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Enhancement of quantum tunneling for excited states in ferromagnetic particles
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A formula suitable for a quantitative evaluation of the tunneling effect in a ferromagnetic particle is derived
with the help of the instanton method. The tunneling betweennth degenerate states of neighboring wells is
dominated by a periodic pseudoparticle configuration. The low-lying level-splitting previously obtained with
the Lehmann-Symanzik-Zimmermann method in field theory in which the tunneling is viewed as the transition
of n bosons induced by the usual~vacuum! instanton is recovered. The observation made with our result is
that the tunneling effect increases at excited states. The results should be useful in analyzing results of
experimental tests of macroscopic quantum coherence in ferromagnetic particles.@S0163-1829~98!00201-X#
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I. INTRODUCTION

Macroscopic quantum effects in magnetic systems ar
considerable interest both theoretically and experimenta1

In the context of these investigations the usual terminolog
that macroscopic quantum coherence2 ~MQC! refers to the
resonance between neighboring degenerate wells. S
years ago it was reported that MQC was observed for a
ferromagnetic particles3 in resonance experiments. Howeve
the interpretation is controversial.2–4 Physically the result of
an earlier resonance experiment on ferromagnetic particle
not clear since fundamental discrepancies remain betw
the experimental data and theoretical expectations on the
sis of magnetic quantum tunneling.5,6 Apart from some other
reasons,5,6 which hinder the acceptance of the observation
definite proof of MQC, there is an essential difficulty relat
to the existing theory of quantum tunneling itself in the a
sence of an external magnetic field. The difficulty w
pointed out in Ref. 2: The argument of the WKB exponent
of the tunneling for a ferromagnetic particle is 2Als with
570163-1829/98/57~1!/529~7!/$15.00
of
.
is

me
ti-

is
en
a-

s

-

l

l5K2 /K1 , K1 andK2 being the hard and medium axis e
ergies. Sinces'500– 5000, unlessK2 /K1!1024, the tun-
neling frequencyvc is expected to be unobservably small

It seems that the unobservably small effect of tunneling
the vacuum level is a common phenomenon in various pr
lems, as for instance, in the case of baryon- and lept
number violation at high energy and in the case of pair p
duction of black holes in quantum gravity. The one-lo
correction which results in a prefactor of the WKB leadin
order exponential does not enhance the tunneling sig
cantly in this case. It is a natural and interesting question
ask whether the tunneling effect is enhanced by conside
tunneling at the level of excited states. However, the inst
ton method is suitable only for the evaluation of the tunn
ing effect at the vacuum level, since the usual~vacuum! in-
stantons satisfy the vacuum boundary conditions. Motiva
by the study of baryon- and lepton-number violation at hi
energy, recently new types of pseudoparticle configurati
were found7–11 which satisfy periodic boundary condition
and are called periodic instantons8,9 or nonvacuum
529 © 1998 The American Physical Society
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530 57J.-Q. LIANG et al.
instantons.10,11 These periodic instantons have, for instan
been used to evaluate quantum tunneling at high energ12

There it was confirmed that in the low-energy region t
tunneling effect indeed increases exponentially w
energy.12 This finding can be expected to have its corresp
dence in the theoretical analysis of MQC. In the present
per we therefore adopt the periodic instanton method in o
to calculate the tunneling amplitude between asymptotic
degenerate excited states.

We derive a compact formula for the level-splitting i
duced by tunneling which is valid for the entire region
energy. The results of the application of a method13 previ-
ously developed for the calculation of tunneling effects at
level of excited states and based on the Lehmann, Syma
and Zimmermann~LSZ! procedure of field theory14 are re-
covered in the low-energy region.15 In particular our formula
agrees exactly with the level splitting of the ground st
obtained by means of the usual instanton method.16,17 It is
remarkable that the tunneling effect enhances significant
tunneling at the level of an asymptotically degenerate exc
state is considered.18 We have shown elsewhere that in ce
tain restricted parameter domains the leading contributi
of the effect can also be obtained much more easily w
Schrödinger quantum mechanics,19 even in the presence o
an applied magnetic field.20

