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An Ising model with competing interactions is used to study the appearance of incommensurate phases in the
basal plane of a hexagonal-close-packed structure. The calculated mean-field phase diagram reveals various
1g-incommensurate and lock-in phases. The results are applied to explain the basal-plane incommensurate
phase in some compounds of tAéA"BX, family, like K,MoO,, K,WO,, Rb,WQO,, and to describe the
sequence of high-temperature phase transitions in other compounds of this {&01$3-182608)03909-3

I. INTRODUCTION of the lattice and is provided by the in-plane NN antiferro-
magnetic interaction. We show that this frustration, being
The microscopic origin of incommensurate phases in ferstabilized by the out-plane NN interaction, gives rise to in-
roelectrics, magnetic materials, binary alloys, and other recommensurate phases with the modulation vector lying in
lated systems has been a subject of interest since the eatlye basal plane. We also study the phase diagram of the
1960’s (for a review see Ref.)1It is now well established system when small out-plane NNN interaction is included
that incommensurate modulation in the majority of thoseand show that it leads to a rich sequence of phase transitions.
systems is caused by the frustrating competition between diffhe used mean-field consideration is complementary to the
ferent interatomic or interspin forces responsible for strucprevious cluster-approximation studies of the hcp-Ising
tural or magnetic ordering. modef®! and of the related hexagonal honeycomb-lattice
The first approach proposed for studying frustration-Ising mode[:2
induced incommensurate phases was based on the axial next-Our interest in the hcp-Ising model is provided by the
nearest-neighbor IsindANNNI) model with competing transition sequence in several iomd A"BX, compounds
uniaxial nearest-neighbofNN) and next-nearest-neighbor where the orientational ordering &X, tetrahedra drives a
(NNN) interactions in which the structural units have beenseries of structural phases including incommensurate $tates.
described by binary Ising pseudospin variadiésDepend-  The variety of transitions can be explained on the basis of the
ing on the coupling parameters and temperature, this mod@jcp-|sing model where the orientational states3of, tetra-

was shown to exhibit a rich diagram of commensurate anghedra are described by two discrete Ising variables as pro-
incommensurate modulated phases when the wave VeCtBE)sed by Kurzyski and Halawa®* The review of the re-

jumps between rational and irrational values of the
reciprocal-lattice period, a phenomenon known as a devil’
staircase.

A large variety of incommensurate systems is adequatel
described by the ANNNI model and its analogous moééfs.
The common feature of these models is that the modulatio
occurs in the uniaxial high-symmetry direction. There are,®S: . :
however, examples of incommensurate phases where the 1€ Paperis or,ga},mzed as follows. In Sec. Il the structural
wave vector is perpendicular to the high-symmetry axis androPerties of theA’A"BX, family and the motivation of the
can occur in more than one equivalent direction. The appeaficP-ISing model are considered. In Sec. Ill we treat the frus-
ance of this kind of incommensurate modulation was studiedrated hcp-Ising model within the mean-field approximation
for the simple cubic lattice with competing NN and NNN in order to demonstrate the appearance of basal-plane incom-
interactions along the cubic axes and their diagohfdsthe =~ mensurate phases. We derive the phase diagram of the sys-
simple hexagonal lattice with NN and NNN interactiéh§, tem and discuss their relation with the low-temperature
and for distorted triangular lattice with only NN interactidn. cluster-approximation diagram of Refs. 10-12. In Sec. IV

In this paper we employ the mean-field approximation towe discuss the application of the obtained results to the ex-
study the Ising model on the hexagonal-close-padkeqh) perimental properties oA’ A"BX, compounds at high tem-
lattice, where frustration is uniquely related to the topologyperatures.

cent studies of the two-spin Kurzgki and Halawa model is
Yiven in Ref. 15. We demonstrate that the rigorous treatment
of the model explains the experimentally observed basal-
}Slane incommensurate phases in sémMA”B X, compounds
ﬁtnd several other features not explored in the previous stud-
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Exploring the Ising model, we use the formal terminology
of magnetic systems. The properties AfA"BX, com-
pounds are characterized by the electrostatic interaction of
BX, tetrahedra. Consequently, the para-, ferro-, and antifer-
romagnetic terms of the Ising model correspond to the para-,
ferro-, and antiferroelectric terms fé¢’ A”"BX, compounds.

