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Parametrically forced sine-Gordon equation and domain wall dynamics in ferromagnets

Vadim Zharnitsky
Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912

Igor Mitkov
Applied Theoretical and Computational Physics Division and Center for Nonlinear Studies, Los Alamos National Laboratory

Los Alamos, New Mexico 87545

Mark Levi
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180

~Received 15 September 1997!

A parametrically forced sine-Gordon equation with a fast periodicmean-zeroforcing is considered. It is
shown thatp kinks represent a class of solitary-wave solutions of the equation. This result is applied to
quasi-one-dimensional ferromagnets with an easy-plane anisotropy, in a rapidly oscillating magnetic field. In
this case thep-kink solution we have introduced corresponds to the uniform ‘‘true’’ domain-wall motion, since
the magnetization directions on opposite sides of the wall are antiparallel. In contrast to previous work, no
additional anisotropy is required to obtain a true domain wall. Numerical simulations showed good qualitative
agreement with the theory.@S0163-1829~98!01610-5#
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The sine-Gordon equation~SGE! arises in various physi
cal applications including Josephson junction transmiss
lines,1,2 dislocations in crystals,3 charge density waves,4 and
waves in quasi-one-dimensional ferromagnetic materials5–8

The only stable traveling wave solutions of the ordinary S
for a scalar fieldf are localized solutions with identica
boundary conditionsf50 andf52p, called 2p kinks. On
the other hand, nonlocalized kinks separating regions w
different values of the field~e.g.,p kinks! are also important
since they are easier to follow experimentally. This is es
cially relevant for domain-wall dynamics in quasi-on
dimensional ferromagnets with a strong anisotropy of a h
magnetization axis.5–7,9,10 In the presence of an extern
magnetic field~weak compared to the anisotropy! applied
within the easy plane, the spin dynamics can be describe
the SGE ~see, e.g., Ref. 6! with 2p kinks as the only
traveling-wave solutions. These localized solutions, pres
ing the average magnetization, were observ
experimentally.11,12 An interesting effect of the evolution o
the average magnetization takes place if adjacent dom
have antiparallel magnetizations which correspond top
kinks or ‘‘true’’ domain walls. Suchp kinks were obtained
by introducing additional anisotropy within the easy pla
~see, e.g., Refs. 6 and 13, Sec. 8.3!.

In this paper we obtainp kinks in a modified SGE with a
fast mean-zero parametric excitation. For quasi-o
dimensional ferromagnets with an easy-plane anisotropy,
implies the existence of true domain walls generated b
rapidly oscillating external magnetic field. As opposed
Refs. 6 and 13, no additional anisotropy of the ferromag
is required for the existence ofp kinks.

Various cases of a parametrically forced SGE have ar
in numerous models of physical systems.2,10,14,15However,
the mean-zero case has been left out of consideration, w
it is significant both for theory and applications. Indeed
zero-average periodic forcing implies that the statesf50
570163-1829/98/57~9!/5033~3!/$15.00
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and f5p are symmetric. This leads to the existence ofp
kinks with such a time-dependent macroscopic quantity
the spatial average of the field.

We start with the Hamiltonian6,16

H5(
i 51

N

@2JSi•Si 111D~Si
z!22gmBHSi

x#, ~1!

whereSi are dimensionless classical spin vectors,N is the
number of spins, andJ is a constant of the exchange inte
action. The external magnetic fieldH is directed along the
X-axis. The anisotropy constantD provides the existence o
an easy plane,XY, at each site of the chain.

The dynamics of a spinSi in the effective magnetic field
is governed by13

\Ṡi52Si3
]H
]Si

. ~2!

