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Parametrically forced sine-Gordon equation and domain wall dynamics in ferromagnets
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A parametrically forced sine-Gordon equation with a fast periodé@an-zerdforcing is considered. It is
shown thatz kinks represent a class of solitary-wave solutions of the equation. This result is applied to
quasi-one-dimensional ferromagnets with an easy-plane anisotropy, in a rapidly oscillating magnetic field. In
this case ther-kink solution we have introduced corresponds to the uniform “true” domain-wall motion, since
the magnetization directions on opposite sides of the wall are antiparallel. In contrast to previous work, no
additional anisotropy is required to obtain a true domain wall. Numerical simulations showed good qualitative
agreement with the theoryS0163-18208)01610-5

The sine-Gordon equatiof®GE arises in various physi- and ¢=7 are symmetric. This leads to the existencenof
cal applications including Josephson junction transmissiokinks with such a time-dependent macroscopic quantity as
lines! dislocations in crystald charge density wavésand  the spatial average of the field.
waves in quasi-one-dimensional ferromagnetic matefidls. ~ We start with the Hamiltoniei®
The only stable traveling wave solutions of the ordinary SGE N
for a scalar field¢ are localized solutions with identical _ _ 72 _ X
boundary conditiongp=0 and¢ =2, called 2 kinks. On H_Z'l [-JS-S+1+D(S)"—gueHS], 1)
the other hand, nonlocalized kinks separating regions with . . _ . :
different values of the fielde.g., 7 kinks) are also important where S are @mensmnless classical spin vectdisis the
since they are easier to follow experimentally. This is espe_number of spins, and is a cc_)nsyant .Of the exchange inter-
cially relevant for domain-wall dynamics in quasi-one- act|op. The ex’FernaI magnetic field is directed glong the
dimensional ferromagnets with a strong anisotropy of a hard<"@XiS- The anisotropy constabt provides the existence of
magnetization axi&>"®1° In the presence of an external @n €asy planexY, at each site of the chain. o
magnetic field(weak compared to the anisotropgpplied The dynamics of a spi§; in the effective magnetic field
within the easy plane, the spin dynamics can be described Hy 9overned by’
the SGE (see, e.g., Ref. )6with 27 kinks as the only IH
traveling-wave solutions. These localized solutions, preserv- ﬁS: —S§X—. 2
ing the ?;/Flr?ge magnetization, were observed IS
experimentally:=*“ An interesting effect of the evolution of . . . . .
thep average magnetization tak%s place if adjacent domains Representing  spins in spherical ~ coordinate§

have antiparallel magnetizations which correspond 7to —S(Cosf} Cosdy, Costsinysin ) and taking the con-
kinks or “true” domain walls. Suchr kinks were obtained tinuum limit yields a system of two first-ordein time) par-

by introducing additional anisotropy within the easy Iolanetial differential equations fo# and ¢.%*®When the condition
S 6
(see, e.q., Refs. 6 and 13, Sec.)8.3 DS>gugH holds; the system reduces to the SGE for the

In this paper we obtaiar kinks in a modified SGE with a polar angle in the easy plang,
fast mean-zero parametric excitation. For quasi-one- b
dimensional ferromagnets with an easy-plane anisotropy, this Dux— —= vHsin ¢, ®)
implies the existence of true domain walls generated by a

rapidly oscillating external magnetic field. As opposed to

_ 2 M _ ; g
Refs. 6 and 13, no additional anisotropy of the ferromagner/herec_tzioiv iDl!ﬁiﬁ_g":B/Z‘]liéézaHnda%/'s thehlat
is required for the existence of kinks. Ice constant. Yve taxe the external i od(t/€), where

