magnons to the e
tronic self-energy is substantially reduced compared to w
one would obtain for free spin waves. This however is tr
only for zone-boundary magnons. For long-wavelength m
nons, the magnon-phonon vertex scales linearly with
magnon momentum, and the incoherent part of the mag
propagator is small. The simplest way to model this effec
to introduce an upper cutoffqc in the integration over mag
non momenta. Naively, one might expect that the hole d
persion would strongly depend onqc . However, we will
demonstrate that at larget/J, when the bare dispersion i
irrelevant, only the quasiparticle residue does depend onqc ,
while the effective masses are in fact independent ofqc in
the limit whenqc is sufficiently small. We explicitly show
that in this limit, both masses turn out to be equal to 1/J.
The dispersion near (p/2,p/2) is then isotropic and has
form Ek52J k̃2 where k̃ is the deviation from (p/2,p/2).
Furthermore, we show that for a certain range ofqc the in-
clusion of t8520.5J extends the region where the tw
masses are approximately equal to basically all values oft/J.
This last result allows us to correctly reproduce the measu
hole dispersion in Sr2CuO2Cl2.

The paper is organized as follows. In the next section,
outline the formalism and derive the integral equation for
quasiparticle Green’s function by expanding around
mean-field SDW solution. In Sec. III we present our analy
cal results in the larget/J limit. In this section we also dis-
cuss the role of the vertex corrections to the spin-ferm
vertex. In Sec. IV, we present the results of the numer
solution of the self-consistency equation for the quasipart
Green’s function for different values ofJ/t. Section V con-
tains a summary of our results.

II. THE FORMALISM

As mentioned in the Introduction, our starting point f
the description of the insulating parent compounds of
high-Tc materials is the effective 2D one-band Hubba
model,42–44 given by

H52(
i , j

t i , j ci ,a
† cj ,a1U(

i
ci ,↑

† ci ,↑ci ,↓
† ci ,↓ . ~5!

Here a is the spin index andt i , j is the hopping integra
which we assume to act between nearest and next-ne
neighbors (t and t8, respectively!. Throughout the paper we
assume that the ground state of the Hubbard model is a
.
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ferromagnetically ordered. In this situation, a way to calc
late the spectral function in a systematic perturbative exp
sion is to extend the Hubbard model to a large number
orbitals,n52S, and use a 1/S expansion around the mean
field SDW state.45 The 1/S expansion for the Hubbard mode
has been discussed several times in the literature16,29 and we
will use it here without further clarification. To obtain th
mean-field solution, one introduces an antiferromagne
long-range order parameterSz5^ck

†ck1Q& and uses it to de-
couple the interaction term in Eq.~5!. Diagonalizing then the
quadratic form by means of a unitary transformation o
obtains two electronic bands for the conduction and vale
fermions, whose energy dispersion is given by

Ek
c,v56A~ek

2!21D21ek
1 , ~6!

where

ek
65

ek6ek1Q

2
, D5U^Sz&,

ek524 t̄ S~coskx1cosky!28 t̄ 8Scoskxcosky2m. ~7!

Here Ek
c,v is the dispersion of the conduction and valen

fermions, respectively,ek is the dispersion of free fermions
m is the chemical potential, and̂Sz& is the sublattice mag-
netization. To facilitate the 1/S expansion, we also intro
duced t̄ 5t/2S and t̄ 85t8/2S. In the large-U limit which
we only consider, one can expand the square root and ob

Ek
c,v56D62JS~coskx1cosky!228 t̄ 8coskxcosky2m,

~8!

whereJ54 t̄ 2/U. At half-filling, the chemical potential can
be set to the top of the valence band (m52D); for S51/2
we then reproduce Eq.~3! from the Introduction.

At infinite S, the mean-field approach is exact. At finiteS,
the bare Green’s function is renormalized due to the inter
tion with spin waves.

The lowest-order self-energy corrections for valence f
mions are given by the diagrams in Fig. 1. The solid a
dashed lines in these diagrams are the propagators of
duction and valence fermions, respectively. The wavy lin
describe transverse-spin fluctuations which in the SDW
proach are collective modes of electrons. These collec
modes correspond to the poles of the transverse suscep
ity, and are obtained by summing up an infinite rando
phase approximation series in the particle-hole channel w
the total momentum equal to either zero orQ. The interac-
tion vertices between fermionic quasiparticle and magn
have been calculated previously.46 In the strong-coupling
limit they are given by

FIG. 1. The lowest-order self-energy correction for the valen
fermions in the SDW model. The solid and dashed lines are the
propagators of conduction and valence fermions, respectively.
wavy line describes transverse-spin fluctuations.
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Fcc,vv~k,q!5@6~ek
~2 !1ek1q

~2 ! !hq1~ek
~2 !2ek1q

~2 ! ! h̄q#,

Fcv,vc~k,q!5U@hq7 h̄q#. ~9!

wherehq and h̄q are given by

hq5ASS 11nq

12nq
D 1/4

; h̄q5ASS 12nq

11nq
D 1/4

, ~10!

andnq5(cosqx1cosqy)/2.
We see that there are two types of vertices:Fcv,vc , which

describes the interaction between conduction and vale
fermions, andFcc,vv , which involves either only valence o
only conduction fermions. Apparently, the second diagram
Fig. 1 is more relevant since the vertex which involves b
conduction and valence fermions scales asU. However, in-
cident and intermediate fermions in this diagram belong
different bands and are therefore separated by a la
momentum-independent gapD;US. As a result, the first
diagram mostly contributes to the gap renormalizati
which is exactly cancelled by a renormalization of^Sz& such
that the fully renormalized gap equals 2US as it indeed
should be for the large-U Hubbard model.16,46 Expanding
this diagram inJ/U, we also obtain a momentum depende
term of O(J) which contributes a regular 1/S correction to
the bare dispersion.