Representing spins in spherical coordinatesSi
5S(cosui cosfi , cosui sinfi ,sinui) and taking the con-
tinuum limit yields a system of two first-order~in time! par-
tial differential equations foru andf.6,16When the condition
DS@gmBH holds,6 the system reduces to the SGE for t
polar angle in the easy plane,f,

fxx2
f̈

C2
5nHsin f, ~3!

whereC52a0S2AJD/\,n5gmB /2JSa0
2, anda0 is the lat-

tice constant. We take the external fieldH5H0a(t/e), where
a is a mean-zero periodic function with a unit amplitude, a
H0 is the amplitude of the field. Rescaling the time and c
ordinate to dimensionless variables, t̃ 5tCAnH0,
x̃5xAnH0, we obtain ~after dropping the tildes! a para-
metrically forced SGE~PSGE!
5033 © 1998 The American Physical Society
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f tt2fxx1a~ t/e!sin f50. ~4!

After averaging Eq.~4! directly, over the fast time scalee,
we are left with a linear wave equation with wave propag
tion velocity c561. In what follows, we use more subtl
averaging to obtainp-kink solutions moving with any pre
scribed velocity.

The phenomenon ofp kinks in the PSGE has a finite
dimensional counterpart: It is the stabilization of the inver
pendulum by a periodic vibration of its suspension po
~Kapitza pendulum.17! Since this latter phenomenon is r
sponsible for the existence ofp kinks, we outline a very
simple geometrical explanation of the stability of the i
verted pendulum with a vibrating suspension. Full deta
with other applications can be found in Ref. 20 along w
further references to numerous papers on the subject. C
sider a pendulum~a bob on a massless rod of lengthl ) in a
nearly-upside-down position, with the suspension point
dergoing vertical vibration. We assume the latter to ha
high acceleration and small amplitude. Since the accelera
is large, the force of the rod on the bob is large so that
bob would be expected to follow, in the first approximatio
the direction of the rod. This suggests considering an au
iary system where the velocity of the bob is actually co
strained to the line of the rod. In this case the bob will o
cillate along an arc of a tractrix~the ‘‘pursuit’’ curve; all
tangent segments from this curve to a straight line have
same length! and thus will be subject to an average centri
gal forcemk̂ v2&, wherek is the curvature of the tractrix an
v is the speed of the bob which is approximately the spee
the suspension point when the pendulum is near the to
we now release the constraint, thus releasing the centrif
force, the bob will behave as if it were subject to a centr
etal forcemk̂ v2& which pushes the pendulum towards t
top. If this force exceeds the gravitational force, the pen
lum is stable; this leads to the simple stability criteri
^v2&.l g ~see Ref. 20!.

To average Eq.~4! we apply a series of canonical nea
identical transformations via the normal form technique,18,19

so as to bring the original equation to a better form w
rapidly oscillating coefficients moved to higher-order term
Since the transformations are near identical, the solutions
the reduced Hamiltonian are close to those for the orig
one.

The Hamiltonian of PSGE~4! is given by

H5E
2`

1`S p2

2
1

fx
2

2
2a cosf Ddx, ~5!

where p[f t ~below we omit the limits of integration an
dx). Let the first canonical transformation be defined impl
itly as follows:

p5p11
dW1~f,p1!

df
, f15f1

dW1~f,p1!

dp1
. ~6!

The new Hamiltonian is given byH15H1W1t or

H15E F1

2S p11
dW1

df D 2

1
fx

2

2
2a cosfG1W1t . ~7!
-

d
t

s

n-

-
e
on
e
,
il-
-
-

e
-

of
If
al
-

-

.
or
al

-

To remove the rapidly oscillating term inH we chooseW1
5e*a21cosf, wherea21 is an antiderivative with zero av
erage. The Hamiltonian takes the form

H15E p1
2

2
1

f1x
2

2
2ea21p2sinf11

1

2
e2a21

2 sin2f1 . ~8!

The last term in the above Hamiltonian cannot be remo
by near-identity transformations since it has a nonzero m
with respect tot. However, all other terms with rapidly os
cillating coefficients can be removed. Thus, choosingW2

5e2*a22p2sinf1 we obtain the HamiltonianH25*p2
2/2

1f2x
2 /21 1

2 e2^a21
2 &sin2f21e2R1O(e2), where ^R&50. Fi-

nally, takingW35e3*R21 we obtain the Hamiltonian

H35E S p3
2

2
1

f3x
2

2
1

1

2
e2^a21

2 &sin2f3D 1O~e3!. ~9!