II. COMMENSURATE AND INCOMMENSURATE
PHASES IN A’A"BX, COMPOUNDS

The structures and transition sequences inAh&"BX,
fsarr]mlﬁ V\ﬁreAg:fér;(bed In det?j” N thg review taréICﬁe]é' FIG. 1. Ji,, JoueNN and J;; -NNN Ising interactions in hcp
or )2/’, © 4 Compoun ifan )€ presented as a Selﬁtructure. We use the orthogonal unit calb,c with b=a /3.
of BX; tetrahedral anions and”™ cations that are regu-
larly placed in the sites of a hcp structure. TAE" cations plane and in the NN basal planes, as shown in Fig. 1.
form a simple hexagonal lattice. In the high-temperature region the planar orientation of
The order-disorder transitions in these compounds are rgne g, tetrahedra is disordered and the corresponding pla-
lated to the ordering of degenerate orientation8 ¥ tetra- ¢ gpin variable is equal to zero. Thus, in this region, the
hedra in theA’ A" matrix. A possible degree of freedom is kyrzyfski and Halawa model is effectively reduced to the
apexes and an another one by the planar orientation of thgientations are described by the spin variaBle + 1. The
tetrahedra. Orientational ordering of the tetrahedra breaks t"\%llowing analysis will be restricted to this region.
initial hexagonal symmetrnyP6;/mmc and leads to a se-  Tg interaction between tetrahedra has an electrostatic na-
quence of structural transitions when temperature decreasqgre. The uniaxial anisotropy of the hcp lattice induces dipo-
In the Kurzyrski and Halawa mod&l the vertical and planar  |ar moments oBX, tetrahedra parallel to the axis. There-
orientations are described by two coupled binary spin varisore  the interaction between the NN tetrahedra is
abl_es, the orlentatl_onal o_rderlng being provided by the interyominanted either by their induced dipolar moments or by
action between neighboring tetrahedra. The ground states gfyrinsic octupolar moments. In both cases the interacipn
the related two-spins .Ismg Hamiltonian were_shé?/\m COr-  hetween two NNB X, tetrahedra localized in the same basal
respo/nd” to the experimentally observed variety of phases iBjane favors opposite vertical orientations and therefore has
the A"A"BX, compounds. ,Tr),ere is a common hierarchy ing, antiferromagnetic nature. In contrast, the sign of the NN
the transition sequence &f A"BX, compounds. The verti- 4yt plane interactiod, depends on structural details of the
cal orientational ordering occur at higher temperatitgsi-  gystem like, e.g. the ratio/a, effective charges, etc. Thus

cally of 600—900 K than the planar ontbelow 600 K.~ \ye consider both the cases of the ferro- and antiferromag-
A characteristic feature of’A"BX, family is the exis-  ,atic interaction fO gy

tence of the incommensurate modulations associated with The mean-field minimization of the free energy given in

tetrahedral orientation that often appear as intermedialghe next section shows that the incommensurate structure
phases at structural transformat_lons. They can be related €iyes exist in a certain region of interaction paramefgys
ther to the planar or to the vertical orientational degrees of 4 ; .. It appears, however, that the account of only NN

. . out- H 1
freedom of the tetrahedra and occur in the low- and in th&nieraction leads to a degeneracy between different phases.
high-temperature regions, respectively. To remove this degeneracy, we introduce the weak out-plane

The incommensurate phases of the first type have be%ﬂteraction\]’ between NNN tetrahedra. We show that this