II. THE EFFECTIVE LAGRANGIAN WITH THE
PERIODIC POTENTIAL, AND THE ENERGY SPECTRUM

FORMULA

We begin with the following operator Hamiltonian of th
ferromagnetic particle which has been the starting poin
numerous investigations:

Ĥ5K1ŝz
21K2ŝy

2 ~1!

and describes16,17 XOY easy-plane anisotropy and an ea
axis along thex direction with K1.K2.0. In Eq. ~1! ŝi ,
i 5x,y,z, are spin operators obeying the usual commutat
relation@ ŝi ,ŝi #5 i e i jk ŝk ~using natural units throughout, i.e
\5c51!. Starting from the coherent-state representatio21

of the time evolution operator with Hamiltonian given by E
~1! and with the help of the coherent-state path integral
obtain

^nf ue22iĤ Tuni&5e2 i ~f f2f i !sK~f f ,t f ;f i ,t i !, ~2!

where

K~f f ,t f ;f i ,t i !5E DfDpei *
t i

t fL~f,p!dt ~3!

is the path integral in phase space with canonical variablef
andp[s cosu.21 Also

L5ḟp2H~f,p! ~4!

is the phase space~or first order! Lagrangian. The Hamil-
tonian

H5
p2

2m~f!
1V~f! ~5!
,
.

-
a-
er
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e
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e
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e

has position-dependent massm(f) and potential

m~f!5
1

2K1~12l sin2 f!
, V~f!5K2s~s11!sin2 f,

~6!

respectively, wherel[ K2 /K1 . The ketsuni& and unf& de-
note the initial and final spin-coherent states andt f2t i[2T
denotes the difference of final and initial times. He
sW5s(sinu cosf,sinu sinf,cosu) is visualized as a classica
spin vector with spin numbers, polar angleu and azimuthal
anglef. In the above derivation, the large spin limits@1
has been used since giant spins with spin quantum num
s@1 are believed to describe ferromagnetic grains. A feat
of the transition amplitude given by Eq.~2! is the phase
factore2 i (f f2f i )s which can be put into the Lagrangian, i.e
the expressionf f2f i5* t i

t fḟdt, and identified as a Wess

Zumino term.22 Integrating out the momentum in the pa
integral Eq.~3!, we obtain the usual Feynman propagator
configuration space, i.e.,

K~f f ,t f ;f i ,t i !5E D̃fei *
t i

t fL~f,ḟ !dt, ~7!

whereD̃f is the measure-modified functional differential r
sulting from thef-dependent mass, i.e.,

D̃f5 )
k

M21 Am~fk!

2p i e
dfk

with the second-order Lagrangian

L5
1

2
m~f!ḟ22V~f!, ~8!

which is more convenient for the instanton method used
the following. The potentialV(f) is periodic with periodp
~Fig. 1! and there are two minima in the entire region 2p.
We may look at this periodic potential as a superlattice w
lattice constantp and total length 2p, and we can derive the
energy spectrum in the tight-binding approximation. T
translational symmetry is ensured by the possibility of s
cessive 2p extensions.

FIG. 1. The periodic potential and the instanton trajec
ries: ~a! For one instanton~i.e. vacuum instanton!, ~b! for one
instanton plus one instanton-anti-instanton pair,~c! one half of the
periodic instanton.



ig

er
ic

n

tw
he

a
ef

o
of

e
in
r
i-
la
.
m

n

by

n

on,

-

the

.
n-
n

the
d

hod

y
-

c-

57 531ENHANCEMENT OF QUANTUM TUNNELING FOR . . .
It was shown in a previous paper23 that if em are the
degenerate eigenvalues of the system with infinitely h
barriers, the energy spectrum is given by

Em5em22Dem cos~s1j!p, ~9!

