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Susceptibilities in the region of the disorder-induced crossing resonance
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We study the susceptibility matrix for the system of two wave fields of different nature coupled by a random
coupling parameter with zero mean value. It is shown that average properties of the system can be considered
within the concept of two effective media that can be introduced in the same real material in order to describe
properties of the fields. These two media have different characteristics and are independent in the sense that
each of the averaged wave fields propagates through its own effective medium without interaction with the
partner wave field. Diagonal components of the susceptibility matrix demonstrate resonance peculiarities
caused by an interaction of the averaged wave of one nature with fluctuation waves of another nature. Relations
between positions of maxima of the susceptibilities and eigenfrequencies of the system are analyzed for
different values of statistical characteristics of the coupling parameter and initial relaxation parameters of the
corresponding wave$S0163-18208)01001-7

[. INTRODUCTION and scattered waves of the other field. In this case each av-
eraged wave field characterizes by its own dispersion law.
Crossing resonance in homogeneous systems is a wellFhe situation is possible, for instance, when the dispersion
studied effect that occurs when initial dispersion laws of twolaw of one averaged wave field has a gap in the resonance
coupled wave fields cross each other at a certain resonanpeint, whereas the dispersion curve of the other field is con-
point. The resonance interaction creates new mixed excitainuous.
tions with dispersion laws that avoid crossing at the reso- The model of DICR has been used to study magnetoelas-
nance point. It is said sometimes to describe this situatiotic resonance in ferromagnets with zero-mean magneto-
that a gap between different branches at the resonant poistrictior?® and polariton resonance with dipole inactive
opens up, though a real spectral gap might not appear. Iphonons in disordered dielectritdt was shown that main
Ref. 1 the effect of crossing resonance was considered igharacteristics of the stochastic magnetoelastic interaction
systems with a random coupling parameter, where the modelan be measured if one experimentally studies either the
of the disorder-induced crossing resonafi®éCR) was in-  modified dispersion law of acoustic wafesr the elastic

tI’Oduced. W|th|n th|S mOdel the Coupling parameter betWee%na|ogs Of Faraday and Cotton_Mutton effe?cgnergy 0S-
the wave fields was assumed to be a random zero-mean fungijations of scattered waves for DICR also have been

tion of coordinates so that the interaction only occurred duggnsidered.

to Spatial fluctuations of this pf’:ll’ameter. The model is the In this paper we consider the averaged Suscep“bmty ma-
extreme of the more general situation when both the meagix of the system with DICR. Components of the matrix
value and fluctuations of the coupling parameter exist in &escribe amplitudes and phases of excited waves as well as
material. It is a convenient model that describes the |nﬂuencﬁ']e amount Of energy Of the Coherent wave absorbed or scat-
of the disorder on crossing resonances in the most promineféred by the media. Section Il of the paper plays the auxiliary
way, and also related to some real situations. One can meRgle; it deals with basics results regarding susceptibilities of
tion, for example, amorphous ferromagnets with a zero-meathe simple model of two oscillators coupled by a determin-
magnetostriction or polaritons arising due to the couplingistic coupling parameter. We analyze the relationship be-
between eleCtromagnetIC waves and vibrations that would bﬂveen positions of resonance maxima of different Compo-
dipole inactive in the absence of the disorder. In Ref. 1 theyents of the susceptibility and eigenfrequencies of the waves.
reconstruction of dispersion laws caused by fluctuations ofrhe results of this section will be used in the next section
the coupling parameter as well as accompanying decay of thghere the more complicated situation of DICR in the system

averaged waves have been investigated. There were foundygh magnetoelastic interaction will be examined.
considerable qualitative difference between DICR and a

crossing resonance in homogeneous medium. Both coupled

wave flelds in homogeneous medlum are coherent and haye a Il. SUSCEPTIBILITY OF THE SYSTEM

joint dispersion law that consists of two branches; depending OF TWO COUPLED OSCILLATORS

on the value of a damping in the system, the gap between

these branches in the resonance point can be opened orIn this auxiliary section we present basic results on sus-
closed. In contrast to this, the mixed excitations in the DICRceptibilities of the system of two linear coupled oscillators
model consist of the coherent part of one of the wave fieldsor different relations between their relaxation parameters
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and a coupling parameter. Most of these results have been 47

