
PHYSICAL REVIEW B 1 MARCH 1998-IVOLUME 57, NUMBER 9
Superconducting instability in the Holstein-Hubbard model:
A numerical renormalization-group study
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We have studied thed-wave pairing instability in the two-dimensional Holstein-Hubbard model at the level
of a full fluctuation-exchange approximation which treats both Coulomb and electron-phonon~EP! interaction
diagrammatically on an equal footing. A generalized numerical renormalization-group technique has been
developed to solve the resulting self-consistent field equations. Thed-wave superconducting phase diagram
shows an optimalTc at electron concentration̂n&;0.9 for the purely electronic Hubbard system. The EP
interaction suppresses thed-wave Tc which drops to zero when the phonon-mediated on-site attractionUp

becomes comparable to the on-site Coulomb repulsionU. The isotope exponenta is negative in this model and
small compared to the classical BCS valueaBCS5

1
2 or compared to typical observed values in nonoptimally

doped cuprate superconductors.@S0163-1829~98!06302-4#
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In recent years, growing experimental evidence has s
gested that YBa2Cu3O7 and, possibly, other cuprates a
dx22y2 superconductors.1 Antiferromagnetic~AF! spin fluc-
tuation ~SF! exchange has been proposed as a possible
didate mechanism ford-wave pairing. These AF spin fluc
tuation models are based on the notion that short-ran
dynamical AF spin correlations, caused by the strong lo
Coulomb repulsion in the cuprates, may lead to a spati
extended pairing attraction.2,1,3–6 Starting from purely elec-
tronic models, such as the Hubbard Hamiltonian, coupling
lattice vibrational degrees of freedom is usually neglected
this picture. However, except near certain ‘‘optimal’’ dopin
concentrations, many cuprates, including YBa2Cu3O7, ex-
hibit a quite noticeable doping dependent isotope effe7

This indicates that electron-phonon~EP! interactions could
be important and should be included in the theory.

The goal of the present paper is to study the competi
between phonons and AF spin fluctuation-exchange
means of a self-consistent diagrammatic approach which
plicitly includes phonon renormalizations to the AF sp
fluctuations at the level of the effective interaction vertic
We formulate a full fluctuation-exchange~FLEX!3,4 approxi-
mation which treats Coulomb and EP contributions to
electron-electron interaction potential entirely on an eq
footing. Our work goes substantially beyond previo
treatments8,9 which have included phonon effects only at t
level of the one-particle self-energy.

Due to the retarded nature of the EP interaction, the pr
lem is numerically not directly amenable to the recent f
Fourier transform~FFT!10 or numerical renormalization
group ~NRG!11 methods, developed for for the FLEX ap
proximation to the pure Hubbard model. The present FL
equations require certain large-scale fermion frequency
trix inversions which are numerically about four orders
magnitude more demanding than FLEX calculations w
short-range instantaneous interactions. The numerical s
tion of this problem can be achieved only by means o
570163-1829/98/57~9!/5051~4!/$15.00
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generalized, highly efficient matrix version of the origin
NRG method11 which we have developed.

We start from the simplest microscopic Hamiltonia
which includes both an on-site HubbardU Coulomb repul-
sion and a local EP coupling to an Einstein phonon bran
the Holstein-Hubbard model,12
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with a nearest neighbor hoppingt, chemical potentialm, on-
site Coulomb repulsionU, on-site EP coupling constantC,
force constantK, and ionic oscillator massM . Thecis

† (cis)
is the electron creation~annihilation! operator at sitei and
spin s; nis is the number operator; andui is the local ionic
displacement at lattice sitei . The dispersionless bare phono
frequency isV05(K/M )1/2 and the phonon-mediated on
site attraction isUp5C2/K.

