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Nature of the driving force on an Abrikosov vortex
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From an energy and force analysis based on known calculations on one and two Abrikosov vortices~AV’s !
using the London equation, it is found that the driving force on an AV is not a magnetic Lorentz force as
widely believed. In the low-j/l limit, the force is dominated by a kinetic rather than magnetic interaction, and
is proportional to the local densities of AV current and the driving current around the hard core. Some
simulated and experimental results published in the literature on vortex depinning in Josephson-junction arrays
can be interpreted in terms of this concept.@S0163-1829~98!01510-0#
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Soon after the critical-state model was proposed by B
for hard superconductors,1 it was used for the volume supe
currents in type-II superconductors by Kimet al.,2 and the
mechanism of critical-current densityJc was explained by
Anderson and Kim’s theory of Abrikosov vortex~AV !
depinning.3,4 According to this theory, when a volume cu
rent flows in a sample containing AV’s, an AV of unit leng
will experience a driving Lorentz forceJ3F0 from the cur-
rent of mean densityJ and a pinning forcep from the de-
fects, andJc at 0 K is calculated from the following force
balance equation just before depinning:

Jc3F01pmax50, ~1!

whereF0 is the total flux carried by the AV.
Over the years, on the one hand, the correctness of Eq~1!

has been well proved experimentally in many type-II sup
conductors, but on the other hand, the nature of the driv
force has long been a question. In electrodynamics, the
entz forceqv3B is defined as the force experienced by
moving chargeq with a velocityv in a field B. Translating
qv and B into J and F0 in the AV case, one will find that
J3F0 is the force acting on the current, and therefore,
driving force on the AV should beF03J, which has the
opposite direction to that in Eq.~1!. Related to this, when
using Eq.~1! in their theoretical treatments, some autho
have changed the sign of the first term without necess
arguments~see, e.g., Refs. 5–8!. After such a change, how
ever, Eq.~1! will no longer be qualitatively consistent wit
all the well-known experimental results. For example, af
the first AV’s enter, the screening current will push them o
but not in, as it should be.

Thus, there must be something unusual behind the driv
force on the vortex. In 1993, Ao and Thouless pointed
that the name ‘‘Lorentz force’’ was improper because
Magnus force~which included the Lorentz force! was not a
consequence of electromagnetic effects on a vortex.9 How-
ever, this statement has apparently not been accepted
570163-1829/98/57~9!/5059~4!/$15.00
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wide audience; the sign change mentioned above was m
even after their work, and in some recent books on superc
ductivity, the conventional meaning of the Lorentz force
clearly stated and applied, as can be seen, for example
Ref. 10. Thus, the question is still open.

The present paper is devoted to further dealing with t
problem. In contrast with Ao and Thouless’s geomet
phase approach on the Magnus force, we will concentrate
the Lorentz force itself, assuming the AV to be well pinn
so that the more general Magnus force is reduced to
Lorentz force and there is no effect from normal curren
We will review well-accepted solutions of a single AV an
two AV’s in the low-j/l limit, j andl being the coherence
length and the London penetration depth, respectively, fr
which the energy of AV’s and the nature of the driving for
acting on an AV are discussed. For this purpose, we w
mainly follow de Gennes’ classical book~see Ref. 11, where
relevant page numbers are listed corresponding to our n
in the text below!. We will show that although this force ca
be formally expressed as that in Eq.~1!, it is not a Lorentz
force, so that the contradiction mentioned above becom
understandable.

For a superconductor in which the supercurrent densitJ
and magnetic fieldH have a slow variation in space, th
London equation is derived from minimizing the free ener
which includes the condensation, kinetic, and magnetic fi
energies. The magnetic energy densityeh5m0H2/2 and
the kinetic energy densityek5nmv2/2, wheren, m, 2e,
and v are the number density, mass, electrical charge,
velocity of superconducting electrons, respectively. Sincv
is related toJ by

J52nev ~2!

andJ is related toH by the Ampère law, both energies can
be expressed in terms ofH. Thus, a variational minimum o
the free energy leads to the London equation11

H1l2
“3“3H50, ~3!
5059 © 1998 The American Physical Society
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5060 57BRIEF REPORTS
where the penetration depth follows:

l25
m

m0e2n
. ~4!