. K 2_ —
discussed in many papers. We, however, present them here A _)\a)\b_(w+w Yot op)
using those approximations and notations that are relevant to a b

our consideration of the more complicated situation of ran- ] o ]
domly coupled waves. Imaginary parts of the susceptibilities determine the energy

The system of two coupled oscillators corresponding toa_b_s_orbed by the oscillators, absol_ute values o_f the suscepti-
the dimensionless fieldg andy of different physical nature bilities are responsible for the oscillators’ amplitudes. In the
excited by harmonic external force'“! is described by the ~aPsence of the external forces the equation
following equations:

®

(2= 2i 0y 0d) d— pip=1a, D(w)=0 ©

(wz—ziwrb—wg)lp— nop="f,, 1) determines frequencies and dampings of the eigenmodes of

the system. Her@=w+i¢ is the complex frequency con-

wherew, , andl", , are the initial frequencies and damping sisting of the eigenfrequency and the dampingt. This

parameters of the corresponding oscillatofg,, are the ? g i . I
forces acting upon the corresponding oscillators arislthe equation was analyzed in many papers; a brief description of

couping parameter. Al the valves can depen upon somle SIS 1 1 o eeienL i e pesent o ¢ e
parameters, such as wave number, magnetic field, etc. e T J y

. . ing r nance the form of the di rsion curves i -
assume that under some circumstances the crossing resfcé—?;?ne% best(;leareﬁZtior?bgtwegn aergrrfgtee,rsa% dlguwr?its:hs de
nance between these oscillators can occur y P ’

are defined as follows:
W= W= W, . 2
Assuming thafl", ,<< one can simplify Eqs(1): n
g a,bsW3zp p fy q (1) )\f:w_' F:|Fa_rb|- (10)
. A r
(w_wa_|ra)¢_7a¢:QaFay ) )
If A,>T" a gapA o between different branches of the disper-
sion curve appears at the crossing point, and dampings for

. Ap
(0—wp—iTp) = = d=QpFy. 3) both .branche&)t of the spectrum become equal to each
2 other:
Here
2 f +1A £ 1(F +T'p) (11
U a,b W= TSR0, =51 aTlp),
Nab oty QapFap oty “@

The system response to an external excitation can be devhere
scribed by the components of the susceptibility mairix

_ ~N2_12
d=xaFat xaFv. ¥=xpFpt xpaFa- (5 Aw=yAr—T% (12

The diagonal componentg, ;, of the matrix describe the
direct excitation of oscillators by their own forces, while
off-diagonal componentg,,, and y,, are responsible for the
indirect excitation of an oscillator by a force applied to its

In the opposite cask,<I' the branches keep crossing each
other at the resonance point, while the dampings differ:

partner. The diagonal and off-diagonal susceptibilities can be 1
found as wi=op, =5+ p*A8), (13
Xa:Fa(w_wb_in)a where
Qp , Ag=\T2-)\2. 14
Xo=5 (@ wa=iT), ©) ¢ r 19

When the ratid’/\ increases the dampings. tend to their
initial magnituded’, andTy,.

Among the diagonal components of the susceptibility we
shall only consider the componegy, since the second one

where . - v .
can be obtained by trivial substitution of the indeax¢b).
_ . A2 Let us present the imaginary part of the susceptibility in a
D(w)=(0—w,=il'a)(0—wp=il'y) — 7, (7)  form that is the most convenient for analyzing the relations

between the positions of the maxima of the susceptibility and
and solutions of the dispersion equati@®):
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Ya ! s { [(Ty— ) )= ( J(Ea— £ ) —
—= —¢é )wi—w_ ) (wp—w_)(&r —_——
Qo (0.~ )2+(E—£)? ° ° (0—w_)2+ &
+[<wb—w,><w+—w,>+<rb—§,><§+—§,>1%+[<f+—rb><w+—w,>—<w+ wp) (€4 —£)]
(w—w_)"+ &
X&ﬁ- _ _ + -T _ §—+ (15)
(w—w+)2+§i [(a)+ wb)(w+ w—) (§+ b)(§+ g_)](w—w+)2+§i .

Herew. and¢. are real and imaginary parts of the solutionsture can be observed for the susceptibijityof the oscillator
of the dispersion equatiof®). The branches are designated with the greater initial damping. In that case Efj5) takes
in such a way that abv,<w, signs “+” and “ —" corre-  the form
spond to the frequencies @f and ¢ oscillators accordingly.