H N 14 out
observed in a great num_ber A BX4_ compounds. interaction results in structures that are found experimen-
They have the modulation vector directed along th

pseudohexagonal axis. The appearance of this kind of incoﬁlt‘:i”y'

mensurate phase was proposed to be related either to a spe-

cific antisymmetric interaction of the planar orientations of

tetrahedra in the unit céft*®~*%or to ANNNI like interaction We use the Ising spin variab&= =1 to explore the idea

of the tetrahedra in neighboring basal plaftés. about frustration-induced basal-plane incommensurate
The incommensurate phases of the second type are thhases. The Hamiltonian is written as

subject of the present study. The modulation wave vector

associated with the vertical tetrahedra orientation has the in- 1

commensurate component directed in the basal plane of the H= 52 JijSS;, (N

hcp structure. This phase occurs in alkali molybdates and N

tungstates KkMoO,, K,WO,, Rb,WO, in the temperature where

interval of 590—750 K°22There is no consistent explana-

Ill. MODEL AND RESULTS

tion of this kind of incommensurate phase although several Jin  for the NN in-plane sites,
ideas were proposed in Ref. 14. In this work we explain the .
appearance of the basal-plane incommensurate structure as a Jij=Jou  for the NN out-planesites,

result of competitive interactions between the vertical orien- , )
tations of neighboring tetrahedra localized in the same basal Jour  for the NNN out-plane sites, @
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FIG. 2. Phase diagram of the hcp-Ising model as function of the
. . Pmnn Pmcn
NN and NNN interaction parameters=J,/Ji, and A =3,/ Jin - I ( ) V¢ )
Solid lines correspond to the phase diagram just below the transi-
tion from the paramagnetic state. Commensurate phéasesan e * ° e * °
numbers and corresponding symmetry group® also enumerated O o ® . O ® o O . ®
in Fig. 3 and in Table I. Incommensurate phases are given by their
wave vectors @, ,q, ,0.). Dotted lines present the phase diagram at o © . . o ® R S
T=0. Note that phases Xll and XIlII existing a&=0 can appear
P g PP XII (Pbca) XIII (Pbna)

from the paramagnetic states only via an intermediate incommen-
surate phase. We also show the possible localization of some

FIG. 3. Spin patterns of the commensurate phases that appear in
A’A"BX, compounds.

the hcp-Ising model. Large and small circulus correspond to the

. . . . . . spin sites in alternating planes of hcp structure. The corresponding
as shown in Fig. 1. The negative and positive sign of inter{g.cin vectors are given in Table I.

action constants correspond to ferro- and to antiferromag-

netic interactions. As discussed in the previous section, Wenportant observation given in Ref. 12 is that the infinite

assume thal;,>0, and thatl,, andJ,,, can take both posi-  number of other degenerate ground states exists along these

tive and negative values. It is convenient to introduce thejnes. These states become stable at finite temperature due to

driving dimensionless parameters=Jo,/Jin; N=Jo/Jin,  the entropy factor. The finite-temperature cluster-

the last one being assumed to be smaller than one. approximation study shows that the phase sequence can be
Note the following properties of the Hamiltonidh) that  quite complex(see Ref. 11 and references thejein

will be used later(i) When the ground state for some inter-  The low-temperature approach is useful when the values

action parameterg, \ is known, the ground state for «, of the spins are assumed to take a fixed value of eitheror

—\ is easily obtained by inversion of signs of the spins in—1. Close toT,, the fluctuations of spins are important and

alternated planesii) The three-dimensional hcp-Ising model the absolute value of the average=(S)) can be substan-

can be mapped onto a two-dimensional honeycomb hexag@ially smaller than 1. To consider this regime, we minimize

nal lattice Ising model with NN, NNN, and NNNN the free energy3) within the mean-field approximation, the

interactions® _ ~ variableso; being considered as variational parameters of
~ The ground state of the system is found by the minimizathe model. The standard mean-field treatrfitgives the fol-
tion of the free energy: lowing expression for the free energy:

