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Dispersion of a single hole in an antiferromagnet
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We revisit the problem of the dispersion of a single hole injected into a quantum antiferromagnet. We
applied a spin-density-wave formalism extended to a large number of orbitals and obtained an integral equation
for the full quasiparticle Green'’s function in the self-consistent “noncrossing” Born approximation. We found
that fort/J>1, the bare fermionic dispersion is completely overshadowed by the self-energy corrections. In
this case, the quasiparticle Green'’s function contains a broad incoherent continuum which extends over a
frequency range of-6t. In addition, there exists a narrow region of widd{JS) below the top of the valence
band, where the excitations are mostly coherent, though with a small quasiparticle 2sidite The top of
the valence band is located at/@,7/2). We found that the form of the fermionic dispersion, and, in particular,
the ratio of the effective masses neat/2,7/2) strongly depend on the assumptions one makes for the form of
the magnon propagator. We argue in this paper that two-magnon Raman scattering as well as neutron-
scattering experiments strongly suggest that the zone-boundary magnons are not free particles since a substan-
tial portion of their spectral weight is transferred into an incoherent background. We modeled this effect by
introducing a cutoffg. in the integration over magnon momenta. We found analytically that for sypalthe
strong-coupling solution for the Green’s function is universal, and both effective masses are equ&)tc (4
We further computed the full fermionic dispersion fbfit=0.4 relevant for SICuO,Cl,, andt’=—0.4J and
found not only that the masses are both equal t8) (2, but also that the energies at (0,0) and«{0are equal,
the energy at (05/2) is about half of that at (0,0), and the bandwidth for the coherent excitations is ardund 3
All of these results are in full agreement with the experimental data. Finally, we found that weakly damped
excitations only exist in a narrow range aroundZ,7/2). Away from the vicinity of (=/2,7/2), the excita-
tions are overdamped, and the spectral function possesses a broad maximum rather than a sharp quasiparticle
peak. This last feature was also reported in photoemission experirh®ai63-18288)02209-7

I. INTRODUCTION Early analytical and numerical computations were performed
in the antiferromagnetically ordered phase and for the case
The dispersion of a single hole in a quantum antiferro-when a hopping is only possible between nearest
magnet is one of the issues in the field of high-temperatur&eighbors:™>>**1*These studies have shown that in the
superconductivity which has attracted a substantial amourgtrong-coupling limit(large-U limit in the Hubbard model or
of interest over a number of year&® The parent com- t>J limitin the t-J mode), the Green'’s function of a single
pounds of the highF, materials are quantum Heisenberg an-hole has the form
tiferromagnets as was demonstrated by neutron scatt&ring,
NMR,?® and Ramaff experiments. The antiferromagnetic
spin ordering strongly modifies the electronic dispersion
which by all accounts is very different from what one would
expect from band theory calculations. Upon hole dopingwhere the coherent part is confined to scales smaller than 2
short-range antiferromagnetism gradually disappears, and thehile the incoherent background stretches up to atfevihe
overdoped cuprates possess an electronic dispersion whichdsiasiparticle residue of the coherent piece is small and scales
consistent with band theory predictioffddow the electronic  as Z«J/t in the limit t>J. The dispersiorE, has a maxi-
spectrum evolves with doping is currently a subject of inten-mum atk= (#/2,77/2) and symmetry-related points. All cal-
sive experimental and theoretical studiés° As an impor-  culations have demonstrated that the dispersion around this
tant input for these studies, one needs to know what happemwint is very anisotropic with a substantially larger mass
in the limit of zero doping when a single hole is injected into along the (Ox) to (7,0) direction than along the Brillouin-
a quantum antiferromagnet. zone diagonal. For/J=2.5 relevant to cuprates, the ratio of
The dispersion of a single hole in an antiferromagnet hashe masses is about-57 in thet-J model (without a three-
been intensively studied experimentally and theoreticallysite term,® and it is even larger in the Hubbard model due to
Experimental information comes from photoemission experithe presence of the bare disperslib(rn:os‘.<x+cosky)2 which
ments on the half-filled SCuO,Cl, which is not a hight, yields an extra contribution to the mass along the zone
superconductor, but contains the same gplnes as the diagonal!
high-T, materials’?3 Most of the theoretical analysis was It turns out, however, that the experimental results for
performed in the framework of thed and Hubbard models SrL,CuO.Cl, (Refs. 33,32 are rather different from these pre-
which are widely believed to adequately describe the low-dictions. Although the photoemission data have demon-
energy physics of the underlying three-band mdd&}16-2°  strated that the maximum & is atk=(/2,7/2) consistent

Z
G(k,a))=w_—Ek+GmC(k,w), 1)
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with the theory, the experimentally measured ratio of theneighbor hopping is about=—0.2t. By itself, this hopping
masses is close to one in clear disagreement with the theés small compared ta. However, in an antiferromagnetic
retical predictions. Moreover, the data show that the cohereriiackground, the hole can only move within the same sublat-
peak in the spectral function exists only in a narrow regiontice, otherwise the antiferromagnetic ordering is disturbed.
around @r/2,7/2), while away from this region the hole The hopping ternt’ connects the sites within the same sub-
spectral function is nearly featureless. This implies that thdattice, and therefore is not affected by antiferromagnetism.
fermionic excitations become overdamped already at ene@n the contrary, thé term contributes to the hopping within
gies which are substantially smaller thad. 2 a sublattice only via the creation of a virtual doubly occupied
After the data were reported, several attempts have beestate which costs the enertyy. As a result, the part of the
made to improve the agreement between theory and experitispersion is rescaled and becomes of orfét)=0(J).
ment. One scenario was put forward by researchers workin@ne therefore has to comparenot witht but rather withJ.
on the “gauge theory” approach to cupratésnost recently ~ For J/t~0.4, we then obtait’ = — 0.5J, which immediately
by Laughlin® He argued that the isotropy of the dispersionimplies that the corrections due t6 are actually quite rel-
together with the observed mostly incoherent nature of thevant.
electronic excitations are signatures of a spin-charge separa- |t has been mentioned several times in the literature that
tion. For a state where spin and charge degrees of freedotne inclusion oft’ = — 0.5 into the Hubbard model yields a
are described by separate quasiparti¢égsnons and holons, good agreement with the experimental data already at the
respectively, the electron Green’s function is just a convo- mean-field levet®!” Indeed, the mean-field spin-density-

lution of the spinon and holon propagators. It does not havevave (SDW) formula for the hole dispersion at largé is
a pole which normally would be associated with the coherent

part of G(k,w), but rather a branch cut which describes fully Ey=—J(cok,+ co§<y)2—4t’coskxco§<y. 3
incoherent excitations. Laughlin argued that since spinonand | , )

holon energies are well separaféte spinon energy has an FOrt'=—0.5J, this formula transforms into

overall scale of], while the holon energy i©(t)], the po- _
sition of the branch cut virtually coincides with the spinon Bi= J(co§kx+co§ky) @)

dispersion. In the mean-field theory for the spin-charge sepahere we assumed that the chemical potential is at the top of

rated state, the spinon energy has the form the valence bandThis dispersion possesses two equal effec-
_ tive masses if one expands around the maximum at
ERPMO"= — Con(COSky+ cogk,) M2, (2)  (w/2,m/2), and has a a local maximum at 4@2) with E=

