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Kondo effect in Fermi systems with a gap: A renormalization-group study

Kan Chen
Department of Computational Science, National University of Singapore, Singapore 119260

C. Jayaprakash
Department of Physics, The Ohio State University, Columbus, Ohio 43210

~Received 26 June 1997!

We present the results of a Wilson renormalization-group study of the single-impurity Kondo and Anderson
models in a system with a gap in the conduction-electron spectrum. The behavior of the impurity susceptibility
and the zero-frequency response function,T^^Sz ;Sz&& are discussed in the cases with and without particle-hole
symmetry. For the case of no particle-hole symmetry, we find a transition, as the bandgapD increases, from a
singlet ground state~whenD!TK , whereTK is the Kondo temperature! to a doublet ground state~whenD
@TK). But there is no such transition for the case with particle-hole symmetry: the ground state is always a

doublet. In addition, for the asymmetric Anderson model the correlation functions,^SW •sW (0)&, ^nd&, and
^nd(22nd)& are computed.@S0163-1829~98!05205-9#
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I. INTRODUCTION

The properties of a magnetic impurity in a semiconduc
or an insulator are of interest for a variety of reasons. I
normal Fermi system a spin-1

2 impurity yields logarithmic
temperature dependences in the impurity susceptibility
the resistivity at high temperatures; at low temperatures
magnetic moment is quenched.1,2 The existence of a shar
Fermi surface and the concomitant occurrence of~low-
energy! particle-hole pairs play an important role in unde
standing the behavior of the model. Thus it is interest
from a theoretical point of view to understand whether
Kondo effect persists and under what conditions quench
occurs in a system with a gap and determine the beha
quantitatively. We also note that the Anderson impurity h
been studied in the context of the logarithmic temperat
dependence of the conductivity of trans-polyacetylene;4 the
system was modeled by a continuum Hamiltonian propo
by Takayama, Lin-Liu, and Maki5 that exhibits a gap due to
Peierls distortion. The impurity model was investigated
ing a Hartree-Fock closure of the equation of motion.
addition, a variety of Kondo and valence fluctuating insu
tors ~modeled theoretically by a Kondo or Anderson lattic!
such as SmB6 and Ce3Bi4Pt3 among others provide anothe
motivation for studying the single-impurity problem in a sy
tem with a gap.

In this paper we present the results of our study of
Kondo and Anderson impurities in a system with a gap. W
apply Wilson’s ~numerical! renormalization-group~RG!
technique using a variant of a numerical tridiagonalizat
method devised by us earlier6 and provide results for both
the susceptibility and zero-frequency response functions.
also discuss a simple effective Hamiltonian that allows us
understand the physics underlying our results.

We begin with a summary of previous work on the pro
lem; in the next section we provide a brief sketch of t
technique that is described in detail in the literature;3 in the
following section we describe the results of our numeri
calculations, and in the final section we discuss the effec
570163-1829/98/57~9!/5225~10!/$15.00
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Hamiltonian description of our results.
We begin with a brief overview of previous work. Th

calculations were done by Ogura and Saso9–11 and Takega-
haraet al.12,13 Ogura and Saso used a 1/N expansion of the
degenerate Anderson model and found a transition to lea
order in 1/N: the ground state was a triplet~magnetic! when
the gapEg was greater than twice the Kondo temperatureTK
and a nonmagnetic singlet for smaller gaps. In their quan
Monte Carlo~QMC! simulations they found indications of
similar transition even for the symmetric Anderson mode9

for the asymmetric model they obtained a transition betw
the different ground states at approximatelyEg'3TK . We
note that their QMC computations were limited to tempe
tures aboveTK/10.

Takegahara, Shimizu, and Sakai12,13 used both quantum
Monte Carlo simulations and the numerical renormalizatio
group method of Wilson. They considered the symme
Anderson model and found that at low temperatures the
ceptibility follows a Curie law resulting from an unquenche
magnetic moment. They observed the crucial difference
tween symmetric and asymmetric Anderson models ca
when particle-hole symmetry is obeyed the moment rema
unquenched for all nonzero values of the gap, while ther
a transition in the asymmetric case. They also used the W
son numerical renormalization group to follow the spectru
of the low-energy states but not the susceptibility. It is dif
cult to use their version of the numerical RG formulation
calculate low-temperature~much less than the band gap!
properties of the model.

The importance of the particle-hole symmetry breaki
has been emphasized recently14 in the context of the Kondo
problem with a pseudogap.8 In this work the impurity sus-
ceptibility for the case of a Kondo system with a gap w
also calculated using the Wilson renormalization-gro
method: in the particle-hole symmetric case the impurity
tains its moment in the ground state for allJ; in the presence
of potential scattering the moment is completely quench
provided thatD!TK . These results are in agreement wi
those of Takegaharaet al.12,13 However, Yu and Guerrero15,
5225 © 1998 The American Physical Society
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5226 57KAN CHEN AND C. JAYAPRAKASH
who studied an Anderson impurity in a semiconducting h
using the density-matrix renormalization technique, found
qualitative differencebetween the symmetric and asymme
ric cases. Their calculation which is restricted toT50 also
considered electron spin-impurity spin-correlation functio
We will comment on this point later.