The first diagram in Fig. 1 involves only valence ferm
ons. Here the vertex is reduced fromU due to the coherenc
factors and scales ast. At the same time, both incident an
internal quasiparticles are onlyO(J) away from the Fermi
surface which implies that the denominator scales asJ. The
total contribution from the second diagram then behaves
JS(t/JAS)2 and in addition is strongly momentum depe
dent. Since the bare dispersion is of orderJS, the relative
self-energy correction from the second diagram scales
(t/JAS)2 and is small only for extremely largeS. For physi-
cally relevant values of the spin, the expansion paramete
obviously large, and one certainly cannot restrict with t
second order in perturbation theory.

We now formulate precisely under which conditions w
carry out the calculations. We assume thatS@1 and neglect
all regular corrections in 1/S. At the same time, we assum
that t/JAS@1 and sum up an infinite series of diagrams
this parameter. The restriction to largeS allows us not only
to neglect the self-energy diagrams which involve both
lence and conduction fermions, but also to neglect the qu
tum corrections to the spin-wave propagator. At half-fillin
these regular 1/S corrections can, with good accuracy, b
absorbed into the renormalization of the hopping term a
the exchange interaction which are both input parameters
our calculations.

The next step is to select the series of diagrams wh
have to be summed up. To lowest order in perturbat
theory, both self-energy and vertex corrections are equ
relevant: the self-energy correction yields a relative con
bution of ( t̄ /JAS)2, while the leading-order vertex correc
tion shown in Fig. 2 yields a relative factor (t̄ /JAS)4 which
is even larger. This result, however, changes if we estim
the strength of the self-energy and vertex corrections i
self-consistent manner, i.e., by considering all inter
ce

n
h

o
e,

,

t

as

as

is
e

-
n-
,

d
or

h
n
ly
i-

te
a
l

Green’s functions and all vertices in the diagrams in Figs
and 2 as full ones. This in turn yields self-consistent eq
tions for the full self-energy and the full vertex. Our se
consistent calculation of the self-energy correction is sim
to the one performed by Kane, Lee, and Read~KLR!.2 Fol-
lowing KLR, we assume that the dominant pole approxim
tion for the full fermionic Green’s function is valid up to
energies of the order of the typical spin-wave energy, i.e.,
full Green’s function can be approximated asZ/(v2Ek)
where Ek5O(JS) ~we later confirm this result by explici
calculations!. Substituting this form into the self-energy ter
and performing standard manipulations we obtain
t̄ /JAS@1 the self-consistency conditiont̄ 2Z2F/J2S;1,
whereF stands for the vertex renormalization. It is essen
that there is only one power ofF in this relation as only one
of the two vertices in the self-energy diagram gets renorm
ized. On the other hand, in the vertex correction diagram,
vertices should be considered as full ones, and the s
consistency condition yields (t2Z2F/J2S)2F2;1. Compar-
ing these two conditions, we obtainZ;JAS/t and F
5O(1). Theresult forZ is consistent with the one obtaine
by KLR. Clearly then, the self-energy corrections are mo
relevant than the vertex corrections since the former red
the quasiparticle residue to a parametrically small val
while the latter only change the vertex by a factor of ord
O(1). Though the vertex corrections do not contain a fac
1/S, it seems reasonable to assume that they just change
overall amplitude of the vertex but do not introduce any n
physics. We therefore first neglect all vertex corrections a
obtain the full self-energy and thus the full Green’s functi
in the self-consistent Born approximation.47 We then use the
solution for the full Green’s function to estimate the relati
strength of the vertex corrections. We find that the ver
corrections change the vertex by roughly 20% and there
can be neglected with reasonable accuracy.

In the Born approximation, the full self-energy is dia
grammatically given by an infinite series of ‘‘noncrossing
diagrams@see Fig. 3~a!#. Summing up this series, we obta

FIG. 2. The lowest-order vertex correction for the vertex b
tween fermions and transverse-spin fluctuations. The diagram
only one wavy line is absent in the ordered state as it does
conserve the spin.

FIG. 3. ~a! The self-energy is given by an infinite sum of rain
bow diagrams.~b! The Dyson equation which together with th
self-energy in~a! yields Eq.~12!.
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that the full self-energy has the same form as in second-o
perturbation theory, but the Green’s function for the interm
diate fermion is now replaced by the full one. The fu
Green’s function is then obtained from the Dyson equat
@see Fig. 3~b!# and is analytically given by

G21~k,v!5v2~Ek
v2m!2E d2q

4p2
dV C~k,q!

3G~k1q,v1V!D~q,V!, ~11!

whereD(q,V) is the spin-wave propagator, and

C~k,q!5Fvv
2

532S t̄2@nk
21nk1q

2 22nknqnk1q

1A12nq
2~nk1q

2 2nk
2!#/A12nq

2.

The integration over momentum runs over the whole MB
Equation~11! is similar to the one derived earlier for th

t-J model2,3,47with the only difference that Eq.~11! contains
the bare dispersionEk

v . This dispersion is indeed also prese
when one derives thet-J model from the Hubbard model a
large U. However, it is due to the three-site term which
usually omitted in the effectivet-J Hamiltonian.48

As we discussed in the introduction, the quasiparti
spectral weight of the short-wavelength magnons in the p
ent compounds of the high-Tc materials is likely to be
strongly reduced as demonstrated by Raman and neu
scattering experiments. To account for this effect, we ado
semiphenomenological approach and introduce a cutoffqc in
the integration over magnon momenta in the right-hand s
~rhs! of Eq. ~11!. We assume that forq.qc , the magnon
spectral weight disappears into a broad background, and
glect the contribution to the self-energy from theseq. On the
other hand, forq,qc , we assume that the magnons are j
free particles with D(q,V)5(V2vq1 id)21 where vq

54JSA12nq
2 is the spin-wave spectrum. Furthermore, f

our analytical considerations, we will assume thatqc is
rather small such that we can expand the dispersion of
mions and the spin-fermion vertex to linear order in the m
non momentum. This last assumption is not well justified
the magnitude ofqc is unknown. Notice, however, that ex
panding up to leading order inqc , we obtain two equal ef-
fective masses which are universal and independent ofqc .
The smallness ofqc is then only needed for the corrections
these universal results to be small.