Let us consider Eq(15 at the crossing poinv= w, . 2x”

When the gap between branches of the dispersion curve is Q_b_ A_é[(
opened up X,>T") it reads

T+A9E,  (T-APE
0—0)HE (0—w)?+E

, (19

whereé.. andA¢ are determined by Eg§l3) and(14). The

2xn I3 r,—r, w—w._ first term here presents the direct response of/tlescillator
0. _ 24 >t Ao _ 2, 22 to the external forcd,, and the second one is due to the
a (0-w )™+ (0=0_)"+¢ interaction between the oscillators. Since the inequality

¢ r—T o—o I'=A¢ is always valid, we have the sum of two resonance
T b 2+ 5 curves, whose frequencies coincide, but their signs as well as
(0—wy)+ €& Ao (w—w,)?+¢ widths are different. The situation is best demonstrated when

(16) I'>\. Then A§ can be presented in the forhé~TI"— o,
whereo=\; 2/2I'<1, and the expression fora(w) can be

wherew. andé=¢, =¢_ are determined by Eg$l1). approxmated as

WhenI' =T, the susceptibility is merely the sum of two
resonances at frequencies that coincide with the solutions of X (l+o/l)é, o & 20
the dispersion equation. However, in the more general situ- Q, (w_wr)2+§2+ T (oot

ation there are two additional terms, which can considerably
affect the dependence gf on frequency. Let us assume for
the sake of concreteness, thgf>1I",. Then an increase of
I'=T',—T, causes the maxima gf; to become closer to the
position of the eigenfrequencies, and the maximaypfto
move apart from them. It should be recalled also that the X
eigenfrequencies themselves move toward each other when Ve k
I' is growing. These two facts taken together lead to the 10 -+
possibility for x2(w) and x;(w) to have a different number
of maxima. When

Its frequency dependence can demonstrate a shape with
two maxima provided that two following conditions are sat-

ars

/2_
A>T = o

17

Xa(w) demonstrates two maxima. The condition thygfw)
also has two maxima takes quite a different form

4T3
A>T 2= o 18
L T e W 18 0.0 -

Since I'y<TI', it is possible thaty,(w) exhibits two
maxima, Whl|e)( (w) has only ondFig. 1). It is worth men-

tioning that the same conditiori$7), (18) also determine the FIG. 1. Dependence of the diagonal components of the suscep-

number of the maxima when the gap is closed. tibility matrix x, (solid curve and x; (dotted curve on the fre-
Now we consider the case when the difference betweeguency in the case when the gap is open and the conditjsn

I', and I’y is greater than\, and eigenfrequencies coincide <T'/ is fulfilled. The vertical dashed lines mark the positions of the

in the crossing-resonance po'mp:. The most interesting pic- eigenfrequencies.



524 V. A. IGNATCHENKO, M. V. EREMENTCHOUK, AND L. |. DEYCH 57

X

XM max ‘L
10 -

T

FIG. 3. Frequency dependence of the phase differehdes-
tween the oscillations excited directly by the external force and the
coupling caused oscillations in the crossing-resonance point.

FIG. 2. Dependence of the diagonal componeyft®n the fre-
quency when the gap is closed ahg>I", (antiphase crossing
resonance, the eigenfrequencies coincide

”

o ] , ] When the relatiod’,>1I", takes place the form of, in a
isfied simultaneouslyt'>\,, butA,>I'y. This can happen ;icinity of the frequencywy, is mainly determined by a high

if I'y>2I'4. Though such a form of the frequency depen-,nq yide resonance peak|~ x[,). Parameters of the peak
dence resembles the case when the gap is opened, in (3@, fically do not depend on the distance to the crossing-
considered situation it has an absolutely different origin..cconance point. But the form of the weak narrow peak,

These two maxima appear here due to interplay betweefyyich is situated neaw, and is proportional ta 2, changes
positive and negative terms in EQ0), both of which have dramatically depending on the differencg,— w,. In the

the prominent resonance form with the same resonance fre- / " : ;
. X : . —wy|> >
guency, but different signs and widths of the petdee Fig. %%Sewb @a| rb one hasy, Xbo and the imaginary part
bb1 of the coupling-caused correction ¢ becomes propor-