Various cases of a parametrically forced SGE have arise is.a mean-zero periodic fu.nction with a unit amplitude, and
in numerous models of physical systefrt:145However o is the amplitude of the field. Rescaling the time and co-

the mean-zero case has been left out of consideration, whirdinate  to  dimensionless variables,t =tCvHo,
it is significant both for theory and applications. Indeed, ax =X+ vHy, we obtain (after dropping the tildgsa para-
zero-average periodic forcing implies that the stafes0 metrically forced SGEPSGH
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Dri— dyxt+a(t/€)sin ¢=0. (4) To remove the rapidly oscillating term iH we choosew,;
=efa_,cosp, wherea_ is an antiderivative with zero av-

After averaging Eq(4) directly, over the fast time scale ~ €rage. The Hamiltonian takes the form
we are left with a linear wave equation with wave propaga- ) 5
tion velocity c=*+1. In what follows, we use more subtle H _f P1 n Pix : +1 292 iR 8
averaging to obtainr-kink solutions moving with any pre- 1) 2 €a-1PoSing, 5 €7aZ;siM ¢y . (8)

2
scribed velocity. . I
The phenomenon of kinks in the PSGE has a finite- The last term in the above Hamiltonian cannot be removed

dimensional counterpart: It is the stabilization of the inverted?y N€ar-identity transformations since it has a nonzero mean
pendulum by a periodic vibration of its suspension point"ith respect tat. However, all other terms with rapidly os-
(Kapitza pendulunt’) Since this latter phenomenon is re- C|Ila2t|ng coefficients can be removed. Thus, choos\ZNg
sponsible for the existence of kinks, we outine a very =€ 2P;Sing, we obtain the HamiltoniarH,= Jp5/2
simple geometrical explanation of the stability of the in- T #54/2+ 3€%(aZ ;)sir’g,+€R+0(e’), where (R)=0. Fi-
verted pendulum with a vibrating suspension. Full detailshally, takingW;=€3/R_; we obtain the Hamiltonian

with other applications can be found in Ref. 20 along with 2 421

further references to numerous papers on the subject. Con- _ 3 3x 2,2 \ s 3

sider a pendulunta bob on a massless rod of lend)hin a H3_f (7+ 2 T3¢ (a>y)sitds| +O().  (9)
nearly-upside-down position, with the suspension point un- _ .

dergoing vertical vibration. We assume the latter to havefter rescalingX=ex, T=et, P=2¢ "p3, and ®=2¢;

high acceleration and small amplitude. Since the acceleratiof the equations of motion corresponding to %), we ob-

is large, the force of the rod on the bob is large so that thdain
bob would be expected to follow, in the first approximation,
the direction of the rod. This suggests considering an auxil-
iary system where the velocity of the bob is actually con- (10

strained to the line of the rod. In this case the bob will 0s-The systen(10) is a slightly perturbed SGE with2 kinks
cillate along an arc of a tractrigthe “pursuit” curve; all a5 approximate solutions. After rescaling back to variables
tangent segments from this curve to a straight line have th%syps), we obtainz kinks as approximate solutiong,
same lengthand thus will be subject to an average centrifu- < j(x t), where

gal forcemk(v?), wherek is the curvature of the tractrix and

v is the speed of the bob which is approximately the speed of x—ct

the suspension point when the pendulum is near the top. If U(x,t)zzarctar{ex% e\/<a2_1> ) )
we now release the constraint, thus releasing the centrifugal Vi-¢c?

fe(;gief’oiggrgif \é\;illwbheigﬁ veugsei; iihvéerir?;fljj;t :gv\?afgsnt{ri]pe'Note that by using the normal form technique, our equation
v P P (4) has been brought to the form in which it explicitly rep-

top. If this force exceeds the gravitational force, the pendu- . . "
lum is stable; this leads to the simple stability criterionresents a slightly perturbed SGEO). Since we have em

N ployed only near-identical transformations, the original equa-
(v9)>7g (see Ref. 20 . . tion (4) should have solutions close to the solitary waves
To average Eq(4) we apply a series of canonical near-

