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Enhancement of quantum tunneling for excited states in ferromagnetic particles
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A formula suitable for a quantitative evaluation of the tunneling effect in a ferromagnetic particle is derived
with the help of the instanton method. The tunneling betwetndegenerate states of neighboring wells is
dominated by a periodic pseudoparticle configuration. The low-lying level-splitting previously obtained with
the Lehmann-Symanzik-Zimmermann method in field theory in which the tunneling is viewed as the transition
of n bosons induced by the usuaacuum instanton is recovered. The observation made with our result is
that the tunneling effect increases at excited states. The results should be useful in analyzing results of
experimental tests of macroscopic quantum coherence in ferromagnetic paf8€263-18208)00201-X

I. INTRODUCTION A=K, /Ky, K; andK, being the hard and medium axis en-
ergies. Sinces~500-5000, unles&,/K;<10 4, the tun-
Macroscopic quantum effects in magnetic systems are afieling frequencyw,. is expected to be unobservably small.

considerable interest both theoretically and experimentally. It seems that the unobservably small effect of tunneling at
In the context of these investigations the usual terminology ishe vacuum level is a common phenomenon in various prob-
that macroscopic quantum cohereh¢®lQC) refers to the lems, as for instance, in the case of baryon- and lepton-
resonance between neighboring degenerate wells. Sonmeimber violation at high energy and in the case of pair pro-
years ago it was reported that MQC was observed for antiduction of black holes in quantum gravity. The one-loop
ferromagnetic particlésn resonance experiments. However, correction which results in a prefactor of the WKB leading-
the interpretation is controversi&l? Physically the result of order exponential does not enhance the tunneling signifi-
an earlier resonance experiment on ferromagnetic particles antly in this case. It is a natural and interesting question to
not clear since fundamental discrepancies remain betweessk whether the tunneling effect is enhanced by considering
the experimental data and theoretical expectations on the bainneling at the level of excited states. However, the instan-
sis of magnetic quantum tunnelifi§g.Apart from some other ton method is suitable only for the evaluation of the tunnel-
reasons;® which hinder the acceptance of the observation asng effect at the vacuum level, since the us@alcuun) in-
definite proof of MQC, there is an essential difficulty relatedstantons satisfy the vacuum boundary conditions. Motivated
to the existing theory of quantum tunneling itself in the ab-by the study of baryon- and lepton-number violation at high
sence of an external magnetic field. The difficulty wasenergy, recently new types of pseudoparticle configurations
pointed out in Ref. 2: The argument of the WKB exponentialwere found=*! which satisfy periodic boundary conditions
of the tunneling for a ferromagnetic particle is/Rs with and are called periodic instantdis or nonvacuum
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instantons®! These periodic instantons have, for instance, -
been used to evaluate quantum tunneling at high enérgy.
There it was confirmed that in the low-energy region the o
tunneling effect indeed increases exponentially with
energy*? This finding can be expected to have its correspon- :
dence in the theoretical analysis of MQC. In the present pa- Y L
per we therefore adopt the periodic instanton method in orde! (o)
to calculate the tunneling amplitude between asymptotically
degenerate excited states. &
We derive a compact formula for the level-splitting in-
duced by tunneling which is valid for the entire region of S
energy. The results of the application of a mettgorevi- =
ously developed for the calculation of tunneling effects at the>
level of excited states and based on the Lehmann, Symanzix @ (®)
and Zimmermanr(LSZ) procedure of field theof§} are re- FIG. 1. The periodic potential and the instanton trajecto-
covered in the low-energy regidiin particular our formula fies: (@ For one instantor(i.e. vacuum instanton (b) for one

agrees exactly with the level splitting of the ground stateinstanton plus one instanton-anti-instanton p@ir,one half of the
obtained by means of the usual instanton metfddt is  periodic instanton.

remarkable that the tunneling effect enhances significantly if

tunneling at the level of an asymptotically degenerate excitethas position-dependent masg¢) and potential

state is consideref. We have shown elsewhere that in cer-

tain restricted parameter domains the leading contributions _ _ .

of the effect can also be obtained much more easily with m($)= 2K, (1—\ sir? ¢)’ V($)=Kas(s+1)sin ¢,
Schralinger quantum mechanié$even in the presence of (6)
an applied magnetic fieltf.

