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Dimensional crossover in spin diffusion: A manifestation of the quantum Zeno effect
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The quantum Zeno effedQZE) implies that a too frequenta(,— ) observation of a quantum system
would trap it in its initial state, even though it would be able to evolve to some other state if not observed. In
our scheme, interacting spins in a three-dimensional cubic lattice, “observe” each other with a frequency
w¢0€\/JX2+ Jy2+ Jzzlh, where thel’'s are the coupling constants. This leads to a “diffusive” spread of a local
excitation characterized by the constaBt§mJi/w¢. Thus, a strongly asymmetric interactié®ng.,Jy /Jy
>1), would hinder diffusion in the perpendicular directiori3,(,—0) manifesting the QZE. We show that
this effect is present in numerical solutions of simple two-dimensional systems. This reduction in the diffusion
kinetics was experimentally observed in paramagnetic compounds where the asymmetry of the interaction
network manifests through an exchange narrowed linewidth. Experimental designs are proposed.
[S0163-182608)04409-9

Quantum dynamics of magnetic excitations in a system oion. Then, when actual irreversible processes occur, they
interacting spins at high temperature is an active field oftabiliz€ the evolution into an irreversible diffusion. The
researcH.From a macroscopic scope, i.e., for long times andobserved diffusion constant remains unchanged. This gives
large wavelengths, one expects that excitations shoulthe ultimate justification for thstosszahlansatar assump-
evolve irreversibly. The resulting hydrodynamic equatfons tion of randomness after successive collisions in which no
describe the “spin diffusion.” In this regime a local excita- memory of the previous quantum state is retained. This is
tion decays ast) 92 whered is the dimension of the equivalent to considering a collision with an impurity as a
space. From the microscopic point of view, however, dynam<¢lassical measurement or wave function collapse. This, of
ics is governed by reversible quantum mechanics as long aourse, is an approximation which breaks down close to the
guantum coherence is maintained. Although this dynamictocalized regime where interferences play a fundamental
seemsto be “diffusive” already at intermediate times, a role.
careful study of low-dimensional systems can recognize The goal of the many-body techniques is to provide the
quantum interferences. Its experimental observ&fimon-  match between the quantum and hydrodynamic regimes pro-
stitutes a fingerprint of the bounded regions where the dyviding the machinery for the calculation of the diffusion con-
namics occurs. In addition an experimental realization of astant and other macroscopic observables. However, because
“Loschmidt daemon,® which allows the evolution back- of the implicit approximations, this is sometimes done at the
wards in time, can be achieved by inverting the sign of thecost of the physical insights into the nature of irreversibility.
effective Hamiltonian. In this case, “irreversible” interac- To understand the dynamics of a local excitation, we notice
tions are simply those we do not control. Hence, reversibilitythat one up spin, in a lattice with all down spins, propagates
is not total’ This effect is stronger than what can be inferredwith a typical “ballistic” velocity proportional to the ex-
from the magnitude of the noninverted terms. In fact, thechange constardt At high temperature, there are as many up
apparently “diffusive” dynamics of the many-body interac- spins as down spins. Hence, this propagation in the sublattice
tion seems to transform small residual interactions into effi-of down spins is interrupted by the modification of this lat-
cient mechanisms to stabilize an irreversible diffusidme-  tice. This produces a “collision” rate (%/,,) also propor-
versible effect is often amplified even by those interactiongional to J. If we neglect quantum interferencéstosszahl-
we can control. This is analogous to the Drude approxima-ansatz produced by multiple collisions, a diffusion constant
tion for the electrical resistapce of an impurg metal at IowDochTmbo(J is obtained. Again the point is that a diffusive
temperatures. There, theversibleelastic scattering withim-  pehavior is a good approximation for the dynamics. It will be
purities with rate (1#,) facilitates the interaction with the stapilized by later irreversible interactions. Keeping this in
thermal bath. This bath acts through the uncontrollablgning, we mayconsidereach “collision” as a measurement
electron-phonon interactions or other dephasing collisiongocess.
with rate 1k, . The remarkable consequence is that in first Quantum dynamics is strongly modified by recurrent
approximation the diffusion constant does not dependpn measurements. This phenomenon, known as the quantum
but it is DOCUZTimp, wherev is a typical velocity for ballistic  Zeno effect(QZE),'° has been applied with particular suc-
propagation of the excitation. Its lesson is that a reversibleess in quantum optics.In simple words, it affirms that if
interaction can provide an evolution close enough to diffu-the evolution of a quantum system is observed too fre-
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particles also can move in and out of neighboring sites cre-
ating a fluctuating effective potential. If this is approximated
. by a stochastic potential, one obtains an irreversible equation
satisfying the hydrodynamic limits. The essential point is
. that the correlation times of the potential are the same as
those that characterize the dynamics of a particle in its fluc-
tuating environment. This leads to a self-consistent equation
which is the core of classic many-body calculations of spin
diffusion such as that of Blume and Hubb&ttbr symmetric
lattices. However, those calculations do not show the mind-
teasing behavior of the asymmetric lattices which are the
purpose of this work. Let us do a simplified calculation valid
FIG. 1. Probability of stay for a particle whose quantum evolution is fOr both symmetric and asymmetric systems, which will
interrupted by a measurement process with a peripdnd r,=27,. The  clarify the effect of dimensional crossover in the dynamics.