2). This phenomenon has been predicted in Ref. 6 and o | " h he diff d h
served in Ref. 7 in the frequency dependence of the magneth©"! 10 Xao- When the di erencéwy — w,| decreases the

susceptibility of a ferromagnet in the region of the coinci- term proportional toy,, begins to play the main role. When
dence of the NMR and FMR frequencies and has beehwh— w, reaches the value df, (in this caseyyo=~ xpo) the
named electron-nuclear magnetic resonafftéMR). form of the narrow peak situated near, becomes mainly
Let us considery, in a more general case when, can  determined byyy,, i.e., it has approximately equal positive
differ from wy,. If \2<T,I',, we can use the approximation and negative components. Further decreasingeqf- wy)|
suggested in Ref. 8, where the more general analysis of theads to the full redistribution of the magnitudes of the com-
ENMR phenomena has been done. The susceptihiljtgan  ponents and in the region of the crossing resonance the sec-
be approximately represented as a sum of two terms witlend peak becomes negative
resonancelike behavior \2
n__.no_ n2_n
A2 Xo™Xb0™ 70y, Xb0Xa0: (24
Xb™~Xbot 75— Xb1- (21) _ o _
a*b To clarify a nature of the phenomenon it is instructive to
The first term here is the initial susceptibility,, and de- consider the phases of the oscillations associated with the
scribes resonance at its “own” frequenay,, while the sec- “own” and the coupling-caused terms in the susceptibility.
ond one is caused by coupling and represents the reflectidret us denote them by, and 8y, respectively:
of the resonance behavior of tigeoscillator in the response

"

of the ¢ oscillator. The second term can be presented in the X Xb
o ¢ P =",  tandy =" (25)
Xbo Xb1
' _ r2_.nm2 ’ -2 ’ no_n 22 . .
Xb1=(Xbo" ~ Xb0") Xa0™ 2XboXb0X a0 (22) For the phase differences= 8,;— 8pp One can derive

from Eqgs.(25) and(23)

Xb1= (Xbo” = Xb0") Xa0 T 2Xb0oXboX a0+
L I . o(I'3+Tp) = (0 l'p+ wpl'y)
wherey,o and o are the initial susceptibilities of the fields tano= . (26)

¢ and i, respectively (0~ wa)(0—wp) —Tal'y

In Fig. 3 the dependenc® on w is shown for the case of
e (23) the crossing resonancew{=wp=w,). One can see that
w—wp—il'y 6=—m whenw=w,. It means that the oscillations associ-

Qa Qb

Xa0= Xbo=

w—wy—il'y’
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ated with the “own” resonance and the coupling-caused oneg<p2(x)>:1] random function. Stochastic properties of the

are in the opposite phases. Therefore, it makes sense to c@linction are characterized by the normalized correlation
the phenomenon by the antiphase crossing resonance. It myghction

appear on the diagonal component of the susceptibility of the

oscillator with the greater initial damping, when both condi- K(r)=(p(x)p(x+r)). (3D
tionsI'>\ and Eq.(18) are fulfilled.
The diagonal componeng, of the oscillator with the Let the external dc magnetic field and the axis of anisot-

narrow resonance peak on the wide weak background resuline equilibrium direction of the magnetization, then, also

ing from the contribution of the second partner oscillator. gincides with thez axis. We consider the excitation of the
This situation can be described by the same Q) if one  medium by bulk forced, and f, with the first of them af-
interchanges indexes— b. . _ fecting the elastic subsystem and the second one influencing
Off-diagonal components of the susceptibility determinéihe magnetic subsystem. We assume that these forces are
the exc_hange of energy between the oscnlators. They havﬁerpendicular to the axis, therefore onli andy compo-
more simple frequency dependence than the diagonal comyents of them have nonzero values. Linearizing the system
ponents. Whe_n the gap is closed thelr_lmaglnary parts hav&S) with respect to the small deviatioma(x,t) from the
only one maximum, and when the gap is open they can havgyyilibrium direction of the magnetization, one can obtain
two maxima if an additional condition holds: the following integral equations for Fourier transforms of
=m.+ =Y.+ .
)\,2>2(F§+F§). 27 circular componentsn. =m,+imy andu. =u,*iuy:
i ygM?