respectively, where.= K,/K;. The kets|n;) and|n;) de-
note the initial and final spin-coherent states andt;=2T
IIl. THE EFFECTIVE LAGRANGIAN WITH THE denotes the difference of final and initial times. Here

PERIODIC POTENTIAL, AND THE ENERGY SPECTRUM s= s(sin 6 cos¢,sin 8 sin ¢,cos0) is visualized as a classical
FORMULA . . . .
spin vector with spin numbes, polar angleg and azimuthal
We begin with the following operator Hamiltonian of the angle ¢. In the above dgrivatic_m, th_e Iarg_e spin linsit-1
ferromagnetic particle which has been the starting point ohas been used since giant spins with spin quantum number

numerous investigations: s>1 are believed to describe ferromagnetic grains. A feature
of the transition amplitude given by E@2) is the phase
A=K 82+K,82 (1)  factore (¢~ #)S which can be put into the Lagrangian, i.e.,

the expressiornsf—gzﬁi:f:féﬁdt, and identified as a Wess-

Zumino term?? Integrating out the momentum in the path
Antegral Eq.(3), we obtain the usual Feynman propagator in
configuration space, i.e.,

and describéd'’ XOY easy-plane anisotropy and an easy

axis along thex direction with K;>K,>0. In Eq.(1) s;,
i=X,Y,z, are spin operators obeying the usual commutatio

relation[s;,S;]1=1 ;S (using natural units throughout, i.e.,

fi=c=1). Starting from the coherent-state representation = et
of the time evolution operator with Hamiltonian given by Eq. K1 .te 5 i ,ti)=f Depe'ly o0, @)
(1) and with the help of the coherent-state path integral we ~
obtain whereD¢ is the measure-modified functional differential re-
A sulting from the¢-dependent mass, i.e.,
(nle” 2T n)=e 9K gty k), () Vo1
,2'5 _ H m(d’k) d
where ¢= Q omie 0%k

K( s ts; b t.):f Dd)Dpeif:fL(qﬁ,p)dt 3) with the second-order Lagrangian
s of s Pt i

1 )
is the path integral in phase space with canonical variaples L=5m( $) >~ V(¢), (8)
andp=s cos6.?! Also
which is more convenient for the instanton method used in
L=¢p—H(p,p) (4)  the following. The potentiaV/(¢) is periodic with periodr
(Fig. 1) and there are two minima in the entire regiom. 2
is the phase spacer first ordey Lagrangian. The Hamil- e may look at this periodic potential as a superlattice with
tonian lattice constantr and total length 2, and we can derive the
energy spectrum in the tight-binding approximation. The
) translational symmetry is ensured by the possibility of suc-
cessive Zr extensions.

p2

1= 2me)

V()
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It was shown in a previous paperthat if €, are the (n(m)|e287|n(0)) = (n(m)[0.® )
degenerate eigenvalues of the system with infinitely high '
barriers, the energy spectrum is given by x(0,0¢|N(0))e~ 2P sinh(28A €)
:eiiﬂ-sICE(d)f:W!B;d)izo!_ﬁ)!
En=€n—2A€, cOgs+ &), (9) 12)
where the expressiofde,,, is defined by where
) Ke= f Dgpe S
Aem:_j Un(é, Pr)HUK(, P4 1)d, (10)

is the Euclidean propagator with Euclidean action defined by

which is the usual overlap integral oA2,, simply the level 8 1 )

shift due to tunneling through any one of the barriers. Here SE=J LedT, £E=§m(¢)¢2+V(¢). (13

Un(¢p—®,) denotes the eigenfunction of the harmonic B

oscillator-approximated Hamiltoniaﬁo in thenth well, i.e., A relation similar to Eq(12) applies for a transition between
asymptotically degenerate statem™ with ¢, replaced by