F=—KT In Tr exp(—H/KT). 3

o _ F=1S 3o +KTY, f tanh lsds (5

At T=0 the problem reduces to minimization of the Ising 24 i Jo

energy (1/2EJ;;SS; over all the possible spin configura-

tions. The effective procedure for solving this problem was In the vicinity of the transition, the absolute valuesmf
developed in Ref. 10. Using the mapping honeycomihcp ~ are much smaller than 1. Expanding E&) in a Taylor
lattice and adopting the results of Ref. 10 to our variablesseries we obtain the Ising-like expression with additional
we find that six phases: I, II, Ill, V, XllI, and Xll(in the  nonlinear termsari“:

notations of Ref. 1pwhose structures are shown in Fig. 3,
occur atT=0. Their energies per one spin are kT 1 kT

g p p F:?E O'?"‘EZ JijO'iO'j"r‘Ez O'i4. (6)
Ei=Jin(3+3k+3\), E;=Jin(3—3xk—3\), ! Y !

Note that, unlike the discrete Ising spis=*+1, the vari-
ablesa; sweep the continuous spectrum betweeh and
o . 1. —1. Expression(6) with arbitrary coefficients is frequently
Bxir=Jin(=1Fx=0), B =Jin(=1=k+X). (4 o as a starting phenomenological functional for consider-
The coexistence lines of these phagwown in Fig. 2 by the ing of incommensurate phases in systems with competing
dots are defined by the equilibrium of their energies. Aninteractions:5-84We use this expression as a basic func-

En=Jin(—1+x—3N), Ey=Jin(—1—k+3N),
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tional that provides the phase diagram of the system. Thevhere the upper sign correspondgte=0 and the lower one
critical temperature of the transition is given by the highestto g.=2#/c. The modulation vector

value of T where the functiona(6) first becomes unstable
with respect to formation of the pattern of nonzera

Let us calculate the critical temperature and the phase

1+k
|

2
qazaarcco%Zim\

diagram below the transition as a function of the interaction

parameterse,\. It is convenient to work with the Fourier
transformed variables = X;o;exp(qr;). Fourier decompo-
sition of Eq.(6) gives the following energy per one spin:

kT
f= TE (O'qo'—q)2

1
EE (kT+23(q))oqo g+
q q

J’_

kT
vy (7)

Oq0 _q0q'0_qg’,
q;q/ q q-q q

where

J(q)=JisL&’ (n;j—nj) + ke(N;)cosd,+Ne(2n;)cosd,],

and
e(n;j)=cosqn,+cosqn,+cosqgns,
g'(nj—n;)=cosq(n;—n,)+cosq(n,—ng)
+cosq(nz—nyq).

We take n;=(0/3,0), n,=(a/2,—b/6,0), nz=(—a/2,
—b/6,0) as shown in Fig. 1.
An important assumption was made that expressgion

changes fromg,=0 (lock-in phases | or )l to q,=27/a
(lock-in phases V or lI).

The critical temperatures for the phasesq®) and
(0,0,,27/c) are given by

KTy /Jin=—4[ = 4Ax*+4x3+ (k— 2N ) X2+ 4(+ k—3)X

F(k+N)+1], (11

where

x=*+{(—=3+2\)+[(—3+2\)>—8\(k+3)]"3/8\.
The modulation vector

2
g, =-arccox

b
changes fromg,=0 (lock-in phases | or )l to q,=2/b
(lock-in phases V or I\

The incommensurate phases can exist only in that region
of parameters and\ when the arguments of arccos in Egs.
(10) and in(12) are between+1 and—1.