The magnon propagatorD(q,V) has a pole in the lowe
half-plane ofV. In this half-plane, the mean-field fermion
Green’s functionG(k,v)5@v2(Ek

v2m)1 id sgnv#21 is
free from nonanalyticities sinceEk

v2m,0. We assume, fol-
lowing KLR, that the full G(k,v) is also analytic in the
lower half-plane ofV. Then one can straightforwardly pe
form the integration over the internal frequency in Eq.~11!
and obtain

G21~k,v!5v2~Ek
v2m!2E d2q

4p2
C~k,q!

3G~k1q,v1vq!. ~12!
er
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We first present our analytical results for the full Green
function in certain limiting cases, and then present the
numerical solution of Eq.~12!.

III. ANALYTICAL RESULTS

We obtain the analytical solution of Eq.~12! in two dif-
ferent ranges ofv. In Sec. III A we first solve the self-
consistency equation in the limituv2vmaxu@L, wherevmax
is the highest frequency at which the full Green’s functi
first acquires a finite imaginary part, andL5JS( t̄ /JAS)1/3.
We show that foruv2vmaxu@L the excitations are purely
incoherent and extend over a region of;6 t̄ A2S. In Sec.
III B we then consider the caseuv2vmaxu<L. In this fre-
quency range we find coherent excitations which exist up
energies ofO(JS) down from the maximal frequency.

A. Incoherent part of the excitation spectrum

We first observe that the interaction vertex in Eq.~12! has
an overall scale of (t̄ AS)2, while the quasiparticle Green’
function behaves as 1/v at very large frequencies~here, and
in the following, we shifted the frequency by the mean-fie
chemical potential,m52D). Obviously then, forv@tAS,
the perturbative expansion in the spin-fermion interaction
convergent, and the density of states~DOS! is exactly equal
to zero, as in the mean-field theory. Whenv is reduced to
the scale of t̄ AS, the lowest-order self-energy term
; t̄ 2S/v becomes of the same magnitude as the freque
in the bare Green’s function, i.e, the expansion paramete
O(1). We show that in this frequency range there exists
critical value ofv below which perturbation theory become
nonconvergent and there appears a finite DOS. It is esse
that for smallJAS/ t̄ , the critical frequency is still much
larger than the magnon frequency such that one can neg
vq and Ek

v compared tov in the rhs of Eq.~12!. The self-
consistency equation then reduces to a conventional inte
equation

G21~k,v!5v2E d2q

4p2
C~k,q2k!G~q,v! ~13!

in which the dependence on the external momentum is o
present in the interaction vertex. Furthermore, we assu
that v; t̄ AS is larger than the total magnon bandwidth, i
cluding the incoherent part. In this situation, the integrat
over q runs over the whole MBZ.

Before we present the solution of Eq.~13!, it is instructive
to consider a simplified version of this equation in whi
C(k,q2k), which is a smooth function of the fermioni
momentum, is just substituted by some constant; t̄ 2S. The
equation for the fullG(v) then reduces to

G21~v!5v2 t̃̄ 2SG~v!, ~14!

where t̃̄ / t̄ 5O(1). Solving this algebraic equation, we ob
tain for positivev
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G~v!5
2

v1Av22vmax
2

, ~15!

wherevmax52 t̃̄ AS. We see that forv.vmax, the Green’s
function is real. This is the frequency range where pertur
tion theory is valid. Forv,vmax, however, the expressio
under the square root is negative, and the solution posse
a finite imaginary part which gives rise to a finite DOS. T

total width of the DOS is obviouslyW52vmax54 t̃̄ AS.
We now solve Eq.~13! with the actualC(k,q2k). We

introduce a new functionf k(v) via

Gk
21~v!5v f k~v2!. ~16!

Substituting this into Eq.~13!, we obtain

f k512aE d2q

4p2f q
F nq

22nk
21

nk
21nq

222nknqnq2k

A12nq2k
2 G ,

~17!

where we defineda532 t̄ 2S/v2.
The general solution of Eq.~13! can be obtained by ex

panding in the eigenfunctions of theD4h symmetry group of
the square lattice. The solution is in general rather cumb
some because the vertex contains ak-dependent term in the
denominator. However, it is easy to verify that the expr
sion in the square brackets vanishes whennq2k→1. The
dominant contribution to the rhs of Eq.~13! then comes from
the region ofq space wherenq2k is relatively small i.e., the
denominator is close to one. For simplicity, we just se
equal to one. We then obtain

f k512aE d2

4p2f q

nq@nq2nknq2k#. ~18!

This equation is much simpler to solve because the dec
position ofnq2k into the eigenfunctions of the square latti
involves only four eigenfunctions:

nk2q5nknq1 ñ k ñ q1 n̄ k n̄ q1 n̄̃ k n̄̃ q , ~19!

where

nk5
1

2
~coskx1cosky!; ñ k5

1

2
~coskx2cosky!;

n̄ k5
1

2
~sinkx1sinky!; n̄̃ k5

1

2
~sinkx2sinky!. ~20!

We now choose a general ansatz forf k consistent with Eq.
~18!

f k5A1Bnk
21Cnk ñ k1Dnk n̄ k1Enk n̄̃ k , ~21!

and solve this set of self-consistent algebraic equations
the coefficients. We found that the coefficientsC, D, andE
are equal to zero, whileA and B are the solutions of two
coupled equations
-

ses

r-

-

t

-

or

A5122aE d2q

4p2

nq
2

A1Bnq
2

,

B52aE d2q

4p2

nq
2

A1Bnq
2

. ~22!

Introducing A5122ax, B52ax and separating real an
imaginary parts ofx by introducingx5x11 ix2, we obtain
an equivalent set of equations forx1 andx2

x15E d2q

4p2

nq
2@122ax1~12nq

2!#

@122ax1~12nq
2!#214a2x2

2~12nq
2!2

,

x25E d2q

4p2

nq
2~12nq

2!~2ax2!