coherent evolution is approximated up to the quadratic term and the retur€Consider ad-dimensional(hypencubic lattice of spins 1/2
probability is neglected. The increase of the probability of stay is a mani—imeracting through the Hamiltonian

festation of the QZE. The evolution shown is equivalent to the average

evolution of the ensemble in the inset. Only 5 of the 16 configurations

corresponding to a local excitation in the high-temperature limit are _ ] oz _(ota— -t
sketched. Hi k,jE>k Jjk | @255 2(81 SHSS)|, @

P(t)

t(wI

whereS are the usual spin operators with subscripts indicat-
ing spin sites andl;,=J, are nearest-neighbor interaction

parameters depending only upon the direcfioalong siteg

ndk at distancea,=a=1. For a=—13, it describes the

eisenberg modelisotropic exchange a=0 defines the

quently, there will be no evolution to be seen. While this
might sound paradoxical from a classical point of view,
within quantum logic this is not a paradox at all, since a
measurement involves a collapse of the wave function an

the sta'rt. of a new .q“a”.t“m equL.Jt.ion. For short times, theXY model, whilea=1 is a truncated dipolar Hamiltonian
probability of staying in the initial state isP;;(t)=1 For each initial statei), with the zeroth site polarized

—(Jt/2h)?+ - -, with J being an average exchange energy.(i.e., one of the states shown in Fig), the probability of
The lack of a linear term on this expansion has very imporinding the same site polarized in the stété after a timet,
tant consequences. If the evolution in a titgés interrupted s

by N observations, the final probability of stay B (t . .

=tg)=[P; i(ts/N)]N—1 whenN—. Here, ts/N= 17, de- Pri()=[(flexd — (i) H, t]]i)|°. (3]
fines the decoherence time. Hence one sees why a freque&t[otal ensemble averaged probability that a spin initially up

. _ s . . 2
collapse(i.e., wy=1/7,>1) hinders evolutiori? The result at the zeroth position is still up at timecan be calculated

ggltlﬁns?:?gceiswely interrupted evolution is shown SChematIéumming over all theN; and N; possible initial and final

This article addresses a paradoxical aspect of the dimer?—tates;

sional dependence in the dynamics of magnetic excitations in Ne Ny

Il_ght o_f the QZE. In _order to make it more ok_)V|ous, let us <P(t)>=2 E —Pgi(h)

first discuss the particular limit of a cubic lattice where the T TN;

interaction along directioly grows (y/Jy;—). The dif- L9

fusion coefficient in that direction will also grov,=J, . —q_= 242122 4N,

However, the spreading rate in the other directioryls vim de- =1 4% <Z“>‘]“t IR+ O+ - G

creaseD, 1/, . The essence of the argument that we are ) ) o

going to develop is that spins spreading in eachplane  (Z.)=1 is the average number of neighbors along direction

