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Susceptibilities in the region of the disorder-induced crossing resonance
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We study the susceptibility matrix for the system of two wave fields of different nature coupled by a random
coupling parameter with zero mean value. It is shown that average properties of the system can be considered
within the concept of two effective media that can be introduced in the same real material in order to describe
properties of the fields. These two media have different characteristics and are independent in the sense that
each of the averaged wave fields propagates through its own effective medium without interaction with the
partner wave field. Diagonal components of the susceptibility matrix demonstrate resonance peculiarities
caused by an interaction of the averaged wave of one nature with fluctuation waves of another nature. Relations
between positions of maxima of the susceptibilities and eigenfrequencies of the system are analyzed for
different values of statistical characteristics of the coupling parameter and initial relaxation parameters of the
corresponding waves.@S0163-1829~98!01001-7#
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I. INTRODUCTION

Crossing resonance in homogeneous systems is a w
studied effect that occurs when initial dispersion laws of t
coupled wave fields cross each other at a certain reson
point. The resonance interaction creates new mixed exc
tions with dispersion laws that avoid crossing at the re
nance point. It is said sometimes to describe this situa
that a gap between different branches at the resonant p
opens up, though a real spectral gap might not appea
Ref. 1 the effect of crossing resonance was considere
systems with a random coupling parameter, where the m
of the disorder-induced crossing resonance~DICR! was in-
troduced. Within this model the coupling parameter betwe
the wave fields was assumed to be a random zero-mean
tion of coordinates so that the interaction only occurred d
to spatial fluctuations of this parameter. The model is
extreme of the more general situation when both the m
value and fluctuations of the coupling parameter exist i
material. It is a convenient model that describes the influe
of the disorder on crossing resonances in the most promi
way, and also related to some real situations. One can m
tion, for example, amorphous ferromagnets with a zero-m
magnetostriction or polaritons arising due to the coupl
between electromagnetic waves and vibrations that would
dipole inactive in the absence of the disorder. In Ref. 1
reconstruction of dispersion laws caused by fluctuations
the coupling parameter as well as accompanying decay o
averaged waves have been investigated. There were fou
considerable qualitative difference between DICR and
crossing resonance in homogeneous medium. Both cou
wave fields in homogeneous medium are coherent and ha
joint dispersion law that consists of two branches; depend
on the value of a damping in the system, the gap betw
these branches in the resonance point can be opene
closed. In contrast to this, the mixed excitations in the DIC
model consist of the coherent part of one of the wave fie
570163-1829/98/57~1!/521~8!/$15.00
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and scattered waves of the other field. In this case each
eraged wave field characterizes by its own dispersion l
The situation is possible, for instance, when the dispers
law of one averaged wave field has a gap in the resona
point, whereas the dispersion curve of the other field is c
tinuous.

The model of DICR has been used to study magnetoe
tic resonance in ferromagnets with zero-mean magn
striction2,3 and polariton resonance with dipole inactiv
phonons in disordered dielectrics.4 It was shown that main
characteristics of the stochastic magnetoelastic interac
can be measured if one experimentally studies either
modified dispersion law of acoustic waves2 or the elastic
analogs of Faraday and Cotton-Mutton effects.3 Energy os-
cillations of scattered waves for DICR also have be
considered.5

In this paper we consider the averaged susceptibility m
trix of the system with DICR. Components of the matr
describe amplitudes and phases of excited waves as we
the amount of energy of the coherent wave absorbed or s
tered by the media. Section II of the paper plays the auxili
role; it deals with basics results regarding susceptibilities
the simple model of two oscillators coupled by a determ
istic coupling parameter. We analyze the relationship
tween positions of resonance maxima of different com
nents of the susceptibility and eigenfrequencies of the wa
The results of this section will be used in the next sect
where the more complicated situation of DICR in the syst
with magnetoelastic interaction will be examined.