Depending on the interaction parameterandX, all four
incommensurate phases can be stable. To find the regions of
their stability one should compaiig,.= Tib with the critical

(12)

contains no umklapp terms provided by commensuratéemperatures of the lock-in phases I, II, 1lI, V, XII, and XIII.
modulation of the lock-in phases. Actually, the only phasesThe later is found directly from Eq6) since the necessary
that give this contribution are these with modulation vectorsummation2J;;ojo; was already performed when calculat-

g=(0,0,0), (0,0,2r/c), (0,2m/b,0), (0,27/b,27/c). Their
spin configurationo; corresponds to the states |, II, Ill, and
V of Fig. 3 with equal in-site amplitudes=|q;|. Free en-

ergy of these states will be calculated in a more direct way

later.

The finiteq incommensurate structure becomes stable

when the coefficienkT+2J(q) is negative. Softening of

kT+2J(g) occurs simultaneously in several symmetry
equivalent points of thg space. The resulting state is pro-
vided by the superposition of the corresponding degenerate

plane waves that can give either @ ktripe phase, or a

multi-g, double-periodic phase. Later we will show that the

1q phase is more preferable. The modulation amplitutglés
a complex value satisfying-qzaiq. Since the functional
(7) does not lock its phase we considey to be real.

ing Eq. (4). For the free energy of the lock-in phases we
obtain

1 ) kT 4
fcom=§(kT+2Ecom)0' + —0",

12 (13

whereE ., is the energy4) of corresponding commensurate
phase afT=0. The critical temperatures of transitions are
given by

KTcom= — 2Ecom- (14)

After calculation of the maximal critical temperature from

Tib and T.,,, we obtain the resulting phase diagram as
shown in Fig. 2 by solid lines. The symmetry of the diagram
with respect to the change of sign of both interaction param-

The transition temperature and the modulation vector aretersx and A follows from the property(i) of the Hamil-

defined bykT,.= —min;,2J(q). We found that thej, com-
ponent of the modulation vectay is always commensurate
with the reciprocal-lattice vectoc* =2#/c and takes the
values of either 0 or 2/c. The incommensurate modulation
appears in the basal plane along eitherdaher b symmetry
directions. Four incommensurate phasesq,,@,0),
(94,0,27/c), (09,,0), and (Qg,,27/c) are possible.

The critical temperatures for the phases,,0,0) and
(94,0,27/c) are given by

(k—2\)?

KTl In=—732x

+3, 9

tonian(1).

To follow the evolution of this diagram when temperature
decreases one should solve the infinite system of the coupled
nonlinear variational equations obtained from the mean-field
functional (5). The rigorous solution of this problem is be-
yond the scope of our study. However, qualitative aspects
obtained in a more simple way are discussed below.

Note, first, that the stripe region of incommensurate
phases in Fig. 2 appears at the same place where the infinite
degenerate lines of phase transitions are predicted by the
cluster calculations aT =0 (dotted lines. This indicates,
similarly to the ANNNI modeP the devil’s staircase behav-
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KT/ in TABLE I. The lock-in wave vectorsd, ,q,,q.) and space sym-
16 N C*=2TC/C / metry groups of the commensurate phases appearing in the hcp-
1 Ising model(see also Fig. B The correspondence between the no-
tation of Ref. 10 used also in this paper and the notations used in
Ref. 13 are given.

P
(P6;/mmc)

84 Notations Notations Lock-in vector Symmetry
__ (Ref. 10 (Ref. 13 (Ga.b.0c) group
I i, X1 NS4 N | FP (0,0,0) P6smc
0 @ I AP (0,0,27/c) P3mil
(P6;me) oveay | gy | P3mD) 1 cp (0,27/b,0) Pmnn
\ BP (0,27/b,27/c) Pmcn
-4 2 0 2 K 4 XIl (7/a,0,0) Pbca

