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Kondo effect in Fermi systems with a gap: A renormalization-group study
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We present the results of a Wilson renormalization-group study of the single-impurity Kondo and Anderson
models in a system with a gap in the conduction-electron spectrum. The behavior of the impurity susceptibility
and the zero-frequency response functibg(,S, ; S,)) are discussed in the cases with and without particle-hole
symmetry. For the case of no particle-hole symmetry, we find a transition, as the bahdgaeases, from a
singlet ground statéwvhenA<Ty, whereTy is the Kondo temperatureéo a doublet ground stat@vhen A
>Ty). But there is no such transition for the case with particle-hole symmetry: the ground state is always a
doublet. In addition, for the asymmetric Anderson model the correlation functi@sr(0)), (ny), and
(ng(2—ny)) are computed.S0163-182698)05205-9

I. INTRODUCTION Hamiltonian description of our results.
We begin with a brief overview of previous work. The

The properties of a magnetic impurity in a semiconductorcalculations were done by Ogura and Sasband Takega-
or an insulator are of interest for a variety of reasons. In dharaet al****Ogura and Saso used a\léxpansion of the
normal Fermi system a sphimpurity yields logarithmic degenerate Anderson model and found a transition to leading
temperature dependences in the impurity susceptibility andrder in 1N: the ground state was a triplehagneti¢ when
the resistivity at high temperatures; at low temperatures théhe gapEy was greater than twice the Kondo temperaflige
magnetic moment is quench&d.The existence of a sharp and a nonmagnetic singlet for smaller gaps. In their quantum
Fermi surface and the concomitant occurrence (lofv- Monte Carlo(QMC) simulations they found indications of a
energy particle-hole pairs play an important role in under- similar transition even for the symmetric Anderson matlel;
standing the behavior of the model. Thus it is interestingfor the asymmetric model they obtained a transition between
from a theoretical point of view to understand whether thethe different ground states at approximaté&ly~3T, . We
Kondo effect persists and under what conditions quenchingote that their QMC computations were limited to tempera-
occurs in a system with a gap and determine the behavidures aboveT/10.
quantitatively. We also note that the Anderson impurity has Takegahara, Shimizu, and Sakdt used both quantum
been studied in the context of the logarithmic temperaturédMonte Carlo simulations and the numerical renormalization-
dependence of the conductivity of trans-polyacetyfétiee  group method of Wilson. They considered the symmetric
system was modeled by a continuum Hamiltonian proposeénderson model and found that at low temperatures the sus-
by Takayama, Lin-Liu, and Makithat exhibits a gap due to ceptibility follows a Curie law resulting from an unquenched
Peierls distortion. The impurity model was investigated usinagnetic moment. They observed the crucial difference be-
ing a Hartree-Fock closure of the equation of motion. Intween symmetric and asymmetric Anderson models cases;
addition, a variety of Kondo and valence fluctuating insula-when particle-hole symmetry is obeyed the moment remains
tors (modeled theoretically by a Kondo or Anderson lattice unquenched for all nonzero values of the gap, while there is
such as SmBand CgBi,Pt; among others provide another a transition in the asymmetric case. They also used the Wil-
motivation for studying the single-impurity problem in a sys- son numerical renormalization group to follow the spectrum
tem with a gap. of the low-energy states but not the susceptibility. It is diffi-

In this paper we present the results of our study of thecult to use their version of the numerical RG formulation to
Kondo and Anderson impurities in a system with a gap. Wecalculate low-temperaturémuch less than the band gap
apply Wilson’s (numerical renormalization-group(RG)  properties of the model.
technique using a variant of a numerical tridiagonalization The importance of the particle-hole symmetry breaking
method devised by us earlfeand provide results for both has been emphasized recettlin the context of the Kondo
the susceptibility and zero-frequency response functions. Wproblem with a pseudogdpln this work the impurity sus-
also discuss a simple effective Hamiltonian that allows us taeptibility for the case of a Kondo system with a gap was
understand the physics underlying our results. also calculated using the Wilson renormalization-group

We begin with a summary of previous work on the prob-method: in the particle-hole symmetric case the impurity re-
lem; in the next section we provide a brief sketch of thetains its moment in the ground state for &ilin the presence
technique that is described in detail in the literattiie;the  of potential scattering the moment is completely quenched
following section we describe the results of our numericalprovided thatA<Ty . These results are in agreement with
calculations, and in the final section we discuss the effectivéhose of Takegaharat al1***However, Yu and Guerretg
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who studied an Anderson impurity in a semiconducting hosnhth interval for positivee to lie betweenA "~ and A™".
using the density-matrix renormalization technique, found ndrhe band gagin units of the bandwidthis chosen to be
qualitative differencebetween the symmetric and asymmet-

ric cases. Their calculation which is restrictedTte-0 also A=A"Mo, 3
considered electron spin-impurity spin-correlation functions. i i
We will comment on this point later. Next we replace the continuous set of energy levels in the