register the evolution in the other parallel planes through thet With down spin. In the second order term only the flip-flop

many-body coupling), (i.e., they “observe” each other with terms produce the exchange of the originally polarized ze-

a frequencyw ,—J, /), producing the reduction of the dy- roth spin with its neighbors. This corresponds to the one-

namics within the planes. This is a general behavior als®0dy dynamics of one up spin in a lattice in which the other

valid for the nonperturbative limit ofl,~J,,. To our up spins remain frozen. H|gher order terms contain the_ dy-

knowledge this has not been noticed previously. namics of th_ose other spins _and the many-body interactions.
The calculation of the dynamics of a local spin polariza- A normalized magnetization can be calculated from the

tion in the high-temperature regime can be mapped to a sy§Pin autocorrelation function as

tem of Fermi particles on a lattice. Up spins are identified

with particles and down spins with holes. A particle is local- M (t) = (S§(t) SHH(S5SE)=2({(P(1))— 3). (4)

ized at the excited site with the rest of the sites being occu-_ , , ) , )

pied with probability 2. The initial state is an incoherent This magnitude is experimentally accessible. For short times,

superposition of all the possible initial states a few of whichth® mean square displacement of the magnetization in terms
are shown in the inset of Fig. 1. The particle initially at Of the nearest-neighbor spin correlation functiofrs,)
zeroth site starts to evolve having a finite probability ampli-“%(sé:aﬂ(t)sé)- The truncated quantum dynamics given
tude to jump into empty neighboring sites. Meanwhile, otherby Eq. (3) gives
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(r2) quant 3 8232t2/h2. (5) 0.20 T

However, the perturbative expansion of E8).is not a prac-
tical way to obtain the long time dynamics but for few
simple one-dimensional systeh3herefore, we need an en-
tirely different approach. First, we notice that for infinite
lattices the long time evolution is very complex and it pre-
sents theapparentlydiffusive behavioneventually stabilized

by interactions with the thermal batthat we want to evalu-
ate. While evolution with Eq(1) is not an irreversible pro-
cess, it is close enough to a diffusive evolution so that a
self-consistent condition is already achieved for intermediate t [

times. FIG. 2. Mean square displacement of magnetization as function of time

When(P(t)) has decayed substantially, let us say whenyor increasing asymmetrization of the 2D lattice with Heisenberg interac-
the second term in E@3) is half of the first, the environment tion. The full line isJ,=J, =J, the other lines are the sequendgsl=2,

has changed completely and no phase coherence with tig4. 5, and 6J, is kept constant. Upper curves are displacements afong

initial one-body state is retained. This defines the dephasingh“e Iower ones are along. The QZE is manifested in the slowdown of
time e spreading along.

[d While the numerical solution of the quantum dynamics of
Tg=h2/ 22 ‘];2»:1/‘%- (6) systems with a large number of spins is a formidable task,
m we can attempt to see signatures of the discussed phenomena

It is important to note that this functional dependencelgn for small two-dimensional systems. We consider a nine-spin
does not depend on the amount of decay chosen to determig¥Stém with periodic boundary conditions and evaluate the
7,. The change in the environment, following a quamumggenstate_s of all the spin conﬁg_uranons to study'the dynam-
dynamics according to EG3), is slower than linear at early ICS according to Eqs1) and(2) W'trz‘ a=- 142- In Fig. 2 we
times, becoming important only at abot. Then, it can be show the numerical evaluation of;) and(ry) as a function
described by a discrete time Markovian process leading to 8f time t for different values ofJ, while keepingJ,=1.
classical random walk. At the dephasing time the meaWhile the diffusive regime (f7)~2Dyt) cannot be reached

mean square displacement

square displacement of the magnetization is in a small system, the plot shows that an increasé,iis
correlated with an increase in the spreading dynamics. The
(r2) class= 2D , 7. (7)  paradox that is manifested in the QZE is that the growth of