2 4 €m- Such transitions will be considered in the next section,
H0=p—+ —MywoZ(p— D)2 and the splitting will similarly be read off from Eq12).
2mg 2 From now ong=dd/dr denotes the imaginary time deriva-
tive.
with my=1/2K; and wo®=4K;K,s(s+1). £ is an integer In the following the Euclidean propagathii is evaluated

and here can assume only either of the two values “0” andyith the instanton method. After evaluation we compare the
“1.” For the half-integer spins the spectrum Eq(9) is  result with Eq.(14) to find the level shift A ¢,. The instan-

quenched to a single degenerate level with degeneracy tweon configuration which minimizes the Euclidean act®n
The quenching is seen to be a consequence of Kramer's theps

rem which says that for half-integer spinthe degeneracy

cannot be removed in the presence of the crystal field. d=arcsifcost wo(7— 79)— N sin? wo(7— 79)] Y2
(14)
IIl. LEVEL SPLITTING OF GROUND STATE DERIVED with pOSition 70- The instanton trajectory is shown in Flg
WITH THE USUAL INSTANTON METHOD 1(3.) with TOZO. The Euclidean action evaluated for the in-

stanton trajectory Eq(14), sometimes called the instanton
Above we recalled the low-lying energy spectrum of amass, is

giant spin particle in the large spin limit as obtained in Ref.

23. The energy spectrum E() leads to the level splitting % - 1+
given by the absolute difference fge=0 and 1, namely Sc= f_ mM(¢¢) pcdr=ys(s+1) In Y
AE,,=2A¢€y|cogs+ 1) m—cossm| 1) 1+ \
~| S+ E In (15)
4Ae,, for integer spins 1=\

“lo for half integer spins. (D in agreement with Refs. 16, 17 and with Refs. 19, 20 in the

case of small values of. To our understanding it is argued

The only parameter left unknown is the overlap integral or" R;afs. 16, 17 Fhat except e S_C one can replace(s+1)

the level shift 2 ¢,, which can be evaluated with the help of PY S* whereas in the exponential factgs(s+1) has to be
the instanton method. Instantons in field theory f@ di-  approximated bys+ 3, even for larges. The functional in-
mensions are viewed as pseudoparticles with trajectories exegral g can be evaluated with the stationary phase method
isting in barriers, and are therefore responsible for tunnelingby expandinge about the instanton trajectory, such that
Since instanton trajectories interpolate between degenerate= ¢.+ 7, where 5 is the small fluctuation with boundary
vacua[see Fig. 8] and satisfy vacuum boundary condi- conditions »(8)= n(—8)=0. Up to the one-loop approxi-
tions, the instanton method is only suitable for the calculamation we have

tion of tunneling splitting 4 ¢, between neighboring vacua.

In the following we first consider tunneling at the vacuum Ke=e"*l, (16)
level (i.e., m=0), which leads to the level shift of the
ground-state energy, i.e.AZ of Eqg.(10). Passing to imagi-
nary time by Wick rotationr=it, 8=iT, the amplitude for fn(m:o

where

tunneling from the initial well, say that witm=0 (and I= - Dye™ 17)
#;=0), to the neighboring well witm=1 (and ¢;= ) and n=A)=0
considering larges, the amplitude for the transition between is the fluctuation functional integral with the fluctuation ac-

the corresponding coherent states can be shown to be tion
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B A Comparing with Eq(12) the level shift is seen to beA,
OSg= f _BnM ndr, (18)  (note that this is the shift of a single leyatith
1/2
where Aen=22 KiK2 ) VAg3/2g— (s+ 1/2)In(1+ K)/(1 - \K)
0 (1-N) 7 '
A 1d d -~ (24)
M:_Ed_m(qsc)d_‘l'v(d)c) (19
T T ExpandingA €, in the region of small values o, this is
with
K.K 1/2 _
N 1 1 _ Aeozzz( ; 2] £\ L4g32g=25\K (25)
V(¢C)ZE _m/(d’c)(bc_Em"((bc)(ﬁg"'v”((ﬁc)} . o ] ) )
(20) the level splitting being 4¢y. Sinces is a large number