II. SUSCEPTIBILITY OF THE SYSTEM
OF TWO COUPLED OSCILLATORS

In this auxiliary section we present basic results on s
ceptibilities of the system of two linear coupled oscillato
for different relations between their relaxation paramet
521 © 1998 The American Physical Society
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and a coupling parameter. Most of these results have b
discussed in many papers. We, however, present them
using those approximations and notations that are releva
our consideration of the more complicated situation of r
domly coupled waves.

The system of two coupled oscillators corresponding
the dimensionless fieldsf andc of different physical nature
excited by harmonic external forces}eivt is described by the
following equations:

~v222ivGa2va
2!f2hc5 f a ,

~v222ivGb2vb
2!c2hf5 f b , ~1!

whereva,b andGa,b are the initial frequencies and dampin
parameters of the corresponding oscillators,f a,b are the
forces acting upon the corresponding oscillators, andh is the
coupling parameter. All the values can depend upon so
parameters, such as wave number, magnetic field, etc.
assume that under some circumstances the crossing
nance between these oscillators can occur

va5vb5v r . ~2!

Assuming thatGa,b!va,b one can simplify Eqs.~1!:

~v2va2 iGa!f2
la

2
c5VaFa ,

~v2vb2 iGb!c2
lb

2
f5VbFb . ~3!

Here

la,b5
2h

v1va,b
, Va,bFa,b5

f a,b

v1va,b
. ~4!

The system response to an external excitation can be
scribed by the components of the susceptibility matrixx̂

f5xaFa1xabFb , c5xbFb1xbaFa . ~5!

The diagonal componentsxa,b of the matrix describe the
direct excitation of oscillators by their own forces, whi
off-diagonal componentsxab andxba are responsible for the
indirect excitation of an oscillator by a force applied to
partner. The diagonal and off-diagonal susceptibilities can
found as

xa5
Va

D
~v2vb2 iGb!,

xb5
Vb

D
~v2va2 iGa!, ~6!

xab5
Va

D

la

2
, xba5

Vb

D

lb

2
.

where

D~v!5~v2va2 iGa!~v2vb2 iGb!2
l2

4
, ~7!

and
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-
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e

l25lalb5
4h2

~v1va!~v1vb!
. ~8!

Imaginary parts of the susceptibilities determine the ene
absorbed by the oscillators, absolute values of the susc
bilities are responsible for the oscillators’ amplitudes. In t
absence of the external forces the equation

D~ṽ !50 ~9!

determines frequencies and dampings of the eigenmode
the system. Hereṽ5v1 i j is the complex frequency con
sisting of the eigenfrequencyv and the dampingj. This
equation was analyzed in many papers; a brief descriptio
the results in the form relevant to the present work can
found in Ref. 1. Here we just recall that in the vicinity of th
crossing resonance the form of the dispersion curves is
termined by the relation between parametersl r andG, which
are defined as follows:

l r5
h

v r
, G5uGa2Gbu. ~10!

If l r.G a gapDv between different branches of the dispe
sion curve appears at the crossing point, and dampings
both branchesv6 of the spectrum become equal to ea
other:

v65v r6
1

2
Dv, j65

1

2
~Ga1Gb!, ~11!

where

Dv5Al r
22G2. ~12!

In the opposite casel r,G the branches keep crossing ea
other at the resonance point, while the dampings differ:

v65v r , j65
1

2
~Ga1Gb6Dj!, ~13!

where

Dj5AG22l r
2. ~14!

When the ratioG/l increases the dampingsj6 tend to their
initial magnitudesGa andGb .