FIG. 4. Phase diagram of hcp-Ising model as function of the NN<!!! (w/a,0,2m/c) Pbna

interaction parametex=J,,/J;, and the reduced temperature

kT/J;,, when the NNN interactiod/ ,=0. The transition from the

paramagneti¢P) state to the commensurate ph&ssman numbens f. _} n E(T—T- )2 (16)

occurs either directly or via intermediate incommensurate phases ne= 22n-1T et

(92,0,0), (@.,0c*). Dashed lines correspond to the Kursihand

Halawa[Phys. Rev. B34, 4846 (1986] phase diagram. The*  Note that Eq(16) is minimal whem=1, i.e., 1q is the most

expansion of the free energy used for the construction of this diastable incommensurate phase. Comparison of(E@). at n

gram is applicable above the dotted line. =1 with the energy of corresponding commensurate phase
obtained from Eq(13), by minimization overs

ior of the transition sequence beldWw,.. An infinite number K
of lock-in phases, where the wave vector jumps between feome— = =(T—Teom? (17
different rational multiples of the reciprocal-lattice periods, 4T

appear at low temperatures. Their phase boundaries converges the phase sequence bel@yy.. When temperature de-

to the dotted lines af =0. Phases XII and XIIl that are creases, the incommensurate phase is stable up to the tem-
stable at low temperatures can appear from paramagnet&_:.rature

state only via intermediate incommensurate phases. The evo-
lution of the incommensurate phases when temperature de- To=Tp—(3+ \/5)(-|-mc_ Teor)s (18)

creases is shown qualitatively in Fig. 4 fdf,=0. The
analogous phase diagram obtained in Ref. 13, when the pogefined by the conditior,.=f.,,. Below T a first order
sibility of an incommensurate phase was not considered, iransition occurs to one of the commensurate phases |, Il, Il
shown in the same figure by the dashed lines. V, XIlI, or XllI. The region of |o|<1 where the above ap-
The phase diagram of Fig. 4 is obtained within the ap-proximations are valid is placed above the dotted line on Fig.
proximation when the nonlinearity of the functional is mod- 4. Below this line one can get only qualitative ideas about
eled by the quartic terms of the Taylor expansiGh and  the behavior of the transition boundaries.
when the harmonic plane-wave approximation for the modu-
lation is used. The incommensurate phase is described by a v, APPLICATION TO A’A"BX, COMPOUNDS
superposition oh harmonic plane waves with temperature-
independent modulation wave vector, corresponding to the We use now the results of the hcp Ising model with com-
symmetry equivalent points in the space and with equal Peting interaction to study the high-temperature phase tran-
real amplitudesr, . Either stripe phase with=1 or double- ~ Sitions in theA’ A"BX, compounds provided by the vertical
modulated phases with=2 or 3 are possible; in the¢@ orientation of the apexes of tH&X, tetrahedra. The calcu-
case;, 0, andqs form an equilateral 120° star. The har- lated mean-field phase diagraffig. 2) reveals various in-
monic approximation is as exact &ss closer toT;,.. Varia- commensurate and lock-in phases that appear just below the
tion of g and contribution of higher harmonics & T is  transition and at lower temperatures. Some of the commen-
expected to be small and leads to a shift of the phase boungrate phases, Il, 11l, and V) were discovered by Kurzgki
aries of the commensurate low-temperature phases towar@§d Halawd® The occurring commensurate phases, their
the lower temperature as it happens in the ANNNI mdd2l. correspondence with no_tatlon of Ref. 13, their lock-in wave
Under these approximations the energy of the incommenv¥ectors, and corresponding symmetry groups are enumerated

surate staté7) is written as in Table I. . .
Our calculations reveal the following features of the phase

diagram. The #j basal-plane incommensurate phases di-
n rected either in the or b crystallographic direction appear
fine=NK(T=Tino) o5+ §kTo;‘+ n(n—1)kTog, (15  inthe model. The direct first-order transition between phases
| and V and between phases Il and Ill is possible when NNN
interaction is included. The new phases Xll and Xlll can
or, after minimization over as occur at low temperatures.
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TABLE Il. The ratioc/a and the high-temperature sequences ofexamples see Refs. 4,14,25,26. Notably, &r the com-
transitions for severah'A"BX, compounds. A question mark sig- pounds of this group the ratio/a varies from 1.27 to 1.64.

nifies that either the information about the transitions at higher- (i) Located in the middle part of the Table Il are the
temperature is not available or the melting occurs. The basal-plane derlined d h th h&8ml (oh |
incommensurate phasec has the modulation vector (,,27/c). underiined compounds wnere the p ml (phase I)

occurs. Two of them, GSO, and RBSQ,, demonstrate the
c/a? Transition sequence reconstructive transitioRmcn—P3ml. Compounds of this
group have a similar ratio/a as compounds o).