A (500 to 5000 as cited in the literatdyethe level shift is
Here M(¢,.) is the operator of the second variation of the Suppressed in leading order by the factor
action and m’(¢c)=am(¢)/a¢|¢:¢c. As in the usual

method of evaluating the fluctuation integial we expand
the fluctuation variable; in terms of the eigenmodes &1  For A€ to be observable, plausible values)ofre of order
and setp=3,C,#,, wherey, denotes thenth eigenfunc- 10~ °. Such small values of may not be realizable in nature.
tion of M, and express the result of the integration as anl € guantum correction proportional &°2"* does not in-

inverse square root of the determinant\f In view of the ~ ¢€8S€ the tu_nnelmg_ probability significantly. -
time translation symmetry of the equation of motion, the It may be mteregtmg to. compare our level Sp"“”?g Of the
functional integralCg is not well defined when expanded ground stated Eq with that in Refs. 16, 17. The Hamiltonian

about the classical solutions. The translational symmetry rle Eqg. (1) in Refs. 16 and 17 equals that of our model if one

sults in zero eigenmodes of the second variation opeidtor sets the external field equal to zero<0) and makes the
of the action(w%ich in the present case, of course Ff)1as onl replacement;A=K,, B=K; =K,. By simple algebra one
b ' ' Yean find that the level splitting Ed16) in Ref. 17[or Eq.

ong. This problem can be cured by the Faddeev-Popov . L .
a - . (99 in Ref. 16 coincides exactly with ounEy=4A¢,
proceduré’ or in a more systematic way with the help of the which also simplifies to the results of Refs. 19, 20, 23 in the

._ _ B . . 5 _
Becchi-Rouet-Stora-TyutinBRST) - transformatiorf® Fol appropriate limits. We can now proceed to consider nonva-

lowing the procedure of Refs. 23, 25 the one-instanton con- iodic | hich h d il
tribution to the propagator in the one-loop approximation iscHum OF periodic instantons which are the pseudoparticles
calculated to be interpolating between asymptotically degenerate excited

states, and which reproduce the above result for vacuum in-
stantons in the vacuum limit.

-

e efzs\s‘i_

e (26)

4

KH=28—(1-\) V22K e~ “0Pe 5. (21)

. IV. QUANTUM TUNNELING FOR EXCITED STATES
AND THE GENERALIZED FORMULA

FOR THE LEVEL SPLITTING

To obtain the desired result proportional to sinBd2,) in

Eq. (12), the contributions of the infinite number of instanton
and anti-instanton pairs to the one-instanton contribution
have to be taken into accodhe trajectory of one instanton The periodic instanton methdd?has become a powerful
plus a pair is shown in Fig.(ib)]. Interactions among instan- tool for the evaluation of quantum tunneling amplitudes over
tons and anti-instantons are neglected in the dilute instantonhe entire region of energy. The model at hand can be looked
gas approximation. The contribution of one-instanton pius at as one for tunneling at the level of excited states of a
such pairs to the propagator is obtained with the help of thgine-Gordon-type potential with a position-dependent mass,
group property of the Feynman path integral and is found tavhich has not been reported previously in the literature. The

be periodic instanton configuration which minimizes the Euclid-
(28)2+1 [ 5|12 ean action Eq(13) is seen to satisfy the equation of motion
’CEE2”+1):(2n+1)| (;) A\ L4 m(o) | db 2
' i i T"(d—p ~V(¢p)=—Ea, (27)
KlKZ 1 n+1 B -
x| 22 (1_—)\)77] \ A2 e (" DSe w0k \here E,>0, which is a constant of integration, may be

viewed as the classical energy of the pseudoparticle configu-
ration. Through the usual procedure of derivation of the pe-
riodic instanton solution, after a laborious but straightfor-
ward integration of Eq(27), we obtain the periodic instanton
configuratiofy’

(22

Summing over all contribution&£"*Y) | the final result of
the propagator is found to be

1/2

1—Kk2sré(w7|k) 28

¢p:arCSi{1—)\kzsnz(wr| K)

where snf7|k) denotes a Jacobian elliptic function of
modulusk,

1/2
K= )\1/4( E) o Buo
T

1K2

K 1/2
Xsinl'{Z,B-Zz[ m] 7\1/453/29_30 . (23)
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ni—1 __ Y -w
= F%—_)\ (29) AECI_4K:(I(/) e (33)
with k' being the complementary moduluslafi.e., k' = 1 —k?.

