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Disorder effect on melting transitions of vortex lattices with periodic pinning
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Employing molecular-dynamics simulations, we study the melting transitions in driven vortex lattices with
commensurability between arrays of vortices and defects. It is shown that the largest pinning effect can be
obtained for periodic pinning arrays at zero temperature, and either thermal fluctuation or disorder of pinning
array plays a significant depinning role in the melting transitions of the driven vortex lattices. As the pinning
sites deviate from the periodic array, the intervortex interaction is found to produce an additional depinning
effect on driven vortex lattices. Furthermore, enough disorder will result in a crossover from a first-order
melting transition to a continuous phase transiti@®0163-182608)09509-5

Many efforts have been made to increase the critical cur- In this work, using molecular-dynamics simulations, we
rent densityd, of high-T, (type-Il) superconductors by intro- investigate the disorder effect on the melting transitions of
ducing pinning centers into superconductbisn effective  driven vortex lattices interacting with triangular arrays of
flux-pinning mechanism is essential in order to minimize thecolumnar pinning centers. A rich variety of dynamical plastic
resistive losses through Lorentz-force-induced vortex moflow phases have been reported for periodic pinning
tion. The quenched defects, such as point pinning defect§ystems. To see clearly the disorder effect on the melting
columnar defects, and twin boundaries, usually form randonif@nsition, we focus our attention on the commensurate case
pinning arrays, which can pin down vortices against the Lor°f H/Hg= 17' in which there exist only two phases: pinned
entz force exerted on vortices by an electric current. With@"d flowing; with the onset of flow as the signature of the

increasing the Lorentz force, there is a melting transition of/©"€X mtelt'ng;rfgs't'QPﬁ Ittlst;ound It?lat,tfort.a pfr:'Od"_:t.p'n'
vortices from a solidlike pinning state to a liquidlike flow ning system aff =0 (without thermal fluctuation the criti-

state. It was recently reported that the regular arrays of pin(_:al Lorentz force for which the vortex lattice starts to melt is

ning sites can be produced in high-superconductors by maximized, and the vortex melting transition from a solidlike

ina lith hic techni i K odi bmi r[)inning state to a liquidlike flow state is a first-order phase
usmg2| ographic techniques 1o make periodic SUDMICTOn, , qjtiqn accompanied by a resistivity hysteresis. The appli-
holes? or by using well-controlled irradiation with high en-

; ; X . 34 cation of either static or dynamic disorder to the periodic
ergetic heavy ions to create linear tracks in regular arréys. pinning system plays an important role in depinning the vor-

Such periodic pinning arrays are found to produce higher ey |attice. We show that the critical Lorentz force decreases
than an equal number of randomly placed pins. with increasing disorder, no matter whether it arises from the
Experimental and numerical worksshow that the effec-  thermal fluctuation or the deviation from the ordered pinning
tiveness of pinning depends strongly on the commensurabibrrays. When the degree of disorder is large enough, the
ity between arrays of vortices and defects, the vortices beingesistivity hysteresis disappears and the first-order melting
difficult to move due to matching effect in the the commen-transition is replaced by a continuous glass phase transition.
surate cases of specific applied magnetic fieldis At It appears that the static and dynamic disorders have the
H/H,=1 whereH , is the field at which the number of vor- similar effect on the melting transition. The difference be-
tices N, is equal to the number of pinning sitég,, the  tween them is that enough thermal fluctuation can make the
vortex lattice locks into periodic pinning arrays and the pin-vortex lattice melt, while the static disorder alone cannot.
ning force is maximized. In real systems, however, such dhe increase of static disorder leads to a crossover from pe-
matching effect may be weakened by two types of disorderfiodic pinning arrays to random pinning arrays. It is found
static, due to deviation from the ordered pinning lattice, andhat following such a crossover, depinning effects are en-
dynamic, associated with thermal fluctuation. Both the dishanced due to the intervortex interaction.
tribution of pinning centers and the thermal fluctuation are of First, we consider two-dimensioné2D) interacting vor-
great importance in practical applications for obtaining largetices in the presence of triangular pinning arrays and thermal
J. of high-T, superconductors, as well as in studying thefluctuation. The quantized vortices due to penetration of the
dynamic phase transitions of the vortex lattice in the mixed@pplied magnetic field are perpendicular to the 2D plane. We
state. Much work has been done on dynamic phases in sygi0del the columnar pinning centers as Gaussian potential
tems with random pinning arrays. In the case of periodicvells with a decay lengtiRy;,.2~*° The pinning force is
pinning, although several dynamic phase diagrams were oliaken as
tained as a function of commensurability, pinning strength,
and spatial order of the pinning sittshe effect of thermal N,
fluctuation on the melting transition of a matching vortex Fo(ri)=—F OfOE ri_Rke)ﬁ _
lattice has not been addressed. P PR Ron