where the expressionDem is defined by

Dem52E um* ~f,Fn!Ĥum~f,Fn11!df, ~10!

which is the usual overlap integral or 2Dem simply the level
shift due to tunneling through any one of the barriers. H
um(f2Fn) denotes the eigenfunction of the harmon
oscillator-approximated HamiltonianĤ0 in thenth well, i.e.,

H05
p2

2m0
1

1

2
m0v0

2~f2Fn!2

with m051/2K1 and v0
254K1K2s(s11). j is an integer

and here can assume only either of the two values ‘‘0’’ a
‘‘1.’’ For the half-integer spins the spectrum Eq.~9! is
quenched to a single degenerate level with degeneracy
The quenching is seen to be a consequence of Kramer’s t
rem which says that for half-integer spins the degeneracy
cannot be removed in the presence of the crystal field.23

III. LEVEL SPLITTING OF GROUND STATE DERIVED
WITH THE USUAL INSTANTON METHOD

Above we recalled the low-lying energy spectrum of
giant spin particle in the large spin limit as obtained in R
23. The energy spectrum Eq.~9! leads to the level splitting
given by the absolute difference forj50 and 1, namely

DEm52Demucos~s11!p2cosspu

5H 4Dem for integer spins

0 for half integer spins.
~11!

The only parameter left unknown is the overlap integral
the level shift 2Dem which can be evaluated with the help
the instanton method. Instantons in field theory of 110 di-
mensions are viewed as pseudoparticles with trajectories
isting in barriers, and are therefore responsible for tunnel
Since instanton trajectories interpolate between degene
vacua @see Fig. 1~a!# and satisfy vacuum boundary cond
tions, the instanton method is only suitable for the calcu
tion of tunneling splitting 4De0 between neighboring vacua
In the following we first consider tunneling at the vacuu
level ~i.e., m50!, which leads to the level shift of the
ground-state energy, i.e., 2De0 of Eq. ~10!. Passing to imagi-
nary time by Wick rotationt5 i t , b5 iT, the amplitude for
tunneling from the initial well, say that withn50 ~and
f i50!, to the neighboring well withn51 ~andf f5p! and
considering largeb, the amplitude for the transition betwee
the corresponding coherent states can be shown to be
h

e

d

o.
o-

.

r

x-
g.
ate

-

^n~p!ue22bĤun~0!&5^n~p!u0,F1&

3^0,F0un~0!&e22be0 sinh~2bDe0!

5e2 ipsKE~f f5p,b;f i50,2b!,

~12!

where

KE5E Dfe2SE

is the Euclidean propagator with Euclidean action defined

SE5E
2b

b

LEdt, LE5
1

2
m~f!ḟ21V~f! . ~13!

A relation similar to Eq.~12! applies for a transition betwee
asymptotically degenerate states ‘‘m’’ with eo replaced by
em . Such transitions will be considered in the next secti
and the splitting will similarly be read off from Eq.~12!.
From now onḟ5df/dt denotes the imaginary time deriva
tive.

In the following the Euclidean propagatorKE is evaluated
with the instanton method. After evaluation we compare
result with Eq.~14! to find the level shift 2De0 . The instan-
ton configuration which minimizes the Euclidean actionSE
is

fc5arcsin@cosh2 v0~t2t0!2l sinh2 v0~t2t0!#21/2

~14!

with position t0 . The instanton trajectory is shown in Fig
1~a! with t050. The Euclidean action evaluated for the i
stanton trajectory Eq.~14!, sometimes called the instanto
mass, is

Sc5E
2`

`

m~fc!ḟc
2dt5As~s11! ln

11Al

12Al

'S s1
1

2D ln
11Al

12Al
~15!

