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Dimensional crossover in spin diffusion: A manifestation of the quantum Zeno effect
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The quantum Zeno effect~QZE! implies that a too frequent (vf→`) observation of a quantum system
would trap it in its initial state, even though it would be able to evolve to some other state if not observed. In
our scheme, interacting spins in a three-dimensional cubic lattice, ‘‘observe’’ each other with a frequency
vf}AJx

21Jy
21Jz

2/\, where theJ’s are the coupling constants. This leads to a ‘‘diffusive’’ spread of a local
excitation characterized by the constantsDm}Jm

2 /vf . Thus, a strongly asymmetric interaction~e.g.,Jy /Jx(z)

@1), would hinder diffusion in the perpendicular directions (Dx(z)→0) manifesting the QZE. We show that
this effect is present in numerical solutions of simple two-dimensional systems. This reduction in the diffusion
kinetics was experimentally observed in paramagnetic compounds where the asymmetry of the interaction
network manifests through an exchange narrowed linewidth. Experimental designs are proposed.
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Quantum dynamics of magnetic excitations in a system
interacting spins at high temperature is an active field
research.1 From a macroscopic scope, i.e., for long times a
large wavelengths, one expects that excitations sho
evolve irreversibly. The resulting hydrodynamic equation2

describe the ‘‘spin diffusion.’’ In this regime a local excita
tion decays as (Dt)2d/2, where d is the dimension of the
space. From the microscopic point of view, however, dyna
ics is governed by reversible quantum mechanics as lon
quantum coherence is maintained. Although this dynam
seemsto be ‘‘diffusive’’ already at intermediate times,
careful study3 of low-dimensional systems can recogni
quantum interferences. Its experimental observation4,5 con-
stitutes a fingerprint of the bounded regions where the
namics occurs. In addition an experimental realization o
‘‘Loschmidt daemon,’’6 which allows the evolution back
wards in time, can be achieved by inverting the sign of
effective Hamiltonian. In this case, ‘‘irreversible’’ interac
tions are simply those we do not control. Hence, reversibi
is not total.7 This effect is stronger than what can be inferr
from the magnitude of the noninverted terms. In fact,
apparently ‘‘diffusive’’ dynamics of the many-body intera
tion seems to transform small residual interactions into e
cient mechanisms to stabilize an irreversible diffusion.8 Irre-
versible effect is often amplified even by those interactio
we can control. This is analogous to the Drude approxim
tion for the electrical resistance of an impure metal at l
temperatures. There, thereversibleelastic scattering with im-
purities with rate (1/t imp) facilitates the interaction with the
thermal bath. This bath acts through the uncontrolla
electron-phonon interactions or other dephasing collisi
with rate 1/tf . The remarkable consequence is that in fi
approximation the diffusion constant does not depend ontf

but it is D}v
2
t imp , wherev is a typical velocity for ballistic

propagation of the excitation. Its lesson is that a revers
interaction can provide an evolution close enough to dif
570163-1829/98/57~9!/5017~4!/$15.00
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sion. Then, when actual irreversible processes occur, t
stabilize9 the evolution into an irreversible diffusion. Th
observed diffusion constant remains unchanged. This g
the ultimate justification for thestosszahlansatzor assump-
tion of randomness after successive collisions in which
memory of the previous quantum state is retained. This
equivalent to considering a collision with an impurity as
classical measurement or wave function collapse. This
course, is an approximation which breaks down close to
localized regime where interferences play a fundame
role.

The goal of the many-body techniques is to provide
match between the quantum and hydrodynamic regimes
viding the machinery for the calculation of the diffusion co
stant and other macroscopic observables. However, bec
of the implicit approximations, this is sometimes done at
cost of the physical insights into the nature of irreversibili
To understand the dynamics of a local excitation, we not
that one up spin, in a lattice with all down spins, propaga
with a typical ‘‘ballistic’’ velocity proportional to the ex-
change constantJ. At high temperature, there are as many
spins as down spins. Hence, this propagation in the subla
of down spins is interrupted by the modification of this la
tice. This produces a ‘‘collision’’ rate (1/tmb) also propor-
tional to J. If we neglect quantum interferences~stosszahl-
ansatz! produced by multiple collisions, a diffusion consta

D}v
2
tmb}J is obtained. Again the point is that a diffusiv

behavior is a good approximation for the dynamics. It will
stabilized by later irreversible interactions. Keeping this
mind, we mayconsidereach ‘‘collision’’ as a measuremen
process.