We have made a comprehensive study of the Kondo
Anderson models in gapped systems with and with
particle-hole symmetry breaking using the numerical R
method. Our RG formulation is based on the numerical tr
agonalization technique developed by us,6 which allows us to
calculate various quantities in the entire temperature ran
We report results for a zero-frequency response funct
correlation functions, and the susceptibility: we emphas
the differences in their behaviors in the various regimes
clarify which of these are good probes of the nature of
low-temperature fixed-point behavior.

II. WILSON’S RG FORMULATION

We consider the Kondo and Anderson models with
conduction-electron Hamiltonian with the density of sta
r(e); as a function of the energye, r is a constant forD0
.ueu.D0, where the band edges lie at6D0 from the Fermi
level which is chosen to be in the middle of the gap. T
width of the gap is thus 2D0. The Hamiltonian for the spin
2 1

2 Kondo problem with the impurity spin denoted bySW is
given in standard notation by

HK5(
m

E
2D0

D0
der~e!ece,m

1 ce,m2J(
m,n

E
2D0

D0
deAr~e!E

2D0

D0

3de8Ar~e8!SW •ce,m
1

1

2
sW mnce8,n

1K(
m

E
2D0

D0
deAr~e!E

2D0

D0
de8Ar~e8!ce,m

1 ce8,m , ~1!

where the K term describes potential~spin-independent!
scattering of the conduction electrons at the impurity site
J is negative~antiferromagnetic coupling!. ce,m

1 refers to a
conduction-electrons-wave state about the impurity of en
ergy e. In this truncation of the original Hamiltonian th
low-energy states that determine the low-temperature p
erties are well sampled. For the Anderson model we hav

HA5(
m

E
2D0

D0
der~e!ece,m

1 ce,m1S ed1
U

2 D(
m

cdm
1 cdm

1
U

2 S (
m

cdm
1 cdm21D 2

1(
m

E
2D0

D0
deAr~e!@Vce,m

1 cdm

1V* cdm
1 ce,m#, ~2!

wherecdm
1 creates an electron with spinm at the impurity

placed at the origin. The choiceK50 in the Kondo problem
and ed1U/250 in the Anderson model correspond
particle-hole symmetry.

Following Wilson we perform alogarithmicdiscretization
of the energy variable; we rescale the energy byD0 so that
eP@21,1#, introduce a scale factorL(.1), and define the
t
o

.

d
t

i-

e.
n,
e
d
e

a
s

e

d

p-

nth interval for positivee to lie betweenL2n21 and L2n.
The band gap~in units of the bandwidth! is chosen to be

D5L2M0. ~3!

Next we replace the continuous set of energy levels in
nth interval@L2n21, L2n# and@2L2n, 2L2n21# by single
levels at (L2n211L2n)/2 and2(L2n1L2n21)/2, respec-
tively, and denote the conduction-electron creation opera
for the states with the corresponding energies (L2n211
L2n)/2 and 2(L2n211L2n)/2 by anm

1 and bnm
1 , respec-

tively. After this discretization, the Anderson Hamiltonia
can be rewritten in the following form3 @a similar ~RG! for-
mulation can be written down for the Kondo Hamiltonian#

HA5
11L21

2 (
m50

M021

L2m~amm
1 amm2bmm

1 bmm!

1S ed1
1

2
U D cdm

1 cdm1F2G

p G1/2

~ f 0m
1 cdm1cdm

1 f 0m!

1
U

2
~cdm

1 cdm21!2, ~4!

where

f 0m5A12L21

2~12D! (
m50

M021

L2m/2~amm1bmm!

is a normalized electron annihilation operator that cor
sponds to the most localized state that can be formed w
the states which have been retained. The initial values of
couplings, the level width of the impurity orbital due to th
mixing term denoted byG[pruVu2, ed , andU, are now in
units ofD0 ~taken to be one!; the gap in the density of state
is betweenD and2D.

We next re-express the Hamiltonian in terms of the W
son basis set$ f n ,n50,1, . . .% that consists of a hierarchy o
states from the most localized, high-energy state dire
coupled to the impurity,f 0, defined above to progressivel
more spatially extended low-energy states that are ortho
nal to each other and such that the free-electron part of
Hamiltonian has only nearest-neighbor coupling. We use
~numerical! tridiagonalization scheme devised by us earlie6

to perform such a transformation of the Hamiltonian to t
following tridiagonalized form:

HA5
11L21

2 (
n50

N021

@jn~ f nm
1 f n11m1H.c.!#

1S ed1
1

2
U D cdm

1 cdm1F2G

p G1/2

~ f 0m
1 cdm1cdm

1 f 0m!