ri— Rk‘ 2
Rpin |
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wherer; represents the location of th¢h vortex andR,
stands for the location of th&th pinning site in the 2D
systemF ,f, denotes the intensity of the individual pinning
force. In our simulations all forces are taken in unitsfgf

=<I>(2)/87-r7\3 with @ the flux quantum and the supercon- )

ducting penetration depth. The repulsive intervortex interac- 5

tion has a logarithmic form in the 2D cddeand the inter- £

vortex interacting force is given by a

N
4 (ri - rJ)/)\
Foo(r) =Fuuofo X, ————, 2)
I 0 Ol.ii |(ri—r]-)/)\|2

whereF, of, denotes the intensity of the intervortex inter- 08 1.0 1.2 1.4 1.6 18
acting force and the cut length for this long-range force is Fiy

taken as 4. The applied driven force acting on the vortices
is the Lorentz forcelr, = JX ®,, whereJ is the applied cur-

. . . FIG. 1. Resistivity vs driving Lorentz force characteristics at
rent. Finally, the Brownian force due to Gaussian thermal

l/arious thermal fluctuation forces for increasing and decredsipg

ica i 0
noise is taken ds as indicated by solid and open symbols, respectively. Distributions
of pinning sites @) and vortices Q) in the solidlike pinning state
Fin= FthOfOE 5(t—tj)r(tj)(p—qj). () are shown in the left top.
]

. . . vortices remain pinned, forming a solidlike pinning phase.
HereFof o stands for the intensity of the thermal fluctuation The absence op reflects the pinned nature of the vortex

force, which is proportional to the square root of tempera-__,. L
ture.I'(t;) is a random number chosen from a Gaussian dis-Sond' ASFyy Is increased beyond a threshold valug, the

A . S vortices depin and there is a sharp jump uppias seen in
tribution of mean 0 and W'.d.th 1, whett}elat_)els thejth time Fig. 1. The dissipation arises from flux flow of the depinned
step.p=A/7 is the probability that the noise term acts on a

X . . i f vortex lattice. It is interesting to note that as the temperature
given vortex, where\ is the discrete time step andis the g P

mean time between two successive random noise pulses ainS increasedincreasingFy,), the jump ofp occurs at lower
g; is a random number uniformly distributed betwertjen 0 a'ndv lues off; and the magnitude of jump also decreases. An-

i i . . ; other salient feature is the resistivity hysteresis which ap-
1. ®(x) is the unit step function witl® =1 for x>0 and 0 y P

for X< 0. A it th d d i fth ¢ ears at low thermal fluctuatior{,,<3.0). The increasing
or x<0. As a resuft, the overdamped equation ot tné vortex, , 4 descreasing branches of the hysteresis exhibit asymmet-
motion is given by

ric behavior: a sharp jump in the former and a smooth de-
Vi =FL+Fy (1) + Foin(ri) + Frn, (4)  crease in the latter. The width of the hysteresis is maximum
at Fy,0=0, it decreases gradually with increasikg,, and
where 7 is the viscosity coefficient and taken to be unity. vanishes af,,=3.0.