We emphasize that the above formula B2f) obtained with
, Kos(s+1) NEg the periodic instanton is valid for the entire region of energy
n=—g — @=wo\1- Koo+ 1) (300 E,. The validity of the level splitting of excited states con-
¢! 2 sidered previously in the literatiffewas restricted to the
One can check with sp(1)=tanhu that fork?=1 (cor- qugsiuniaxial limit, :-N<<1. Our approach, however, is
responding tadEy—0) the configuration28) reduces to the Valid over the whole range of.
instanton of Eq(14). The Jacobian elliptic function sn has ~ We now consider the low-energy limit whekg, is much
real periods #/(k), n being an integer ani(k) the quar-  less than the sphaleron energy barrier heightK,s(s+1)
ter period given by the usual elliptic integral of the first kind. of the potential, i.e., k—1, k'—0. ExpandingW as power
The parameter value€9), (30) ensure the periodicity of series ok’ up to quadratic order as in Ref. 9 and making use
$,=0 at 7= —2p,+ 2 with a crossover from negative to of the oscillator approximation of the periodic potential
positive values at=0 and¢= (w/2)mod27. Thus the one- around one of the minima with the quantization replacement
way transition from a turning poird, to the other turning Ec— €m=(m+1/2)wg (as in Refs. 8, 1) we then have
point a, is mediated by the instantonlike part or one half of

the periodic instanton extending from= — 8 to 7=+ 8 (the we| st 1 n 1+ \/X'f' - 1 n 1-\ e 1
periodic instanton itself returning to its original position after 2] 1—- U\ 2 8\\s 2
time 48). The trajectory of the periodic instanton Eg&8) is
shown schematically in Fig. (& where the trajectory is 1
shifted by an amount2 The instantonlike part starts at time —|\m+ 2/ (34)
— B from turning point¢$=a,=arcsinyE/K,s(s+1) and . L ) )
reaches the other  turning point ¢=a,= The level shift A e, is finally given with
—arcsinyE/K,s(s+1) at timeB. The Euclidean action of 1 N2 gm+32 ()12
the periodic instanton configuration E&8) over the domain Aey=— 23m+2 m { 1™2 ]
from 7= — B to 7=+ B can be found to bécf. Refs. 9, 10 m! (1=)) m(1=N\)
B - 1) 1+\

So= f_ﬁ[m(¢p)¢p+ Eqldr=W+2E,T, (31 xexg —| s+ 5/In P (35

where which reduces to the ground-state expression 24) for

m=0. Equation(35) provides the linkage from the splitting
o ) 5 of excited stategwhich up to now has been considered only
W= )\_Kl[’C(k)_(l_W JII(AK®,K)] (32 py a perturbative methd to that of the ground state.

It has been pointed out that in the low-energy region the
and IT1(\k? k) is the complete elliptic integral of the third level shift 2Ae,, may be obtained by an alternative but
kind. equally good approach called the LSZ method in which only

It is now necessary to calculate the amplitu&f® for the  the vacuum instantofiEq. (14) for the problem at harid
transition mediated by one pseudoparticle configuration—irplays a rolet>*>*>The comparison with the LSZ method is
the present case the instanton part of the periodic instanton-explained in the Appendix. The level shift formula Eg5)
and then to sum over this contribution with other contribu-is suitable for a quantitative evaluation of the tunneling am-
tions A" obtained by adding an arbitrary number plitude. We therefore borrow from Ref. 5 some data for a
(n=1,2,3,...) of noninteracting complete periodic instan- ferromagnetic particle in order to demonstrate the difference
tons (corresponding to the addition of instanton-anti-in A with respect to the result of tunneling at the ground state
instanton pairs in the dilute gas approximation of the instan{but we by no means imply—for the reasons explained in the
ton procedurgso that in the path-integral representation ofintroduction—that the transition is a result of qguantum tun-
the amplitude all possible paths betweerg and +3 are  neling.
taken into account. As is well known, this results effectively The theoretical level shift calculated with the simple
in an exponentiation of the first contributigeee, e.g., Ref. model of the WKB exponential is negligibly small. If the
11). A calculation very similar to this can be found in Ref. observed frequency reported in Ref. 5 were considered to be
10 [cf. there Eqs(4.19, (4.24), (4.25]. We can therefore the result of tunneling from the ground staiewould be
simply transcribe the result into the present context. The total.01x 107 5. The tunneling effect enhances significantly at
amplitude corresponding to E¢L2) is then excited states. Table | shows howincreases withm (the

index of excited statedor tunneling frequencys.=500 Hz
2Bw eW] which is the level splitting A€, and s=3x10*, 2x10°

and 10, respectively. Fors=10° to attain the frequency
=500 Hz the value ok need only be 2.08 10 3, which
Comparison with Eq(12) as noted earlier then yields the may be a physically acceptable quantity for a small ferro-
compact formul1° magnetic particle.
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TABLE |. Comparison of\ values computed for various excited and annihilate an effective boson in wells+* and “ —",