1
U

2
~cdm

1 cdm21!2, ~5!

where N052M021. The coefficients$jn% are determined
from the tridiagonalization procedure.

In order to carry out the RG calculation, we need to
scale the Hamiltonian at each iteration step. The rescalin
done by definingHN as follows:
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HN5
1

jN21
F (

n50

N21

@jn~ f nm
1 f n11m1H.c.!#G

1
1

jN21
@~ ẽ d1Ũ !cdm

1 cdm1G̃1/2~ f 0m
1 cdm1cdm

1 f 0m!

1Ũ~cdm
1 cdm21!2#, ~6!

where ẽ 5@2/(11L21)#ed , Ũ5U/(11L21), G̃5@2/(1
1L21)#22G/p, and the rescaling factor isSN52/
(11L21)jN21.

The recursion relation can be written in the followin
compact form:

HN115
jN21

jN
HN1~ f Nm

1 f N11m1H.c.!.

This recursion relation enables one to set up an iterative
agonalization scheme to calculate the energy levels ofHN
and thus to determine thermodynamic properties; the re
sion is implemented numerically and is stopped atN5N0
corresponding to the edge of the gap below which there
no conduction-electron states. Recall that as we increasN,
the system effectively evolves from high temperatures to
temperatures. At a givenN, the thermodynamic quantitie
are calculated forTN51/(b̄SN) for selected values ofb̄ . By
studying the evolution of the many-body energy level str
tures we also obtain information near the fixed points of
Hamiltonian.

For N,N0, the thermodynamic quantities are calculat
for TN51/(b̄SN) for a selected value ofb̄ ; the accuracy of
the numerical evaluations is enhanced by performing
second-order perturbation calculation by writing the Ham
tonian as

HA5~HN1HI1HB!/SN ,

where

HI5
jN

jN21
~ f Nm

1 f N11m1H.c.!,

and

HB5
1

jN21
H (

n5N11

N021

@jn~ f nm
1 f n11m1H.c.!#J .

For N5N0, the thermodynamic quantities are calculat
for a sequence of temperatures$Tl%. SinceHN0

is the full
Hamiltonian ~hence, no second-order perturbation
needed!, we can calculate the quantities at temperatu
much lower than typical energy scale atN5N0, which is the
bandgapD. We chooseTl to be a sequence of values fro
0.175 of the maximum energy kept in the many-body sta
of HN0 to 0.000175 of the maximum energy. Thus the th
modynamic quantities at low temperatures are calcula
with the ‘‘effective Hamiltonian’’HN0

.
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III. RESULTS

We present the results obtained from our numerical c
culations for the two models.

A. Kondo model

Our calculations were performed using a scale factor
L52 and a band-gap energyD51.2231024 corresponding
to M0513 @see Eq.~3!#. We denote the bare values of th
Kondo coupling and the potential scattering in units of t
bandwidthD0 by J0 andK0, respectively. The first and ob
vious quantity to consider is the impurity susceptibility,x,
which we emphasize is defined as the total susceptibility
the system minus the susceptibility of the pure system.
any finite (.0) band gap in the Kondo problem withou
potential scatteringTx approaches the value 1/4 asT→0.
The ground state is a magnetic doublet, its quantum num
are (QT50,ST51/2) whereQT is the total charge of the
system defined at theNth iteration as

QT5 (
n50

N

(
m

~ f nm
1 f nm21!.

This is in agreement with the results of Takegaharaet al.13

for the symmetric Anderson model. The susceptibility curv
as a function of temperature are displayed in Fig. 1~a!. Note
that some data obtained at intermediate points have b
suppressed for clarity in this figure as well as in other figu
we are going to present in this paper. The calculation is d
for initial values of the coupling, given byJ0520.1,20.2,
20.3,20.4,21.0. Recall that for the Kondo impurity in a
free-electron metalkBTx imp ~the ‘‘effective’’ moment of the
impurity! is a universal function ofT/TK ~for kBT!D0) that
goes to zero asT→0. Note that for large values ofuJu, kBTx
in the gapped case follows this universal shape of the o
nary Kondo problem at high temperatures as is evident in
figure, but below temperatures of the order of the gapTx
increases sharply reflecting the doublet ground state.

The effect of particle-hole symmetry breaking introduc
by potential scattering is very important as has been no
before.14,12The results forTx are displayed in Fig. 1~b!. For
K050.1 andJ0520.2 (TK'7.431026!D), Tx again goes
to 1/4 asT goes to zero. For stronger Kondo coupling,J0
520.4 (TK'2.131023@D), the impurity spin is quenched
andTx→0. There is a discontinuous~‘‘first-order’’ ! transi-
tion at Dc ~which depends onTK andK0) due to a crossing
of energy levels asD varies~or equivalently asDc varies for
fixedD). We will argue later using our effective Hamiltonia
thatDc is of the order ofK0TK ; thus there is a transition fo
any nonzero potential scattering.