(w_fk)m+_ 2

Il. SUSCEPTIBILITIES FOR MAGNETOELASTIC DICR
Excitations in a magnetoelastic medium are governed by
the system of Landau-Lifshitz's equations for magnetization >
and equations for elastic displacements

f [kqu(ky)+ k1+Uz(k1)]P(k_k1)dk1} =wmhy,

Mz — ol M aH+a oH i ygM?
-9 oM T ax a(aMIax) | |’ (oFe)m_+—
. d JH
Gui:a_xi W” (28 X f[klzu_(kl)Jrkl_uz(kl)]p(k—kl)dkl =wmh_,
whereM is the magnetizationy;; = 1/2(du; / 9x;+ du; / 9x;) MK s 2
is the matrix of elastic deformationg, is the gyromagnetic 2 12 1yMK,; - W Wy
parameter, an is the density of the medium. ("= e Ui+ —5a COS O+ i f 02— o2 D
We consider that our system is an elastically isotropic
ferromagnet with single axis magnetic symmetry axis, so that iyMk, . w’— o}? 5
the corresponding magnetoelastic potential enétgyakes + =G sinf g e” % 1— —— | d_=Qgf |
the form @ %
1 1 1 i yMk w’— wf(z
HZEQ(VM)Z— EB(MH)Z—HM'f‘EdlUﬁ ((oz_w}(z)u7+ G z C0520k+5ir120km o
k
14 + + pomM 29 i yMk o’ ol
> 2(Ujj Ui+ uj;ujp) 2 (X)MM;u;; . (29 i 7’26 z sin20ke2i¢k[1— : Ikz ¢+:Qﬁf7,
w _(,l)k
Here « is the exchange parametg?,and n are the magni-
tude and the direction of the axis of the magnetic anisotropy, MK
respectivelyd; andd, are the elastic LameoefficientsH is (02— wl2)u,+ VK, SiN26,cosfy —
the magnetic field, anB(x) is the magnetoelastic parameter. 4G
Magnetoelastic resonance in the homogeneous medium with |
P=const is well studied® According to the model of _ -l e
DICR we assume that the mean value of the magnetoelastic —Sin 6,cosXy o ol? (e %P, +e%P_)=0,
parameter is equal to zero, and the parameter can be pre- k
sented in the following form: (32
P(x)= yp(X), (30) where®d .. =fmt(k1)p(k_ kl)dkl

Heree,, oy, andw, are the initial dispersion laws of the
where vy is the rms fluctuation of the magnetoelastic param-spin waves, transversal, and longitudinal elastic waves ac-
eter, andp(x) is the centered(p(x))=0] and normalized cordingly:
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€= wo+ awyk?, All these terms are averaged to zero for regular inhomoge-
neities characterized by symmetric distribution function. One
wi'=vy K, (33  can conclude, hence, that off-diagonal components of the

averaged susceptibility matrix are equal to zero in the case of
wherewo=g(H+ B8M), woy=9gM, ut2=d1/G, andv|2=(d2 DICR unlike the usual crossing resonance in homogeneous
+d;)/G; vy and v, are the speeds of the transversal andmaterials:
longitudinal elastic waves, respectively.
A bulk force exerting upon the magnetic subsystem is the (my) (ug)
magnetic componerit of the electromagnetic field. An elas- Xsu™ Ve =Y Xus* T T 0. (39
tic exciting force is written in the form of22f, where the
parameter), is chosen to have the dimension of the fre- The diagonal components of the susceptibilities can be found
quency, then the amplitude of the foréeis measured in in terms of the averaged Greens functions of Kgd)
units of displacements. When these forces are absent Egs.

(32) turn into the equations for eigenfrequencies. The e%i‘gen- (ug) 05

frequencies of the system have been considered earlier. Xu= Vi - T2 w22 K

[Note that there are misprints in the equations for eigenfre- (@ W™ i 20 Qu(@ k)
guencies in Ref. 2: the imaginary unithave been missed in (my) °

front of integral terms. The correct form of these equations U . AP M _ (36)
which has been considered in Ref. 2 can be obtained from he o—il's— e~ Qs(w,k)

Egs. (3.2) at h=f=0] In what follows we use the s_calar The mass operato®g andQ,, describe the influence of the
approximation for elastic waves assuming thatv,=v

and neglect terms describing nonresonant interaction b inhomogeneities on the waves. Calculating these operators in

tween the elastic and the left-polarized spin waves. Withir(?[he first no.nvar_nshlng orQer of the perturbation the@gur-
UL . . ret approximatiott), we find
these approximations the coupled equations for elastic waves