Among the diagonal components of the susceptibility
shall only consider the componentxa , since the second on
can be obtained by trivial substitution of the index (a↔b).
Let us present the imaginary part of the susceptibility in
form that is the most convenient for analyzing the relatio
between the positions of the maxima of the susceptibility a
solutions of the dispersion equation~9!:
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xa9

Va
5

1

~v12v2!21~j12j2!2
3H @~Gb2j2!~v12v2!2~vb2v2!~j12j2!#

v2v2

~v2v2!21j2
2

1@~vb2v2!~v12v2!1~Gb2j2!~j12j2!#
j2

~v2v2!21j2
2

1@~j12Gb!~v12v2!2~v12vb!~j12j2!#

3
v2v1

~v2v1!21j1
2

1@~v12vb!~v12v2!1~j12Gb!~j12j2!#
j1

~v2v1!21j1
2 J . ~15!
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Herev6 andj6 are real and imaginary parts of the solutio
of the dispersion equation~9!. The branches are designate
in such a way that atva!v r signs ‘‘1’’ and ‘‘ 2’’ corre-
spond to the frequencies ofc andf oscillators accordingly.

Let us consider Eq.~15! at the crossing pointv5v r .
When the gap between branches of the dispersion curv
opened up (l r.G) it reads

2xa9

Va
5

j

~v2v2!21j2
1

Gb2Ga

Dv

v2v2

~v2v2!21j2

1
j

~v2v1!21j2
2

Gb2Ga

Dv

v2v1

~v2v1!21j2
,

~16!

wherev6 andj5j15j2 are determined by Eqs.~11!.
WhenGa5Gb the susceptibility is merely the sum of tw

resonances at frequencies that coincide with the solution
the dispersion equation. However, in the more general s
ation there are two additional terms, which can considera
affect the dependence ofx9 on frequency. Let us assume fo
the sake of concreteness, thatGb.Ga . Then an increase o
G5Gb2Ga causes the maxima ofxa9 to become closer to the
position of the eigenfrequencies, and the maxima ofxb9 to
move apart from them. It should be recalled also that
eigenfrequencies themselves move toward each other w
G is growing. These two facts taken together lead to
possibility for xa9(v) andxb9(v) to have a different numbe
of maxima. When

l r
2.Ga8

2[
4Gb

3

2Gb1Ga
, ~17!

xa9(v) demonstrates two maxima. The condition thatxb9(v)
also has two maxima takes quite a different form

l r
2.Gb8

2[
4Ga

3

2Ga1Gb
. ~18!

Since Gb8,Ga8, it is possible thatxb9(v) exhibits two
maxima, whilexa9(v) has only one~Fig. 1!. It is worth men-
tioning that the same conditions~17!, ~18! also determine the
number of the maxima when the gap is closed.

Now we consider the case when the difference betw
Gb andGa is greater thanl r and eigenfrequencies coincid
in the crossing-resonance pointv r . The most interesting pic
is

of
u-
ly

e
en
e

n

ture can be observed for the susceptibilityxb9 of the oscillator
with the greater initial damping. In that case Eq.~15! takes
the form

2xb9

Vb
5

1

DjH ~G1Dj!j1

~v2v r !
21j1

2
2

~G2Dj!j2

~v2v r !
21j2

2 J , ~19!

wherej6 andDj are determined by Eqs.~13! and~14!. The
first term here presents the direct response of thec oscillator
to the external forcef b , and the second one is due to th
interaction between the oscillators. Since the inequa
G>Dj is always valid, we have the sum of two resonan
curves, whose frequencies coincide, but their signs as we
widths are different. The situation is best demonstrated w
G@l. Then Dj can be presented in the formDj'G2s,
wheres5l r

2/2G!1, and the expression forxa9(v) can be
approximated as

xb9

Vb
5

~11s/G!j1

~v2v r !
21j1

2
2

s

G

j2

~v2v r !
21j2

2
. ~20!

Its frequency dependence can demonstrate a shape
two maxima provided that two following conditions are sa

FIG. 1. Dependence of the diagonal components of the sus
tibility matrix xa9 ~solid curve! and xb9 ~dotted curve! on the fre-
quency in the case when the gap is open and the conditionGb8,l
,Ga8 is fulfilled. The vertical dashed lines mark the positions of t
eigenfrequencies.
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isfied simultaneously:G.l r , but l r.Gb8. This can happen
if Gb.2Ga . Though such a form of the frequency depe
dence resembles the case when the gap is opened, in
considered situation it has an absolutely different orig
These two maxima appear here due to interplay betw
positive and negative terms in Eq.~20!, both of which have
the prominent resonance form with the same resonance
quency, but different signs and widths of the peaks~see Fig.
2!. This phenomenon has been predicted in Ref. 6 and
served in Ref. 7 in the frequency dependence of the magn
susceptibility of a ferromagnet in the region of the coin
dence of the NMR and FMR frequencies and has b
named electron-nuclear magnetic resonance~ENMR!.