We have made a comprehensive study of the Kondo anfth mtervaI[A‘l“‘l, A~"land[-A"", _A_n_ll] by single
Anderson models in gapped systems with and without€vels at &~ " *+A"")/2 and—(A""+A"""7)/2, respec-
particle-hole symmetry breaking using the numerical Rctively, and denote; the conductlon-ele_ctron creation o?erators
method. Our RG formulation is based on the numerical tridi-for the states with the corresponding energies (™" +
agonalization technique developed byPushich allows usto A ~")/2 and —(A™""*+A~")/2 by a;, andb,,, respec-
calculate various quantities in the entire temperature rangdively. After this discretization, the Anderson Hamiltonian
We report results for a zero-frequency response functiongan be rewritten in the following forit{a similar (RG) for-
correlation functions, and the susceptibility: we emphasizénulation can be written down for the Kondo Hamiltonjan
the differences in their behaviors in the various regimes and
clarify which of these are good probes of the nature of the 14+A Mo ?
low-temperature fixed-point behavior. AT 5 mE

2 A" (am,8mu— b, Omy.)

1/2

Il. WILSON’'S RG FORMULATION
(fgﬂcdﬂ+c§#foﬂ)

+

1 +
€qt EU CauCou ™| —
We consider the Kondo and Anderson models with a
conduction-electron Hamiltonian with the density of states N )
p(e€); as a function of the energy, p is a constant foD + f(cducdu_l) ' (4)
>|e|> A, where the band edges lie atD from the Fermi
level which is chosen to be in the middle of the gap. Thewhere
width of the gap is thus &,. The Hamiltonian for the spin
— 1 Kondo problem with the impurity spin denoted Byis f /1—A71M°21 A-™a b
given in standard notation by 0= V2(1-4a) & (my,+ Drmy,)

m=0

B Do N Do S Do is a normalized electron annihilation operator that corre-
HK—% _Dodfp(f)fce,ucs,u_‘]uzv _Dodf p(e) _p,  Sponds to the most localized state that can be formed with

the states which have been retained. The initial values of the
- 1. couplings, the level width of the impurity orbital due to the
Xde’ VP(E’)S'C:,ME‘TﬂvCe’,v mixing term denoted by’ =mp|V|?, €4, andU, are now in
units of D (taken to be one the gap in the density of states
Do ~—— (Do  —— is betweenA and —A.
+K§ f_DOde ple) j_DOde Ple)CeuCer s (D We next re-express the Hamiltonian in terms of the Wil-
son basis seff,,n=0,1,..} that consists of a hierarchy of
where theK term describes potentialspin-independent states from the most localized, high-energy state directly
scattering of the conduction electrons at the impurity site andoupled to the impurityf,, defined above to progressively
J is negative(antiferromagnetic coupling c: . refers toa  more spatially extended low-energy states that are orthogo-
conduction-electrors-wave state about the impurity of en- nal to each other and such that the free-electron part of the
ergy e. In this truncation of the original Hamiltonian the Hamiltonian has only nearest-neighbor coupling. We use the
low-energy states that determine the low-temperature pro;;{numerica] tridiagonalization scheme devised by us edlier
erties are well sampled. For the Anderson model we have to perform such a transformation of the Hamiltonian to the
following tridiagonalized form:

U
Ed+§

Do
+ + -
HA:% f 5 dep(e€)ec, ,C.,+ % Cd,Cap 14 A 1Nt
—Yo

Ha==——%— 2 [&(fn.fnesutHe))

U 2 Do —
+§ 2 CJ,LCdu_l +2 f de P(f)[VCz#Cdu 1 12
FVECs,col, @
+ 2
where cgﬂ creates an electron with spjm at the impurity + E(Cdﬂcd’“‘_l) ' ©

placed at the origin. The choi¢e=0 in the Kondo problem
and e4+U/2=0 in the Anderson model correspond to where Ng=2My—1. The coefficientf¢,} are determined
particle-hole symmetry. from the tridiagonalization procedure.