—J. Both of these results are consistent with the most recent
where Cg,~1.6] is the spin-wave velocity in a two- data by LaRosat al® Furthermore, the data show that the
dimensional(2D) S=1/2 antiferromagnet. This dispersion energies at (0,0) and (®) are both equal te-2J. This also
has an isotropic maximum &= (7/2,7/2), a bandwidth of ~agrees with the photoemission d&ta’

2.2] and equal energies fér=(0,0) and (Os)—all of these The conventional mean-field SDW-type approach also
features are consistent with the data together with the negiossesses the weakness that it predicts fully coherent excita-
absence of the quasiparticle peak. tions up to 2. The data, however, demonstrate that away

An obvious weakness of the mean-field analysis offrom the vicinity of (w/2,7/2), the coherent part of the dis-
spinons and holons is that it neglects the effects due to persion is almost completely overshadowed by the incoher-
gauge field. Beyond the mean-field level, a gauge field magnt background. Earlier studi@swhich went beyond the
glue spinons and holons into a bound state thus rendering threean-field level have demonstrated that self-energy correc-
electron as a coherent quasiparticle. Laughlin conjecturetions reduce the quasiparticle residue thus transferring part of
that the confinement takes place only beldyy, while the the spectral weight into the incoherent background. How-
experimental data were actually collectedat350 K which  ever, these corrections also effectively decregdsaend thus
is 100 K above the Nal temperature. He then proposed thatrender the spectrum more anisotroggee Fig. 11 and 13
if measurements are done at much lower temperatures, théelow). From this perspective, the observed isotropy of the
should yield an anisotropic dispersion consistent with thedispersion aroundsf/2,7/2) is attributed in a conventional
results obtained in the ordered state with no spin-chargapproach to some fine tuning of boftit andt’/J and is
separation. therefore completely accidentH.

Another, more conventional approach to the single hole In this paper we show that in a certain limit specified
problem assumes that there is no spin-charge separation la¢low, the near degeneracy of the spectrum around
any T, and that the experimental data in fact reflect the be{w/2,77/2) turns out to be a fundamental, universal property
havior of the hole dispersion in the antiferromagnetically or-of a single hole in an antiferromagnet, independent of the
dered phas&-2°Within this approach, the discrepancy with details of the physics at atomic scales. Our key point is this:
the data is mainly attributed to the fact that the originalin all previous studies which yielded anisotropic spectra, it
model did not contain a hopping termd between next- was assumed that magnons behave as free particles for all
nearest neighbor@nd, possibly, also between further neigh-momenta. In this case, the integral over the magnon mo-
borg. The presence of the a finité term in the Hubbard menta in the self-energy term runs over the whole magnetic
model is justified, at least partly, by studies which derived arBrillouin zone (MBZ). On the other hand, Raman studies of
effective one-band model from the underlying three-bandhe two-magnon profile in the insulating parent compounds
model by comparing the energy levels around the chargef high-T. materials have demonstrated that the width of the
transfer gap® These studies predicted that the secondtwo-magnon peak is much broader than one would expect for
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free magnoné*?® The dominant contribution to this peak _

comes from the magnons near the boundary of the MBZ. iz = LR L

Complimenting these findings, neutron-scattering experi- FIG. 1. The lowest-order self-energy correction for the valence
ments on LaCuQ, (Ref. 38 have shown that about half of fermions in the SDW model. The solid and dashed lines are the bare
the spectral weight of the quasiparticle peak for the zonepropagators of conduction and valence fermions, respectively. The
boundary magnons is transferred into a broad incoheremntavy line describes transverse-spin fluctuations.

background.

It has been suggested that the broadening is due to thferromagnetically ordered. In this situation, a way to calcu-
strong interaction between these magnons and phafiéfs. late the spectral function in a systematic perturbative expan-
This interaction is finite and not necessary smallTatO0  sion is to extend the Hubbard model to a large number of
contrary to the magnon-magnon interaction which gives riserbitals,n=2S, and use a B expansion around the mean-
to an incoherent part of the magnon spectral function only afield SDW staté'”® The 15 expansion for the Hubbard model
finite T and is irrelevant foiT <J.* has been discussed several times in the literdtGfand we

In this situation, it seems reasonable to assume that thgill use it here without further clarification. To obtain the
contribution from the zone-boundary magnons to the elecmean-field solution, one introduces an antiferromagnetic
tronic self-energy is substantially reduced compared to whabng-range order parametS§=<clck+Q> and uses it to de-
one would obtain for free spin waves. This however is truecouple the interaction term in E¢p). Diagonalizing then the
only for zone-boundary magnons. For long-wavelength magquadratic form by means of a unitary transformation one
nons, the magnon-phonon vertex scales linearly with theptains two electronic bands for the conduction and valence
magnon momentum, and the incoherent part of the magnofrmions, whose energy dispersion is given by
propagator is small. The simplest way to model this effect is
to introduce an upper cutoff; in the integration over mag- CU_ 4 [[ N2 A2y
non momenta. Naively, onecmight expect that the hole dis- Bt == vle) ™+ A% e, ®
persion would strongly depend o,. However, we will

demonstrate that at larggJ, when the bare dispersion is where

irrelevant, only the quasiparticle residue does depend.on .

while the effective masses are in fact independentoin Ekt:w, A=U(S),

the limit whengq, is sufficiently small. We explicitly show 2

that in this limit, both masses turn out to be equal toJ1/2

The dispersion near#/2,7/2) is then isotropic and has a €= — 41 S(cosk,+cosk,) — 81’ Scosk,cosk,— . (7)

form E,= —Jk? wherek is the deviation from /2,7/2).

Furthermore, we show that for a certain rangegpfthe in-  Here E{" is the dispersion of the conduction and valence
clusion of t’=—0.5) extends the region where the two fermions, respectivelye, is the dispersion of free fermions,
masses are approximately equal to basically all valueéslof  ,; is the chemical potential, an@,) is the sublattice mag-
This last result allows us to COfreCtly reprOduce the measureﬁetization_ To facilitate the & expansion, we also intro-

hole dispersion in SCUOCI,. duced t =t/2S and t' =t'/2S. In the larget limit which

The paper is organized as follows. In the next section, Wg,e 1y consider, one can expand the square root and obtains
outline the formalism and derive the integral equation for the

guasiparticle Green’s function by expanding around the _

mean-field SDW solution. In Sec. Il we present our analyti- Ex’=*A*2JS(cok,+coky)*— 8t ' cok,cok,— u,

cal results in the largé/J limit. In this section we also dis- (8
cuss the role of the vertex corrections to the spin-fermion _

vertex. In Sec. IV, we present the results of the numericawhereJ=4t?/U. At half-filling, the chemical potential can
solution of the self-consistency equation for the quasiparticlde set to the top of the valence band={ —A); for S=1/2
Green's function for different values dft. Section V con- we then reproduce E@3) from the Introduction.

tains a summary of our results. At infinite S, the mean-field approach is exact. At fine
the bare Green’s function is renormalized due to the interac-

The lowest-order self-energy corrections for valence fer-
As mentioned in the Introduction, our starting point for mions are given by the diagrams in Fig. 1. The solid and
the description of the insulating parent compounds of thelashed lines in these diagrams are the propagators of con-
high-T. materials is the effective 2D one-band Hubbardduction and valence fermions, respectively. The wavy lines
model?~**given by describe transverse-spin fluctuations which in the SDW ap-
proach are collective modes of electrons. These collective
modes correspond to the poles of the transverse susceptibil-
H:_Z’j ti’JCIaCJ’a“LUEi CITCivTCIlCiyl' (5 ity, and are obtained by summing up an infinite random-
phase approximation series in the particle-hole channel with
Here « is the spin index and; ; is the hopping integral the total momentum equal to either zero@r The interac-
which we assume to act between nearest and next-neard&in vertices between fermionic quasiparticle and magnons
neighbors { andt’, respectively. Throughout the paper we have been calculated previoudf/in the strong-coupling
assume that the ground state of the Hubbard model is antiimit they are given by
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o (k,q)=[=( (=) 4 (—)) +( (—)_ (—))_]
ccovlKiQ =& €k+q) Mg T (€ "~ Eksq) Mqls

Dy ook Q) =U[ 77 7]. (9)

where 7, and 7, are given by

1+, 14 1-v, 14 FIG. 2. The lowest-order vertex correction for the vertex be-
7q= VS ;o Mg=VS , (100  tween fermions and transverse-spin fluctuations. The diagram with
1-v 1+v T i .
q a only one wavy line is absent in the ordered state as it does not

and vq= (cogy,+cosy)/2. conserve the spin.