K2ZnCl, 1.23 ...—Pmen-? (iii) Located in the upper part of Table Il are the alkali
K,WO, 124 --.~Pmen-Inc—P6;/mme molybdates and tungstates,Mo0,, K,WO,, Rb,WO,

K2CoCl, 1.24 ...~ Pmen=? (Refs. 20—22 that have the intermediate incommensurate
K,CoBry 1.24 .. .—Pmen-2 phase modulated along crystallographical directioriThe
K2MoO, 1.24 ..~ Pmen-Inc—P6z/mmc actual transition sequence there Bmcn—(0,gy,27/C)
Rb,WO, 1.25 ---—Pmen-inc—P6;/mmc —P63/mmc To our knowledge, there are no compounds

with an a-directed incommensurate phase, although this
K2SeQ 1.27 .~ Pmcn-P6;/mme phase already appears in the NN approximation. This group
Rb,M0O, 1.27 -*F’E‘“? has the smallest ratios/a=1.23—1.25. The other com-
KNaSO, 1.29 .~ P3ml-? pounds of this group, ¥nCl,, K,CoCl,, K,CoBr,, have a
CsWO, 1.29 ...~ Pmen=? similar ratioc/a but the high-temperature phaB&;/mmc
Rb,SeQ 1.29 ...—Pmecn-P6;/mmc was not reported. They can be candidates for the basal-plane
K2SO, 1.30 ...~ Pmen-P6;/mme incommensurate phase if the melting does not precede the
Cs;Mo00, 1.30 ...—Pmen=? Pmcn-Inc— P6s/mmctransition.
K2Cro, 1.30 ...~ Pmen=? (iv) Located in the lower part of Table Il are compounds
KoMnG, 1.30 ...~ Pmen=? that demonstrate the phaBé, that is a subgroup dP6;mc
NaLiBeF, 1.34 ...—Pmen-? (phase ). SeveralA’A"BeF, compounds and KLiMoQ
CsS0, 1.37 ...—Pmcn-P3ml-? with virtual P6;— P65 /mmctransition belong to this group.
Rb, SO 1.39 ...—Pmcn-P3mi1-? Two other compounds, KLiSQand RbLiCrQ, have the se-
CsLiBeF, 1.62 S —Pmcn—7 quenceP6;— Pmcn— P6;/mmc?’!* These are particular
CsLiSQ, 1.62 ...—Pmcen=? systems since the complete vertical ordering of the tetrahedra
RbLiSO, 1.64 ...—Pmcn=? occurs only in the room-temperature hexagonal pH6g

The orthorhombic phasemcnis characterized by a patrtial
KLiBeF, 1.64 ...—P63—7? vertical disorder of tetrahedra. These compounds reveal the
KLIWO, 1.65 ...—P63—Cubic reconstructive transitioh-V. They can probably be consid-
KLiMoO, 1.67 ...—P63—Cubic ered as an intermediate case between clag$emnd (iii ).
TILiBeF, 1.68 ...~ P63—? Compounds of grougiv) have the largest ratios/a=1.64
KLiSO, 1.69 ...—P6;—Pmcn—P63s/mmc —-1.70.
RbLiBeF, 1.69 ... —P6;—? Following Kurzyrski and Halawa? we assume that the
RbLiCrO, 1.70 ...—P63;—Pmcn-P65;/mmc sign and magnitude af,,; (and therefore ok) depend criti-