Following Wilson we perform éogarithmicdiscretization In order to carry out the RG calculation, we need to re-
of the energy variable; we rescale the energylhyso that scale the Hamiltonian at each iteration step. The rescaling is
ee[—1,1], introduce a scale factak(>1), and define the done by definingdy as follows:
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1 N-1 Ill. RESULTS
N
= +H.c. . :
Hy En-1 ngo [en(ToufnsrutH-C) We present the results obtained from our numerical cal-
culations for the two models.
1 - -
+ eq+U)cg Cq,+TYAE] Cq g f
§N_1[( 0t U)CaCap (TouCau+ CauTou) A. Kondo model
+G(CJMCd#—1)2], (6) Our calculations were performed using a scale factor of

A =2 and a band-gap enerdy=1.22< 10" * corresponding
~ . —~ P to My=13 [see Eq.(3)]. We denote the bare values of the
Whe[‘i 52:[2/(1+A )eq, U=U/(1+A"7), I'=[2/(1  Kondo coupling and the potential scattering in units of the
+A~7)]72l'm, and the rescaling factor isSy\=2/ pandwidthD, by J, andK,, respectively. The first and ob-

‘1 ‘ ! S0 ; : o

A+ A7) én-1- . o _ vious quantity to consider is the impurity susceptibiligy,
The recursion relation can be written in the following \yhich we emphasize is defined as the total susceptibility of

compact form: the system minus the susceptibility of the pure system. For

any finite (>0) band gap in the Kondo problem without
Eno1 N potential scatteringi y approaches the value 1/4 @s-0.
HN+1:§_NHN+(fNMfN+1M+ H.c.). The ground state is a magnetic doublet, its quantum numbers
are Qr=0,S;=1/2) whereQ is the total charge of the

This recursion relation enables one to set up an iterative disystem defined at thth iteration as
agonalization scheme to calculate the energy levelsl pf N

and thus to determine thermodynamic properties; the recur- Q.= 2 2 (FFf, —
sion is implemented numerically and is stoppedN\at N, & nutnp
corresponding to the edge of the gap below which there are = . . i 13
no conduction-electron states. Recall that as we incriigse 11iS iS in agreement with the results of Takegaheral.

the system effectively evolves from high temperatures to low/°r the symmetric Anderson model. The susceptibility curves
temperatures. At a giveN, the thermodynamic quantities @S @ function of temperature are displayed in Fig).INote

are calculated fo'rI'N=l/(/3_SN) for selected values qEBy that some data obtained at intermediate points have been

studving the evolution of the manv-bodv enerav level Struc_suppressed for clarity in this figure as well as in other figures
ying L many y energy le we are going to present in this paper. The calculation is done
tures we also obtain information near the fixed points of th

Hamiltonian. Sor initial values of the coupling, given by,=—-0.1,-0.2,

. - —0.3,-0.4,-1.0. Recall that for the Kondo impurity in a
For N<N,, the thermodynamic quantities are CaICUIatedfree-electron metalksT ximo (the “effective” moment of the

for Ty=1/(BSy) for a selected value of; the accuracy of  jmpurity) is a universal function of /Ty (for kgT<Dy) that
the numerical evaluations is enhanced by performing oes to zero a§— 0. Note that for large values 0|, kg Ty
sec_ond—order perturbation calculation by writing the Hamil-j, the gapped case follows this universal shape of the ordi-
tonian as nary Kondo problem at high temperatures as is evident in the
figure, but below temperatures of the order of the dap
Ha=(Hy+H,+Hg)/Sy, increases sharply reflecting the doublet ground state.
The effect of particle-hole symmetry breaking introduced
where by potential scattering is very important as has been noted
before!*12The results fofT y are displayed in Fig. (b). For
&, Ko=0.1andJo=—0.2 (Tx~7.4x 10 8<A), Ty again goes
Hi=z— . fnruTHC), to 1/4 asT goes to zero. For stronger Kondo couplirdy,
-1 =—0.4 (Tx=2.1X10 3> A), the impurity spin is quenched
andTy—0. There is a discontinuousfirst-order”) transi-
tion at A (which depends oy andKy) due to a crossing
of energy levels aa varies(or equivalently as\ . varies for
. fixed A). We will argue later using our effective Hamiltonian
Eno1 n:%ﬂ [én(frufarantHCp thatA is of the order oK Ty ; thus there is a transition for
any nonzero potential scattering.
We have also calculated the zero-frequengmpurity-
spin) response functiok(S,;S,)) defined by

1).
I

and

Nog—1

HB:

For N=N,, the thermodynamic quantities are calculated
for a sequence of temperaturgf;}. SinceHy is the full

Hamiltonian (hence, no second-order perturbation is B

neededl we can calculate the quantities at temperatures <<Szi3z>>=f0 (SA(7)S,(0))d, (7)
much lower than typical energy scaleNit= N, which is the

bandgapA. We chooseT,| to be a sequence of values from andS,(7) is the impurity-spin Heisenberg operator in imagi-
0.175 of the maximum energy kept in the many-body statesary time. Note that sinc&, does not commute with the
of Hyo to 0.000175 of the maximum energy. Thus the ther-Hamiltonian (only the z component of theotal spin doeg
modynamic quantities at low temperatures are calculatethis does not correspond to a simple correlation function.
with the “effective Hamiltonian”Hy . Recall that the susceptibility is given by
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FIG. 1. T ximp plotted as a function of for the Kondo problem.
The gap energy ia=1.22<10"4. (a) The potential scattering is
absent K=0.0). The values of the coupling used are—0.1,
—0.2,-0.3-0.4, and—1.0. Note that asT—0, Ty approaches
1/4. (b) Particle-hole symmetry breaking is preselt=0.1). Note
that for J=—0.4, Ty goes to zero, while fod=-0.2, it ap-

proaches 1/4.