We see that there are two types of vertiobs, ., which

describes the interaction between conduction and valenc%reen $ functions and _all_vertlces_m the d'agrams in Figs. 1
and 2 as full ones. This in turn yields self-consistent equa-

fermions, andb.. ,, , which involves either only valence or
only conduction fermions. Apparenty, the second diagram 212 (T V% ) S SRS SR TR K ECR B S
Fig. 1 is more relevant since the vertex which involves both 9y

2
conduction and valence fermions scaledJasHowever, in- to the one performed by Kane, Lee, and R€SUR).” Fol-

. ; . . ; e lowing KLR, we assume that the dominant pole approxima-
cident and intermediate fermions in this diagram belong tqion f?)r the full fermionic Green’s function F?s vali%pup to

different bands and are therefore separated by a large, X . ; :
. : €nergies of the order of the typical spin-wave energy, i.e., the

momentum-independent gap~US. As a result, the first full Green’s function can be approximated #(w— E,)

diagram mostly contributes to the gap renormalization pp @™k

which is exactly cancelled by a renormalization(&%) such Where E.k:O(‘]S) (_vve_ Iater_ C"”ﬁ”‘f‘ this result by explicit
that the fully renormalized gap equaldJ$ as it indeed calculation$. Substituting this form into the self-energy term

should be for the larger Hubbard modet®4 Expanding and performing standard manipulations we obtain for
- 7 S _ . s D=2 2 __
this diagram inJ/U, we also obtain a momentum dependent t/J VS>1 the self-consistency condition °Z*®/J°S~1,
term of O(J) which contributes a regular /correction to where® stands for the vertex renormalization. It is essential
the bare dispersion. that there is only one power df in this relation as only one
The first diagram in Fig. 1 involves only valence fermi- _of the two vertices in the _self-energy dlagram_ gets_ renormal-
ons. Here the vertex is reduced frandue to the coherence 12€d. On the other hand, in the vertex correction diagram, all
factors and scales ds At the same time. both incident and Vertices should be considered as full ones, and the self-
' i it i 28/ 12Q) 202
internal quasiparticles are onlp(J) away from the Fermi consistency condition y|eldst2(Z ®/375)*d"~1. Compar-
surface which implies that the denominator scaled.ashe ~ ing these two conditions, we obtaid~J\S/t and @
total contribution from the second diagram then behaves as O(1). Theresult forZ is consistent with the one obtained
JS(t/3\S)? and in addition is strongly momentum depen- by KLR. Clearly then, the self—e'nergy. corrections are more
dent. Since the bare dispersion is of ord& the relative relevant than the vertex corrections since the former reduce
self-energy correction from the second diagram scales 49€ quasiparticle residue to a parametrically small value,
(t/3S)? and is small only for extremely largg For physi- while the latter only change the vertex by a factor of order

cally relevant values of the spin, the expansion parameter i /(Sl)'. Though the vert;x corrections ?10 n?]t co_ntamr? factorh
obviously large, and one certainly cannot restrict with the™>" It seems reasonable to assume that they just change the
second order in perturbation theory. overall amplitude of the vertex but do not introduce any new

We now formulate precisely under which conditions we physics. We therefore first neglect all vertex corrections and

carry out the calculations. We assume t8at1l and neglect _obtain the full s_elf-energy and thu§ the_ full Green’s function
all regular corrections in & At the same time, we assume in the self-consistent Born approximatiéhWe then use the

thatt/J \/§>1 and sum up an infinite series of diagrams insolution for the full Green’s function to estimate the relative

. - strength of the vertex corrections. We find that the vertex
this parameter. The restriction to largeallows us not only corrections change the vertex by roughly 20% and therefore
to neglect the self-energy diagrams which involve both va- ge !l y roughly

. . can be neglected with reasonable accuracy.
lence and conduction fermions, but also to neglect the quan- Lo -
In the Born approximation, the full self-energy is dia-

tum corrections to the spin-wave propagator. At half-filling, . ; RO . o —
grammatically given by an infinite series of “noncrossing

these regular § corrections can, with good accuracy, be 3. g . ; . 2
absorbed into the renormalization of the hopping term anéilagrams[see Fig. &)]. Summing up this series, we obtain

the exchange interaction which are both input parameters for

? a)
our calculations.

The next step is to select the series of diagrams which ©= LN . B s
have to be summed up. To lowest order in perturbation
theory, both self-energy and vertex corrections are equally - LN

relevant: the self-energy correction yields a relative contri-

bution of (WJ JS)?, while the leading-order vertex correc- b

. - . . — . = > + >(p=

tion shown in Fig. 2 yields a relative factot (J\/S)* which >=

is even larger. This result, however, changes if we estimate F|G. 3. (a) The self-energy is given by an infinite sum of rain-

the strength of the self-energy and vertex corrections in &ow diagrams.(b) The Dyson equation which together with the
self-consistent manner, i.e., by considering all internalself-energy in(a) yields Eq.(12).
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that the full self-energy has the same form as in second-order We first present our analytical results for the full Green’s
perturbation theory, but the Green’s function for the intermefunction in certain limiting cases, and then present the full
diate fermion is now replaced by the full one. The full numerical solution of Eq(12).

Green'’s function is then obtained from the Dyson equation

[see Fig. 8)] and is analytically given by I ANALYTICAL RESULTS

2

d<q We obtain the analytical solution of E¢L2) in two dif-
-1 — v__ _ -
G ikw)=o=(Be—p) f4wzdﬂ W(k,q) ferent ranges ofw. In Sec. Il A we first solve the self-
consistency equation in the limii — wmal > A, Wherew sy
XG(k+0q,0+Q)D(q,Q), (11 is the highest frequency at which the full Green’s function

first acquires a finite imaginary part, and=JS( t /J3\/S)*3.

whereD(q,(2) is the spin-wave propagator, and We show that folo— wn.d>A the excitations are purely

W(k,q)= D2 incoherent and extend over a region-e6t 2S. In Sec.
’ v Il B we then consider the cage — wma]<A. In this fre-
:325?[ Vﬁ+ Vﬁm_ 20V q guency range we find coherent excitations which exist up to

energies 0f0(JS) down from the maximal frequency.

+y1- VS(ViJrq— v2)IV1- VS.