Let us considerxb in a more general case whenva can
differ from vb . If l2!GaGb , we can use the approximatio
suggested in Ref. 8, where the more general analysis o
ENMR phenomena has been done. The susceptibilityxb can
be approximately represented as a sum of two terms w
resonancelike behavior

xb'xb01
l2

4VaVb
xb1 . ~21!

The first term here is the initial susceptibilityxb0 and de-
scribes resonance at its ‘‘own’’ frequencyvb, while the sec-
ond one is caused by coupling and represents the reflec
of the resonance behavior of thec oscillator in the response
of the f oscillator. The second term can be presented in
form

xb18 5~xb08
22xb09

2!xa08 22xb08 xb09 xa09 , ~22!

xb19 5~xb08
22xb09

2!xa09 12xb08 xb09 xa08 ,

wherexa0 andxb0 are the initial susceptibilities of the field
f andc, respectively

xa05
Va

v2va2 iGa
, xb05

Vb

v2vb2 iGb
. ~23!

FIG. 2. Dependence of the diagonal componentsxb9 on the fre-
quency when the gap is closed andGb@Ga ~antiphase crossing
resonance, the eigenfrequencies coincide!.
-
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When the relationGb@Ga takes place the form ofxb9 in a
vicinity of the frequencyvb is mainly determined by a high
and wide resonance peak (xb9'xb09 ). Parameters of the pea
practically do not depend on the distance to the cross
resonance point. But the form of the weak narrow pe
which is situated nearva and is proportional tol2, changes
dramatically depending on the differencevb2va . In the
caseuvb2vau@Gb one hasxb08 @xb09 and the imaginary par
xb19 of the coupling-caused correction toxb becomes propor-
tional to xa09 . When the differenceuvb2vau decreases the
term proportional toxa08 begins to play the main role. Whe
uvb2vau reaches the value ofGb ~in this casexb08 'xb09 ) the
form of the narrow peak situated nearva becomes mainly
determined byxb08 , i.e., it has approximately equal positiv
and negative components. Further decreasing ofuva2vbu
leads to the full redistribution of the magnitudes of the co
ponents and in the region of the crossing resonance the
ond peak becomes negative

xb9'xb09 2
l2

4VaVb
xb09

2xa09 . ~24!

To clarify a nature of the phenomenon it is instructive
consider the phases of the oscillations associated with
‘‘own’’ and the coupling-caused terms in the susceptibilit
Let us denote them bydb0 anddb1, respectively:

tandb05
xb09

xb08
, tandb15

xb19

xb18
. ~25!

For the phase differencesd5db12db0 one can derive
from Eqs.~25! and ~23!

tand5
v~Ga1Gb!2~vaGb1vbGa!

~v2va!~v2vb!2GaGb
. ~26!

In Fig. 3 the dependenced on v is shown for the case o
the crossing resonance (va5vb5v r). One can see tha
d52p whenv5v r . It means that the oscillations assoc

FIG. 3. Frequency dependence of the phase differenced be-
tween the oscillations excited directly by the external force and
coupling caused oscillations in the crossing-resonance point.
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ated with the ‘‘own’’ resonance and the coupling-caused o
are in the opposite phases. Therefore, it makes sense to
the phenomenon by the antiphase crossing resonance. It
appear on the diagonal component of the susceptibility of
oscillator with the greater initial damping, when both con
tions G.l and Eq.~18! are fulfilled.