in agreement with Refs. 16, 17 and with Refs. 19, 20 in
case of small values ofl. To our understanding it is argue
in Refs. 16, 17 that except ine2Sc one can replaces(s11)
by s2, whereas in the exponential factorAs(s11) has to be

approximated bys1 1
2 , even for larges. The functional in-

tegralKE can be evaluated with the stationary phase met
by expandingf about the instanton trajectoryfc such that
f5fc1h, whereh is the small fluctuation with boundar
conditionsh(b)5h(2b)50. Up to the one-loop approxi
mation we have

KE5e2ScI , ~16!

where

I 5E
h~2b!50

h~b!50
Dhe2dSE ~17!

is the fluctuation functional integral with the fluctuation a
tion
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dSE5E
2b

b

hM̂hdt, ~18!

where

M̂52
1

2

d

dt
m~fc!

d

dt
1Ṽ~fc! ~19!

with

Ṽ~fc!5
1

2 F2m8~fc!f̈c2
1

2
m9~fc!ḟc

21V9~fc!G .

~20!

Here M̂ (fc) is the operator of the second variation of t
action and m8(fc)5]m(f)/]f uf5fc

. As in the usual

method of evaluating the fluctuation integralI , we expand
the fluctuation variableh in terms of the eigenmodes ofM̂
and seth5SnCncn , wherecn denotes thenth eigenfunc-
tion of M̂ , and express the result of the integration as
inverse square root of the determinant ofM̂ . In view of the
time translation symmetry of the equation of motion, t
functional integralKE is not well defined when expande
about the classical solutions. The translational symmetry
sults in zero eigenmodes of the second variation operatoM̂
of the action~which in the present case, of course, has o
one!. This problem can be cured by the Faddeev-Pop
procedure24 or in a more systematic way with the help of th
Becchi-Rouet-Stora-Tyutin~BRST! transformation.25 Fol-
lowing the procedure of Refs. 23, 25 the one-instanton c
tribution to the propagator in the one-loop approximation
calculated to be

KE
~1!52b

4

p
~12l!21/2s2K2e2v0be2Sc . ~21!

To obtain the desired result proportional to sinh(2bDe0) in
Eq. ~12!, the contributions of the infinite number of instanto
and anti-instanton pairs to the one-instanton contribut
have to be taken into account@the trajectory of one instanto
plus a pair is shown in Fig. 1~b!#. Interactions among instan
tons and anti-instantons are neglected in the dilute instan
gas approximation. The contribution of one-instanton plun
such pairs to the propagator is obtained with the help of
group property of the Feynman path integral and is found
be

KE
~2n11!5

~2b!2n11

~2n11!! S s

p D 1/2

l1/4

3F22H K1K2

~12l!pJ 1/2

l1/4s3/2G2n11

e2~2n11!Sce2v0b.

~22!

Summing over all contributionsKE
(2n11) , the final result of

the propagator is found to be

KE5l1/4S s

p D 1/2

e2bv0

3sinhF2b•22H K1K2

~12l!pJ 1/2

l1/4s3/2e2ScG . ~23!
n

e-

y
v

n-
s

n

n-

e
o

Comparing with Eq.~12! the level shift is seen to be 2De0
~note that this is the shift of a single level! with

De0522H K1K2

~12l!pJ 1/2

l1/4s3/2e2~s11/2!ln~11Al!/~12Al!.

~24!

ExpandingDe0 in the region of small values ofl, this is

De0522H K1K2

p J 1/2

l1/4s3/2e22sAl, ~25!

the level splitting being 4De0 . Sinces is a large number
~500 to 5000 as cited in the literature3!, the level shift is
suppressed in leading order by the factor

e2Sc.e22sAl. ~26!

For De0 to be observable, plausible values ofl are of order
1025. Such small values ofl may not be realizable in nature
The quantum correction proportional toe(3/2)lns does not in-
crease the tunneling probability significantly.