The integration over momentum runs over the whole MBZ. A. Incoherent part of the excitation spectrum

Equation(11) is similar to the one derived earlier for the  We first observe that the interaction vertex in Etp) has
t-J modef>*’with the only difference that Eq11) contains 4 overall scale of (/S)2, while the quasiparticle Green’s
the bare dispersioB, . This dispersion is indeed also presentnction behaves as @/at very large frequencieere, and
when one derives theJ model from the Hubbard model at in the following, we shifted the frequency by the mean-field
large U. However, it is due to the three-site term which is chemical potentialu=—A). Obviously then, forw>ty/S,
usually omitted in the effective-J Hamiltonian®® the perturbative expansion in the spin-fermion interaction is

As we discussed in the introduction, the quasiparticlesonyergent, and the density of state¥0S) is exactly equal
spectral weight of the short-wavelength magnons in the parg, zero, as in the mean-field theory. Whenis reduced to

ent compounds of the high; materials is likely to be — : 3
strongly reduced as demonstrated by Raman and neutroFlhe—SCaIe of t\S, the lowestorder self-energy term

scattering experiments. To account for this effect, we adopt &~ t?Sw becomes, of the same magnitude as the frequency

semiphenomenological approach and introduce a cqtaff in the bare Green’s fantlpn, i.e, the expansion param_eter is

the integration over magnon momenta in the right-hand sid@(1)- We show that in this frequency range there exists a

(th9 of Eq. (11). We assume that fog>gq., the magnon critical value ofw below which perturb_at]on theory pecomes.

spectral weight disappears into a broad background, and n8onconvergent and_there appears a finite DOS. It is essential

glect the contribution to the self-energy from thes@n the  that for smallJ\/S/t, the critical frequency is still much

other hand, fog<q., we assume that the magnons are justiarger than the magnon frequency such that one can neglect

free particles with D(q,Q):(Q—wq+i5)_1 where wq  ®q and Ey compared tow in the rhs of Eq.12). The self-

=4JS\J1— ,,q2 is the spin-wave spectrum. Furthermore, forconsi§tency equation then reduces to a conventional integral

our analytical considerations, we will assume thgt is  €dquation

rather small such that we can expand the dispersion of fer-

mions and the spin-fermion vertex to linear order in the mag- d2q

non momentum. This last assumption is not well justified as G k,w)=w— f — ¥(k,g-kG(qe) (13

the magnitude ofj. is unknown. Notice, however, that ex- Am

panding up to leading order ig., we obtain two equal ef-

fective masses which are universal and independenf.of in which the dependence on the external momentum is only

The smallness df. is then only needed for the corrections to present in the interaction vertex. Furthermore, we assume

these universal results to be small. that w~ t \/S is larger than the total magnon bandwidth, in-
The magnon propagatd(q,{2) has a pole in the lower cluding the incoherent part. In this situation, the integration

half-plane ofQ). In this half-plane, the mean-field fermionic over g runs over the whole MBZ.

Green's functionG(k,w)=[w—(EX—u)+id sgrw] ! is Before we present the solution of H4.3), it is instructive

free from nonanalyticities sindg, — u<0. We assume, fol- to consider a simplified version of this equation in which

lowing KLR, that the full G(k,w) is also analytic in the W¥(k,q—k), which is a smooth function of the fermionic

lower half-plane of(2. Then one can straightforwardly per- momentum, is just substituted by some constarit’S. The

form the integration over the internal frequency in Efjl)  equation for the fullG(w) then reduces to
and obtain

2 G Yw)=w- t2SHw), (14)

G Yk w)=0—(El—u)— d—q\Ifk
( ,(1)) w ( k M) 4 2 ( !q)
- —_
where t/t =0(1). Solving this algebraic equation, we ob-
XG(k+q,0+ wg). (120  tain for positivew
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2

d2
(15) A=1—2aJ 99 _ %

G(w)= ,
472 A+Bv;

2
w+ \/wz— wfnaX,

where wma=21 VS. We see that fom™> w gy, the Green’s - f d2q 2
=L

function is real. This is the frequency range where perturba- 472 A+I; PR (22)
tion theory is valid. FOtw< wp,, however, the expression i Y

under the square root is negative, and the solution possessgroducing A=1—2ax, B=2ax and separating real and
a finite imaginary part which gives rise to a finite DOS. Theimaginary parts ofk by introducingx=x,+ix,, we obtain

total width of the DOS is ObVIOUSIW=2w =4 T /S. an equivalent set of equations for andx;
We now solve Eq(13) with the actual¥(k,q—k). We 5 ) )
introduce a new functiof,(w) via B f d°q vgl1—2ax;(1-vg)]
l_ 1
472 [1-2ax,(1—vd) 12+ 4ax5(1— v5)?
G H(w) = wfy(?). (16) B 2
2 204 _ .2
Substituting this into Eq(13), we obtain Xy J’ d*q va(1—vg)(2axy) .
472 [1-2ax;(1—v]) ]2+ 4ax5(1—v5)?
— f d?q ) vi+ V§—2vkquq_k (23
=1— — e+ . . S
K ) am?ry Ve Yk Vi—v2_ ' In terms ofx; andx,, the quasiparticle Green’s function is
q q—k .
(17)  given by
where we definedy= 32t 25/ w2 Sko) 1 1-2ax;(1—vd) +i2axy(1—vd)
i i W)= — .
The general solution of Eq13) can be obtained by ex- ® [1—2ax,(1— vﬁ)]2+4a2x§(1— Vﬁ)z

panding in the eigenfunctions of tli&,, symmetry group of (24)
the square lattice. The solution is in general rather cumber-

some because the vertex contains-dependent term in the Obviously, the spectral function and hence the DOS are fi-
denominator. However, it is easy to verify that the expreshite whenx,#0.

sion in the square brackets vanishes when,—1. The A simple analysis of Eq23) shows that the solution with
dominant contribution to the rhs of E€L3) then comes from  x,=0 exists only for|w|> wma=2.97t V2S (or a<ag

the region ofgq space where,_ is relatively small i.e., the =0.448). At the critical point, we obtaix;=0.43. For
denominator is close to one. For simplicity, we just set itsmaller frequencies Eq23) yields a solution with finite

equal to one. We then obtain imaginary part, just as we found with the toy model with
momentum independen. The total bandwidth is equal to
‘o d? W=2wm.,~6t v2S up to corrections of orde®(JS) which
k=l-a Am2f volvg— vkvg-kl- 18 e neglected. Fow only slightly belowwm,,, We have
q
This equation is much simpler to solve because the decom- X2~ N Omax— . (25

position of vy into _the eigen_functions of the square lattice Substituting this into Eq(24), we obtain that the DOS be-
involves only four eigenfunctions: haves neamw , as

Vk—q:Vqu+’;k’;q+ Vqu+A1;k’;q, (19) 1 12

N( @)~ —=— W (26)
where tVs max
The above results are valid only as long as one can ne-
vkzl(coskx+cosky); ?kzi(coskx—coé(y); gle_ct_ the magnon disp_ersic_m. We now estir_nate the range of
2 2 validity of this approximation. Recall that in transforming
Eqg. (12) into Eq. (13), we omitted the term
1 = 1
v =5 (Sink,+sinky);  vi=5(sink,—sirky). (20) d?q
2 2 | Shrka-wic@ete)-Gaw). (@1
a

We now choose a general ansatz fQrconsistent with Eq. _
(18 Far from w4, We do not expect this term to be relevant.