The diagonal componentxa of the oscillator with the
smaller initial damping in this case exhibits only a sing
narrow resonance peak on the wide weak background re
ing from the contribution of the second partner oscillat
This situation can be described by the same Eq.~20! if one
interchanges indexesa↔b.

Off-diagonal components of the susceptibility determ
the exchange of energy between the oscillators. They h
more simple frequency dependence than the diagonal c
ponents. When the gap is closed their imaginary parts h
only one maximum, and when the gap is open they can h
two maxima if an additional condition holds:

l r
2.2~Ga

21Gb
2!. ~27!

III. SUSCEPTIBILITIES FOR MAGNETOELASTIC DICR

Excitations in a magnetoelastic medium are governed
the system of Landau-Lifshitz’s equations for magnetizat
and equations for elastic displacements

Ṁ52gFM3S 2
]H

]M
1

]

]x

]H

]~]M /]x! D G ,
Güi5

]

]xi

]H

]ui j
, ~28!

whereM is the magnetization,ui j 51/2(]ui /]xj1]uj /]xi)
is the matrix of elastic deformations,g is the gyromagnetic
parameter, andG is the density of the medium.

We consider that our system is an elastically isotro
ferromagnet with single axis magnetic symmetry axis, so t
the corresponding magnetoelastic potential energyH takes
the form

H5
1

2
a~¹M !22

1

2
b~Mn !22HM 1

1

2
d1uii

2

1
1

2
d2~ui j ui j 1ui j uji !1

1

2
P~x!MiM jui j . ~29!

Here a is the exchange parameter,b and n are the magni-
tude and the direction of the axis of the magnetic anisotro
respectively,d1 andd2 are the elastic Lame´ coefficients,H is
the magnetic field, andP(x) is the magnetoelastic paramete
Magnetoelastic resonance in the homogeneous medium
P5const is well studied.9,10 According to the model of
DICR we assume that the mean value of the magnetoela
parameter is equal to zero, and the parameter can be
sented in the following form:

P~x!5gr~x!, ~30!

whereg is the rms fluctuation of the magnetoelastic para
eter, andr(x) is the centered@^r(x)&50# and normalized
e
all
ust
e

-

lt-
.

ve
m-
ve
ve

y
n

c
at

y,

ith

tic
re-

-

@^r2(x)&51# random function. Stochastic properties of th
function are characterized by the normalized correlat
function

K~r !5^r~x!r~x1r !&. ~31!

Let the external dc magnetic field and the axis of anis
ropy be directed along thez axis of the coordinate system
The equilibrium direction of the magnetization, then, al
coincides with thez axis. We consider the excitation of th
medium by bulk forcesf a and f b with the first of them af-
fecting the elastic subsystem and the second one influen
the magnetic subsystem. We assume that these forces
perpendicular to thez axis, therefore onlyx and y compo-
nents of them have nonzero values. Linearizing the sys
~28! with respect to the small deviationsm„x,t) from the
equilibrium direction of the magnetization, one can obta
the following integral equations for Fourier transforms
circular componentsm65mx6 imy andu65ux6 iuy :

~v2ek!m12
iggM2

2

3F E @k1z
u1~k1!1k11

uz~k1!#r~k2k1!dk1G5vmh1 ,

~v1ek!m21
iggM2

2

3F E @k1z
u2~k1!1k12

uz~k1!#r~k2k1!dk1G5vmh2 ,

~v22vk
t 2!u11

igMkz

2G F cos2uk1sin2uk

v22vk
t 2

v22vk
l 2GF1

1
igMkz

2G
sin2uke

2ifkF12
v22vk

t 2

v22vk
l 2GF25Vu

2f 1 ,

~v22vk
t 2!u21

igMkz

2G F cos2uk1sin2uk

v22vk
t 2

v22vk
l 2GF2

1
igMkz

2G
sin2uke

22ifkF12
v22vk

t 2

v22vk
l 2GF15Vu

2f 2 ,

~v22vk
l 2!uz1

igMkz

4G F sin2ukcosuk2

2sin ukcos2uk

v22vk
l 2

v22vk
t 2G ~e2 ifkF11eifkF2!50,

~32!

whereF65*m6(k1)r(k2k1)dk1.
Hereek , vk

t , andvk
l are the initial dispersion laws of th

spin waves, transversal, and longitudinal elastic waves
cordingly:
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ek5v01avMk2,

vk
t,l5v t,lk, ~33!

wherev05g(H1bM ), vM5gM, v t
25d1 /G, andv l

25(d2

1d1)/G; v t and v l are the speeds of the transversal a
longitudinal elastic waves, respectively.