@122ax1~12nq
2!#214a2x2

2~12nq
2!2

.

~23!

In terms ofx1 and x2, the quasiparticle Green’s function i
given by

G~k,v!5
1

v

122ax1~12nk
2!1 i2ax2~12nk

2!

@122ax1~12nk
2!#214a2x2

2~12nk
2!2

.

~24!

Obviously, the spectral function and hence the DOS are
nite whenx2Þ0.

A simple analysis of Eq.~23! shows that the solution with
x250 exists only for uvu.vmax52.97t̄ A2S ~or a,acr
50.448). At the critical point, we obtainx150.43. For
smaller frequencies Eq.~23! yields a solution with finite
imaginary part, just as we found with the toy model wi
momentum independentC. The total bandwidth is equal to
W52vmax'6 t̄ A2S up to corrections of orderO(JS) which
we neglected. Forv only slightly belowvmax, we have

x2;Avmax2v. ~25!

Substituting this into Eq.~24!, we obtain that the DOS be
haves nearvmax as

N~v!;
1

t̄ AS
S vmax2v

vmax
D 1/2

. ~26!

The above results are valid only as long as one can
glect the magnon dispersion. We now estimate the rang
validity of this approximation. Recall that in transformin
Eq. ~12! into Eq. ~13!, we omitted the term

E d2q

4p2
C~k,q2k!@G~q,v1vq!2G~q,v!#. ~27!

Far from vmax, we do not expect this term to be relevan
Near the maximum frequency,G(v)2G(vmax)}(vmax
2v)1/2, and]G/]v is singular. Substituting the form ofG
from Eq. ~24! with x2 from Eq. ~25! into Eq. ~27! we find
that the term we omitted can be neglected whenuvmax2vu
>J2S5/2 t̄ /(vmax2v)2, i.e., when uvmax2vu>L where L

5JS( t̄ /JAS)1/3. At frequencies closer tovmax, the magnon
dispersion is not negligible, and the calculation of the sp
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tral function should be done using the full self-consisten
equation Eq.~12!. We will proceed with this calculation in
the next section.

B. Coherent part of the excitation spectrum

In this section, we study the form of the quasipartic
Green’s function close to the top of the valence band, i.e
the regionuvmax2vu<L.

It is again instructive to consider first a toy model with
momentum-independent interaction. Assume that typ
value of the magnon frequency isJ̃S with J̃ /J5O(1). We
then have instead of Eq.~14!

G21~v!5v2 t̃̄ 2SG~v1 J̃S!. ~28!

In the vicinity of vmax, the solution of this equation is

G~v!'
2

vmax
S 11S 2

vmax
D 1/2@~v2vmax!

31L̃3#1/2

uv2vmaxu
D ,

~29!

where vmax52 t̃̄ AS1O( J̃S) and L̃5 J̃S( t̃̄ / J̃AS)1/3. We
see that there are two typical scales introduced byJ̃ . For
uv2vmaxu>L, G(v) in Eq. ~29! differs from that in Eq.
~15! only by small corrections. ForJS<uv2vmaxu<L, the
frequency dependence of the full solution is different fro
that in Eq. ~15!, however, G(v) remains approximately
equal to 2/vmax. Finally, atuv2vmaxu< J̃S, the full Green’s
function begin to increase, and very nearvmax we have

G~v!'
J̃AS

t̃̄

1

v2vmax
. ~30!

We see that very nearvmax, the Green’s function has a con

ventional pole with the residueZ5 J̃AS/ t̃̄ . This implies that
aroundvmax, there should exist coherent fermionic excit
tions.

We now proceed with the solution of the actual se
consistency equation with a momentum-dependentC(k,q
2k). Inspired by the solution of the toy model, we assu
that there exists a frequency,vmax for which G21(k,vmax)
50 at somek5k0, and which differs from the previously
found onset frequency only by an amount ofO(JS). We will
not be able to fully verify this assumption analytically as
would require us to find a solution of Eq.~12! for all k and
v;vmax which we cannot do. However, we will later verif
this assumption in our numerical studies. We also assu
and then verify thatk05(p/2,p/2), and that neark5k0 and
v5vmax, the excitations are mostly coherent, and the q
siparticle Green’s function has the form

G~k,v!5
Z

v2vmax1Ek2 ig~v2vmax!
2Q~v2vmax!

.

~31!

HereZk is the quasiparticle residue,g is the damping coef-
ficient, Q(x)51(0) if x,0 (x.0), and the hole excitation
spectrum has the form
y

in

al

e

e

-

Ek5
~k'2k0!2

2m'

1
~ki2k0!2

2mi
, ~32!

where k' ,ki are the momenta along the boundary of t
MBZ and along the zone diagonal, respectively.

In addition, as we discussed above, we introduce an up
cutoff qc<1 in the integration over the magnon momentu
and restrict with an expansion of the magnon energy up
linear order inq. We recall that physically, the presence
this cutoff reflects the experimental fact that the zon
boundary magnons cease to exist as well-defined quasip
cles and therefore effectively do not contribute to the se
energy of the valence fermions. We will see that t
quasiparticle residueZ scales as (qc)

21/2, but the effective
masses are independent ofqc .

We now substitute the coherent ansatz forG(k,v) into
the self-consistency equation Eq.~12!. Expanding aroundk0
andvmax and using the fact thatG21(k0 ,vmax)50, we ob-
tain self-consistent solutions for the quasiparticle residue,
quasiparticle spectrum and the damping coefficient. Cons
first the quasiparticle residue. Settingk5k0 and expanding
the rhs of the self-consistency equation, Eq.~12!, to linear
order invmax2v we obtain

12Z

Z
5E d2q

4p2C~k0 ,q!
Z

~vq1Ek01q!2
, ~33!

where the integration runs uptoqc . Since qc!1, we can
expand the two terms in the denominator to linear order inq.
As vq}q and Ek01q}q2, the first term is dominant. Per

forming the integration with onlyvq in the denominator, we
obtain

15Z1
A2 t̄ 2Z2qc

pJ2S
. ~34!