T

Tx=((s8)),

100

TABLE I. The values ofT((S,;S,)) at zero temperature for a
range of values of the band gap. The numbers enclosed in the pa-
rentheses are the total charQg and spinS; of the ground state.

A Jo=—0.2, K=0.0
0.0398(0, 1/2

Jo=—0.2, K=0.1
0.0490(0, 1/2)

1.88x10°6

6.27x10°7 0.00797(0, 1/2 0.0110(0, 1/2
2.09x10°7 0.00101(0, 1/2 <1.2x10°° (-1, 0
6.96x10°°8 0.000115(0, 1/2 <4.0x10°%(-1,0

proaches a valu€, which depends on the band gap; this
persists also when the moment is not quenched in the pres-
ence of potential scattering. The results &y are listed in
Table I. ForK=0 our results are consistent with the value
C, being proportional ta\? for A<T, . We will derive this
result from our effective Hamiltonian description in the next
section. This result agrees with the claim made by Takega-
haraet al. for the susceptibility"> we note that they appear to
have identified (S, ;S,)) with the impurity susceptibility. In
the presence of potential scattering whns increased for
fixed T the ground state changes abruptly from a singlet
[(Qr=—15;=0)] to a doublet. The value of ¥ jumps
from 0 to 1/4 and correspondingly the value Gf also
jumps discontinuously.

B. Anderson model

The calculations for the Anderson model were performed
with the parameteA = 3. A range of values was used for the
band gapA = A ~Mo: the value ofM, was varied between 3
and 19.

For the symmetric Anderson model, with=0.1, e4=
—U/2=-0.05, andl'=0.006, Ty reaches the value of 1/4
as zero temperature is approached irrespective of the value of
the band gapA, signaling a doublet ground state and an
unquenched impurity moment. K<T~5.12x10 6, Ty
first decreases toward zero along the universal Kondo curve;
however, wherilf <A, it rises to 1/4 as T goes to zero.Af
is comparable or larger thamy, on the other handT x
gradually increases to 1/4. Our results foy are displayed
in Fig. 2(a).

The case of the the asymmetric Anderson model was
studied using the parameter valugs=0.1, e4=—0.0001,
andI'=0.00015, and the results are displayed in Fig).2
WhenA =0, recall that the system can go through different
regimes, the free-orbital regime, the mixed-valence regime,
the local-moment regime, and the frozen moment regjiase
a function of the temperature depending on the parameters:

whereS'is thez component of the total spin, the sum of the the free-orbital regime is characterized by the impurity de-
impurity, and the conduction-electron contributions. Thegree of freedom being effectively decoupled from the con-
techniques for calculating(S, ;S,)) have been explained in duction electrons; in the mixed-valence regime that occurs

an earlier paper for the ordinary Kondo problém/e used

when — e4<<U in the temperature randé>kgT> — ¢4, the

A=3.0 in the calculation of the response function. For thedoubly occupied state is thermally depopulated, while the
ordinary Kondo problem with a constant density of statesny=0 andny=1 states are effectively degenerate &ng)
{(S,;S,)) is essentially the same as the impurity susceptibilis fractional; the behavior as the temperature is lowered in

ity x for small values of the initial coupling,.” However,
for the density of states with a gaf§S,;S,)) and xy behave
quite differently at low temperaturgsvhen T<A). In the
absence of potential scattering, in contrasip which ap-
proaches a fixed value of 1/4 &—0, T((S,;S,)) ap-

this case depends on the values-of; andl'; if —e4>1 the
ny=0 state becomes depopulated thermally as the tempera-
ture drops below—e4 and the impurity develops a local
magnetic moment and this is referred to as the local-moment
regime; now the Kondo coupling that arises due to the virtual
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FIG. 2. Tximp plotted as a function of for the Anderson model.
(@ Symmetric Anderson model witkl=0.1,e4=—0.05, andI’
=0.006. Note that a§—0, Ty approaches 1/4b) Asymmetric
Anderson model witit=0.1, e;=—0.001, and”=0.00015. Note
that asT—0, Ty approaches 1/4 ih>Ty and 0 ifA<T,. The
values for the gap energy used in the calculations are shown in
the legends of the figures.

transitions from theny=1 subspace to they=0 subspace

0.30
0.25 |
0.20 |
A, 015 -
12X
wN
N
& 0.10
—e— A=0
0.05 - —— A=8.60x107"°
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T

FIG. 3. The zero-frequency response functioS,;S,)) plot-
ted as a function of for the asymmetric Anderson model with
=0.1,e4=—0.001, andl’=0.00015. Note the qualitative differ-
ences betweef((S,;S,)) and Ty at low temperatures.

the curve stops rising, turns over and tends to zerd-a9,
i.e., the moment is quenched. This behavior is clearly similar
to that of theK+# 0 case of the Kondo model.