A bulk force exerting upon the magnetic subsystem is
magnetic componenth of the electromagnetic field. An elas
tic exciting force is written in the form ofVa

2f , where the
parameterVa is chosen to have the dimension of the fr
quency, then the amplitude of the forcef is measured in
units of displacementsu. When these forces are absent E
~32! turn into the equations for eigenfrequencies. The eig
frequencies of the system have been considered ear2

@Note that there are misprints in the equations for eigen
quencies in Ref. 2: the imaginary unitsi have been missed in
front of integral terms. The correct form of these equatio
which has been considered in Ref. 2 can be obtained f
Eqs. ~32! at h5 f 50.# In what follows we use the scala
approximation for elastic waves assuming thatv t5v l5v
and neglect terms describing nonresonant interaction
tween the elastic and the left-polarized spin waves. Wit
these approximations the coupled equations for elastic wa
and right-polarized spin waves read as

@~v2 iGu!22vk
2#uk

2
g2M2vMkz

4G E k2zuk2
r~k12k2!r~k2k1!

v2 iGs2ek1

dk1dk2

5
igMvMkz

4G E hk1
r~k2k1!

v2 iGs2ek1

dk11Vu
2f k ,

~v2 iGs2ek!mk2
g2M2vM

8G

3E ~k1
21k1z

2 !mk2
r~k12k2!r~k2k1!

~v2 iGu!22vk1

2
dk1dk2

5
i

2
gM2vMVu

2E k1zVk1
r~k2k1!

~v2 iGu!22vk1

2
dk11vMhk .

~34!

Here we omitted the index ‘‘1’’ at the variablesmk , uk , hk ,
and f k and added parametersGs andGu in order to model the
initial damping of spin and elastic waves, respectively.

Equations~34! are to be solved by means of the usu
perturbation theory with respect to the coupling parameter.
Off-diagonal components of the susceptibility matrix in th
case contain only the products of odd numbers of the fu
tion r(k… in any order of the perturbation theory. In the thi
order one can obtain, for instance, an expression of the f

g3E kz2
kz1

hk3
r~k12k2!r~k22k3!r~k2k1!

~v2 iGs2ek1
!~v2 iGs2ek3

!@~v2 iGu!22vk2
#

3dk1dk2dk3 .
d

e

.
-
r.
-

s
m

e-
n
es

l

c-

m

All these terms are averaged to zero for regular inhomo
neities characterized by symmetric distribution function. O
can conclude, hence, that off-diagonal components of
averaged susceptibility matrix are equal to zero in the cas
DICR unlike the usual crossing resonance in homogene
materials:

xsu}
^mk&
Vk

50, xus}
^uk&

h
50. ~35!

The diagonal components of the susceptibilities can be fo
in terms of the averaged Greens functions of Eqs.~34!

xu5
^uk&
Vk

5
Vu

2

~v2 iGu!22vk
222vkQu~v,k!

,

xs5
^mk&
hk

5
vM

v2 iGs2ek2Qs~v,k!
. ~36!

The mass operatorsQs andQu describe the influence of th
inhomogeneities on the waves. Calculating these operato
the first nonvanishing order of the perturbation theory~Bour-
ret approximation11!, we find

Qu5
l2

4 E S~k2k1!

v2 iGs2ek1
dk1 ,

Qs5
l2v
4k E ~k1

21k1z
2 !S~k2k1!