Previous self-consistent field~SCF! studies8 of the
Holstein-Hubbard system have ignored the electron-elec
exchange scattering which arises from the Pauli exclus
principle. The importance of this exchange vertex3–5 can be
most easily demonstrated in the limit of the negative-U Hub-
bard model withU52uUu andUp50. In this case, the di-
rect interaction will give 2U ~after summing over the elec
tron spin index! and the exchange interaction contribut
2U. The simplest mean field theory will then predict th
charge-density wave instability to occur atuUu x̄ ph(T)51
~with exchange interaction! instead of 2uUu x̄ ph(T)51
~without exchange interaction!. In the positive-U Hubbard
model, the exchange interaction enhances the spin fluc
tions and thus helps thed-wave instability while at the same
time weakening the charge fluctuations. Also, high phon
5051 © 1998 The American Physical Society
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5052 57BRIEF REPORTS
frequencies or a flat electron band near the Fermi surface
tend to enhance the effect of the exchange vertex. To s
particle-hole and particle-particle instabilities in this mod
it is thus necessary to include both Coulomb and pho
contributions to the exchange vertex.

The bare interaction vertices for the FLEX equatio
shown in Fig. 1, include the particle-hole@Figs. 1~b! and
1~c!# and the particle-particle@Fig. 1~d!# bare vertices, due to
both the HubbardU and the phonon propagatorvp( inm)5

2UpV0
2/(V0

21nm
2 ) @Fig. 1~a!# for boson Matsubara fre

quencynm52mpT. The one-particle self-energy is then4,13

Sk5(
k8

@V2~Dk; ivn!1Vph~Dk; ivn!#G~k8!

1Vpp~Dk; ivn!G* ~k8!, ~2!

V2~Dk; ivn!52vp~Dv!1 (
ivn1

@vp~Dv!1U#@2vp~Dv!

2vp~ ivn2 ivn1
2Dv!1U# x̄ ph~Dk; ivn1

!,

~3!

Vph~Dk; ivn!5 (
ivn1

1

2
@D~11D !212D#n,n1

~Dk!vn1 ,n
D ~Dv!

1
3

2
@M ~11M !212M #n,n1

~Dk!vn1 ,n
M ~Dv!,

~4!

Vpp~Dk; ivn!52 (
ivn1

@S~11S!212S#n,n1
~Dk!vn1 ,n

S ~Dv!

13@T~11T!212T#n,n1
~Dk!vn1 ,n

T ~Dv!,

~5!

FIG. 1. The bare vertices of the Holstein-Hubbard model in
FLEX approximation. ~a! Total potential from on-siteU and
phonon-mediatedvp( inm). ~b! Density vertex vn1 ,n4

D ( inm)5

@2vp( inm)2vp( ivn1
2 ivn4

)1U#dn1 ,n21mdn31m,n4
. ~c! Magnetic

vertex vn1 ,n4

M ( inm)52@vp( ivn1
2 ivn4

)1U#dn1 ,n21mdn31m,n4
. ~d!

Singlet and triplet verticesvn1 ,n4

S ( inm)51/2@vp( ivn1
2 ivn4

)

1vp( ivn1
1 ivn4

2 inm)12U#dn1 ,2n21md2n31m,n4
, vn1 ,n4

T ( inm)5

1/2@vp( ivn1
2 ivn4

)2vp( ivn1
1 ivn4

2 inm)#dn1 ,2n21md2n31m,n4
.

ill
dy
,
n

Rn,n1
~Dk!5vn,n1

R ~Dv!H x̄ ph~Dk; ivn1
!,

x̄ pp~Dk; ivn1
!,

for R5H D or M ,

S or T,
~6!

where k[(k,ivn), Dk[(k2k8,ivn2 ivn8), vn5(2n
11)pT, the Green’s functionG(k)5@ ivn2ek2Sk#

21, and
the tight binding bandek522t(coskx1cosky)2m. The
vn,n1

R are the bare vertices shown in Figs. 1~b!–1~d!. The bare

particle-hole and particle-particle fluctuation functions a
defined as

x̄ ph~q; ivn!52
1

N(
k

G~k1q!G~k!, ~7!

x̄ pp~q; ivn!5
1

N(
k

G~k1q!G~2k!. ~8!