We have also calculated the zero-frequency,~impurity-
spin! response function̂^Sz ;Sz&& defined by

^^Sz ;Sz&&5E
0

b

^Sz~t!Sz~0!&dt, ~7!

andSz(t) is the impurity-spin Heisenberg operator in imag
nary time. Note that sinceSz does not commute with the
Hamiltonian ~only the z component of thetotal spin does!
this does not correspond to a simple correlation functi
Recall that the susceptibility is given by
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5228 57KAN CHEN AND C. JAYAPRAKASH
Tx5^^Sz
tot ;Sz

tot&&,

whereSz
tot is thez component of the total spin, the sum of th

impurity, and the conduction-electron contributions. T
techniques for calculatinĝ̂ Sz ;Sz&& have been explained in
an earlier paper for the ordinary Kondo problem.7 We used
L53.0 in the calculation of the response function. For
ordinary Kondo problem with a constant density of sta
^^Sz ;Sz&& is essentially the same as the impurity suscepti
ity x for small values of the initial couplingJ0.7 However,
for the density of states with a gap,^^Sz ;Sz&& andx behave
quite differently at low temperatures~when T,D). In the
absence of potential scattering, in contrast toTx which ap-
proaches a fixed value of 1/4 asT→0, T^^Sz ;Sz&& ap-

FIG. 1. Tx imp plotted as a function ofT for the Kondo problem.
The gap energy isD51.2231024. ~a! The potential scattering is
absent (K50.0). The values of the couplingJ used are20.1,
20.2,20.3,20.4, and21.0. Note that asT→0, Tx approaches
1/4. ~b! Particle-hole symmetry breaking is present (K50.1). Note
that for J520.4, Tx goes to zero, while forJ520.2, it ap-
proaches 1/4.
e
s
l-

proaches a valueC0 which depends on the band gap; th
persists also when the moment is not quenched in the p
ence of potential scattering. The results forC0 are listed in
Table I. ForK50 our results are consistent with the valu
C0 being proportional toD2 for D!TK . We will derive this
result from our effective Hamiltonian description in the ne
section. This result agrees with the claim made by Take
haraet al. for the susceptibility;12 we note that they appear t
have identified̂ ^Sz ;Sz&& with the impurity susceptibility. In
the presence of potential scattering whenD is increased for
fixed TK the ground state changes abruptly from a sing
@(QT521,ST50)# to a doublet. The value ofTx jumps
from 0 to 1/4 and correspondingly the value ofC0 also
jumps discontinuously.

B. Anderson model

The calculations for the Anderson model were perform
with the parameterL53. A range of values was used for th
band gapD5L2M0: the value ofM0 was varied between 3
and 19.

For the symmetric Anderson model, withU50.1, ed5
2U/2520.05, andG50.006,Tx reaches the value of 1/4
as zero temperature is approached irrespective of the valu
the band gapD, signaling a doublet ground state and
unquenched impurity moment. IfD!TK'5.1231026, Tx
first decreases toward zero along the universal Kondo cu
however, whenT,D, it rises to 1/4 as T goes to zero. IfD
is comparable or larger thanTK , on the other hand,Tx
gradually increases to 1/4. Our results forTx are displayed
in Fig. 2~a!.

The case of the the asymmetric Anderson model w
studied using the parameter valuesU50.1, ed520.0001,
and G50.00015, and the results are displayed in Fig. 2~b!.
WhenD50, recall that the system can go through differe
regimes, the free-orbital regime, the mixed-valence regim
the local-moment regime, and the frozen moment regime3 as
a function of the temperature depending on the parame
the free-orbital regime is characterized by the impurity d
gree of freedom being effectively decoupled from the co
duction electrons; in the mixed-valence regime that occ
when2ed!U in the temperature rangeU@kBT@2ed , the
doubly occupied state is thermally depopulated, while
nd50 andnd51 states are effectively degenerate and^nd&
is fractional; the behavior as the temperature is lowered
this case depends on the values of2ed andG; if 2ed@G the
nd50 state becomes depopulated thermally as the temp
ture drops below2ed and the impurity develops a loca
magnetic moment and this is referred to as the local-mom
regime; now the Kondo coupling that arises due to the virt

TABLE I. The values ofT^^Sz ;Sz&& at zero temperature for a
range of values of the band gap. The numbers enclosed in the
rentheses are the total chargeQT and spinST of the ground state.