After rescalingX5ex, T5et, P52e21p3, and F52f3
in the equations of motion corresponding to Eq.~9!, we ob-
tain

FT5P1O~e2!, PT5FXX2^a21
2 &sinF1O~e!.

~10!

The system~10! is a slightly perturbed SGE with 2p kinks
as approximate solutions. After rescaling back to variab
(f3 ,p3), we obtainp kinks as approximate solutionsf3
'U(x,t), where

U~x,t !52arctanFexpS eA^a21
2 &

x2ct

A12c2D G . ~11!

Note that by using the normal form technique, our equat
~4! has been brought to the form in which it explicitly rep
resents a slightly perturbed SGE~10!. Since we have em-
ployed only near-identical transformations, the original eq
tion ~4! should have solutions close to the solitary wav
given by Eq.~11!.

We have verified our results by the numerical simulatio
of PSGE~4!, using the second-order leap frog method.
obtain initial conditions for the original variablesf(x,0) and
p(x,0), we start with the initial conditions for the trans
formed variablesf3 and p3, generated from Eq.~11! as
f3(x,0)5U(x,0), andp3(x,0)5Ut(x,0). Retracing our ca-
nonical transformations and keeping the lowest-order te
only we arrive at

f~x,0!5U~x,0!, p~x,0!5Ut~x,0!2ea21~0!sinU~x,0!.
~12!

In Fig. 1 we compare the results of the simulations~dashed
line! with the analytical solution~11! ~thin solid line!. One
can see from the figure a good quantitative agreement
tween the theory and numerical simulations~the two curves
in the figure are almost indistinguishable!. We have also
simulated PSGE~4!, starting with initial conditions of shape
different from Eq.~12!. We have found that these solution
split into two linear wave packets moving in opposite dire
tions with velocitiesc561. This can be explained by th
closeness of the PSGE with mean-zero excitation to the
ear wave equation, as was mentioned above.
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In terms of the original physical system described by E
~3!, thep-kink solutions represent moving true domain wa
generated by a rapidly oscillating external magnetic fie

FIG. 1. The behavior of thep-kink solution in PSGE~4!. The
thick solid line corresponds to the initial profile given by Eq.~12!
with c51/2, a5sin(t/e). The thin solid and dashed lines corr
spond to the approximate solution~11! and the result of simulation
respectively, att5300. The analytical and numerical curves almo
coincide. The parameters of the simulations aree50.1, time step
dt50.01, mesh sizedx50.05, and system sizeL5500.
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Now we return from the dimensionless variables to the or

nal variablest5 t̃ /CAnH0, andx5 x̃ /AnH0 to estimate the
values of physical parameters, which provide the format
of a realistic domain wall. The lattice constanta0 and energy
constantsJ and D are taken, according to Ref. 11, asa0

;5Å, and J;D;10 K. In dimensionless units the fre

quencyṽ of the field and the width of the domain wallD x̃
are of ordere21. Then, for the field amplitudeH0;1G and
e;0.1–0.01, we obtainv;109 Hz and Dx;10 mm. A
magnetic fieldH0 sinvt, with such values ofH0 andv, can
be created in an experiment, to observe the predicted ef

In summary, we have foundp-kink solutions to the PSGE
with a fast periodic mean-zero forcing. As applied to qua
one-dimensional ferromagnets with only the anisotropy of
easy plane, these solutions imply moving true domain wa
generated by a rapidly oscillating magnetic field. Our the
retical results are in good quantitative agreement with
merical simulations of the PSGE. These results are also
plicable to essentially two- and three-dimensional easy-pl
ferromagnets, when plane front solutions are stable with
spect to small deformations. This problem, as well as
stability of p kinks in the PSGE, will be addressed in futu
investigations.

We would like to thank S. Brazovsky, R. Camassa, and
Beilin for fruitful discussions.
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