J.-Q. LIANG et al. 57

states. respectively, are related to the interaction field operafors
b
m N for s=3x10° A for s=2x1C° \ for s=10° y
2 01735x10°* 0376410 *  1.41226<10°* t 2m0 wOT J
4 0.2454% 104 0.53458 104 2.01990x 104 ax wo ¢ (7),
6  0.32066<10°%  0.70031x10°* 2.6586% 104
8  0.3998%10°%  0.87500<10°* 3.33361x10°* A 2my
10  0.4831& 104 1.0589% 10~ * 4.04587 104 ar=—\/— ‘”oT ¢ (7), (A4)
12 0.5706410°4 1.25235¢10°%  4.79555<10 * @o
20  0.9815% 10 * 3.1506%10°%  20.2911% 1074 wherem,=1/2K,, and, e.g.,

al = — 2mywo(1—1) Y2

|'|'he transition amplitude of EqA1) can now be written

V. CONCLUSION

We have shown that the periodic instanton method as we
as the LSZ method are useful for the calculation of tunneling AT — g o~ 2Bmag A5
effects at excited states of a spin system at low temperature, i Snie (A5)
the former being valid over the entire region of energy, theih the S-matrix element
latter at low energies. The results are suitable for a quantita-
tive evaluation of the tunneling effect. With the simple 1 . A o
model of Eq.(1) for a ferromagnetic particle we conclude Sf;= lim —|(0|a+(a{n)...a+(7-f1)at(r'1)...ai(r'm)|0).
that the tunneling effect at the level of excited states in- NI
creases. e

(AB)
The S-matrix element can be evaluated in terms of the

Green’s functionG which arises in its evaluation. Thus
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APPENDIX: COMPARISON WITH THE LSZ RESULT N

From the viewpoint of the LSZ method the transition am-

plitude betweenmth degenerate eigenstates in any two x wo(r =) G o &G_&G_ a
neighboring wells(say those fom=0,1) is viewed as the € ariar  “%ad  ar ®o

transition ofm bosons induced by the instanton of E4)

and is related with the level shiftXe, by (A7)

. where the I-point Green’s function is defined as usual, i.e.,
AT =(m,®,|e” 2P| m, ) = e ?Fm sinh 2BA €.

(A1) G=(0|¢,(7)...

Following Ref. 13 the transition amplitude as well as te
matrix can be related to the Green’'s function through the
procedure known as the LSZ reduction techniffti€o this
end we construct the interacting Euclidean fieltls in the
classically forbidden region with the help of the instanton
configuration of Eq(14). Thus we define

b (TP _(7)...¢_(7)]0). (A8)

Following the procedure in Refs. 12, 13, 15 tBamatrix
Celement is thus
|,

il {5

o

de, (7)) dep_ (7))
d7'|f dTI

(A9)
by =T, b= (A2) where
such that the interaction fields vanish in their respective KoK, 112
asymptotic regions, i.e., 0 _ 2 1n2 1145312
Afi=2p2 [(1_)\)WJ A (A10)

lim ¢,=0, lim ¢_=0. (A3)

T—® T——®

is the amplitude for the transition between degenerate ground
states. Using the instanton solution of Et¥) and taking the
The subscripts and * +” here denote the wells with |arge time |imit7-i*>—oc' Tlfﬂoc after performing the imagi-
minima at®,=0 and®, =, respectively. The Euclidean nary time derivatives, we finally obtain the transition ampli-
creation and annihilation operatcmé‘i anda. which create tude by observing that each pair of vertices in ) con-
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tributes a factor- 4w3. Then Comparing Eq.(A11) with Eqg. (A1) we recover the level
shift 2A e, of Eq. (35) for the low-lying levels. Following
Refs. 16, 17 we here takey,= 2K,Ks for reasons of con-
sistency.

m

1 (23m0w0
fi

m
H ﬁ) e_womzﬁA?,i. (A11)
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