Quantum dynamics is strongly modified by recurre
measurements. This phenomenon, known as the quan
Zeno effect~QZE!,10 has been applied with particular su
cess in quantum optics.11 In simple words, it affirms that if
the evolution of a quantum system is observed too f
5017 © 1998 The American Physical Society
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quently, there will be no evolution to be seen. While th
might sound paradoxical from a classical point of vie
within quantum logic this is not a paradox at all, since
measurement involves a collapse of the wave function
the start of a new quantum evolution. For short times,
probability of staying in the initial state isPi ,i(t)51

2( J̄ t/2\)21•••, with J̄ being an average exchange energ
The lack of a linear term on this expansion has very imp
tant consequences. If the evolution in a timets is interrupted
by N observations, the final probability of stay isP̃i ,i(t
5ts)5@Pi ,i(ts /N)#N→1 whenN→`. Here, ts /N5tf de-
fines the decoherence time. Hence one sees why a freq
collapse~i.e., vf51/tf@1) hinders evolution.12 The result
of the successively interrupted evolution is shown schem
cally in Fig. 1.

This article addresses a paradoxical aspect of the dim
sional dependence in the dynamics of magnetic excitation
light of the QZE. In order to make it more obvious, let
first discuss the particular limit of a cubic lattice where t
interaction along directiony grows (Jy /Jx(z)→`). The dif-
fusion coefficient in that direction will also grow,Dy}Jy .
However, the spreading rate in the other directions will d
crease,Dx,(z)}1/Jy . The essence of the argument that we
going to develop is that spins spreading in eachxz plane
register the evolution in the other parallel planes through
many-body couplingJy ~i.e., they ‘‘observe’’ each other with
a frequencyvf→Jy /\), producing the reduction of the dy
namics within the planes. This is a general behavior a
valid for the nonperturbative limit ofJy'Jx(z) . To our
knowledge this has not been noticed previously.

The calculation of the dynamics of a local spin polariz
tion in the high-temperature regime can be mapped to a
tem of Fermi particles on a lattice. Up spins are identifi
with particles and down spins with holes. A particle is loc
ized at the excited site with the rest of the sites being oc
pied with probability 1

2. The initial state is an incoheren
superposition of all the possible initial states a few of wh
are shown in the inset of Fig. 1. The particle initially
zeroth site starts to evolve having a finite probability amp
tude to jump into empty neighboring sites. Meanwhile, oth

FIG. 1. Probability of stay for a particle whose quantum evolution
interrupted by a measurement process with a periodtf andtf8 52tf . The
coherent evolution is approximated up to the quadratic term and the re
probability is neglected. The increase of the probability of stay is a m
festation of the QZE. The evolution shown is equivalent to the aver
evolution of the ensemble in the inset. Only 5 of the 16 configurati
corresponding to a local excitation in the high-temperature limit
sketched.
,

d
e

.
-

ent

ti-

n-
in

-
e

e

o

-
s-

d
-
-

-
r

particles also can move in and out of neighboring sites c
ating a fluctuating effective potential. If this is approximat
by a stochastic potential, one obtains an irreversible equa
satisfying the hydrodynamic limits. The essential point
that the correlation times of the potential are the same
those that characterize the dynamics of a particle in its fl
tuating environment. This leads to a self-consistent equa
which is the core of classic many-body calculations of s
diffusion such as that of Blume and Hubbard13 for symmetric
lattices. However, those calculations do not show the mi
teasing behavior of the asymmetric lattices which are
purpose of this work. Let us do a simplified calculation va
for both symmetric and asymmetric systems, which w
clarify the effect of dimensional crossover in the dynami
Consider ad-dimensional~hyper!cubic lattice of spins 1/2
interacting through the Hamiltonian

HII 5 (
k, j .k

Jjk Fa2Sj
zSk

z2
1

2
~Sj

1Sk
21Sj

2Sk
1 !G , ~1!

whereS are the usual spin operators with subscripts indic
ing spin sites andJjk5Jm are nearest-neighbor interactio
parameters depending only upon the directionm̂ along sitesj
and k at distanceam[a51. For a52 1

2, it describes the
Heisenberg model~isotropic exchange!, a50 defines the
XY model, whilea51 is a truncated dipolar Hamiltonian.

For each initial stateu i &, with the zeroth site polarized
~i.e., one of the states shown in Fig. 1!, the probability of
finding the same site polarized in the state^ f u after a timet,
is

Pf ,i~ t !5u^ f uexp@2 ~ i/\!HII t#u i &u2. ~2!

A total ensemble averaged probability that a spin initially
at the zeroth position is still up at timet can be calculated
summing over all theNi and Nf possible initial and final
states:

^P~ t !&5(
f

Nf

(
i

Ni 1

Ni
Pf ,i~ t !

512
1

4(m
d

^Zm&Jm
2 t2/\21O~ t4!1••• . ~3!