It may be interesting to compare our level splitting of t
ground stateDE0 with that in Refs. 16, 17. The Hamiltonia
of Eq. ~1! in Refs. 16 and 17 equals that of our model if o
sets the external field equal to zero (h50) and makes the
replacementsA5K2 , B5K12K2 . By simple algebra one
can find that the level splitting Eq.~16! in Ref. 17 @or Eq.
~9a! in Ref. 16# coincides exactly with ourDE054De0 ,
which also simplifies to the results of Refs. 19, 20, 23 in t
appropriate limits. We can now proceed to consider non
cuum or periodic instantons which are the pseudopartic
interpolating between asymptotically degenerate exc
states, and which reproduce the above result for vacuum
stantons in the vacuum limit.

IV. QUANTUM TUNNELING FOR EXCITED STATES
AND THE GENERALIZED FORMULA

FOR THE LEVEL SPLITTING

The periodic instanton method8–12has become a powerfu
tool for the evaluation of quantum tunneling amplitudes ov
the entire region of energy. The model at hand can be loo
at as one for tunneling at the level of excited states o
sine-Gordon-type potential with a position-dependent ma
which has not been reported previously in the literature. T
periodic instanton configuration which minimizes the Eucl
ean action Eq.~13! is seen to satisfy the equation of motio

m~fp!

2 S dfp

dt D 2

2V~fp!52Ecl , ~27!

where Ecl.0, which is a constant of integration, may b
viewed as the classical energy of the pseudoparticle confi
ration. Through the usual procedure of derivation of the
riodic instanton solution, after a laborious but straightfo
ward integration of Eq.~27!, we obtain the periodic instanto
configuration27

fp5arcsinF 12k2sn2~vtuk!

12lk2sn2~vtuk!G
1/2

, ~28!

where sn(vtuk) denotes a Jacobian elliptic function o
modulusk,
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k5An1
221

n1
22l

~29!

with

n1
25

K2s~s11!

Ecl
, v5v0A12

lEcl

K2s~s11!
. ~30!

One can check with sn(uu1)5tanhu that for k251 ~cor-
responding toEcl→0! the configuration~28! reduces to the
instanton of Eq.~14!. The Jacobian elliptic function sn ha
real periods 4nK(k), n being an integer andK(k) the quar-
ter period given by the usual elliptic integral of the first kin
The parameter values~29!, ~30! ensure the periodicity o
fp50 at t522b,12b with a crossover from negative t
positive values att50 andf5(p/2)mod2p. Thus the one-
way transition from a turning pointa1 to the other turning
point a2 is mediated by the instantonlike part or one half
the periodic instanton extending fromt52b to t51b ~the
periodic instanton itself returning to its original position aft
time 4b!. The trajectory of the periodic instanton Eq.~28! is
shown schematically in Fig. 1~c! where the trajectory is
shifted by an amount 2p. The instantonlike part starts at tim
2b from turning pointf5a15arcsinAEcl /K2s(s11) and
reaches the other turning point f5a25p
2arcsinAEcl /K2s(s11) at timeb. The Euclidean action o
the periodic instanton configuration Eq.~28! over the domain
from t52b to t51b can be found to be~cf. Refs. 9, 10!

Sp5E
2b

b

@m~fp!ḟp
21Ecl#dt5W12EclT, ~31!

where

W5
v

lK1
@K~k!2~12lk2!P~lk2,k!# ~32!

and P(lk2,k) is the complete elliptic integral of the thir
kind.

It is now necessary to calculate the amplitudeA(1) for the
transition mediated by one pseudoparticle configuration—
the present case the instanton part of the periodic instanto
and then to sum over this contribution with other contrib
tions A(2n11) obtained by adding an arbitrary numb
(n51,2,3,. . . ) of noninteracting complete periodic insta
tons ~corresponding to the addition of instanton-an
instanton pairs in the dilute gas approximation of the inst
ton procedure! so that in the path-integral representation
the amplitude all possible paths between2b and 1b are
taken into account. As is well known, this results effective
in an exponentiation of the first contribution~see, e.g., Ref.
11!. A calculation very similar to this can be found in Re
10 @cf. there Eqs.~4.19!, ~4.24!, ~4.25!#. We can therefore
simply transcribe the result into the present context. The t
amplitude corresponding to Eq.~12! is then

A5 (
m50

`

A~2m11!5e22Eclb sinhH 2bv

4K~k8!
e2WJ .