D J0520.2, K50.0 J0520.2, K50.1

1.8831026 0.0398~0, 1/2! 0.0490~0, 1/2!
6.2731027 0.00797~0, 1/2! 0.0110~0, 1/2!
2.0931027 0.00101~0, 1/2! ,1.231025 (21, 0!
6.9631028 0.000115~0, 1/2! ,4.031026 (21, 0!
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57 5229KONDO EFFECT IN FERMI SYSTEMS WITH A GAP: . . .
transitions from thend51 subspace to thend50 subspace
leads eventually to the quenching of the magnetic mom
by the Kondo effect below the Kondo temperature. The l
regime is dubbed the frozen-impurity regime; note that t
regime also includes the case when the ground state ha
moment becauseed is positive and no moment develops b
cause thend50 state is thermally favored. WhenDÞ0, for
T.D, the Tx curve initially follows the curve forD50 as
the temperature is lowered. WhenT drops belowD, Tx
curves starts to rise. ForD@TK , the curve continues to ris
to 1/4 asT goes to zero. On the other hand, whenD!TK ,

FIG. 2. Tx imp plotted as a function ofT for the Anderson model.
~a! Symmetric Anderson model withU50.1,ed520.05, andG
50.006. Note that asT→0, Tx approaches 1/4.~b! Asymmetric
Anderson model withU50.1, ed520.001, andG50.00015. Note
that asT→0, Tx approaches 1/4 ifD@TK and 0 if D!TK . The
values for the gap energyD used in the calculations are shown
the legends of the figures.
nt
t

s
no

the curve stops rising, turns over and tends to zero asT→0,
i.e., the moment is quenched. This behavior is clearly sim
to that of theKÞ0 case of the Kondo model.

In Fig. 3 we show the temperature dependences of
zero-frequency response functionT^^Sz ;Sz&& for the asym-
metric case. There is no qualitative difference in the behav
of the response functionT^^Sz ;Sz&& between the Kondo and
Anderson models. In the symmetric case where the gro
state is characterized by (QT50,ST51/2), we again found
that the zero-temperature value is proportional toD2 whenD
decreases. Also for the asymmetric caseC0 jumps discon-
tinuously as the ground state changes from a singlet t
doublet asD is increased.

In addition, we have also computed the following corr
lation functions:^SW •sW (0)&, ^nd&, and ^nd(22nd)&. Repre-
sentative figures are shown in Figs. 4~a! and 4~b!. Here the
main point to be emphasized is that once there are no ch
fluctuations~for example, when the system approaches
local-moment regime, or whenT,D) the correlation func-
tions do not change and approach constant values. In par
lar, when the local-moment regime is reached (D is less than
the temperature for the local-moment formation!, the corre-
lation functions tend to the same constants asT→0 indepen-
dent of the band gap. While the mixed-valence regime is s
reflected in the temperature dependence of the correla
functions, the Kondo effect does not show up in the corre
tion functions. This point is not very well appreciated. O
simply cannot investigate the Kondo effect usinglocal cor-
relation functions, such as the impurity-spin conductio
electron spin density at the origin, since they do not cont
information about the system on the energy scale ofTK : the
main contributions to the local correlations come from t
high-energy degrees of freedom, and the contribution fr
many-body effects at the low-energy scaleTK to the corre-
lation functions is small as has been shown in our ear

FIG. 3. The zero-frequency response functionT^^Sz ;Sz&& plot-
ted as a function ofT for the asymmetric Anderson model withU
50.1,ed520.001, andG50.00015. Note the qualitative differ
ences betweenT^^Sz ;Sz&& andTx at low temperatures.
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5230 57KAN CHEN AND C. JAYAPRAKASH
paper in Ref. 7. Our calculation of the correlation functio
and the average electron number at the impurity orbital^nd&
show general trends in agreement with Yu and Guerre
However, we find that the local spin-spin correlation fun
tions and^nd& are not sensitive to the breaking of particl
hole symmetry~for fixed TK and D) and behave similarly
even though the nature of the ground state is different.

We point out that there is a difference between our grou
state and the ground state obtained in Yu and Guerrero
the symmetric case. We obtained a doublet, as did Ogura
Saso and Takegaharaet al., while Yu and Guerrero obtaine
a singlet. This may be due to differences in the Hamiltoni
in particular, to the fact that the impurity does not correspo
to an additional degree of freedom in Yu and Guerrero.15

FIG. 4. The local correlation functions:~a! ^nd& and ~b!

^SW •sW (0)&, plotted as a function ofT for the asymmetric Anderson
model withU50.1,ed520.001, andG50.00015. Note that when
D!TK , the correlation functions approach constant values in
pendent ofD asT→0.
o.
-

d
or
nd

,
d

Finally, we present our results for the mixed-valence
gime. We considered the asymmetric Anderson model, w
U50.1, ed520.025, andG50.01. WhenD50, the system
goes from the free-orbital regime through the mixed-valen
regime directly to the frozen moment regime, without goi
through the local-moment regime. The results for the susc
tibility, ^nd&, andT^^Sz ;Sz&& are shown in Figs. 5~a!–5~c!.
Again, depending on the value of the band gap,Tx can go to
zero or 1/4~there is a sharp transition!. For the cases thatTx
goes to zero,T^^Sz ;Sz&& also goes to zero, and all correla
tion functions approach constants, which are independen
the band gap. But for the cases thatTx goes to 1/4, both
T^^Sz ;Sz&& and the correlation functions approach valu
which are band-gap dependent.