Near the maximum frequencyG(w)— G(wmad *(®@max
—w)Y?, anddG/dw is singular. Substituting the form @
from Eq. (24) with x, from Eq. (25) into Eqg. (27) we find
and solve this set of self-consistent algebraic equations fotlhazt tf/}ze_term we Ozm"fted can be neglected WheRa— ol
the coefficients. We found that the coefficie@sD, andE ~ =FS*t/(wma—w)? i-e., when [oma—w/=A where A

are equal to zero, whil& and B are the solutions of two =JS(t/J\/S)¥3 At frequencies closer t,,,, the magnon
coupled equations dispersion is not negligible, and the calculation of the spec-

fi= A+ BuZ+ Coyvy+ D vy v, @D
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tral function should be done using the full self-consistency (k, —kg)? (ku—ko)z
equation Eq(12). We will proceed with this calculation in Ex=
the next section.

2m; 2m” ' (32)

wherek, ,k; are the momenta along the boundary of the
B. Coherent part of the excitation spectrum MBZ and along the zone diagonal, respectively.

In this section, we study the form of the quasiparticle " addition, as we discussed above, we introduce an upper
Green'’s function close to the top of the valence band, i.e., ifutoff dc=1 in the integration over the magnon momentum,
the region| me— o|<A. qnd restrict ywth an expansion of thg magnon energy up to

It is again instructive to consider first a toy model with a in€ar order inq. We recall that physically, the presence of

momentum-independent interaction. Assume that typicaﬁhis cutoff reflects the experimental fact that the zone-

| f th f ES with 3/J=0(1). W boundary magnons cease to exist as well-defined quasiparti-
value of the magnon frequency {55 wi =0(1). we cles and therefore effectively do not contribute to the self-
then have instead of E§14)

energy of the valence fermions. We will see that the
—_ - quasiparticle residu@ scales asd.) 2 but the effective
G Hw)=w-t’SGw+JS9). (28)  masses are independentayf.
We now substitute the coherent ansatz &k, ) into
the self-consistency equation E(q2)1. Expanding around,
— and w5, and using the fact thad ™ *(Kg,wmad =0, we ob-
G(w)~ 2 (1+< 2 K)llz[(“’_ Wman)°+ A°]H2 tain self-consistent solutions for the quasiparticle residue, the
|w— 0mad ' quasiparticle spectrum and the damping coefficient. Consider
(29  first the quasiparticle residue. Settikgrk, and expanding
—_ - e the rhs of the self-consistency equation, EtR), to linear
where wpa=2tS+0(JS) and A=TS(t/TVS)¥°. We  order inwpg,—  we obtain
see that there are two typical scales introducedJbyFor
|o—omad=A, G(w) in Eqg. (29) differs from that in Eq. 1-7 d2q
(15 only by small corrections. FaIS<|w— wmi<A, the — = f W\P(ko,q)
frequency dependence of the full solution is different from
that in Eq. (15, however, G(w) remains approximately

equal to 2. Finally, at|w— wnad <JS, the full Green’s
function begin to increase, and very nea},, we have

In the vicinity of w4, the solution of this equation is

wmax\ Wma

, 33
(‘Uq+Ek0+q)2 39

where the integration runs upf,. Sinceq.<1, we can
expand the two terms in the denominator to linear ordey.in
As wqxq and Ek0+qocq2, the first term is dominant. Per-

35 1 forming the integration with only, in the denominator, we
Glo)~——. (30)  obtain
t W™ Wmax
: V21272
We see that very neas,,,, the Green’s function has a con- 1=7+ —2q° (34
mJ°S

ventional pole with the residug=J\/S/ 1. This implies that

aroundw,ax, there should exist coherent fermionic excita- In the limit JyS/t<1, the term linear irZ can be neglected

tions. .
We now proceed with the solution of the actual self- and we find
consistency equation with a momentum-depend&iik,q 12
—Kk). Inspired by the solution of the toy model, we assume 7= \ﬁ( 77\5) (35)
that there exists a frequency,,ay for which G~ (k, wmay t\ de

=0 at somek=ky, and which differs from the previously

found onset frequency only by an amount@fJS). We will We see thaF scales linearly withl\/S/t as in our toy model.
not be able to fully verify this assumption analytically as it This dependence was also obtained in earlier stédies
would require us to find a solution of E¢L2) for all k and  verified numerically in Ref. 31. It was however noticed in
o~ wnax Which we cannot do. However, we will later verify Ref. 3 that the linear dependence exists only for very small
this assumption in our numerical studies. We also assumg/t. These authors argued that for moderdte Z~ (J/t)*2
and then verify thaky= (7/2,7/2), and that neak=ky and  We also found deviations from the linear behavior already
®w=wmna the excitations are mostly coherent, and the quafor moderately small/t, however, we did not find a square-

siparticle Green’s function has the form root dependence for intermediat&. A plot of Z versusJ/t
is presented in Figs. 6 and 7.
7 Next, we calculate the quasiparticle damping coefficient
Gk )= y. For this we again sek=ko, neglectE, ., compared to

— Omaxt Ex—i y(0— 20(w— ' _ . .
0~ Omat B 17(0 7 0mg) "0 o wma")(31) wq, but do not expand im— wma. Still, we are interested

in small deviations fronmw,5x, and can therfore neglect the
HereZ, is the gquasiparticle residue, is the damping coef- damping term in the full fermionic Green'’s function in the
ficient, ®(x)=1(0) if x<0 (x>0), and the hole excitation rhs of Eqg.(12) compared tow — wya. The rhs of Eq(12)
spectrum has the form then takes the form
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d2q b Comparing now the damping term with the term linear in
f —Z\If(ko,q) (36 frequency, we find that the fermionic excitations are weakly

4m damped forEy= wpmay— 0<4J(q./m2). For smallq,,
For w<wpa, the integrand has a pole at=wp.—wq.  this condition is satisfied only in a small region aroung
Integrating around the pole, we obtain a finite imaginary parfor example, forg.= Jml2 andm~1~4JS, the fermionic
which in 2D scales asd{— wny)2. Performing the explicit — excitations are only weakly damped fid— ko| <0.75 which

O~ Omaxt Wqtid

calculations, we obtain constitutes only a small fraction of the MBZ. Away from this
L region, the damping term is dominant, and the spectral func-
t 222 tion should possess a broad maximum arourdE, rather
VZW- @7 than a sharp quasiparticle peak. This is in full agreement

with the datd>3>which show that the spectral function mea-
The same result was obtained earlier by Kane, Lee, andured in photoemission experiments possesses a clearly dis-
Read? Note in passing that in contrast to a recent claim intinguishable quasiparticle peak only in the vicinity lof
Ref. 18, we did not find a missing factor of 2 in their for-  We now proceed with the calculation of the effective
mula. Substituting the expression f@rinto Eq. (37), we  masses. For this we set= wn, and expand in the magnon

finally obtain momentum. We restrict ourselves to the strong-coupling
1 w2 limit J\/S<t and neglect the bare dispersion, which in this
y=—— . _ (39) limit is completely overshadowed by the self-energy correc-
4JS qc tion. We then obtain
Ex

d?q d?q
?:_J4_71_2\p(k01q){G(wmax+wq1k+q)_G(wmax+wqakO+q)}_f4_772{\1’(kvq)_q’(k01q)}e(wmax+wqka+Q)

d2
‘J 2_:2{‘1’(|<,Q)—‘1’(|<O,Q)}{G(wmax+‘*’q’k+Q)_G(“’max+ wg:kot @)} 9

Expanding the quasiparticle Green’s function, we obtain  tum in the remaining terms in Eq39) are confined to the
upper limit of theq integration, and all scale aq% There-