In Fig. 3 we show the temperature dependences of the
zero-frequency response functidi(S,;S,)) for the asym-
metric case. There is no qualitative difference in the behavior
of the response functiofi((S,;S,)) between the Kondo and
Anderson models. In the symmetric case where the ground
state is characterized byQ¢=0,Sr=1/2), we again found
that the zero-temperature value is proportionakfovhenA
decreases. Also for the asymmetric c&&gjumps discon-
tinuously as the ground state changes from a singlet to a
doublet asA is increased.

In addition, we have also computed the following corre-
lation functions:(S- (0)), (ny), and(ny(2—ny)). Repre-
sentative figures are shown in Figgapand 4b). Here the
main point to be emphasized is that once there are no charge
fluctuations(for example, when the system approaches the
local-moment regime, or wheh<<A) the correlation func-
tions do not change and approach constant values. In particu-
lar, when the local-moment regime is reach@dig less than
the temperature for the local-moment formajiotie corre-
lation functions tend to the same constant3 as0 indepen-
dent of the band gap. While the mixed-valence regime is still
reflected in the temperature dependence of the correlation

leads eventually to the quenching of the magnetic momenfunctions, the Kondo effect does not show up in the correla-
by the Kondo effect below the Kondo temperature. The lastion functions. This point is not very well appreciated. One
regime is dubbed the frozen-impurity regime; note that thissimply cannotinvestigate the Kondo effect usirigcal cor-

regime also includes the case when the ground state has melation functions, such as the impurity-spin conduction-

moment because, is positive and no moment develops be-

cause theny=0 state is thermally favored. Whex+ 0, for
T>A, the Ty curve initially follows the curve foA=0 as
the temperature is lowered. Whén drops belowA, Ty
curves starts to rise. Fd>Ty, the curve continues to rise
to 1/4 asT goes to zero. On the other hand, wher Ty,

electron spin density at the origin, since they do not contain
information about the system on the energy scal&of the
main contributions to the local correlations come from the
high-energy degrees of freedom, and the contribution from
many-body effects at the low-energy scdlg to the corre-
lation functions is small as has been shown in our earlier
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1.05 Finally, we present our results for the mixed-valence re-
gime. We considered the asymmetric Anderson model, with
1.00 U=0.1, e4= —0.025, and"=0.01. WhenA =0, the system
goes from the free-orbital regime through the mixed-valence
0.95 - regime directly to the frozen moment regime, without going
through the local-moment regime. The results for the suscep-
0.90 - tibility, (ng), andT((S;,;S,)) are shown in Figs. ®-5(c).
Again, depending on the value of the band ghp,can go to
& 0.85 - zero or 1/4(there is a sharp transitipnFor the cases thaty
v goes to zeroT((S,;S,)) also goes to zero, and all correla-
0.80 - tion functions approach constants, which are independent of
—— A=0 the band gap. But for the cases tlig¢ goes to 1/4, both
0751 | T A=8.60x10:° T((S,;S,)) and the correlation functions approach values
' A AS7.74x10 which are band-gap dependent.
—v— A=5.64x10°
0.70 4 | —*— A=1.23x107
e A=0.037 IV. EFFECTIVE HAMILTONIAN DESCRIPTION
0.65 T T T T T T | T In this section we provide a simple interpretation of the
10° 10° 107 10°¢ 10° 10* 10° 102 10" 10° low-temperature behavior of the models in the various re-
(a) T gimes on the basis of a simple effective Hamiltonian. Let us
-0.18 consider first the Kondo model with the gap in the
—e— ASD conduction-electron density of states betweef to A. The
-0.20 .. . K X .
—=— A-8.60x1071° initial couplings arely andK in units of the bandwidtiD g,
022 4 | —a— A=774x107 which is taken to be unity. In our RG calculation, the band
—¥— A=5.64x10 gap is taken to bev=A"Mo, whereM, is an integer; this
0247 | e A-123x107 corresponds to the maximu being Ny=2M,— 1—there
026 o | T* 40037 are an even number of conduction-electron levels in the dis-
N cretized system.
S 02817 Imagine that we have successively integrated out the
% -0.30 | high-energy degrees of freedom and arrived at the effective
Hamiltonian at the energy scald=A"(MNo*1/2 a5 we
-0.32 7 pointed out earlier the iterative RG procedure cannot be car-
-0.34 4 ried beyond this energy scale corresponding to the maximum
iteration numbemN, since there are no conduction-electron
-0.36 states left. The low-temperature propertige, for T<A)
038 can be calculated with this effective Hamiltonian.
Let us first consider the case whar>Ty . Recall that in
-0.40 | . | | | | | | this case the nonperturbative, numerical RG calculations
10° 10 107 10° 10° 10¢ 10° 10% 10" 10° showed that the ground state was a doublet both in the pres-
(b) T ence and absence of potential scattering. The effective