. . . ; ; given by Eq.(11).
|Sdoer;usc?(l) tLarinns;;otrr:r; aﬂ?ig?n\glaégﬁarggpi fgrg]e:'?ecrh?c;éraég\,mith We have verified our results by the numerical simulations

rapidly oscillating coefficients moved to higher-order terms.Of PSGE(4), using the second-order leap frog method. To

. i . . . gbtain initial conditions for the original variables(x,0) and
Since the transformations are near identical, the solutions for X L .
(x,0), we start with the initial conditions for the trans-

tohnee reduced Hamiltonian are close to those for the ongmaformed variabless; and ps, generated from Eq(11) as

The Hamiltonian of PSGE4) is given by $3(x,0)=U(x,0), andps(x,00=U(x,0). Retracing our ca-
nonical transformations and keeping the lowest-order terms
+ 00
"=

only we arrive at
where p= ¢, (below we omit the limits of integration and
dx). Let the first canonical transformation be defined implic-
itly as follows:

O1=P+0(€?), Pr=Dyy— <a2_l>sin(I) +0(e).

(11)

2 2
%+%—a co&/;)dx, (5)

d(x,00=U(x,0), p(x,00=Ux,0)—ea_1(0)sinU(x,0).
(12

In Fig. 1 we compare the results of the simulatigdashed
line) with the analytical solutior{11) (thin solid line. One
can see from the figure a good quantitative agreement be-

tween the theory and numerical simulatiditise two curves
p=p,+ M b=+ M (6) in the figure are almost indistinguishapléVe have also
5¢ op simulated PSGHE4), starting with initial conditions of shapes

different from Eq.(12). We have found that these solutions
split into two linear wave packets moving in opposite direc-
tions with velocitiesc=*1. This can be explained by the

7) closeness of the PSGE with mean-zero excitation to the lin-
ear wave equation, as was mentioned above.

The new Hamiltonian is given bk, =H+W,; or

1 SW,\2 @2
S

+7—a cosp | +Wy; .
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' Now we return from the dimensionless variables to the origi-
3t ] nal variablest=t/C\/vH,, andx=X/\/vH, to estimate the
values of physical parameters, which provide the formation
of a realistic domain wall. The lattice constagtand energy

2+ - constants] and D are taken, according to Ref. 11, ag
o ~5A, and J~D~10 K. In dimensionless units the fre-

quencyw of the field and the width of the domain wallx

1+ . are of ordere L. Then, for the field amplitudél,~1G and

€~0.1-0.01, we obtaino~10° Hz and Ax~10 um. A
magnetic fieldH, sinwt, with such values oHy andw, can

0 . be created in an experiment, to observe the predicted effect.
. In summary, we have foungt-kink solutions to the PSGE

100 300 500 with a fast periodic mean-zero forcing. As applied to quasi-
X one-dimensional ferromagnets with only the anisotropy of an

easy plane, these solutions imply moving true domain walls,
thick solid line corresponds to the initial profile given by E#?2) generated by a ra‘?'d'y OSC'”at'ng_ m,agnetlc field. Our_ theo-
with ¢c=1/2, a=sin(/e). The thin solid and dashed lines corre- retlgal re§ults a}re in good quantitative agreement with nu-
spond to the approximate soluti¢hl) and the result of simulation, Merical simulations of the PSGE. These results are also ap-
respectively, at=300. The analytical and numerical curves almost Plicable to essentially two- and three-dimensional easy-plane
coincide. The parameters of the simulations are0.1, time step  ferromagnets, when plane front solutions are stable with re-
dt=0.01, mesh sizelx=0.05, and system size=500. spect to small deformations. This problem, as well as the
stability of 7 kinks in the PSGE, will be addressed in future
investigations.

FIG. 1. The behavior of ther-kink solution in PSGE4). The

In terms of the original physical system described by Eq.
(3), the w-kink solutions represent moving true domain walls ~ We would like to thank S. Brazovsky, R. Camassa, and V.
generated by a rapidly oscillating external magnetic fieldBeilin for fruitful discussions.
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