~v2 iGu!22vk1
2

dk1 , ~37!

where l25g2M0
2vMvk /(Gv2). The functionS(k) in Eqs.

~37! is a spectral density of the inhomogeneities, which is
Fourier transform of the corresponding correlation functi
K(r ).

Let us choose the standard exponential form of the co
lation function to characterize the inhomogeneities:

K~r !5e2kcr , S~k!5
1

p2

kc

~kc
21k2!2

. ~38!

Here r c andkc are the correlation radius and the correlati
wave number of the inhomogeneities, respectively, which
related to each other askc'r c

21 . Integrals ~37! with the
spectral density given by Eq.~38! have been calculated in th
previous investigations of the dispersion laws.2 Particularly,
for Qu at v.v0 one has

Qu5
l2/4

v2 iGs2ek2km22iAkm~v2 iGs2v0!
, ~39!

wherekm5vMakc
2 . The term withAkm describes the con

tribution of the scattering into the total attenuation of t
averaged wave. Assuming that this contribution is sm
compared to the eigenfrequency, Eq.~39! can be reduced to
the form

Qu'
l2

4

1

v2 iGs* 2ek

, ~40!
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where the effective relaxation parameterGs* is a sum of the initial damping in the spin subsystem and the relaxation due t
scattering

Gs* 'Gs12kcAavM~v2v0!, ~v.v0!. ~41!

The expression for the second mass operatorQs has a cumbersome form:

Qs5
l2

2vk
H vk

21kp
212ikp~v2 iGu!

~v2 iGu!22vk
22kp

222ikp~v2 iGu!
2

kp

2vk
2 @kp2 i ~v2 iGu!#1

kp

4vk
3 @~v2 iGu!21vk

21kp
2#

3Farctan
2kpvk

~v2 iGu!22vk
21kp

2
1

i

2
ln

~v2 iGu1vk!
21kp

2

~v2 iGu2vk!
21kp

2G J , ~42!
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wherekp5vkc . However, assuming that the attenuation
small enough it can be simplified near the resonance
quency to take the form similar to Eq.~40!

Qs'
l2

4

1

v2 iGu* 2vk

, ~43!

where the effective relaxation parameterGu* is

Gu* 'Gu1vkc . ~44!

Within the described approximations the diagonal com
nents of the susceptibility take the form

xu5
^uk&
f k

'
Vu

2

2vk

v2ek2 iGs*

Du~v,k!
,

xs5
^mk&
hk

'vM

v2vk2 iGu*

Ds~v,k!
, ~45!

where

Du5~v2vk2 iGu!~v2ek2 iGs* !2
l2

4
, ~46!

Ds5~v2ek2 iGs!~v2vk2 iGu* !2
l2

4
. ~47!

Though these expressions have a form similar to that of
pressions~6! and~7! obtained for the model of deterministi
oscillators with damping, there is a remarkable differen
between them. For oscillators with a deterministic coupl
parameter the denominators of the different component
the susceptibility coincide. At the same time the denomi
tors in Eqs.~45! are different. This difference is caused b
the fact thatDu andDs contain different pairs of the relax
ation parameters,Gu , Gs* and Gs , Gu* , respectively. In ac-
cordance with this fact the dispersion laws of averaged e
tic waves and the averaged spin waves are also determ
by different dispersion equations:

Du~ṽ,k!50, Ds~ṽ,k!50. ~48!

The shape of the dispersion curves following from E
~48! can be also considerably different for the elastic a
spin waves. Particularly, the conditions for the gap betw
e-

-

x-

e
g
of
-

s-
ed

.
d
n

different branches to appear at the crossing point have a
ferent form for the elastic and spin waves, respectively,

l r
2.~Gs* 2Gu!2, l r

2.~Gs2Gu* !2. ~49!

These expressions generalize the corresponding results
rived in Refs. 1, 2 to include initial relaxationsGu andGs .
One can see that taking into account the initial relaxat
does not change the result of Refs. 1, 2 concerning the
sibility for elastic waves to have the opened gap while
gap in the spectrum of the spin waves remains closed.