Hamiltonian is close to that of thd=0 fixed point (the

FIG. 4. The local correlation functions@ (nq) and (b) . i th itude of th inal ed/A i
(§- &(O)), plotted as a function of for the asymmetric Anderson Increase in the mggn! uade ot the marginal vari IS
small as the scaling is performed only downAe-Ty) and

model withU=0.1,e4=—0.001, and”=0.00015. Note that when b it keebi he leadi d
A<Ty, the correlation functions approach constant values inge£an be wri ten, keeping the leading-order terms, as

pendent ofA asT—0. R
Hey=—JS o(0)+Kf  f,+A(a,a,—b)b,).

>

paper in Ref. 7. Our calculation of the correlation functionsyere 5(0):%f;gwfv and fﬂzll\/f(alu+ b,). In the

and the average electron number at the impurity oritg} ~ above effective Hamiltonian we have only kept the lowest
show general trends in agreement with Yu and Guerrerosingle electron/hole levels of the conduction-electron Hamil-
However, we find that the local spin-spin correlation func-tonian; these are represented by the creation operagbrs
tions and(ny) are not sensitive to the breaking of particle- andb* and we have neglected the irrelevant operators. Since
hole symmetry(for fixed T¢ and A) and behave similarly  f is proportional toA ~No#, we havé
even though the nature of the ground state is different.

We point out that there is a difference between our ground fou= aoA_NOM(a,ﬁ b+
state and the ground state obtained in Yu and Guerrero for
the symmetric case. We obtained a doublet, as did Ogura anihus the first two terms ofl ¢ are marginal, and andK
Saso and Takegahaea al., while Yu and Guerrero obtained must scale ad=JyA andK=KA. This can also be under-
a singlet. This may be due to differences in the Hamiltonianstood in the perturbative RG language as follows. The effec-
in particular, to the fact that the impurity does not correspondive HamiltonianH(D) at the energy scal®>Ty, with
to an additional degree of freedom in Yu and Guerféro.  renormalized couplingd andK, is obtained by integrating
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out the degrees of freedom between the initial band edge
Dy=1 and the cutofD. When the cutoff is rescaled back to
unity, the thermodynamics is determined’ HyD)/D, and to
the leading order the rescald@&ndK will be the same as the
original coupling constantébecause they are coupling con-
stants for the marginal termsThus we havel/D =J, and
K/D=Kj to the leading order. Now for the above effective
Hamiltonian at the energy scalk~A, we havel=JyA and
K=KpA. It is clear that whenJy|<1 and|K,|<1, the last
term of the Hamiltonian dominates, and the ground state is a
doublet. This agrees with the nonperturbative results.

Next we consider the cage< T . In this case, we clearly
move away from thel=0 fixed point and the situation is
more complicated. As we lower the energy scale\tothe

operatorf, or f is frozen out but f, is proportional to
A7N0/4:

flM:&OA7N0/4gM+ et

The operatorg represents the single electron level at zero
energy (the number of electron levels is odd, sintg is
frozen. Now the effective Hamiltoniarat the energy scale
A) can be written as

8

The operatord andg arise when we expresy andf; in
terms of the lowest single electron/hole levels of the
conduction-electron Hamiltonian. In the effective Hamil-
tonian given abovd andK are renormalized coupling con-
stants. According to the RG analysis of the Kondo problem,
the rescaled coupling constal(tD)/D will increase in mag-
nitude as the cutofd is reduced and will be of the order 1 at
the energy scal®~Ty ; on the other hand{(D)/D is es-
sentially unchanged up to the energy scalelpf Thus we
have, at the energy scale of the Kondo temperaiiye J
~Tyx andK~K Tk . Due to the fact that the operatbris
frozen at the energy scale ®f;, the values ofl andK are
not altered when the energy scale is further reduced figm
(the rescaled coupling constad®® andK/D are now cou-
pling constants for the relevant terms around the strong-
coupling fixed point, and they increase linearly wittD}/
The coupling constarw, on the other hand, will continue to
scale aswc A ~No* when N, increasegor asA decreases
we expectwor JA. Sincew should be of the order of
whenA =Ty, we can rewritev=a T JA/Tx). Note that in
writing down the above Hamiltonian we have neglected all
irrelevant terms, the inclusion of which will not change the
results qualitatively.