and right-polarized spin waves read as o _)\2 S(k—k;) »
[(0—iT )2 w?]uy Y4 0-iTs—egq
B 7/2|\/| szij kZZUkZP(kl._ ko) p(k—Ky) dik,dk, :& (ki"' kiz)S(k— Kq) i -
4G a)—IFS—Ekl ST 4k (w—iFu)z—wﬁl 1
_iyMaoyk, hklp(k_kl)dk L2 where \2= y’MZwy o /(Gv?). The functionS(k) in Egs.
4G w—ilg— €k, 1T ulke (37) is a spectral density of the inhomogeneities, which is the
Fourier transform of the corresponding correlation function
2012 K(r).
. Y WM .
(o—iTg—e)my— g Let us choose the standard exponential form of the corre-
lation function to characterize the inhomogeneities:
f (ki+ki)mkzp(kl—kz)mk—kl)dk »
X ) 10K3 — a—ker _ = c
(0=iT= 0y (nme SWeSiEer @
i KizVi,p(K—Ky) Herer. andk, are the correlation radius and the correlation
:§7M “’MQuJ —(w—iF 12— 5Kyt oyhy. wave number of the inhomogeneities, respectively, which are
u Ky

related to each other dsc~rgl. Integrals (37) with the
(34 spectral density given by E38) have been calculated in the
previous investigations of the dispersion latBarticularly,

Here we omitted the index+" at the variableam, , u, hy, for Q, at w>w, one has
u

andf, and added parametdrs andI’, in order to model the
initial damping of spin and elastic waves, respectively. \2/4

Equations(34) are to be solved by means of the usual Q.= . (39
perturbation theory with respect to the coupling parameter w—ils—ec— kn—2i V(o —iT's— wq)
Off-diagonal components of the susceptibility matrix in this ) ) ]
case contain only the products of odd numbers of the funchere k= wy ak; . The term with\xy, describes the con-
tion p(k) in any order of the perturbation theory. In the third tribution of the scattering into the total attenuation of the

order one can obtain, for instance, an expression of the forrdveraged wave. Assuming that this contribution is small
compared to the eigenfrequency, E89) can be reduced to

, f Ky k2 N p(ka— ko) p(ky—ka)p(k—ky) the form
Y

(0=iTs— g ) (0—iTs— e )[(0—iTy)*— o] A2 1
Qumz p— )
X dk,dk,dKs. w—iT'g — e

(40)
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where the effective relaxation paramel& is a sum of the initial damping in the spin subsystem and the relaxation due to the
scattering

Ii=~Tst2kVaoy(w—wg), (0>ag). 41

The expression for the second mass oper&@gohas a cumbersome form:

)\ZJ w§+K'2)+2iKp(w—iFu) Kp K
= — P lkp—i(0—iT )]+ —=[(0—iT )%+ wi+ k>
Qs Zwkl(w—iFu)z—wE—Ké—ZiKp(w—iFu) 2w§[ p 1 o] 4wi’[( w kol
2K, i (0—iTy+w)?+ K>
n p K u k p
X arcta-(-w_ir )2_w2+ 2 E n _I‘ — > 2 s (42)
u kT Kp (0—=iTy= o)+«

where k,=vk.. However, assuming that the attenuation isdifferent branches to appear at the crossing point have a dif-
small enough it can be simplified near the resonance freferent form for the elastic and spin waves, respectively,
guency to take the form similar to E10)

2 . AN2>(T*-T )2 N\>(T—T%F)2 (49)
QS%Z w—il* — o (43 These expressions generalize the corresponding results de-
rived in Refs. 1, 2 to include initial relaxatiods, andI's.
where the effective relaxation paramet&f is One can see that taking into account the initial relaxation
does not change the result of Refs. 1, 2 concerning the pos-
Ih~T+uk. (44 sibility for elastic waves to have the opened gap while the

L , N . gap in the spectrum of the spin waves remains closed.
Within the described approximations the diagonal compo To clarify the physical sense of the result obtained we

nents of the susceptibility take the form recall a more simple situation of the one wave field propa-

(U 02 w—e—il* gating in an inhomogeneous medium. Plane waves are not
k u k s ; ot ; ; ;
X — —————, the eigenexcitations in this case because of scattering from
fic 20 Dy(wk) the inhomogeneities. However, an effective homogeneous
- medium can be introduced, where plane waves are eigen-
_<mk> _ w—w il 45 modes, which correspond to propagation of averaged waves.
S hy om Dy(w,k) 49 These modes have a modified dispersion law and a finite
time of life as a result of interaction with scattered waves,
where which do not present in this picture explicitly. The averaging
2 of the stochastic integral equation in the Fourier harmonics
Dy=(0—w—il)(0—e—il'%)— e (46)  of the propaga_\ting fiel_d is one of the methods to introduce
such an effective medium.