In our simulation the equation is solved using the discrete The sharp jumps irp and the resistivity hysteresis ob-
time stepA in a 2D rectangular sample of the same numberfserved in type-Il superconductors have been considered as
of vortices and pinning sitesN[,=N,=320 with periodic  the characteristic of the first-order melting phase transition of
boundary conditions. The sample under consideration is aghe vortex lattice®'3 The present calculated results indicate
sumed to have perfect triangular lattice of pinning sites. Ifthat in the weak dynamic disorder limit-{,,<3.0), the
the spacing between the neighboring pinning sites is taken gshase transition is a first-order melting transition of the vor-
the unit of length, the sample size isX180y3. The other tex lattice, while in the strong dynamic disorder limf
fixed lengths and forces used in the simulations Byg >3.0), the transition is a continuous vortex-glass
=0.2,A=4.0,F,,0=0.25, andF,=4.0. The external cur- transition}* It then follows that there should be a tricritical
rent is applied along the direction in thex-y plane, so the point that separates the first-order transition from the con-
driving Lorentz forceF | acting on vortices is always parallel tinuous one. In Fig. 2 we show the dynamic phase diagram
to they axis, i.e.,F .=F_,. We have also employed the of the driving Lorentz force vs the thermal noise force, in
same numerical simulations on a sample of siz& 323  which the tricritical point(solid squarg lies between the
with N, =N,=1280. The calculated result is found insensi-phase boundaries of the first-order and continuous transi-
tive to the sample size provided the densities of vortices antlons. With the increase d¥y,, the threshold driving force
pinning sites remain unchanged. F. for the onset of the vortex motion decreases, indicating

We now study the influence of thermal fluctuations on thethat the thermal fluctuations are favorable to the depinning
dynamic phase transition of the driven vortex lattice in theand melting of the vortex lattice. Such a simulated result in a
commensurate case éf/H,=1. In the present simulation system with periodic pinning arrays is qualitatively consis-
the initial distribution configuration of the vortices is the tent with the theoretica! and experimental stud$on sys-
same as that of the pinning sites, as shown in the left top afiems with random pinning arrays. It is seen from Fig. 2 that
Fig. 1 where each vortex is attached to one pin. Figure Js the temperature is high enoughy is increased beyond
shows the resistivities as functions of the driving Lorentza critical valug, the vortex lattice may undergo a continuous
force F\, for different values of~,,. Thep vs F, curves glass transition in the absence of any external Lorentz force.
exhibit several remarkable features. At low drivikg, the  In the present simulation this critical forcd={,~6.3) is
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FIG. 2. Dynamic phase diagram with a triangular pinning lat-
tice. F, is the Lorentz force and,q is the thermal fluctuation
strength. & denotes the tricritical point separating the first-order
melting transition(solid line) from the continuous glass transition
(dashed ling

FIG. 3. Resistivity vs driving Lorentz force characteristics at
variousc! for increasing and decreasikg , as indicated by solid
and open symbols, respectively. Distributions of periodic pinning
sites @) and disordered one€)) for ¢ =2.0 are shown in the left
top.

found greater than that for a system with random pinnin%( i il ai ¢ " h ¢ ition. Th
arrays. It may be understood by the fact that the intervorte ransition witf give way 1o a continuous phase transition. 1he

interaction always impels vortices to have a homogeneougICrItICaI point IS found atcEz_O.25, as _s_hovyn In Fig. 4. 1t
distribution; for a periodic pinning system, this trend will Separates the first-order melting transitiolid line) from
partly counteract the depinning and melting effect due tdhe continuous glass transitiédashed ling As seen in Fig.
thermal fluctuation. This indicates that the periodic pinning®: the slope of the phase boundary for the formef (
arrays have more effective pinning effect so that they may<0.25) is much greater than that for the lattef ¥ 0.25).
increase the critical current of highs superconductors. Whenc{ is large enough, the pinning sites can be regarded
In what follows we study influence of the disorder in pin- as being randomly distributBao that the threshold driving
ning distribution on the melting transitions of driven vortex force tends to that in a system with random pinning array.
lattices. Particular attention is paid to the crossover from al'he simulated result shows that the regular array of the pin-
first-order melting transition to a continuous phase transitiorning sites has the strongest pinning effect, especially in the
with increasing disorder of the pinning sites. In order to de-commensurate cases. This conclusion is in good agreement
scribe the disorder degree of the pinning distribution we in-with the experiments.
troduce a dimensionless paramat@rdeﬁned as An important difference between Figs. 2 and 4 is that the
threshold driving force can be decreased to zero in Fig. 2,
CEZZ<|Ri _ Ri0|2>- (5 while it is saturated to a finite value in Fig. 4. This difference
stems from the fact that the thermal fluctuation alone can
Here R; is the location of theth pinning site in the real
system andR;, is the position of corresponding site on a
perfect triangular pinning lattice, as shown in the left top of
Fig. 3. BothR; and Ry are taken in units of the lattice
constant of the triangular lattice, and the random differences
(Ri—R;g) are assumed to satisfy the Gaussian distribution.
Evidently,c characterizes the magnitude of deviation of the
real pinning distribution from the triangular array. We em-