IV. EFFECTIVE HAMILTONIAN DESCRIPTION

In this section we provide a simple interpretation of t
low-temperature behavior of the models in the various
gimes on the basis of a simple effective Hamiltonian. Let
consider first the Kondo model with the gap in th
conduction-electron density of states between2D to D. The
initial couplings areJ0 andK0 in units of the bandwidthD0,
which is taken to be unity. In our RG calculation, the ba
gap is taken to beD5L2M0, whereM0 is an integer; this
corresponds to the maximumN being N052M021—there
are an even number of conduction-electron levels in the
cretized system.

Imagine that we have successively integrated out
high-energy degrees of freedom and arrived at the effec
Hamiltonian at the energy scaleD[L2(N011)/2; as we
pointed out earlier the iterative RG procedure cannot be
ried beyond this energy scale corresponding to the maxim
iteration numberN0 since there are no conduction-electro
states left. The low-temperature properties~i.e, for T!D)
can be calculated with this effective Hamiltonian.

Let us first consider the case whenD@TK . Recall that in
this case the nonperturbative, numerical RG calculati
showed that the ground state was a doublet both in the p
ence and absence of potential scattering. The effec
Hamiltonian is close to that of theJ50 fixed point ~the
increase in the magnitude of the marginal variableJ̃5J/D is
small as the scaling is performed only down toD@TK) and
can be written, keeping the leading-order terms, as

Heff52JSW •sW ~0!1K f m
1 f m1D~am

1am2bm
1bm!.

Here sW (0)5 1
2 f m

1sW mn f n and f m51/A2(am1bm). In the
above effective Hamiltonian we have only kept the lowe
single electron/hole levels of the conduction-electron Ham
tonian; these are represented by the creation operatorsam

1

andbm
1 and we have neglected the irrelevant operators. Si

f 0 is proportional toL2N0/4, we have1

f 0m5a0L2N0/4~am1bm!1•••.

Thus the first two terms ofHeff are marginal, andJ and K
must scale asJ5J0D andK5K0D. This can also be under
stood in the perturbative RG language as follows. The eff
tive HamiltonianH(D) at the energy scaleD@TK , with
renormalized couplingsJ and K, is obtained by integrating

-
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FIG. 5. The impurity susceptibility~a!, ^nd& ~b!, andT^^Sz ;Sz&&
~c!, plotted as a function ofT for the asymmetric Anderson mode
with U50.1,ed520.025, andG50.01.
out the degrees of freedom between the initial band e
D051 and the cutoffD. When the cutoff is rescaled back t
unity, the thermodynamics is determined byH(D)/D, and to
the leading order the rescaledJ andK will be the same as the
original coupling constants~because they are coupling con
stants for the marginal terms!. Thus we haveJ/D5J0 and
K/D5K0 to the leading order. Now for the above effectiv
Hamiltonian at the energy scaleD'D, we haveJ5J0D and
K5K0D. It is clear that whenuJ0u!1 anduK0u!1, the last
term of the Hamiltonian dominates, and the ground state
doublet. This agrees with the nonperturbative results.

Next we consider the caseD!TK . In this case, we clearly
move away from theJ50 fixed point and the situation is
more complicated. As we lower the energy scale toD, the
operator f 0 or f is frozen out,1 but f 1 is proportional to
L2N0/4:

f 1m5â0L2N0/4gm1•••.

The operatorg represents the single electron level at ze
energy ~the number of electron levels is odd, sincef 0 is
frozen!. Now the effective Hamiltonian~at the energy scale
D) can be written as

Heff52JSW •sW ~0!1K f m
1 f m1w~ f 1g1H.c.!. ~8!

The operatorsf and g arise when we expressf 0 and f 1 in
terms of the lowest single electron/hole levels of t
conduction-electron Hamiltonian. In the effective Ham
tonian given aboveJ andK are renormalized coupling con
stants. According to the RG analysis of the Kondo proble
the rescaled coupling constantJ(D)/D will increase in mag-
nitude as the cutoffD is reduced and will be of the order 1 a
the energy scaleD'TK ; on the other hand,K(D)/D is es-
sentially unchanged up to the energy scale ofTK . Thus we
have, at the energy scale of the Kondo temperatureTK , J
'TK and K'K0TK . Due to the fact that the operatorf is
frozen at the energy scale ofTK , the values ofJ andK are
not altered when the energy scale is further reduced fromTK
~the rescaled coupling constantsJ/D andK/D are now cou-
pling constants for the relevant terms around the stro
coupling fixed point, and they increase linearly with 1/D).
The coupling constantw, on the other hand, will continue to
scale asw}L2N0/4 when N0 increases~or asD decreases!,
we expectw}AD. Since w should be of the order ofTK

whenD5TK , we can rewritew5aTKAD/TK). Note that in
writing down the above Hamiltonian we have neglected
irrelevant terms, the inclusion of which will not change th
results qualitatively.