In the limit JAS/t!1, the term linear inZ can be neglected
and we find

Z5JAS

t
S pA2

qc
D 1/2

. ~35!

We see thatZ scales linearly withJAS/t as in our toy model.
This dependence was also obtained in earlier studies2 and
verified numerically in Ref. 31. It was however noticed
Ref. 3 that the linear dependence exists only for very sm
J/t. These authors argued that for moderateJ/t, Z;(J/t)1/2.
We also found deviations from the linear behavior alrea
for moderately smallJ/t, however, we did not find a square
root dependence for intermediateJ/t. A plot of Z versusJ/t
is presented in Figs. 6 and 7.

Next, we calculate the quasiparticle damping coefficie
g. For this we again setk5k0, neglectEk01q compared to

vq , but do not expand inv2vmax. Still, we are interested
in small deviations fromvmax, and can therfore neglect th
damping term in the full fermionic Green’s function in th
rhs of Eq.~12! compared tov2vmax. The rhs of Eq.~12!
then takes the form



a

an
in

r-

in
kly

is
nc-

ent
a-

dis-

e
n
ing
is

ec-

57 5305DISPERSION OF A SINGLE HOLE IN AN ANTIFERROMAGNET
E d2q

4p2
C~k0 ,q!

Z

v2vmax1vq1 id
. ~36!

For v,vmax, the integrand has a pole atv5vmax2vq .
Integrating around the pole, we obtain a finite imaginary p
which in 2D scales as (v2vmax)

2. Performing the explicit
calculations, we obtain

g5
t̄ 2Z2

~2S!2J3
. ~37!

The same result was obtained earlier by Kane, Lee,
Read.2 Note in passing that in contrast to a recent claim
Ref. 18, we did not find a missing factor of 2 in their fo
mula. Substituting the expression forZ into Eq. ~37!, we
finally obtain

g5
1

4JS

pA2

qc
. ~38!
th

s

ng
re

er
e

rt

d

Comparing now the damping term with the term linear
frequency, we find that the fermionic excitations are wea
damped forEk5vmax2v<4JS(qc /pA2). For small qc ,
this condition is satisfied only in a small region aroundk0.
For example, forqc5Ap/2 and m21;4JS, the fermionic
excitations are only weakly damped foruk2k0u,0.75 which
constitutes only a small fraction of the MBZ. Away from th
region, the damping term is dominant, and the spectral fu
tion should possess a broad maximum aroundv5Ek rather
than a sharp quasiparticle peak. This is in full agreem
with the data32,33which show that the spectral function me
sured in photoemission experiments possesses a clearly
tinguishable quasiparticle peak only in the vicinity ofk0.

We now proceed with the calculation of the effectiv
masses. For this we setv5vmax and expand in the magno
momentum. We restrict ourselves to the strong-coupl
limit JAS! t̄ and neglect the bare dispersion, which in th
limit is completely overshadowed by the self-energy corr
tion. We then obtain
Ek

Z
52E d2q

4p2 C~k0 ,q!$G~vmax1vq ,k1q!2G~vmax1vq ,k01q!%2E d2q

4p2 $C~k,q!2C~k0 ,q!%G~vmax1vq ,k01q!

2E d2q

2p2 $C~k,q!2C~k0 ,q!%$G~vmax1vq ,k1q!2G~vmax1vq ,k01q!%. ~39!
lt,
the

-
en
ly

are
his

op-
e as

this
s

Expanding the quasiparticle Green’s function, we obtain

G~vmax1vq ,k1q!2G~vmax1vq ,k01q!

5Z
Ek01q2Ek1q

~vq1Ek01q!2
1Z

~Ek01q2Ek1q!2

~vq1Ek01q!3
1•••, ~40!

where

Ek1q2Ek01q5
k'

2

2m'

1
ki

2

2mi
1

k'q'

m'

1
kiqi

mi
. ~41!

The expansion ofC(k,q) up to quadratic order ink and up
to linear order inq yields

C~k,q!2C~k0 ,q!532 t̄ 2SH A2

4
k'

2 qS 12
q'

2

q D 2k'q'

2
ki

2q'
2

2A2q
J . ~42!

Inserting now these expressions into Eq.~39! and using the
result for the quasiparticle residue, we find that one of
two contributions to the first term on the rhs of Eq.~39!
cancels out theEk /Z term on the lhs. The remaining term
are all proportional toC, and therefore the energy scalet
drops completely out of the problem. The only remaini
scale is given byvq , and the inverse effective masses a
therefore proportional to the spin-wave velocity. Furth
more, we found that the integrals over the magnon mom
e

-
n-

tum in the remaining terms in Eq.~39! are confined to the
upper limit of theq integration, and all scale asqc

2 . There-
fore, the cutoffqc also drops out of the problem. As a resu
we obtain universal, model-independent equations for
masses

3

~4JSm'!2
2

1

JSm'

1150,

1

~4JSmi!
2 2150. ~43!

The second equation yieldsmi
2154JS, while for m' we

obtain two solutions:m'
2154JS or 4

3 JS. We have checked
that only the first solution form' can be continuously con
nected with the perturbative solution at weak coupling. Th
only the first solution is physically relevant, and we final
obtain

mi5m'5~4JS!21. ~44!

We see that in the limitqc!1 and forJAS/t!1 when the
bare dispersion can be neglected, the effective masses
equal, i.e., the top of the valence band is isotropic. T
result is an intrinsic property of the Hubbard~or t-J) model
at strong coupling, independent of the form of the bare h
ping. Note that the value of the masses is exactly the sam
in the mean-field theory witht8520.5J.