In an extreme type-II superconductor, the field distrib
tion in an AV with a hard core of very small radiusj located
along thez axis can be obtained by solving

H1l2
“3“3H5F0d~r !/m0 , ~5!

where F0 is a vector in the field direction of the AV an
d(r ) is the two-dimensional delta function.11 Equation~5! is
obtained from Eq.~3! with a singularity at the core. Integra
ing Eq. ~5! over the interior surface of a circleC of radiusr
and using the curl formula, we have

E H•ds1l2 R “3H•dl5F0 /m0 . ~6!

Since H is finite, the first integral of Eq.~6! is negligible
when r 5j compared with the second, and we have

2pl2r u¹3Hu5F0 /m0 ~r 5j!. ~7!

If the superconductor is a long cylinder coaxial with thez
axis, the solution to Eq.~5! for the onlyz component ofH
under the boundary condition, Eq.~7!, is

H~r !5
F0

2pm0l2 K0S r

l D , ~8!

where K0 is the zero-order second-kind modified Bes
function.

Having thisH and neglecting the contribution within th
core, the energyE of the AV of unit length is calculated a

E5E Fm0

2
H21

m0l2

2
~“3H!2GdV

5
m0l2

2 E ds•H3“3H

5
F0

2

4pm0l2 K0S j

l D
5

F0
2

4pm0l2 lnS l

j D , ~9!

where the volume integration is performed outside the c
with the first and second terms corresponding to the fi
energy and the kinetic energy,Eh andEk , respectively, and
the surface integration is performed over the tubular surf
of the core withds directed inwards. In deriving the secon
equality, Eq.~5! has been used;12 in deriving the last equal-
ity, Eq. ~7! and the low-r /l limit of Eq. ~8! have been used

We next calculate in a large superconductor the inter
tion between two AV’s parallel to thez axis located at
r15(x1,0) and r25(x2,0) with x2.x1.0 for
convenience.11 In this case, the field distribution is dete
mined by

H1l2
“3“3H5F0@d~r2r1!1d~r2r2!#/m0 . ~10!

Its solution H(r ) is the superposition of two field
H i(r ), i 51 and 2, of both AV’s, in thez direction:
-

l

e
d

e

c-

Hi~r !5
F0

2pm0l2 K0S ur2r i u
l D . ~11!

After expressing the total energy like in the first equality
Eq. ~9!, whereH is replaced byH11H2 and the integration
is made over the entire volume outside both cores, and c
sidering the smallness of radiaj, we obtain the interaction
energyE12 between both AV’s as

E125
m0l2

2 E ds1•H23“3H11ds2•H13“3H2 ,

~12!

where the integration is made over the tubular surfaces of
cores of both AV’s. Since, similar to Eq.~7!,

2pl2ur2r i uu¹3H i u5F0 /m0~ ur2r i u5j!, ~13!

Eq. ~12! can be written as

E125F0H12, ~14!

where

H125H1~r2!5H2~r1!5
F0

2pm0l2 K0S x22x1

l D . ~15!

E12 is a repulsive energy since it decreases with increas
the AV distancex22x1. The force experienced by the se
ond AV has anx component only, which is calculated usin
the Ampère law as

F2x52]E12/]x252F0]H1~r2!/]x25F0J1y~r2!.
~16!