We want to investigate the nature of the ground states
the above Hamiltonian,Heff , for the caseD!TK both when
K50 and KÞ0, by diagonalizingHeff . This is mildly te-
dious but can be carried out in a straightforward fashion. T
main results are as follows: ForKÞ0 ~and uKu larger than
D), the ground state is a singlet@when K.0, the ground
state is in the subspace (QT521,ST50); for K,0, it is in
the subspace (1,0)#. The first excited state is in the subspa
~0,1/2! and has a gap relative to the ground state proportio
to D. For K50, the ground state is in the subspace (0,1/
which is a doublet with the energy gap to the first excit
state proportional toD2. For the case thatK is also very
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5232 57KAN CHEN AND C. JAYAPRAKASH
small (uKu smaller thanD), the ground is also a double
Thus forKÞ0, there is transition from singlet to doublet a
D varies, but the transition is absent whenK50. These re-
sults are in agreement with our numerical RG computatio
For the benefit of the reader a derivation of these result
presented below.

A. Diagonalizing the effective Hamiltonian

We diagonalizeHeff in Eq. ~8! in two steps. Diagonalizing
the first two terms of the HamiltonianHeff in the subspace o
the f states gives rise to four eigenstates given below:

State A (21,1/2):E50, State B (0,0):E5 3
4 J1K, State

C (0,1):E52 1
4 J1K, State D (1,1/2):E52K,

Here the numbers in the parentheses denote the ch
and spin of the energy states.

Now we add theg states. The Hamiltonian can be writte
in the basis consisting of A, B, C, D, andg states using a
procedure similar to what was employed in the iterat
scheme of Wilson’s RG iteration@see, for example, Eq.~B2!
in Appendix B of the paper by Krishnamurthyet al.3!. Let
A1, A2, A3, A4 denote the basis states obtained by comb
ing A with zero, one, and twog states, etc. The Hamiltonia
matrix in each charge-spin subspace can be written dow

State A1 (2,1/2):H2,1/250, State A31B1 (21,0):

H21,05S 0 w

w
3

4
J1KD ,

State A21C1 (21,1):

H21,15S 0 w

w 2
1

4
J1KD ,

State A41B21C31D1 (0,1/2):

H0,1/251
0

w

A2
2A3

2
w 0

w

A2

3

4
J1K 0

w

A2

2A3

2
w 0 2

1

4
J1K 2A3

2
w

0
w

A2
2A3

2
w 2K

2 ,

State C2 (0,3/2)

H0,3/252
1

4
J1K,

State B41D3 (1,0):

H1,05S 3

4
J1K 2w

2w 2K
D ,

State C41D2 (1,1):
s.
is

rge

-

as

H1,05S 2
1

4
J1K 2w

2w 2K
D ,

State D4 (2,1/2):

H2,1/252K.

Whether the ground state is a singlet or doublet depe
on the relative energies of the lowest energy levels in s
spaces (21,0), (1,0), and (0,1/2). If the lowest energy lev
in the subspaces (21,0) and (1,0) is lower than the lowes
energy level in the subspace (0,1/2), then we have a sin
(Tx will approach zero!; otherwise, we have a doublet an
Tx approaches 1/4.

Let us first consider the caseKÞ0 and the magnitude o
K is much greater thanD. Since the off-diagonal matrix
elements are small compared to the diagonal ones (uw/Ju is
of order AD/TK) one can use perturbation theory to dete
mine the ground state. We perform a second-order pertu
tion calculation of the energy of the eigenstate with the
genvalue near34 J1K:

For the subspace (21,0), we have

E05
3

4
J1K1

w2

3

4
J1K

,

For the subspace (1,0), we have

E05
3

4
J1K1

w2

3

4
J2K

,

For the subspace (0,1/2), we have

E05
3

4
J1K1

1

2

w2

3

4
J1K

1
1

2

w2

3

4
J2K

.

It is clear that the ground state is always a singlet: wh
K.0, the ground state is in the subspace (21,0), whereas
for K,0, the ground state is in the subspace (1,0). T
energy level of the first excited state@in subspace (0,1/2)#
relative to the ground state is~assumingK0.0)

E15
1

2

w2

3

4
J2K

2
1

2

w2

3

4
J1K

, ~9!

which is proportional toD. The energy level of the secon
excited state~in subspace@QT51,ST50#! is E252E1 ~this
result was also found in our numerical results for the ene
levels!.

How aboutK50? The issue cannot be resolved at t
level of second-order perturbation theory. A fourth-ord
perturbation calculation for the lowest energy in the su
space (0,1/2) yields

E0'
3

4
J1

4

3

w2

J
1

80

27
JS w

J D 4

.
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For the subspaces (21,0) and (1,0), the lowest energy
given by

E05
3

4
J2AS 3

4
JD 2

1w2'
3

4
J1

4

3

w2

J
2

1

2
JS w

J D 4

.