We want to investigate the nature of the ground states of
the above Hamiltoniarkl ., for the casel <T both when
K=0 andK=#0, by diagonalizingHq¢. This is mildly te-
dious but can be carried out in a straightforward fashion. The
main results are as follows: Fé#t#0 (and|K| larger than
A), the ground state is a singleivhen K>0, the ground
state is in the subspac€¢=—1,S;=0); for K<O0, itis in
the subspace (1,0)The first excited state is in the subspace
(0,1/2 and has a gap relative to the ground state proportional
to A. ForK=0, the ground state is in the subspace (0,1/2),
which is a doublet with the energy gap to the first excited
state proportional ta\2. For the case thaK is also very

Her= —JS 0(0)+Kf / f,+w(f"g+H.c).
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small (K| smaller thanA), the ground is also a doublet.

Thus forK#0, there is transition from singlet to doublet as T ZJ+K -w
A varies, but the transition is absent whi€r=0. These re- 1.0 :
sults are in agreement with our numerical RG computations. W 2K

For the benefit of the reader a derivation of these results ig;4te pDa (2,1/2):
presented below. ’
Hz12=2K.
A. Diagonalizing the effective Hamiltonian

Whether the ground state is a singlet or doublet depends
on the relative energies of the lowest energy levels in sub-
X - , ; _ spaces {1,0), (1,0), and (0,1/2). If the lowest energy level
the f states gives rise to four eigenstates gl;/en below: in the subspaces<(1,0) and (1,0) is lower than the lowest

State A_(_ 1,1/2):E=0, State B (0'0)_E: 2J+K, State  gnergy level in the subspace (0,1/2), then we have a singlet
C(0,1):E=—3J+K, State D (1,1/2)E=2K, Ty will approach zeryy otherwise, we have a doublet and

Here the numbers in the parentheses denote the char approaches 1/4
and spin of the energy states. '

N dd th The Hamiltoni b ) Let us first consider the casé+0 and the magnitude of
_ Now we add they states. The Hamiltonian can be written 1y ,cp greater thark. Since the off-diagonal matrix
in the basis consisting of A, B, C, D, arg states using a

procedure similar to what was employed in the iteratione'ements are small compared to the diagonal ofie& s
scheme of Wilson's RG iteratiofsee, for example, EqB2) of order yA/Ty) one can use perturbation theory to deter-

in Appendix B of the paper by Krishnamurtret al?). Let mine the ground state. We perform a second-order perturba-

A1, A2, A3, A4 denote the basis states obtained by combinyon calculation of the energy of the eigenstate with the ei-

. . " genvalue neagJ+K:
ing A V\_/lth zero, one, and_twg states, etc. The Hgmlltonlan For the subspace-(1,0), we have
matrix in each charge-spin subspace can be written down as

We diagonalizeH .« in Eq. (8) in two steps. Diagonalizing
the first two terms of the Hamiltonidd . in the subspace of

State Al (2,1/2)H,,,=0, State A3-B1 (—1,0): 3 W2
EOZ_\] + K + y
0 W 4 3
7IHK
H*l,OZ W 3 y
27K For the subspace (1,0), we have
State A2+C1 (—1,1): 3 w2
EOZ_\] + K + y
4 3
0 w =-J—K
4
H—l,l: 1 y
W= Z‘H K For the subspace (0,1/2), we have
State A4+B2+C3+D1 (0,1/2): £ _3J K 1 w? 1 w?
. 0= " +53J+K 23
W e g
0 - _ \ﬁw 0 4 4
J2 2
It is clear that the ground state is always a singlet: when
w §J+K 0 w K>0, the ground state is in the subspaeel(0), whereas
J2 4 N7 for K<O0, the ground state is in the subspace (1,0). The
Ho 2= 3 1 3 | energy level of the first excited stafm subspace (0,1/3)
_ \/;w 0 ~ZJ+K -— \[EW relative to the ground state {gssuming,>0)
W 3 . 1w 1 w? 9
0 5 —\[EW 2K SEERIE ©
4 4
State €2 (0,3/2) which is proportional taA. The energy level of the second
1 excited stat€in subspac¢ Q;=1,5;=0]) is E,=2E; (this
Hoz2=— ZJ+ K, result was also found in our numerical results for the energy
levels.
State B4+D3 (1,0): How aboutK=07? The issue cannot be resolved at the
level of second-order perturbation theory. A fourth-order
§J+K —w perturbation calculation for the lowest energy in the sub-
4 space (0,1/2) yields

H1,o: )