We also estimated the magnitude of the corrections to
universal result for the masses. We indeed found that aqc
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increases, the dispersion becomes anisotropic withm'

.mi . This trend is consistent with the results of other a
thors who integrated over the full magnetic Brillouin zone
Eq. ~12!.3,8,9,12Finally, the form of the coherent part of th
Green’s function in Eq.~31! implies that the DOS behaves a
(vmax2v)2 very nearvmax and reaches the value

N;
Z

JS
;

1

tAS
~45!

atvmax2v;JS, which is the largest scale where this form
applicable. At even larger frequencies, the DOS scales a

N;
Z

vmax2v
~46!

and transforms into the fully incoherent DOS given by E
~26! at vmax2v;L. This incoherent density of states the
gradually increases with frequency and saturates av
!vmax. These results imply that the DOS reaches a ma
mum at vmax2v;JS, then drops down at slightly large
frequencies;L, and then gradually increases and pas
through a broad maximum atv!vmax. The behavior of the
DOS is presented in Fig. 4. This behavior is in agreem
with the numerical results which also find a strong coher
peak in the DOS atvmax2v;J on top of a smooth incoher
ent background.49

C. Vertex corrections

Finally, we consider the effect of vertex corrections. W
already found in Sec. II that these corrections do not int
duce any new scale, but at the same time they do not pos
a factor of 1/S and therefore can only be neglected due t
numerical smallness. To estimate the magnitude of the ve
renormalization, we computed the lowest-order vertex c
rection shown in Fig. 2 with the full quasiparticle Green
functions from Eq.~31!. We followed the same computa
tional steps as before, i.e., expanded to linear order in
magnon momentum and integrated up toqc . Performing
these calculations, we obtain that at small external mome
the full vertex has the same functional form as the bare
and differs from it by a factor (11d) where

d5S A2 t̄ 2Z2qc

2pJ2S
D 2

I ~47!

and

FIG. 4. The schematic form of the DOS at half-filling. The DO
reaches a maximum at energies;JS, below the gap, then drop
down at slightly larger energies, and then gradually increases
saturates at the energies which are;t away from the gap.
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~x1y!2
5~ ln220.5!'0.2. ~48!

Substituting Eq.~35! for Z into Eq. ~47!, we obtain that the
term in brackets is equal to unity, i.e.,d5I'0.2. Observe
that this result does not depend on the upper cutoff. We
that the leading vertex correction accounts for only a 20
renormalization of the bare vertex. We did not explicit
compute higher-order vertex corrections, but our estima
show that they are likely to be progressively smaller. W
therefore estimate that our analytical and numerical res
for the dispersion obtained without vertex corrections
valid with an accuracy of about 20%.

Some earlier works performed along similar lines r
ported even smaller vertex corrections, of the order of 1%50

These calculations used the dominant pole approximation
all momenta which is a potentially dangerous procedure
fermionic excitations are strongly overdamped far away fr
(p/2,p/2). We, on the contrary, restricted the dominant po
approximation to an area with a widthqc near (p/2,p/2),
and neglected the contributions from other regions ink space
where fermionic excitations are mostly incoherent. The d
ference in computational procedures accounts for the dif
ence between our and earlier estimates for the vertex cor
tions. In both cases, however, the corrections are small
can be safely neglected.

IV. NUMERICAL RESULTS

We now proceed with the discussion of the full numeric
solution of the self-consistency equation for the quasipart
Green’s function. As in the previous section, we begin
considering in Sec. IV A the frequency rangeuv2vmaxu
@L, in which the spectrum is completely incoherent. In S
IV B we then consider frequencies close tovmax for which
we obtain coherent excitations on the scale ofO(JS). We
present the results for the dispersion of a single hole
different values ofJ/t and t8/t, as well as different cutoffs
qc . For comparison with earlier studies we also present
results for the case when the magnons are considered as
particles.

We will demonstrate that fort850, one recovers two
equal effective masses only for very larget/J. However,
after including a nearest-neighbor hoppingt8520.5J, we
obtain two roughly equal masses for all values oft/J. In this
situation, the only effect of the decrease ofJ/t is the transfer
of the spectral weight from the coherent to the incoher
part of the dispersion. Furthermore, for the experimenta
relevant caseJ/t50.4, we findm21'(4JS)21. For S51/2
this yieldsm21'(2J)21, which is the same value that wa
obtained in the photoemission experiments on Sr2CuO2Cl2.

A. Incoherent part of the excitation spectrum

As we discussed in Sec. III A, foruv2vmaxu@L we can
neglect the magnon dispersion on the rhs of Eq.~12! and
consider an integral equation only in momentum space. F
lowing the same argument we also neglected the bare fe
onic dispersion in Sec. III A. For our numerical studies, ho
ever, we kept the bare fermionic dispersion in order
illustrate how the DOS evolves withJ/t. In Fig. 5 we present

nd
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for several values ofJ/t the DOS resulting from the numer
cal solution of Eq.~13! for S51/2 andt850. We see that for
intermediateJ/t50.4 ~solid line!, the DOS is asymmetric
aroundv50 with the density shifted towards negative fr
quencies. This indicates that the contribution from the b
dispersion which by itself yields a finite DOS only for neg
tive v is not negligible. With decreasingJ/t the asymmetry
becomes weaker, until it basically vanishes forJ/t50.007.
This result is expected since in the limitJ/t→0 the bare
dispersion becomes irrelevant, and we should recover a s
metric DOS. We also found that the total bandwidth on
weakly depends onJ/t and is roughly equal toW56.6t. This
value is only slightly larger thanW56t which we obtained
analytically in Sec. III A.

B. Coherent part of the excitation spectrum

In order to solve Eq.~12! for the full Green’s function we
use a discrete mesh in frequency and ink space. We assum
that near the top of the valence band the quasipart
Green’s function has the form presented in Eq.~31! and ob-
tain the onset frequencyvmax and the hole dispersionEk
from the conditions

G21~k5k0 ,v5vmax!50,

G21~k,v5vmax!5Ek /Z. ~49!