Comparison with Eq.~12! as noted earlier then yields th
compact formula8–10
f

n
—
-

-
f

al

DEcl5
v

4K~k8!
e2W, ~33!

k8 being the complementary modulus ofk, i.e.,k85A12k2.
We emphasize that the above formula Eq.~33! obtained with
the periodic instanton is valid for the entire region of ener
Ecl . The validity of the level splitting of excited states co
sidered previously in the literature28 was restricted to the
quasiuniaxial limit, 12l!1. Our approach, however, i
valid over the whole range ofl.

We now consider the low-energy limit whereEcl is much
less than the sphaleron energy@or barrier heightK2s(s11)
of the potential#, i.e., k→1, k8→0. ExpandingW as power
series ofk8 up to quadratic order as in Ref. 9 and making u
of the oscillator approximation of the periodic potenti
around one of the minima with the quantization replacem
Ecl→em5(m11/2)v0 ~as in Refs. 8, 10!, we then have

W5S s1
1

2D ln
11Al

12Al
1S m1

1

2D lnF 12l

8Als
S m1

1

2D G
2S m1

1

2D . ~34!

The level shift 2Dem is finally given with

Dem5
1

m!
23m12

l1/2~m11/2!sm13/2

~12l!m H K1K2

p~12l!J 1/2

3expF2S s1
1

2D ln
11Al

12Al
G , ~35!

which reduces to the ground-state expression Eq.~24! for
m50. Equation~35! provides the linkage from the splitting
of excited states~which up to now has been considered on
by a perturbative method26! to that of the ground state.

It has been pointed out that in the low-energy region
level shift 2Dem may be obtained by an alternative b
equally good approach called the LSZ method in which o
the vacuum instanton@Eq. ~14! for the problem at hand#
plays a role.12,13,15The comparison with the LSZ method
explained in the Appendix. The level shift formula Eq.~35!
is suitable for a quantitative evaluation of the tunneling a
plitude. We therefore borrow from Ref. 5 some data for
ferromagnetic particle in order to demonstrate the differe
in l with respect to the result of tunneling at the ground st
~but we by no means imply—for the reasons explained in
introduction—that the transition is a result of quantum tu
neling!.

The theoretical level shift calculated with the simp
model of the WKB exponential is negligibly small. If th
observed frequency reported in Ref. 5 were considered to
the result of tunneling from the ground state,l would be
1.0131025. The tunneling effect enhances significantly
excited states. Table I shows howl increases withm ~the
index of excited states! for tunneling frequencyvc5500 Hz
which is the level splitting 4Dem and s533103, 23103

and 103, respectively. Fors5103 to attain the frequency
vc5500 Hz the value ofl need only be 2.0331023, which
may be a physically acceptable quantity for a small fer
magnetic particle.
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V. CONCLUSION

We have shown that the periodic instanton method as w
as the LSZ method are useful for the calculation of tunnel
effects at excited states of a spin system at low tempera
the former being valid over the entire region of energy,
latter at low energies. The results are suitable for a quan
tive evaluation of the tunneling effect. With the simp
model of Eq.~1! for a ferromagnetic particle we conclud
that the tunneling effect at the level of excited states
creases.
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APPENDIX: COMPARISON WITH THE LSZ RESULT

From the viewpoint of the LSZ method the transition a
plitude betweenmth degenerate eigenstates in any tw
neighboring wells~say those forn50,1! is viewed as the
transition ofm bosons induced by the instanton of Eq.~14!
and is related with the level shift 2Dem by

Af ,i
m 5^m,F1ue22bĤum,F0&5e22bem sinh 2bDem .

~A1!