Because of the retarded nature ofvp( inm), the bare vertices
in Figs. 1~b!–1~d! depend explicitly on the internal fre
quency transfer andivn cannot be summed out here. Th
numerically most challenging part of the SCF calculation
thus the evaluation of the fluctuation potentials,Vph andVpp,
because of the required fermion frequency matrix invers
in Eqs. ~4,5!. In a brute-force approach, this matrix dime
sion can become as large as 5003500 ~the size of the entire
fermion Matsubara frequency set! at Tc . Recent FFT and
NRG techniques for the pure Hubbard FLEX equations
not directly applicable and we had to develop a generali
‘‘fermion matrix’’ NRG method to handle the numeric
efficiently.14

Building upon the original NRG method,11 our general-
ized fermion matrix NRG employs a frequency-RG ope
tion which separates the frequency space into high and
regions at each temperature in such a way that fermion
quency matrix dimensions will not increase as fast asT21

when T is lowered. For a typical 838 matrix dimension,
starting at some high temperature and large fermion
quency cut-off, we can keep the dimension below 30330
after six factor-2 frequency-RG steps, corresponding to
temperature reduction from 4.0t to 0.0625t. The fermion cut-
off in the frequency RG steps changes from 100t ~;123
bandwidth! to 1.6t (;503Tc). We then keep the same cu
off ~without any further RG operation! and decrease the tem
perature slowly until thed-wave instability occurs.11 A typi-
cal matrix dimension is then about 50350 near thed-wave
instability. Thed-wave instability is determined by solvin
the eigenvalue problem for the singlet particle-particle k
nel, constructed from the full interaction potential in Fi
1~a!, following Ref. 4. Tc is reached when the maximum
pairing eigenvaluekd(T)51. A 32332 k mesh covering the
full first Brillouin zone has been employed in all of the ca
culations reported below.

Figure 2 shows thed-wave superconducting phase di
gram of the Holstein-Hubbard model with intermediate Hu
bardU/t54 for various EP couplingUp50, 2, and 3 and an
Einstein phonon frequencyV0 /t50.5. Increasing the elec
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tron concentration̂n& towards half-filling (̂ n&;1) initially
enhances thed-waveTc until it reaches a maximum aroun
^n&;0.9. Beyond that point, at hole dopingx512^n& be-
low ;8%, the strong AF fluctuations actually reduce t
d-wave Tc . This should be contrasted with early Hubba
model FLEX results in Ref. 3, where the detailed shape
the magnetic-superconducting boundary was not well de
mined and thed-waveTc calculation was stopped when th
magnetic eigenvalue exceeded unity. Here, we have us
finer lattice mesh and larger cut-off frequency and carefu
pushed thed-wave calculations toward smaller hole dopin

In order to get a deeper understanding of the origin for
Tc maximum in Fig. 1, we have carried out a McMillan-typ
analysis15 of the underlying pairing equations4 by estimating
the dimensionless Eliashberg parameterld , which measures
the pairing potential strength averaged over the Fermi
face in thed-wave channel, andlZ52]vReS(k)uv5 i01,
which measures the strength of the quasiparticle mass
hancement, as well as the pair-breaking strengthg
5uImS(k)uv5 i01 /Tc , due to the quasiparticle damping. E
pressed in terms of ‘‘renormalized’’ parameters15 ld*
5ld /(11lZ) and g* 5g/(11lZ), our results show tha
both the pairing strengthld* and the pair-breaking strengt
g* are monotonically increasing as^n& is pushed towards
half-filling. Thus there are~at least! two competing effects a
work here: While raisingld* increasesTc , raising g* de-
creases it. Apparently, for overdoping, the doping variat
of the pairing strengthld* dominatesTc , makingTc initially
rise with increasinĝn&. On the other hand, for underdopin
close to half-filling, the doping variation of the pair-breakin
strengthg* dominates and causesTc to decrease with in-
creasinĝ n&. An additional, related effect is that the overa
AF spin fluctuation energy scale softens as^n& approaches
half-filling. This lowering of the relevant ‘‘boson’’ energy
scale will also lowerTc .