To obtain the quasiparticle residue, we computeG21(k
5k0 ,v) and use the relation

Z5
Dv

G21~k,vmax1Dv!2G21~k,vmax!
, ~50!

whereDv is a small shift from the maximal frequency. Th
dispersion extracted from Eq.~49! is formally valid only in
the vicinity of k0. At larger distances fromk0, Ek does not
necessary coincide with the position of the maximum in
spectral function due to a strong quasiparticle damping
our numerical procedure for solving the self-consisten
equation, we relate the Green’s function at a given freque
v to the Green’s functions at largerv1vq , and progres-
sively computeG at smaller and smallerv. Using this
method, we cannot obtain the imaginary part of the f

FIG. 5. The incoherent part of the hole excitation spectrum
several values ofJ/t ~solid line J/t50.4, dashed lineJ/t50.007
and dotted linesJ/t50.0007).
e
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Green’s function and therefore are unable to compareEk
extracted from Eq.~49! with the position of the maximum in
the spectral function. We just assume without proof that
least not too far fromk0, Ek and the peak position roughl
coincide.

We first present in Figs. 6 and 7 our results for the qu
siparticle residue atk5k05(p/2,p/2) as a function ofJ/t.
We have chosen two values ofqc : a smaller oneqc

5A2p/16 and a larger one for which the integration over t
magnon momenta runs over 1/4 of the MBZ. The square
these figures represent our numerical results, the dotted
is our analytical formula, Eq.~35!, obtained to leading orde
in qc , and the dashed line incorporates subleading cor
tions in qc . We see that for smallerqc , the agreement be
tween the numerical data and the results to leading orde
qc is rather good. For largerqc , subleading corrections ar
more relevant. In both cases, however, the quasiparticle r
due is substantially reduced from its valueZ51 for free
fermions already for moderateJ/t. We also see that the lin
ear dependence exists only for very smallJ/t ~see linear fit in
Fig. 6!.

In Fig. 8 we present the results for the ratio of the mas
as a function oft/J for t850 andt8520.5J, respectively. In

r

FIG. 6. Z as a function ofJ/t. The integration over magnon
momenta is restricted to 1/4 of the MBZ.

FIG. 7. Z as a function ofJ/t for qc521/2p/16.
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both cases, the integration over the magnon momenta
over 1/4 of the MBZ. We see that for both values oft8, the
ratio of the masses approaches one in the limitt/J→`. This
is in full agreement with our analytical results. We also s
however, that fort850, one needs very large, unphysic
values of t/J to recover the limiting behavior. Fort85
20.5J, the ratio of the masses is equal to one already at
mean-field level, and our results demonstrate that the r
remains roughly equal to one for all values oft/J including
the experimentally relevantt/J52.5. In order to see the ef
fect of theJ/t ratio on the whole fermionic dispersion, w
present the results forE(k) for t850 and two different val-
ues ofJ/t in Fig. 9. We clearly see that the variation ofJ/t
mainly affects the dispersion around (0,p). The excitation
energy in this region increases witht/J, i.e., the dip in the
dispersion becomes deeper, which immediately leads
decrease in the ratio of the effective masses. At the s
time, the overall bandwidth only slightly increases with d
creasingJ/t. In Fig. 10 we compare the results for the fe
mionic dispersion forJ/t50.4 and for two values oft8,t8
50 and t8520.4J ~here the magnon integration runs ov
1/4 of the MBZ!. We see that fort850, the dispersion is
rather anisotropic and inconsistent with the experimen
data.32,33 On the contrary, fort8520.4J, not only the
masses are equal, but also the energies at (0,0) and (0,p) are
nearly equal to each other, and the bandwidth for cohe
excitations is about 3J. All three of these results are in fu
agreement with the data.32,33 We also found that the energ

FIG. 8. The ratio of the effective massesm' andmi as a func-
tion of t/J for (a) t850 and (b) t8520.5J. The integration over
the magnon momenta runs over 1/4 of the MBZ.
ns
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at (0,p/2) is about half of that at (0,0) which agrees with th
most recent data by LaRosaet al.33 The results fort85
20.5J are similar to those fort8520.4J and are presented
in Fig. 11. In this figure we compare the dispersion fort8
520.5J for two different ranges of integration over th
magnon momentum. We see that while the integration o
1/4 of the MBZ yields a dispersion roughly consistent w
the data, the integration over the full MBZ yields a high
anisotropic dispersion. However, one can increaset8 even
further and reduce the energy at (0,p) thus making the dis-
persion near (p/2,p/2) more isotropic even for the integra
tion over the full MBZ. We illustrate this in Fig. 12 wher
we present the results for the fermionic dispersion fort85
2J and for the integration over the full MBZ. We see, how
ever, that the overall bandwidth is still larger than in t
experiments. We therefore conclude that if the integrat
over magnon momentum runs over the full MBZ~which
implies that magnons are treated as free particles!, the dis-
persion is inconsistent with the data for all reasonable val
of t8. In this situation, to account for the data one has
adjust the hopping to even further neighbors.

For completeness, we also present several results for
integration over the full MBZ in the conventionalt-J model
without the three-cite term. This corresponds to neglect

FIG. 9. The fermionic dispersions fort850.0 and two different
values forJ/t ~solid line J/t50.4, dotted lineJ/t50.3). The mag-
non integration is restricted to 1/4 of the MBZ.

FIG. 10. The fermionic dispersions forJ/t50.4 and two differ-
ent values fort8 ~solid line t850.0, dotted linet8520.4J). The
magnon integration is restricted to 1/4 of the MBZ.
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the bare fermionic dispersion in Eq.~12!. In Fig. 13 we
present the results for the excitation energy fort850 and
J/t50.4. This form of the dispersion is in very good agre
ment with the results of earlier studies.3,8,9,12As in previous
studies, we found that the effective mass along the zone
agonal is roughly seven times smaller than the mass a
the boundary of the MBZ. In Fig. 14 we present the resu
for the evolution of the dispersion witht8. We see that ast8
increases, the effective mass along (0,p) direction gets
smaller. However, a rather largeut8u is needed to reproduc
two equal masses. Moreover, for equal masses, the ov
bandwidth is about two times smaller than in the expe
ments. We see again that without restricting the integra
over magnon momentum, one needs to add and to fine
the hopping parameters to even further neighbors to re
duce the experimental data.