^Zm&51 is the average number of neighbors along direct
m with down spin. In the second order term only the flip-flo
terms produce the exchange of the originally polarized
roth spin with its neighbors. This corresponds to the o
body dynamics of one up spin in a lattice in which the oth
up spins remain frozen. Higher order terms contain the
namics of those other spins and the many-body interactio

A normalized magnetization can be calculated from
spin autocorrelation function as

M ~ t !5^S0
z~ t !S0

z&/^S0
zS0

z&52~^P~ t !&2 1
2 !. ~4!

This magnitude is experimentally accessible. For short tim
the mean square displacement of the magnetization in te
of the nearest-neighbor spin correlation functions^r m

2 &
}am

2 ^S06am

z (t)S0
z&. The truncated quantum dynamics give

by Eq. ~3! gives
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^r m
2 &quant5

1
2 am

2 Jm
2 t2/\2. ~5!

However, the perturbative expansion of Eq.~3! is not a prac-
tical way to obtain the long time dynamics but for fe
simple one-dimensional systems.1 Therefore, we need an en
tirely different approach. First, we notice that for infini
lattices the long time evolution is very complex and it pr
sents theapparentlydiffusive behavior~eventually stabilized
by interactions with the thermal bath! that we want to evalu-
ate. While evolution with Eq.~1! is not an irreversible pro-
cess, it is close enough to a diffusive evolution so tha
self-consistent condition is already achieved for intermed
times.

When ^P(t)& has decayed substantially, let us say wh
the second term in Eq.~3! is half of the first, the environmen
has changed completely and no phase coherence with
initial one-body state is retained. This defines the depha
time

tf5\2/A2(
m

d

Jm
2 51/vf . ~6!

It is important to note that this functional dependence onJm
does not depend on the amount of decay chosen to deter
tf . The change in the environment, following a quantu
dynamics according to Eq.~3!, is slower than linear at early
times, becoming important only at abouttf . Then, it can be
described by a discrete time Markovian process leading
classical random walk. At the dephasing time the me
square displacement of the magnetization is

^r m
2 &class52Dmtf . ~7!

At t5tf , both quantum and classical diffusive regimes m
coincide. This statement was rigorously proved in Ref.
where we used the Keldysh formalism14 to achieve a nonper
turbative description of the crossover from the quantum
the diffusive regime for a particle interacting with a depha
ing field. In our model this field acts at a typical time with a
interaction probabilityp(t)dt5d(t2tf)dt. Then, the coher-
ence with the initial state has a survival probabilityu(tf
2t). This step function is more appropriate to describe
quantum dynamics of the dephasing field than the us
exp@2t/tf#. According to Ref. 9, within this approximatio
the self-consistent propagation of density excitations~satis-
fying the integral Keldysh equation! requires that both quan
tum and Markovian descriptions12 give the same probability
distribution att5tf . This condition is equivalent to equat
Eqs.~5! and~7!, from which we obtain the diffusion constan
for each direction:

Dm5
am

2\
3Jm

2 /A2(
m

d

Jm
2 5

am
2

4\2
Jm

2 /vf . ~8!

This important result contains the paradoxical aspects of
dynamics we discussed in the introductory paragrap
While our procedure has been mainly qualitative, we belie
it catches the fundamental phenomena, and therefore the
rect functional dependence. For the symmetric thr
dimensional lattice this givesD5Ja2/(\2A6), in fair agree-
ment with the values calculated by a number of previo
authors13,15 and consistent with simulations13 in a system of
classical spins.
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While the numerical solution of the quantum dynamics
systems with a large number of spins is a formidable ta
we can attempt to see signatures of the discussed pheno
for small two-dimensional systems. We consider a nine-s
system with periodic boundary conditions and evaluate
eigenstates of all the spin configurations to study the dyn
ics according to Eqs.~1! and~2! with a521/2. In Fig. 2 we
show the numerical evaluation of^r x

2& and^r y
2& as a function

of time t for different values ofJy while keepingJx51.
While the diffusive regime (̂r y

2&;2Dyt) cannot be reached
in a small system, the plot shows that an increase inJy is
correlated with an increase in the spreading dynamics.
paradox that is manifested in the QZE is that the growth
^r x

2&, showing the dynamics in the perpendicular direction
slowed down by the increase ofJy . While eventually the
hydrodynamic limit could be described by a diffusion equ
tion in which variables can be separated, in the many-b
Schrödinger equation variables appear intimately entangl
leading to the interdependence of the diffusion constants
Eq. ~8!.