Glwmaxt 0g,k+0) = Glwmaxt @q, Ko+ ) fore, the cutoffq, also drops out of the problem. As a result,
E £ (E Epoo)? we obtain universal, model-independent equations for the
ko+a~ Ek+q ko+q~ Ek+q

_y % i 0 4o, (40 masses

(wq+Ek0+q) (wq+Ek0+q) 3 1
- +1=0,
where (4JSm )2 JISm
kP K kg kg
Eviq—Exsq=s—t+s—+—+——. (41
k+q k0+q 2ml ZmH ml m” ( ) —1=0. (43)

(4JSm)*
The expansion of?(k,q) up to quadratic order ik and up i ) 1 .
to linear order inq yields The second equation yields “=4JS, while for m, we

obtain two solutionsm; *=4JS or $JS. We have checked

2 qf that only the first solution fom, can be continuously con-
W (k,q)—W(ko,q)=32t %S| —k?q| 1- —| —k,q, nected with the perturbative solution at weak coupling. Then
4 q
only the first solution is physically relevant, and we finally
k2q2 obtain
— R (42) o
2\/§q my=m_= (4J S . (44)

Inserting now these expressions into E89) and using the We see that in the limig.<1 and forJ JS/t<1 when the
result for the quasiparticle residue, we find that one of theébare dispersion can be neglected, the effective masses are
two contributions to the first term on the rhs of E§9) equal, i.e., the top of the valence band is isotropic. This
cancels out thé&, /Z term on the |hs. The remaining terms result is an intrinsic property of the Hubbagak t-J) model

are all proportional to¥, and therefore the energy scale at strong coupling, independent of the form of the bare hop-
drops completely out of the problem. The only remainingping. Note that the value of the masses is exactly the same as
scale is given byw,, and the inverse effective masses arein the mean-field theory with’ = —0.5J.

therefore proportional to the spin-wave velocity. Further- We also estimated the magnitude of the corrections to this
more, we found that the integrals over the magnon momendniversal result for the masses. We indeed found thaj.as
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2y 1 1 Xy
< I:f dxf dy =(In2—-0.5~0.2. (48
0 0 " (x+y)?

N{(®) (arb units)
g L
l&’

Substituting Eq(35) for Z into Eq. (47), we obtain that the
term in brackets is equal to unity, i.e9=1~0.2. Observe
that this result does not depend on the upper cutoff. We see
FIG. 4. The schematic form of the DOS at half-filling. The DOS that the leading vertex correction accounts for only a 20%
reaches a maximum at energieslS, below the gap, then drops renormalization of the bare vertex. We did not explicitly
down at slightly larger energies, and then gradually increases andompute higher-order vertex corrections, but our estimates
saturates at the energies which aré away from the gap. show that they are likely to be progressively smaller. We
therefore estimate that our analytical and numerical results
increases, the dispersion becomes anisotropic with  for the dispersion obtained without vertex corrections are
>m,. This trend is consistent with the results of other au-valid with an accuracy of about 20%.
thors who integrated over the full magnetic Brillouin zone in  Some earlier works performed along similar lines re-
Eq. (12).>8°*2Finally, the form of the coherent part of the ported even smaller vertex corrections, of the order of£%.
Green'’s function in Eq(31) implies that the DOS behaves as These calculations used the dominant pole approximation for

Frequency ®

(wmax— )2 very nearwm,, and reaches the value all momenta which is a potentially dangerous procedure as
fermionic excitations are strongly overdamped far away from
Z 1 (7/2,7w12). We, on the contrary, restricted the dominant pole

N~ NG (45  approximation to an area with a width. near (@/2,7/2),

tVs and neglected the contributions from other regionk space

L ) . where fermionic excitations are mostly incoherent. The dif-
at wma— w~JS, which is the largest scale where this form is torence in computational procedures accounts for the differ-
applicable. At even larger frequencies, the DOS scales as gnce petween our and earlier estimates for the vertex correc-

tions. In both cases, however, the corrections are small and
N z (46) can be safely neglected.
Wmax— @
IV. NUMERICAL RESULTS
and transforms into the fully incoherent DOS given by Eq. ) ) ) )
(26) at wya— o~ A. This incoherent density of states then ~ We now proceed with the discussion of the full numerical

gradually increases with frequency and saturateswat Solution of the. seIf-consistency equation fo_r the quasiparticle
<wmax. These results imply that the DOS reaches a maxi&reen's function. As in the previous section, we begin by
MUM at @y~ w~JS, then drops down at slightly larger considering in Sec. IVA the frequency range — wmay
frequencies~A, and then gradually increases and passes™/\. in which the spectrum is completely incoherent. In Sec.
through a broad maximum ai< w .. The behavior of the [V B we then consider frequencies close dg,x for which
DOS is presented in Fig. 4. This behavior is in agreementve obtain coherent excitations on the scaleQiflS). We

with the numerical results which also find a strong coherenpresent the results for the dispersion of a single hole for
peak in the DOS & ,z— w~J on top of a smooth incoher- different values ofl/t andt’/t, as well as different cutoffs

ent background® g.. For comparison with earlier studies we also present the
results for the case when the magnons are considered as free
) particles.

C. Vertex corrections We will demonstrate that fot’=0, one recovers two
Finally, we consider the effect of vertex corrections. Weequal effective masses only for very large). However,

already found in Sec. Il that these corrections do not intro-after including a nearest-neighbor hoppitig= — 0.5, we

duce any new scale, but at the same time they do not possesbtain two roughly equal masses for all valueg/df In this

a factor of 15 and therefore can only be neglected due to asituation, the only effect of the decreaseléf is the transfer

numerical smallness. To estimate the magnitude of the vertexf the spectral weight from the coherent to the incoherent

renormalization, we computed the lowest-order vertex corpart of the dispersion. Furthermore, for the experimentally

rection shown in Fig. 2 with the full quasiparticle Green’s relevant casd/t=0.4, we findm~ 1~(4JS) 1. For S=1/2

functions from Eq.(31). We followed the same computa- this yieldsm~1~(2J) "1, which is the same value that was

tional steps as before, i.e., expanded to linear order in thebtained in the photoemission experiments o§C80,Cl,.

magnon momentum and integrated up dg. Performing

these calculations, we obtain that at small external momenta A. Incoherent part of the excitation spectrum

the full vertex has the same functional form as the bare one

and differs from it by a factor ( §) where

5 ( J2t2z2q,

27J°S

As we discussed in Sec. Il A, fdw— w0 >A we can
neglect the magnon dispersion on the rhs of Bg) and
2 consider an integral equation only in momentum space. Fol-
lowing the same argument we also neglected the bare fermi-
I 47 e alris ) X
onic dispersion in Sec. lll A. For our numerical studies, how-
ever, we kept the bare fermionic dispersion in order to
and illustrate how the DOS evolves with't. In Fig. 5 we present
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=0 — _ q.=\2 m/16
=~ | I/t=0.007 - - ] . i i
é .} J/t=0.0007 - ] 7T anal. w/o corr. — — + ]
, L
= 12}k o6 | anal. with corr. ------- e
g5 ! \\ Q 05 | //
= 0 : g | P
é s 'I i TG o
I i ; X4 o) A
0 I l N . /
- : k “ro num. result o
g .0 5 o1f, 0,/
(®+A) ( in units of t) . ;o . . .
0 0.05 0.1 015 0.2 0.25 0.3

FIG. 5. The incoherent part of the hole excitation spectrum for

several values o8/t (solid line J/t=0.4, dashed line)/t=0.007 J\/_ / t
and dotted linesl/t=0.0007).