In Eq. ~16!, J1y(r2) is the density of the current of the firs
AV at r2, where the small tubular core of the second AV
located. Checking the relation among the directions of
force, current, andF0, we find that Eq.~16! can be written as

F25J1~r2!3F0 , ~17!

which agrees formally with the driving force on an AV ex
pressed in Eq.~1!. We say the agreement to be formal sin
J1(r2) here has a different meaning from theJc in Eq. ~1!;
J1(r2) is the local densityof the current of the first AV
around the core of the second AV, whereasJc is the mean
densityof the driving transport current over the entire AV
We should emphasize that although Eq.~17! has been de-
rived in the case of the interaction between two AV’s, wh
an AV in an external current is considered, the force of
current on the AV can be generally expressed by this eq
tion with the density of the external current being the loc
one around the AV core. Another example can be found
the calculation of the surface barrier to an AV, where t
force on the AV equalsJ3F0 , J being the local density
around the AV core of the sum of both the screening curr
and image current.11

Up to now,F0 has been introduced as a constant wh
signifies the singularity at the AV center, so that the physi
meaning of the driving force expressed by Eq.~17! is still
incomplete. Therefore, the origin ofF0 has to be discusse
first.

Rewriting Eq.~5! in terms of the vector potentialA and
the current densityJ, we have
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“3A1m0l2
“3J5F0d~r !. ~18!

Replacingl2 andJ in Eq. ~18! by Eq. ~2! and the quantum-
mechanicalJ considering the Cooper pairs,

J5
\en

2m S “g2
2e

\
AD , ~19!

where g is the phase of superconducting order parame
and considering the single valuedness of the order param
we make an integration over the interior surface of the cir
C as done for Eq.~6! and obtain the vorticity of the phas
variableg,

1

2p R “g•dl51, ~20!

if

F05p\/e52.07310215 Wb. ~21!

Thus, F0 is a quantum-mechanical constant defined
Eq. ~21!. Its meaning can be understood in different simp
physical situations. For our case, it can correspond in the
instance to the total flux carried by a complete AV. In fact
the integration made for Eq.~5! is over the interior surface o
a circle C of large radiusr @l, the line integral in Eq.~6!
becomes negligible owing to the high-degree small bound
current, and we have the total flux of the AV,m0*H•ds
5F0. For this reason,F0 is commonly referred to as th
flux quantum.11 As a result, the driving force in Eq.~17!
seems to be electromagnetic.

However, if the radius of the circleC is very small, Eq.
~6! leads to Eq.~7!. This means thatF0 is also the circula-
tion of the current density aroundC multiplied by m0l2.
Given this meaning toF0, the driving force in Eq.~17! is
exerted between two currents. This can be displayed cle
as follows.

Using Eqs.~12! and~13! and the Ampe`re law, we rewrite
Eq. ~16! as

F2x52m0l22pju“3H2u]H1 /]x2

5m0l22pjJ2~ ur2r2u5j!J1~ ur2r2u5j!. ~22!

From Eq.~22! we see that the driving forceF2x on the sec-
ond AV does not explicitly depend on the total fluxF0 it
carries. It is proportional to the circulation of its own curre
density along the border of the core, 2pjJ2(ur2r2u5j), and
the current density of the first AV on the same bord
J1(ur2r2u5j).

Since the current densityJ is related to the electron ve
locity v by Eq. ~2!, the force between two currents shou
have a kinetic origin.

In order to decide the actual nature of the driving forc
we calculate the field energy of an AV from Eq.~8!. The
result is

Eh5
F0

2

4pm0l2E
j/l

`

xK0
2~x!dx5

F0
2

8pm0l2 , ~23!

when j/l!1. In comparison with the total energyE ex-
pressed by Eq.~9!, thisEh is negligibly small in the low-j/l
limit. Thus, the total energy is dominated by the kinetic e
r,
er,
e

y

st

ry
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t

,

,

-

ergy Ek . The same situation occurs for the interaction e
ergy E12. Because this energy is now dominated by the
netic energy but not the magnetic one, the nature of
driving force should also be mainly kinetic. Accordingly, th
relevant meaning of theF0 appearing in Eq.~17! should be
the second, which is kinetic.