Following Ref. 13 the transition amplitude as well as theS
matrix can be related to the Green’s function through
procedure known as the LSZ reduction technique.14 To this
end we construct the interacting Euclidean fieldsf6 in the
classically forbidden region with the help of the instant
configuration of Eq.~14!. Thus we define

f1 :5p2fc , f2 :5fc ~A2!

such that the interaction fields vanish in their respect
asymptotic regions, i.e.,

lim
t→`

f150, lim
t→2`

f250. ~A3!

The subscripts ‘‘2’’ and ‘‘ 1’’ here denote the wells with
minima atF050 andF15p, respectively. The Euclidea
creation and annihilation operatorsâ6

† and â6 which create

TABLE I. Comparison ofl values computed for various excite
states.

m l for s533103 l for s523103 l for s5103

2 0.1735031024 0.3764131024 1.4122631024

4 0.2454331024 0.5345831024 2.0199031024

6 0.3206631024 0.7003131024 2.6586931024

8 0.3998531024 0.8750031024 3.3336131024

10 0.4831631024 1.0589931024 4.0458731024

12 0.5706431024 1.2523531024 4.7955531024

20 0.9815531024 3.1506231024 20.2911931024
ll
g
re,
e
a-

-

-
-

of
p-

-

e

e

and annihilate an effective boson in wells ‘‘1’’ and ‘‘ 2’’,
respectively, are related to the interaction field operatorsf̂6

by

â6
† 5A2m0

v0
e2v0t

]J

]t
f̂6~t!,

â652A2m0

v0
ev0t

]J

]t
f̂6~t!, ~A4!

wherem051/2K1 , and, e.g.,

â1
† ——→t→`

2A2m0v0~12l!21/2.

The transition amplitude of Eq.~A1! can now be written

Af ,i
m 5Sf ,i

m e22bmv0 ~A5!

with the S-matrix element

Sf ,i
m 5 lim

t i→2`
t f→`

1

m!
^0uâ1~tm

f !...â1~t1
f !â2

† ~t1
i !...â2

† ~tm
i !u0&.

~A6!

The S-matrix element can be evaluated in terms of t
Green’s functionG which arises in its evaluation. Thus

Sf ,i
m 5 lim

t i→2`
t f→`

1

m! )
l 51

m S 2A2m0

v0
ev0t l

f ]J

]t l
f D

3SA2m0

v0
e2v0t l

i ]J

]t l
i DG5

1

m! )
l 51

m S 22m0

v0
D

3ev0~t l
f
2t l

i
!F ]2G

]t l
f]t l

i 1v0S ]G

]t l
f 2

]G

]t l
i 2v0GD G ,

~A7!

where the 2m-point Green’s function is defined as usual, i.

G5^0uf̂1~tm
f !...f̂1~t1

f !f̂2~t1
i !...f̂2~tm

i !u0&. ~A8!

Following the procedure in Refs. 12, 13, 15 theS-matrix
element is thus

Sf ,i
m 5

1

m! )
l 51

m H S 2
2m0

v0
D Fdf1~t l

f !

dt l
f

df2~t l
i !

dt l
i G J Af ,i

0 ,

~A9!

where

Af ,i
0 52b22H K1K2

~12l!pJ 1/2

l1/4s3/2e2Sc ~A10!

is the amplitude for the transition between degenerate gro
states. Using the instanton solution of Eq.~14! and taking the
large time limitt l

i→2`, t l
f→` after performing the imagi-

nary time derivatives, we finally obtain the transition amp
tude by observing that each pair of vertices in Eq.~A9! con-
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tributes a factor24v0
2. Then

Af ,i
m 5

1

m! S 23m0v0

12l D m

e2v0m2bAf ,i
0 . ~A11!
A.

n—
of

o,

s

v.

a

Comparing Eq.~A11! with Eq. ~A1! we recover the level
shift 2Dem of Eq. ~35! for the low-lying levels. Following
Refs. 16, 17 we here takev052AK1K2s for reasons of con-
sistency.
,
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