It is clear that the ground state is in the subspace (0,1
which is a doublet. This agrees with our numerical resu
The energy gap of the first excited state is proportional tow4

or D2.
Now for the case thatuKu is of the order ofD or smaller,

it is a bit difficult to analyze. However, it is easy to see th
the crossover of the energy levels@of states (0,1/2) and
(61,0)# should occur whenw2uKu/J2 is of the order of
w4/J3, or whenD is of the orderuKu'(K0TK). Thus for a
finite K, there is transition from a singlet state to a doub
state whenD increases and crossDc which is of the order
K0TK .

B. Response function

Let us consider the calculation ofT^^Sz ;Sz&& in the
ground state whenD!TK . By definition

^^Sz ;Sz&&5E
0

b

^Sz~t!Sz&dt.

Close to zero temperature, we can write

^^Sz ;Sz&&5(
uI &

u^GuSzuI &u2@12exp„2b~EI2EG!…#

EI2EG
,

whereuI & represents many-body states of the system anduG&
denotes the ground state. For temperatures much sm
than the energy gap between the first excited state and
ground state, we have~separating out the contribution of th
ground state from the summation!

^^Sz ;Sz&&5bu^GuSzuG&u21 (
uI &ÞuG&

^GuSzuI &u2

EI2EG
.

Since the second term in the above expression is finite,
obtain in the limit asT→0, T^^Sz ;Sz&&5u^GuSzuG&u2. For
the caseK0Þ0 andD,Dc , the ground state is at the sub
space (61,0) and it is easy to verify thatT^^Sz ;Sz&& is zero.

For the case thatK050, we find that

^GuSzuG&56
4w2

3J2
.

ThusT^^Sz ;Sz&& in this case is proportional tow4 or D2 in
agreement with the numerical results.
),
.
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C. Anderson model

We now discuss the Anderson model briefly since
results are similar to those of the Kondo problem discus
above. We consider the limit thatU is very large andG is
very small. The effective Hamiltonian is of the form

Heff5 ẽ ddm
1dm1Ṽ~dm

1 f 0m1H.c.!1D~am
1am2bm

1bm!.

Here ẽ d is the effective impurity level at the energy scaleD

and Ṽ is the effective coupling to the conduction-electro
states. As pointed out by Haldane16 within perturbative scal-
ing the impurity level energy is renormalized when the hig
energy degrees of freedom are integrated out:

ẽ d'ed1
G

p
lnS D0

D D .

Since we have assumed thatU is large the impurity level
cannot be doubly occupied:nd<1. The behavior depends o
the magnitude ofẽ d . For the case that2 ẽ d.D, then the
local moment regime will be reached as the temperatur
lowered, and the effective Hamiltonian can be converted
the Kondo Hamiltonian; this has been considered abo
Here we focus on the case thatu ẽ du!D, so that the effective
impurity level lies in the gap.

Consider the case whenV is very small; to leading order
the ground state depends on the sign ofẽ d . If ẽ d.0, then
the ground state corresponds to two electrons occupying
conduction-electron level at2D, and thus it is asinglet. This
situation arises, for example, when the initialed is greater
than zero; this has been checked by the nonperturbative
calculation. On the other hand, whenẽ d,0, then the ground
state corresponds to two electrons occupying the conduct
electron level at2D and one electron occupying the impu
rity level. So the ground state is adoublet.

We now discuss the different physics underlying the do
blet ground state that occurs when~a! 2 ẽ d.D and the local
moment regime is reached as the temperature decreases
kBTK.D and ~b! 2 ẽ d!D when the mixed-valence regim
is reached. In the first case, the system develops a local
ment and as the temperature is further lowered, the mom
begins to be quenched by the Kondo effect due to large
fective uJu. The existence of the gap is not yet apparent a
the system appears to be driven toward a singlet gro
state. However, as the temperature drops belowD, the finite
gap energy causes the doublet to be lower in energy than
singlet with a small splitting given by Eq.~9!. In case~b!, on
the other hand, the local moment is not formed at the ene
scaleD. However, as the temperature is lowered to the
ergy scale of2 ẽ d , charge fluctuations are suppressed a
they eventually cease to occur, and the system becom
doublet without any intervening Kondo-like effects.

V. CONCLUSIONS

We have performed a Wilson renormalization-group c
culation of the Kondo and Anderson models with a gap
the conduction-electron density of states. The impurity s
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ceptibility, correlation functions, and a zero-frequency
sponse function have been calculated as functions of t
peratures in various regimes. Our calculations confirm ea
results on the qualitative differences in the low-temperat
behaviors between the cases with and without particle-h
symmetry when the gap is much smaller than the Kon
temperature. We have shown that the numerical result
s.
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low temperatures can be understood in terms of simple l
temperature effective Hamiltonians.
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