FIG. 6. Z as a function ofl/t. The integration over magnon
for several values ad/t the DOS resulting from the numeri- momenta is restricted to 1/4 of the MBZ.
cal solution of Eq(13) for S=1/2 andt’ =0. We see that for
intermediateJ/t=0.4 (solid line), the DOS is asymmetric Green’s function and therefore are unable to comaye
aroundw=0 with the density shifted towards negative fre- extracted from Eq(49) with the position of the maximum in
guencies. This indicates that the contribution from the baréhe spectral function. We just assume without proof that at
dispersion which by itself yields a finite DOS only for nega- least not too far fronk,, E; and the peak position roughly
tive w is not negligible. With decreasingft the asymmetry coincide.
becomes weaker, until it basically vanishes 3¢t=0.007. We first present in Figs. 6 and 7 our results for the qua-
This result is expected since in the limlft—0 the bare siparticle residue ak=Kky,=(7/2,7/2) as a function of)/t.
dispersion becomes irrelevant, and we should recover a synWe have chosen two values af.: a smaller oneq,
metric DOS. We also found that the total bandwidth only = \27/16 and a larger one for which the integration over the
weakly depends od/t and is roughly equal t&V=6.6t. This  magnon momenta runs over 1/4 of the MBZ. The squares in
value is only slightly larger thakiv=6t which we obtained these figures represent our numerical results, the dotted line

analytically in Sec. Il A. is our analytical formula, Eq35), obtained to leading order
in ., and the dashed line incorporates subleading correc-
B. Coherent part of the excitation spectrum tions inqg.. We see that for smalleg, the agreement be-

tween the numerical data and the results to leading order in
dc is rather good. For largey;, subleading corrections are
more relevant. In both cases, however, the quasiparticle resi-
Que is substantially reduced from its valde=1 for free
fermions already for moderatét. We also see that the lin-
ear dependence exists only for very sndatl (see linear fit in

In order to solve Eq(12) for the full Green’s function we
use a discrete mesh in frequency andkispace. We assume

Green'’s function has the form presented in BB{) and ob-
tain the onset frequency,.x and the hole dispersiok,

from the conditions Fig. 6).

G Y(k=Kg, 0= wyy) =0 In Fig. 8 we present the results for the ratio of the masses

o ma ' as a function of/J for t’ =0 andt’ = — 0.5J, respectively. In
-1 — —

G (ko= wma) =E/Z. (49 magnon integration over 1/4 of the MBZ
To obtain the quasiparticle residue, we comp@e (k 0.5 y " y ,
=kg,w) and use the relation o5 anal. wjo COT. - *

045 £ anal. with corr. — —
Aw 23 4T linear fit
Z= , (50 Q 03s |
G (K, 0mact Aw) = G (K, 0mad b

whereAw is a small shift from the maximal frequency. The é
dispersion extracted from E¢49) is formally valid only in N
the vicinity of ky. At larger distances fronk,, E, does not
necessary coincide with the position of the maximum in the oLr
spectral function due to a strong quasiparticle damping. In 00 |y
our numerical procedure for solving the self-consistency 5 T o1 oh 6 om
equation, we relate the Green'’s function at a given frequency

o to the Green’s functions at larges+ vy, and progres- J\/_ / t

sively computeG at smaller and smallew. Using this

method, we cannot obtain the imaginary part of the full FIG. 7. Z as a function of)/t for q.=2%27/16.

num. result o
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magnon integration over 1/4 of the MBZ

t' =0.0

—a—t

0,0 (n/2,1/2) (m,0) 0,00
0 . . . k
0 50 100 150
14 ) ) ' FIG. 9. The fermionic dispersions fof=0.0 and two different

t'=-0.5] values forJ/t (solid line J/t=0.4, dotted line)/t=0.3). The mag-
{_{ 7] non integration is restricted to 1/4 of the MBZ.

E (k) (in units of J)

T

| | J//Kt - 03
|

|

sk

} at (0,7/2) is about half of that at (0,0) which agrees with the
most recent data by LaRoset al3® The results fort’ =
os b i —0.57 are similar to those fot’ = —0.4] and are presented
in Fig. 11. In this figure we compare the dispersion for
=-0.5] for two different ranges of integration over the
o2k . magnon momentum. We see that while the integration over
1/4 of the MBZ yields a dispersion roughly consistent with
0 ! ! ' the data, the integration over the full MBZ yields a highly
anisotropic dispersion. However, one can incredlseven
t / J further and reduce the energy at£{,thus making the dis-
persion near £/2,77/2) more isotropic even for the integra-
FIG. 8. The ratio of the effective masses andmj as a func-  tion over the full MBZ. We illustrate this in Fig. 12 where
tion of t/J for (a) t'=0 and @) t'=—0.5J. The integration over we present the results for the fermionic dispersiontfor
the magnon momenta runs over 1/4 of the MBZ. —J and for the integration over the full MBZ. We see, how-
ever, that the overall bandwidth is still larger than in the
r1=J'3<periments. We therefore conclude that if the integration
over magnon momentum runs over the full MBi#&hich

(2

m; /m

04 .

both cases, the integration over the magnon momenta ru
over 1/4 of the MBZ. We see that for both valuestbf the

ratio of the masses approaches one in the lifdit». This implies that magnons are treated as free partickee dis-

IhS in full ag;eer?en’t_w(l)th our anal(;j/tlcal reslults. we aLso ,Selepersion is inconsistent with the data for all reasonable values
owever, that fort' =0, one needs very large, unphysical of /| this situation, to account for the data one has to

values oft/J to recover the limiting behavior. For' = adjust the hopping to even further neighbors.

—0.5J, the ratio of the masses is equal to one already at the "ro; completeness, we also present several results for the
mean-field level, and our results demonstrate that the rat'thegration over the full MBZ in the convention&ld model

remains roughly equal to one for all valuestéd including \yithout the three-cite term. This corresponds to neglecting
the experimentally relevaritJ=2.5. In order to see the ef-

fect of the J/t ratio on the whole fermionic dispersion, we 1
present the results fdg(k) for t’=0 and two different val-
ues ofJ/t in Fig. 9. We clearly see that the variation &t
mainly affects the dispersion around £, The excitation
energy in this region increases withl, i.e., the dip in the
dispersion becomes deeper, which immediately leads to a
decrease in the ratio of the effective masses. At the same
time, the overall bandwidth only slightly increases with de-
creasingJ/t. In Fig. 10 we compare the results for the fer-
mionic dispersion forJ/t=0.4 and for two values of’,t’

=0 andt’=—0.4J (here the magnon integration runs over
1/4 of the MB2. We see that fot’ =0, the dispersion is 5
rather anisotropic and inconsistent with the experimental (0,0) (/2,7/2) (%,0) (0,0)
data®23 On the contrary, fort’=—0.4J, not only the ’ Kk

masses are equal, but also the energies at (0,0) an)l &de

nearly equal to each other, and the bandwidth for coherent FIG. 10. The fermionic dispersions fdft=0.4 and two differ-
excitations is about B All three of these results are in full ent values fort’ (solid line t’=0.0, dotted linet’ = —0.4]). The
agreement with the dafa:* We also found that the energy magnon integration is restricted to 1/4 of the MBZ.

E (k) (in units of J)
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no bare dispersion magnon integration over the full MBZ
magnon integration over the full MBZ
T .