This fact was overlooked in Anderson and Kim’s deriv
tion; they thought that the interaction energy was practica
given by ‘‘the naive expression for the magnetic energy,’’
that the driving force was the Lorentz force.4

The kinetic nature of the driving force on an AV is su
ported by recent studies on a planar Josephson-junction a
with a centered Josephson vortex~JV!. Such an array can be
regarded as a discrete version of the type-II supercondu
studied above. When the field produced by currents is
glected so that the JV carries a zero flux, the energy in s
an array is totally kinetic. A numerical simulation based
the Josephson equation and the current continuity was m
for this case when a transport current was fed in
array.13,14 It was found that the simulated depinning curre
agreed well with Eq.~1! if the maximum depinning force
owing to the discreteness was correctly calculated. This
oretical finding was also indirectly verified experimenta
by the resistive transition of large Josephson-junct
arrays.14 As already found by Dang and Gyorffy,15 it was not
immediately obvious how the Lorentz force arose in a mo
where the magnetic effects of the circulating currents h
been neglected. From the present work, we can make ano
statement about this extreme case: The fact that the dri
force can be calculated using a formula containingF0 even
though the vortex does not carry any flux just shows that
nature ofF0 in Eq. ~1! is not magnetic but kinetic.

ReplacingJ1 and F0 in Eq. ~17! by Eqs. ~2! and ~21!
results in the driving force

F52p\nv3k, ~24!

where k is the unit vector along thez axis. This equation
indicates that the driving force is dynamical and proportio
to the electron velocity and depends on the electron num
density and the Planck constant without an explicit relat
to e andm. We notice that, except for a sign difference, th
is consistent with Eq.~9! in Ref. 9 for the Magnus force
which was derived in terms of the geometric phase. Thus,
can generally say that the driving force is a dynami
quantum-mechanical force on the AV. It can be expres
electromagnetically as Eq.~17!, but as described above, th
will mask the actual nature of the driving force and even g
rise to a sign confusion. It can also be expressed kinetic
~hydrodynamically! as

F52nmv3V0 , ~25!

whereV0 is the vectorial quantum of the electron-veloci
circulationcloselyaround the AV core,

V05p\/m5F0e/m53.63731024 m2/s. ~26!

Equation~25! exposes directly the actual kinetic nature
the driving force; Eq.~26! explains precisely the kinetic
meaning ofF0 mentioned above.

Finally, we should explain that although the driving forc
is kinetic but not magnetic in the low-j/l limit, the magnetic
field does have its own function. Sincej/l cannot be zero in
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any real case andj/l.0, the energy will have both the
kinetic and magnetic contributions. Although the Ginzbu
Landau equations are more relevant than the London e
tion in this case, we still use Eqs.~9! and ~23! to estimate
roughly the magnetic contribution to the total energy. It
about 1%, 10%, and 20%, ifj/l51/1000, 1/100, and 1
10, respectively.~We note here thatj/l;1/20 for conven-
tional A15 superconductors such as Nb3Ge and Nb3Sn and
;1/100 for most high-Tc superconductors.10! Thus, the field
also plays its role, though minor, in the total energy and so
the driving force. Actually, different from conventional hy
drodynamics,V0 in Eq. ~25! is not a circulation of the elec
tron velocity around the AV core in general but one clos
around the core, since this circulation is radius dependent
a quantum constant, it includes the contribution of the m
netic flux as can be derived from Eq.~18!. Equation~25! is
reduced to a conventional hydrodynamical force only wh
the low-j/l limit is considered, since in this case the cont
bution of the flux is negligible and the circulation is indepe
dent of the radius.

Since our results are consistent with Ao and Thoule
theory,9 experimental tests suggested or made recently
.

t.

lni
-
a-

n

s
-

n

-

’
to

their theory by transport or force measurements should
be basically relevant to our work.16,17

In conclusion, the driving force on AV expressed in E
~1! has a direction opposite to that predicted by the conv
tional Lorentz force. It is usually dominated by the kinet
interaction between the transport current and the vortex
rent and is proportional to the product of both local curre
densities around the AV core without an explicit relation
the flux carried by the AV. Therefore, it is illogical to ca
this force the Lorentz force. In order to avoid confusion w
the conventional Lorentz force in electrodynamics, a relev
unambiguous name may be the ‘‘London force’’ since it c
be derived and understood from the London equation in
low-j/l limit with quantum effects being considered. Som
simulated and experimental results published in the litera
on vortex depinning in Josephson-junction arrays can be
terpreted in terms of this concept.
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