V. SUMMARY

We now summarize the results of our studies. We con
ered in this paper the dispersion of a single hole injected

FIG. 11. The fermionic dispersions forJ/t50.4 and t8
520.5J and two different ranges of integration. The solid a
dotted lines are the results for the integration over the full MBZ a
1/4 of the MBZ, respectively.

FIG. 12. The fermionic dispersions forJ/t50.4 andt852J.
The integration over magnon momenta extends over the full M
-

i-
ng
s

all
-
n
ne
o-

-
to

a quantum antiferromagnet. We applied a spin-density-w
formalism extended to large number of orbitalsn52S, and
obtained an integral equation for the full quasipartic
Green’s function in the self-consistent ‘‘noncrossing’’ Bo
approximation. AtS5`, the mean-field theory is exact. A
finite S, we found that the self-energy correction to th
mean-field formula forG(k,v) scales ast̄ /JAS, and for
large t̄ /J, relevant to experiments, is small only in the u
physical limit of a very large spin. We found that fo
t̄ /JAS@1, the bare fermionic dispersion is completely ove
shadowed by the self-energy corrections. In this case,
quasiparticle Green’s function contains a broad incoher
continuum which extends over a frequency range of;6t. In
addition, there exists a narrow region of widthO(JS) below
the top of the valence band, where the excitations are mo
coherent, though with a small quasiparticle residueZ

;JAS/ t̄ . The top of the valence band is located
(p/2,p/2).

d

.

FIG. 13. The fermionic dispersion in thet-J model for J/t
50.4 andt850. The integration over magnon momenta runs ov
the full magnetic Brillouin zone~MBZ!.

FIG. 14. The fermionic dispersion within thet-J model forJ/t
50.4 and two different values fort8 ~dotted linet850.4J, solid line
t852J). The integration over magnon momenta runs over the
MBZ.



d

or
tio
th
ar

na
si

no
g
ag
he
ck
n
n

ns
W

fo
c-
u

he

on

i
an
-

y
th

os

on
nd

se

his
eri-

trate

ect,
ex-
-
ping

a

low
uld
t in

ur
sed
a
p-
in-
ev-

ons
en-

by
w-
i-

-
g-

con-
nt

R.
ov
F-

5310 57ANDREY V. CHUBUKOV AND DIRK K. MORR
We found that the form of the fermionic dispersion, an
in particular, the ratio of the effective masses near (p/2,p/2)
strongly depend on the assumptions one makes for the f
of the magnon propagator. For free magnons, the integra
over magnon momenta in the self-energy runs over
whole MBZ. In this case, we found, in agreement with e
lier studies, that the dispersion around (p/2,p/2) is aniso-
tropic with a much smaller mass along the zone diago
This result holds even if the bare dispersion contains a
able t8 term.

We, however, argued in the paper that the two-mag
Raman scattering24 as well as neutron-scatterin
experiments38 strongly suggest that the zone-boundary m
nons are not free particles since a substantial portion of t
spectral weight is transformed into an incoherent ba
ground. Most probably, this transformation is due to a stro
magnon-phonon interaction. In this situation, only magno
with small momenta, for which the interaction with phono
is necessary small, actually contribute to the self-energy.
modeled this effect by introducing a cutoffqc in the integra-
tion over magnon momenta. We found analytically that
small qc , the strong-coupling solution for the Green’s fun
tion is universal, and both of the effective masses are eq
to (4JS)21. We further studied numerically the shape of t
dispersion for intermediateJ/t and found that fort8;
20.5J the ratio of the masses remains roughly equal to
for basically all values ofJ/t. This particular value fort8 is
obtained from a comparison of the low-energy excitations
the underlying three-band model and the effective one-b
Hubbard model.36 We computed the full fermionic disper
sion for J/t50.4 relevant for Sr2CuO2Cl2, and t8520.4J
and found that not only the masses are both equal to (2J)21,
but also the energies at (0,0) and (0,p) are equal, the energ
at (0,p/2) is about half of that at (0,0), and the bandwid
for the coherent excitations is around 3J. All of these results
are in full agreement with the experimental data by LaR
et al.33 and also by Wellset al.32 @except for a slightly
smaller bandwidth and larger energy at (0,p)#. Finally, we
computed the damping of the coherent fermionic excitati
and found that it is small only in a narrow range arou
(p/2,p/2). Away from the vicinity of (p/2,p/2), the excita-
tions are overdamped, and the spectral function posses
.
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broad maximum rather than a sharp quasiparticle peak. T
last feature was also reported in the photoemission exp
ments.

One of the goals of the present paper was to demons
that the experimental data for Sr2CuO2Cl2 can be described
without introducing a spin-charge separation. In this resp
we predict that the data should not change much if the
periments are performed well belowTc though some anisot
ropy of the masses is possible because the spin dam
decreases with decreasingT and henceqc should become
larger. This prediction is contrary to the one derived from
model with spin-charge separation.35 In this last case, it was
suggested that the minimal model witht850 already ac-
counts for the key experimental features, and that well be
Tc , spinons and holons are confined such that one sho
recover a strong anisotropy of the masses, similar to tha
Fig. 13.

A final remark. Though the point of departure of o
analysis is very different from the one in the scenario ba
on spin-charge separation,35 in many respects there exists
striking similarity between the results obtained in both a
proaches. First, we found that the excitations are mostly
coherent, and the bandwidth of incoherent excitations is s
eral t. Second, we obtained that the dispersing excitati
observed in photoemission measurements exists up to an
ergy scale which is given byJ rather than byt. Both of these
results are in full agreement with the results obtained
Laughlin in the framework of spin-charge separation. Ho
ever, contrary to Laughlin, we did find a conventional Ferm
liquid pole inG(k,v) near (p/2,p/2). The quasiparticle resi
due of the coherent excitations is small in the stron
coupling limit and vanishes whenJ/t→0. In view of these
results, we suspect that spinons and holons are actually
fined even above the Ne´el temperature, but the confineme
is weak near (p/2,p/2) and disappears whenJ/t→0. A de-
tailed study of this confinement is clearly called for.
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