ploy molecular-dynamics simulations at zero temperature by
using the overdamped equatiofn=F_+F,,(r;) +Fpin(ri),

0.5

-_ critical point

S e,

where the thermal noise force has been neglected.

In Fig. 3, we show the resistivity vs the driving force for
cP=0, 0.1, and 0.2. In the case of periodic pinning, icg.,
=0, the threshold driving force at which the vortices start to
move along the direction df, is the largest. With increasing
cP, the threshold valud=. becomes gradually small. The
sharp jump inp atF; and the hysteresis gf shown in Fig.

Fio=0.0

0_0-.|.|1.x|.I---.I....I....I..‘.I|.
0.0 0.1 0.2

FIG. 4. Dynamic phase diagram with a triangular pinning lat-

. o .2 ice. F_, is the Lorentz force and? stands for the disorder degree
3 SuggeSt that the mpeltlng transition of the vc_)rtex lattice is Ofo pinrl;iyng sites deviating from thLe ordered lattice positi@h.dg-
the first order. Forc{=0.2, however, there is only & Very potes the tricritical point separating the first-order melting transition
small jump inp and the resistivity hysteresis tends to vanish.(solid line from the continuous glass transitiédashed ling The
It implies that with further increasing , both the resistivity  dot-dashed line stands for the phase boundary in the absence of
jump and hysteresis will disappear and the first-order meltingntervortex interaction.
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melt the vortex lattice, but the disorder in pinning distribu- pinning array is the strongest and that of a random pinning
tion cannot. In fact, the latter does not play a direct depin-array is relatively weaker.
ning role and its effect is to transform the periodic pinning In summary, we have shown that either the thermal fluc-
array into a random pinning array. For a system with randontuation or the disorder of the pinning distribution plays a
pinning array, the vortex melting still requires a thresholdsignificant depinning role in the melting transitions of driven
Lorentz force which must overcome the pinning force ex-vortex lattices with periodic pinning. Unlike the thermal
erted on vortices by random pinning centers. In the presertuctuation, the disorder of pinning array does not directly
simulation this threshold value is about 0%5. produce a depinning force. However, we find that in this
We wish to point out here that the intervortex interactiondiSOrder case the intervortex interaction provides an addi-
plays an important role in depinning the vortex lattice. Tot|onal depinning force exerted on the vortices. This gives a

see clearly this point, we numerically integrate the 0Ver_reasonable explanation why the driven vortex lattices with

damped equation of motion by neglecting the intervortex in-perIOdIC pinning have the strongest pinning effects. The dy-

teraction(taking F,,,=0). It is found that in the absence of namic phase diagrams obtained indicate that with increasing

F.. the threshold Lorentz force remains unchanged with thé:hsorder, regardless of being static or dynamic, the threshold

periodic pinning array being changed into a random one, driving force decreases gradually and the first-order melting

a = . "
shown by the dot-dashed line in Fig. 4. It strongly suggestgiﬁ;gglngsi;?placed by the continuous glass transition at a

that the intervortex interaction is the origin of the enhance-
ment of the depinning effect due to the disorder of pinning This work was supported by the National Center for Re-
array. This can explain why the pinning effect of a periodicsearch and Development on Superconductivity of China.
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