We want to show that even when an asymmetry of
lattice could lead to a faster quantum decay of the polar
tion for short times, it produces a reduction of the effecti
dimensionality of the lattice where diffusion occurs whic
slows down the spreading. For this purpose we study
time decay of the local polarization in a square lattice. T
inset in Fig. 3 shows the magnetizationM (t) in the symmet-
ric lattice up to intermediate times@for long times weak me-
soscopic beats4 resembling those of one-dimensional~1D!
rings would appear#. The symmetry of the interaction ne
work can be broken by slightly increasing the coupling alo
directiony, Jy5J1dJ, while in the other direction it is de-
creased by the same amountJx5J2dJ. The thick line in the
main plot shows the difference between the local magnet
tions calculated for the asymmetric and the symmetric n
works dC5MA(t)2MS(t), with dJ/J50.1. For very short
times the spreading in the asymmetric lattice is faster tha
the symmetric one anddC follows the parabolic approxima
tion dC'2(dJ)2t2/\2 shown by the thin line. QZE mani
fests for intermediate times, slowing down the diffusion
the asymmetric case. This compensates the fast deca
short times at aroundt51.8\/J, when dC50. This cross-
over from faster decay ofMA as compared withMS to a

FIG. 2. Mean square displacement of magnetization as function of t
for increasing asymmetrization of the 2D lattice with Heisenberg inter
tion. The full line isJy5Jx 5J, the other lines are the sequencesJy /J52,
3, 4, 5, and 6.Jx is kept constant. Upper curves are displacements alony,
while lower ones are alongx. The QZE is manifested in the slowdown o
the spreading alongx.
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slower one is a very remarkable result of our simple the
consistent with the numerical solutions.

A simple experimental test of the spin dynamics is t
linewidth of a magnetic resonance spectrum. Different lo
environments in a system of noninteracting spins produce
inhomogeneously broadened absorption line, where each
quency corresponds to spins seeing a different local fi
However, through the flip-flop mechanism, each spin exc
tion explores different lattice sites producing an averaging
the field. Thus, the narrowed linewidth16 is Dn
}*0

`^S0
z(t)S0

z&dt ~eventually the integral extends up to a cu
off time!. Then, the slower the dynamics the wider the lin

It is not usually possible to control the magnitude of t
exchange interaction for electronic spins. However, this
just the situation observed17 for a family of Cu(aa)2 single
crystals whereaa stands for amino acid. If theaa is present
in a mixture 50% dextrogyre and 50% levogyre (D,L), the
Cu21 paramagnetic centers occupy sites with inversion sy
metry in a two-dimensional coupling network. The Cu ato
are connected by OCO bridges, with the differentaa resi-
dues playing the role of separators between layers.
Cu(L-aa)2 crystals~100%L-aa), however, a breakdown o
this symmetry occurs. The amount of asymmetrization of
lattice depends on theaa. The very important increase of th

FIG. 3. The inset shows the spin autocorrelation function in a symme
2D lattice with Heisenberg interaction as function of time. Thick curve
the main frame shows the differencedC between the autocorrelation func
tion of the symmetric (Jy5Jx5J) and asymmetric (Jy5J1dJ and Jx5J
2dJ, with dJ/J50.1) lattices. The thin line is a parabolic approximatio
la-
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electron paramagnetic resonance linewidth that is obse
when going fromD,L to L crystals can be interpreted as
signature of the discussed QZE.

Systems with interacting nuclear spins seem quite pro
ising for the study of dynamics in asymmetric lattices. Ma
romolecules could be engineered to present a sequenc
through bond isotropic couplings when studied in solutio
In crystals, where the dipolar interaction is the dominant o
its dependence on the angleu between the vector connectin
dipoles and dipole orientation~fixed by an external field! can
be used to change its magnitude and sign. For example,
cubic lattice of spins, by varying the magnetic field in th
plane@001# from the @110# direction toward one at a magi
angle (um5arccos@1/A3#) with the @010# axis, one could see
how the dynamics changes from a three-dimensional beh
ior (Jx52d/2, Jy52d/2, Jz5d), with a symmetric diffu-
sion in thexy plane, that of a two-dimensional system (Jx
52d, Jy50, Jz5d). The change from the initial orientatio
would allow a study of a crossover indC similar to that
discussed above. The application of these concepts woul
even more direct for magnetically two-dimensional syste
(Jz'0), whereJx andJy can be controlled independently. I
both cases multiple quantum coherence18 experiments and
spin diffusion pulse sequences7 could be used to obtain
complementary information19 about the asymmetric spread
ing of magnetic polarization. A more conventional expe
ment is to apply a magnetic field gradient along one crys
direction ~sayy) which, by detuning the resonance freque
cies of nuclei at differentxz planes, is equivalent to a de
crease of the interplane coupling. Results obtained using
technique20 are also consistent with our predictions. In sum
mary, we have put the problem of spin diffusion under
perspective that could stimulate a series of experiments
calculations to understand spin dynamics.
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chas, CONICET, CONICOR, and SeCyT-UNC. We a
grateful to P. R. Levstein for critically reading this man
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M. Tomaselli and Professor D. Cory for conversations ab
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