One can see from the analysis made above that for the

47 DICR model the averaging produces in the inhomogeneous
medium two effective media, which are characterized by dif-

ferent parameters. The averaged elastic wave propagates in

Though these expressions have a form similar to that of X ; ; *
- : S e medium characterized by the parameigrandI'; , so
pressiong6) and(7) obtained for the model of deterministic that its dispersion law relax};tion an thelélsrusceptsibility de-

oscillators with damping, there is a remarkable dn‘ferencepends upon these parameters. The effective medium for spin

between them. For oscillators with a deterministic couplin - .

parameter the denominators of the different componegts %g/aves and, hence, all characteristics of averaged spin waves
* S :

the susceptibility coincide. At the same time the denomina- epend on other pgrametd?g andr’, . Propagating in tt_we|r

tors in Eqs.(45) are different. This difference is caused by own effective media, these averaged waves do not interact

he fact th D 1 diff irs of the relax. With each other. _ _
the fact thatD, and D contain d e*rent pairs of the relax The concept of two effective media allows us to use all

) . . i
ation parameterd,,, I'; andT's, T'y , respectively. In ac the expressions obtained in the previous section for deter-

cordance with this fact the dispersion laws of averaged elasﬁ]inistic oscillators in order to analyze the model of DICR.

EC \(/jv_?fves ?Tjd the gveragedt_spm. waves are also determln%ine has to discard only the expressions for off-diagonal
y diffierent dispersion equations. components, which are equal to zero in our case. When con-
D,(3,k)=0, Dy(@,k)=0. (48) sidering .the susceptibility, dispersion law, and da_\mping of
the elastic waves one has to Usg=T", andI',=T"} in the
The shape of the dispersion curves following from Egs.expressions of the previous section. When analyzing spin
(48) can be also considerably different for the elastic andvaves one has to accept fbg andI', expressiond™}; and
spin waves. Particularly, the conditions for the gap between's, respectively. For instance, Eg€l7) and (18), which

2
Ds=(0—g—iT)(w—w—il})— R



528 V. A. IGNATCHENKO, M. V. EREMENTCHOUK, AND L. |. DEYCH 57

determine the conditions, when two maxima on the curveshere¢, =T'— o, . =T+ 0, o=\Y4[—T).

X,(w) and y2(w) appear, take the form These expressions show that each of the susceptibilities is
a difference between two resonancelike terms, resonance fre-
) 4T%3 ) AT*3 quencies of which coincide, but amplitudes and widths dif-
ot 4. )‘r>ﬁ' (50 fer. The most considerable contribution it is due to the
st uoos first term, which has the shape of a narrow and tall peak

As another example let us consider the expression for théescribing resonance absorption of the elastic energy. The
SUSCGptibi”ty, when the gap is closed for both the elastic an@GCOﬂd term in the considered situation is almost negllglble
Spin waves. This situation seems to be more ||ke|y for Stanln contrast to that, the spin—wave SUSC@ptibi"ty is determined
dard zero-mean-magnetostrictive amorphous ferromagnetBy both terms in Eq(52). Their frequency dependence mani-
though one can also find materials where the gap in the speéests the typical structure of the antiphase resonance with a
trum of elastic waves could appear. Under the natural asveak but narrow reverse elastic peak on the background of

sumptionsI's>T"* we obtain for the elastic susceptibility ~ Wide and strong magnetic resonariégy. 2). It is clear from
Egs.(51) and(52) that experimental study of both the elastic

P ! & and spin-wave susceptibilities allows us to determine the ma-
Q.= 1+ — T jor stochastic characteristics of the magnetostriction param-
u Is—Tu/(0—w)"+ & eter — the rms fluctuatiory and the correlation radius. .
We would like also to note that though DICR has been
Iu &+ (51) studied in this paper for the case of magnetoelastic reso-

nance, the results obtained can be applied to crossing reso-
o _ . . nances of any nature if the mean value of a coupling param-
where £, =I5 —oy, & =Lytoy, oy=AN74s—Ty). oo js equal to zero, and the conditions of the Bourret
The expression for the spin component of the Suscept'b'l'%pproximation are fulfilled.

takes the form

Fg_ru (w_wr)2+§+'
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