- _ _ — - cally on the ratioc/a. The interactionsl;, andJ/ are less
Since the ratioc/a for different compounds is given at dlffgrent sensitive to variation oé/a. Compounds of groupé), iii ),
tempgratures the error bars. are estimatect 8902 as the typical (iv) reproduce the phase diagram of Fig. 2 if one supposes
varlatlgn of thermal expansion. For compounds hav!ng an orthOzat \ < — 0.5 and thatl,,, changes its sign from negative
rhombic pmen - symmetry this ratio was estimated as (farromagnetigto positive(antiferromagneticwhen the hep
c/(ab//3)* lattice goes from its expanded along tbeaxis form with
c/a>1.63, to the contracted form wittYa<1.63. It is inter-
Table Il presents the high-temperature transition seesting to observe that the dipolar-dipolar interaction between
guences for several typicél’ A"BX, compounds and their two NN out-planeB X, tetrahedra changes its sign exactly at
correlation with the ratiac/a. (The data were collected on c/a=1.63. The value of the modulation vecigy in molyb-
the basis of Refs. 4,14,25,280nly few compounds reveal dates and tungstates is correlated with the raf@ in the
the high-symmetry parent pha&6;/mmc associated with following way: the smaller the ratio/a the moreq,, deviates
dynamically disorderedBX, tetrahedra. One can imagine from the lock-in value 2/b of the phasePmcn?? This
that in the other compounds the phd&®; /mmcis virtually ~ behavior is consistent with our calculatiofi2). Compounds
present above the melting point. of the group(ii) seem to have a positive and are placed in
According to their high-temperature transition sequencehe upper right corner of the diagram.
and to their raticc/a the A’ A"BX, compounds can be clas- It would be interesting to study the evolution of the phase
sified in a following way(see, also, Ref. 14 sequences i’ A"BX, compounds with a continuous varia-
(i) Located in the middle part of Table Il are the non- tion of the interaction parameters. One can achieve this, e.g.,
underlined compounds with the direct transitigeal or vir- by the application of uniaxial pressure along the hexagonal
tual) from the phasd®65/mmcto Pmcn(phase V. Only a  axes that slightly changes the ratita. In particular, one can
few compounds of this numerous group are given; for otheexpect to obtain the commensurate-incommensurate transi-
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tion, a-directed incommensurate phases, and the phase Xtwo transitions, with intervention of theg@modulated in-
with symmetry Pbca (or their subgroups The classical commensurate phase.
compound KSeQ, from group(i), having the smallest ratio In our consideration an interaction with elastic degrees of
c/a=1.27 could be a good candidate to achieve a LifshitAreedom that is known to be important in ferroelectrics has
point and a basal-plane incommensurate phase when submBeen neglected. We expect that this coupling breaks the dis-
ted to an uniaxial pressure. continuity of the transition fromP63/mmc to the low-
Another interesting result could be obtained by the applitémperature phase as it was observed in seveta'BX,
cation of an electrical fiel@ along the hexagonal axis that cOmpounds. The corresponding analysis is currently in
breaks the mirror-basal-plane symmet8/——S, in the  Progress.
Hamiltonian (1). This results in the additional invariants
EZ; o andEEicri3 in the functionalk(6). The first one slightly
favors the ferroelectric phase I. The second one gives the We are grateful to N. Speziali for discussion of some
additional third-order ternEX o4,04,043 in Eq. (7) where  experimental details. The work of I.L. was supported by the
the vectorsg,,q,,q; form the equilateral trianglécalcula-  Brazilian Agency Fundacao de Amparo a Pesquisa em Minas
tions are analogous to those in Rej. &his would lead to  Gerais(FAPEMIG) and by the Russian Foundation of Fun-
the splitting of the transition (Q,,277/c)—P6s/mmcinto  damental InvestigationdRFFI), Grant No. 960218431a.
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