E (k) (in units of J)

E (k) (in units of J)

4

(0,0) (7/2,7/2) (m,0) 0,0)

(0,0) (m/2,7/2) (m,0) (0,0) k

k FIG. 13. The fermionic dispersion in thieJ model for J/t

=0.4 andt’=0. The integration over magnon momenta runs over
FIG. 11. The fermionic dispersions fod/t=0.4 and t’ the full magnetic Brillouin zonéMBZ).

=-—0.5] and two different ranges of integration. The solid and

dotted lines are the results for the integration over the full MBZ andy guantum antiferromagnet. We applied a spin-density-wave
1/4 of the MBZ, respectively. formalism extended to large number of orbitals 2S, and

o L . obtained an integral equation for the full quasiparticle
the bare fermionic dispersion in Eq12). In Fig. 13 we  Green's function in the self-consistent “noncrossing” Born

present the results for the excitation energy for0 and  5ohroximation. AtS=c, the mean-field theory is exact. At
J/t=0.4. This form of the dispersion is in very good agree-finite S, we found that the self-energy correction to the

ment with the results of earlier studié&®12As in previous . —
studies, we found that the effective mass along the zone d[pean—ﬂeld formula forG(k,) scales ast/3\/S, and for

agonal is roughly seven times smaller than the mass alon§rge t/J, relevant to experiments, is small only in the un-
the boundary of the MBZ. In Fig. 14 we present the resulthysical limit of a very large spin. We found that for
for the evolution of the dispersion with. We see that as t/3\/S>1, the bare fermionic dispersion is completely over-
increases, the effective mass along #)0,direction gets shadowed by the self-energy corrections. In this case, the
smaller. However, a rather larg€ | is needed to reproduce quasiparticle Green’s function contains a broad incoherent
two equal masses. Moreover, for equal masses, the overalbntinuum which extends over a frequency range-@f. In
bandwidth is about two times smaller than in the experi-addition, there exists a narrow region of widit{JS) below
ments. We see again that without restricting the integratiorthe top of the valence band, where the excitations are mostly
over magnon momentum, one needs to add and to fine tureoherent, though with a small quasiparticle residde

the hopping parameters to even further neighbors to repro~ J,/S/'t. The top of the valence band is located at

duce the experimental data. (7/2,712).
V. SUMMARY no bare dispersion
We now summarize the results of our studies. We consid- magnon integration over the full MBZ
ered in this paper the dispersion of a single hole injected into o3 | I
1 | S opr R CELTT u
o 05 ." te
o~ k- e e et oy T N Lo
= f fall MBZ| M = | |
o . = -1
2 | E | |
g 2 :\/ 15 /K J
E o = Ty
= r | |/\ = J/t=04 |
24 J/t=0.4 | 1/AMBZ a5k |
84 "=_0,
| =0 | (0,0) (m2,m2y  (m0) (0,0)
-5
0,0) (1/2,m/2) (m,0) (0,0) k
k FIG. 14. The fermionic dispersion within theJ model forJ/t

=0.4 and two different values faf (dotted linet’ =0.4J, solid line
FIG. 12. The fermionic dispersions fa/t=0.4 andt’=—J. t’=—1J). The integration over magnon momenta runs over the full
The integration over magnon momenta extends over the full MBZMBZ.
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We found that the form of the fermionic dispersion, and,broad maximum rather than a sharp quasiparticle peak. This
in particular, the ratio of the effective masses neaf2(rr/2)  last feature was also reported in the photoemission experi-
strongly depend on the assumptions one makes for the forments.
of the magnon propagator. For free magnons, the integration One of the goals of the present paper was to demonstrate
over magnon momenta in the self-energy runs over théhat the experimental data for 8BuO,Cl, can be described
whole MBZ. In this case, we found, in agreement with ear-without introducing a spin-charge separation. In this respect,
lier studies, that the dispersion aroung/2,m/2) is aniso- We predict that the data should not change much if the ex-

tropic with a much smaller mass along the zone diagonalP€riments are performed well beloly though some anisot-

This result holds even if the bare dispersion contains a siZOPY Of the masses is possible because the spin damping

ablet’ term. decreases with decreasifigand henceg, should become

We, however, argued in the paper that the nNo-magnorlF‘rger' This prediction is contrary to the one derived from a
Raman scatte’riﬁé as well as neutron-scattering model with spin-charge separatithln this last case, it was

experiment® strongly suggest that the zone-boundary magSudgested that the minimal model with=0 already ac-
nons are not free particles since a substantial portion of theffUnts for the key experimental features, and that well below
spectral weight is transformed into an incoherent back-c: SPinons and holons are confined such that one should
ground. Most probably, this transformation is due to a Strongzecover a strong anisotropy of the masses, similar to that in
magnon-phonon interaction. In this situation, only magnons'9: 13. .

with small momenta, for which the interaction with phonons A final remark. Though the point of departure of our
is necessary small, actually contribute to the self-energy. W@nalygls Is very d|fferen't fr(_)m the one in the scenario based
modeled this effect by introducing a cutaff in the integra-  ©N SPin-charge separatidhjn many respects there exists a

tion over magnon momenta. We found analytically that forStriking simi!arity between the results _ob'gained in both ap-
small ., the strong-coupling solution for the Green’s func- proaches. First, we founc_j that the excitations are mo;tly in-
tion is universal. and both of the effective masses are equéaoherent, and the bandwidth of incoherent excitations is sev-

to (4JS)~L. We further studied numerically the shape of the€ral t. Se<_:ond, we o_bta_ined that the dispers_ing excitations
dispersion for intermediatel/t and found that fort’~ observed in photoemission measurements exists up to an en-

—0.5] the ratio of the masses remains roughly equal to on&"9Y Scale which is given by rather than by. Both of these
for basically all values of/t. This particular value fot’ is ~ 'esSults are in full agreement with the results obtained by
obtained from a comparison of the low-energy excitations inLanghIIn in the framework of spin-charge separation. How-

the underlying three-band model and the effective one-banflV€": contrary to Laughlin, we did find a conventional Fermi-
Hubbard modef® We computed the full fermionic disper- 9uid pole inG(k,w) near (z/2,7/2). The quasiparticle resi-

sion for J/t=0.4 relevant for SCUO,Cl,, andt’=—0.4] due of the coherent excitations is small in the strong-

and found that not only the masses are both equal 3| coupling limit and vanishes whed/t—0. In view of these

but also the energies at (0,0) and#Pare equal, the energy rgsults, we suspect thgt spinons and holons are aqtually con-
at (0/2) is about half of that at (0,0), and the bandwidth fined even above the étemperature, but the confinement
for the coherent excitations is around.3All of these results |s.weak near (7/2.’77/2) a_nd d|sap_pears whelit—0. A de-
are in full agreement with the experimental data by LaRosé"’"Ied study of this confinement is clearly called for.

etal® and also by Wellset al3 [except for a slightly

smaller bandwidth and larger energy at«#}). Finally, we

computed the damping of the coherent fermionic excitations It is our pleasure to thank G. Blumberg, E. Dagotto, R.
and found that it is small only in a narrow range aroundJoynt, R. Laughlin, M. Onellion, Z-X. Shen, and O. Sushkov
(7/2,712). Away from the vicinity of @/2,7/2), the excita- for useful discussions. The work was supported by NSF-
tions are overdamped, and the spectral function possesseDMR 9629839 and by the A. P. Sloan Foundati@nCh).
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