To clarify the physical sense of the result obtained
recall a more simple situation of the one wave field prop
gating in an inhomogeneous medium. Plane waves are
the eigenexcitations in this case because of scattering f
the inhomogeneities. However, an effective homogene
medium can be introduced, where plane waves are eig
modes, which correspond to propagation of averaged wa
These modes have a modified dispersion law and a fi
time of life as a result of interaction with scattered wave
which do not present in this picture explicitly. The averagi
of the stochastic integral equation in the Fourier harmon
of the propagating field is one of the methods to introdu
such an effective medium.

One can see from the analysis made above that for
DICR model the averaging produces in the inhomogene
medium two effective media, which are characterized by d
ferent parameters. The averaged elastic wave propagat
the medium characterized by the parametersGu andGs* , so
that its dispersion law, relaxation and the susceptibility d
pends upon these parameters. The effective medium for
waves and, hence, all characteristics of averaged spin w
depend on other parametersGs andGu* . Propagating in their
own effective media, these averaged waves do not inte
with each other.

The concept of two effective media allows us to use
the expressions obtained in the previous section for de
ministic oscillators in order to analyze the model of DIC
One has to discard only the expressions for off-diago
components, which are equal to zero in our case. When c
sidering the susceptibility, dispersion law, and damping
the elastic waves one has to useGa5Gu andGb5Gs* in the
expressions of the previous section. When analyzing s
waves one has to accept forGa andGb expressionsGu* and
Gs , respectively. For instance, Eqs.~17! and ~18!, which
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determine the conditions, when two maxima on the cur
xu9(v) andxs9(v) appear, take the form

l r
2.

4Gs*
3

2Gs* 1Gu

, l r
2.

4Gu*
3

2Gu* 1Gs

. ~50!

As another example let us consider the expression for
susceptibility, when the gap is closed for both the elastic
spin waves. This situation seems to be more likely for st
dard zero-mean-magnetostrictive amorphous ferromagn
though one can also find materials where the gap in the s
trum of elastic waves could appear. Under the natural
sumptionsGs@Gu* we obtain for the elastic susceptibility

xu9

Vu
'S 11

su

Gs* 2Gu
D j2

~v2v r !
21j2

2

2
su

Gs* 2Gu

j1

~v2v r !
21j1

2
, ~51!

where j15Gs* 2su , j25Gu1su , su5l2/4(Gs* 2Gu).
The expression for the spin component of the susceptib
takes the form

xs9

vM
'S 11

ss

Gs2Gu*
D j18

~v2v r !
21j18

2

2
ss

Gs2Gu*

j28

~v2v r !
21j28

2
, ~52!
h.

v.
s

e
d
-
ts,
c-

s-

y

wherej18 5Gs2ss , j28 5Gu* 1ss , ss5l2/4(Gs2Gu* ).
These expressions show that each of the susceptibilitie

a difference between two resonancelike terms, resonance
quencies of which coincide, but amplitudes and widths d
fer. The most considerable contribution intoxu9 is due to the
first term, which has the shape of a narrow and tall pe
describing resonance absorption of the elastic energy.
second term in the considered situation is almost negligi
In contrast to that, the spin-wave susceptibility is determin
by both terms in Eq.~52!. Their frequency dependence man
fests the typical structure of the antiphase resonance wi
weak but narrow reverse elastic peak on the backgroun
wide and strong magnetic resonance~Fig. 2!. It is clear from
Eqs.~51! and~52! that experimental study of both the elast
and spin-wave susceptibilities allows us to determine the
jor stochastic characteristics of the magnetostriction par
eter — the rms fluctuationg and the correlation radiusr c .

We would like also to note that though DICR has be
studied in this paper for the case of magnetoelastic re
nance, the results obtained can be applied to crossing r
nances of any nature if the mean value of a coupling par
eter is equal to zero, and the conditions of the Bour
approximation are fulfilled.
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