The primary effect of EP coupling is to suppress t
d-waveTc , shown in Fig. 3 as a function of the EP potent
strengthUp ~from 0 to 4t! at fixed U/t54, electron filling
^n&50.9, and Einstein phonon frequencyV0 /t50.5. The
corresponding maximumd-wave pairing eigenvalueskd as a
function of temperature are plotted in the inset. Note that

FIG. 2. Phase diagram of thed-wave instability withU/t54
andV0 /t50.5 and differentUp on a 322 lattice. Solid line repre-
sents a Hubbard model calculation using the NRG method in R
11 which doesnot involve the matrix inversion in Eqs.~4! and~5!.
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d-wave Tc drops to ‘‘almost zero’’~i.e., numerically inac-
cessible values! when Up becomes comparable toU. This
behavior is different from our earlier calculation9 which ig-
nored the phonon renormalization of the bare interaction v
tices. In that case,9 Tc was suppressed only by the EP se
energy contribution, the suppression was much more gra
and Tc dropped only by about one half betweenUp50 to
Up;U. Here, by contrast, the EP interaction directly cou
teracts the on-site Coulomb repulsion and thereby suppre
the AF spin fluctuation mediated pairing potential. T
d-wave Eliashberg pairing strengthld and the pair-breaking
strengthg are indeed found to be strongly suppressed by
EP interaction.

An important feature of EP coupling is that it introduc
an isotope effect into the electronicd-wave pairing mecha-
nism. Table I shows results for the isotope exponenta5

2dlnTc /dlnM which becomesa5 1
2 dlnTc /dlnV0 in the

present model, since the isotopic massM enters only through
V0. In our previous studies9 of the isotope effect, where th
EP effect on the magnetic bare vertices was neglected,
isotope exponenta was quite small and negative for realist
phonon energiesV0. Here, as shown in Table I, we fin
qualitatively the same result, even though the EP effect
the AF spin fluctuations is now explicitly taken into accou
and suppressesTc much more strongly. It is interesting t
note that the absolute value ofa has a minimum at the op
timal doping concentration, a feature qualitatively remin
cent of the doping dependent isotope data in many cup
systems.7 However the observed overall magnitude of t

f. FIG. 3. d-waveTc vs EP potentialUp for U/t54, ^n&50.9, and
V0 /t50.5. Inset is the maximumd-wave eigenvalue vsT for
Up /t50, 1, 2, 3, and 4~from top to bottom!. Tc for Up /t54 is
extrapolated from thekd data at the lowest availableT.

TABLE I. Isotope exponenta for U/t54 andUp /t52.

V0/t 0.125 0.25 0.5 1.0

^n&
0.96 20.025 20.059 20.098 20.166
0.90 20.022 20.053 20.090 20.127
0.87 20.024 20.061 20.137 20.196
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effect in nonoptimally doped cuprates,uau;0.521,7 is much
larger than the present model predicts. This finding furt
supports the notion that the EP coupling in the cupra
could be effectively very much enhanced compared to c
ventional ‘‘strong-coupling’’ EP systems.9

In conclusion, we have studied thed-wave superconduct
ing instability of the Holstein-Hubbard model in the FLE
approximation by means of a generalized, matrix version
the numerical renormalization group technique. Upon incl
ing both the particle-particle and particle-hole fluctuatio
the d-wave Tc shows a maximum at electron fillinĝn&
;0.9. Thed-wave Tc is suppressed by increasing the E
potential Up and tends to zero whenUp;U. Finally, the
isotope exponentsa are negative and small in magnitud
with typically uau,0.1. While uau exhibits a minimum at
s.
.

r
s

n-

f
-
,

optimal doping concentration, the overall magnitude is
too small to explain observed isotope data in the cupra
Our full FLEX results support the conclusions of earlier is
tope calculations by the present authors.9
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