State C4-D2 (1,1):
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For the subspaces—1,0) and (1,0), the lowest energy is C. Anderson model
given by We now discuss the Anderson model briefly since the
results are similar to those of the Kondo problem discussed
E —33 / 3J 2 - 3J 4 w? 13 w)* above. We consider the limit that is very large and” is
0T g 4 Twos 4 + 373 2°\3/)- very small. The effective Hamiltonian is of the form

It is clear that the ground state is in the subspace (0,1/2), y_.—"¢.d*d, +V(d f,,+H.c)+A(a‘a,~b’b,).
which is a doublet. This agrees with our numerical results. woK woo wok g
The energy gap of the first excited state is proportiona¥to  Here'e is the effective impurity level at the energy scale

or A% ) and V is the effective coupling to the conduction-electron
~ Now for the case thdK| is of the order ofA or smaller,  states. As pointed out by Halddfievithin perturbative scal-
itis a b|t d|ﬁ|CU|t to analyze. HOWeVer, itis easy to see that|ng the |mpur|ty |eve| energy iS renorma"zed When the h|gh_
the crossover of the energy levellef states (0,1/2) and energy degrees of freedom are integrated out:

(+1,0)] should occur wherw?|K|/J? is of the order of

w*/J3, or whenA is of the orderK|~(K,Tk). Thus for a

finite K, there is transition from a singlet state to a doublet - I' (Dyg
state whenA increases and cross; which is of the order €4~ €qt ;'“ Al
KoTk -

Since we have assumed tHdtis large the impurity level
cannot be doubly occupiedy<1. The behavior depends on
] . ] the magnitude ofey. For the case that e4>A, then the
Let us consider the calculation of((S,;S,)) in the  |ocal moment regime will be reached as the temperature is
ground state wheA <Ty . By definition lowered, and the effective Hamiltonian can be converted to
the Kondo Hamiltonian; this has been considered above.

Here we focus on the case tHaty| <A, so that the effective

((S;:8))= fﬁ<3z(7)3z>d7. impurity level lies in the gap.
0

Consider the case whanhis very small; to leading order,

the ground state depends on the signegf If ‘€,>0, then
the ground state corresponds to two electrons occupying the
conduction-electron level at A, and thus it is &inglet This
situation arises, for example, when the initig) is greater

B than zero; this has been checked by the nonperturbative RG
[{G|S1)[“[1—exp(— B(E,—Eg))]

(s, ;Sz>>:; calculation. On the other hand, wheg<0, then the ground
) Ei—Eg state corresponds to two electrons occupying the conduction-
electron level at-A and one electron occupying the impu-

where|l) represents many-body states of the system|&nd rity level. So_the ground state |sdscub_let .
denotes the ground state. For temperatures much smaller We now discuss the different phys,'fs underlying the dou-
than the energy gap between the first excited state and tHdet ground state that occurs whé — 4> A and the local
ground state, we hav@eparating out the contribution of the moment regime is reached as the temperature decreases with
ground state from the summation kgTk>A and(b) — e4<A when the mixed-valence regime
is reached. In the first case, the system develops a local mo-
ment and as the temperature is further lowered, the moment
(G|S|1)|? begins to be quenched by the Kondo effect due to large ef-
((S;;5))=BI(G|S,|G)|*+ —_. fective |J|. The existence of the gap is not yet apparent and
#le) Ei—Eg the s : :
ystem appears to be driven toward a singlet ground
8tate. However, as the temperature drops belgwhe finite
gap energy causes the doublet to be lower in energy than the
singlet with a small splitting given by E@9). In case(b), on
the other hand, the local moment is not formed at the energy
scaleA. However, as the temperature is lowered to the en-
ergy scale of—'e4, charge fluctuations are suppressed and
they eventually cease to occur, and the system becomes a
doublet without any intervening Kondo-like effects.

B. Response function

Close to zero temperature, we can write

Since the second term in the above expression is finite, wi

obtain in the limit asT—0, T((S,;S,))=|(G|S,|G)|2. For

the caseK,#0 andA<A., the ground state is at the sub-

space (-1,0) and it is easy to verify tha((S,;S,)) is zero.
For the case tha{;=0, we find that

2

4w
(GISIG)==—.
3J V. CONCLUSIONS

We have performed a Wilson renormalization-group cal-
ThusT{(S,;S,)) in this case is proportional ta* or A% in  culation of the Kondo and Anderson models with a gap in
agreement with the numerical results. the conduction-electron density of states. The impurity sus-
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ceptibility, correlation functions, and a zero-frequency re-low temperatures can be understood in terms of simple low-
sponse function have been calculated as functions of tentemperature effective Hamiltonians.

peratures in various regimes. Our calculations confirm earlier
results on the qualitative differences in the low-temperature
behaviors between the cases with and without particle-hole
symmetry when the gap is much smaller than the Kondo C.J. would like to thank the Ohio Supercomputer Center
temperature. We have shown that the numerical results dbr granting computer time on the Cray.
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