_ . e . (ri), showing the dynamics in the perpendicular direction, is
At t=r,, both quantum and classical diffusive regimes mustSIOWed down by the increase df. While eventually the

coincide. This statement was rigorously proved in Ref. 9,h drod i limit d be d ived bv a diffusi
where we used the Keldysh formalishto achieve a nonper- lydrodynamic fimit could be described by a ditfusion equa-
tion in which variables can be separated, in the many-body

turbative description of the crossover from the quantum toS hidli i iabl timatel tanaled
the diffusive regime for a particle interacting with a dephas- chraiinger equation variables appear intimately entangied,

ing field. In our model this field acts at a typical time with an IEead(lg)g to the interdependence of the diffusion constants of

interaction probabilityp(t)dt= 6(t— 7,)dt. Then, the coher- qWe .Want to show that even when an asvmmetry of the

ence with the initial state has a survival probabilityr,, . y y ot
lattice could lead to a faster quantum decay of the polariza-

—t). This step function is more appropriate to describe the. . . : .
quantum dynamics of the dephasing field than the usua on for short times, it produces a reduction of the effective

) o ; - dimensionality of the lattice where diffusion occurs which
exd —t/7,]. According to Ref. 9, within this approximation X .
: . : SR slows down the spreading. For this purpose we study the

the self-consistent propagation of density excitati(setis- : T .

. : . . time decay of the local polarization in a square lattice. The
fying the integral Keldysh equatipmequires that both quan- inset in Fig. 3 shows the magnetizatibh(t) in the symmet
tum and Markovian descriptioffsgive the same probability . nrHg. o st _magl (1) i y

S — . 2 : ric lattice up to intermediate timd$or long times weak me-
distribution att= 7. This condition is equivalent to equate

Egs.(5) and(7), from which we obtain the diffusion constant S0scopic ?dea‘fsreseml:r)]lmg those of ?nﬁ-dl_mensm_r(aJD)
for each direction: rings would appedr The symmetry of the interaction net-

work can be broken by slightly increasing the coupling along

au / d ) ai ) directiony, Jy=J+ 6J, while in the other direction it is de-
Du:ﬁ X3/ 2% Ju= MJ/L/‘%- (8) creased by the same amougt J— 6J. The thick line in the
main plot shows the difference between the local magnetiza-
This important result contains the paradoxical aspects of spitions calculated for the asymmetric and the symmetric net-
dynamics we discussed in the introductory paragraphsworks 6C=MA(t)—MS(t), with §J/J=0.1. For very short
While our procedure has been mainly qualitative, we believaimes the spreading in the asymmetric lattice is faster than in
it catches the fundamental phenomena, and therefore the cdhe symmetric one andC follows the parabolic approxima-
rect functional dependence. For the symmetric threetion 5C~ — (8J)?t%/4? shown by the thin line. QZE mani-
dimensional lattice this give® =Ja?/(#2/6), in fair agree-  fests for intermediate times, slowing down the diffusion in
ment with the values calculated by a number of previoughe asymmetric case. This compensates the fast decay of
author$®>*® and consistent with simulatiohsin a system of  short times at arount=1.8%/J, when 5C=0. This cross-
classical spins. over from faster decay oM” as compared wittM® to a
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0.0050 = electron paramagnetic resonance linewidth that is observed
ol when going fromD,L to L crystals can be interpreted as a
00025 = oaf signature of the discussed QZE.
ol . . / Systems with interacting nuclear spins seem quite prom-
% 0.0000 i ! L ising for the study of dynamics in asymmetric lattices. Mac-

romolecules could be engineered to present a sequence of
0.0025 | through bond isotropic couplings when studied in solution.
In crystals, where the dipolar interaction is the dominant one,
10,0050 . - ) . its dependence on the anglebetween the vector connecting
" 00 0.5 1.0 1.5 2.0 2.5 dipoles and dipole orientatidffixed by an external fieldcan
t ) be used to change its magnitude and sign. For example, in a
cubic lattice of spins, by varying the magnetic field in the
FIG. 3. The inset shows the spin autocorrelation function in a symmetriqy|ane[001] from the[110] direction toward one at a magic
2D lattice with Heisenberg interaction as function of time. Thick curve in . .
the main frame shows the differené€ between the autocorrelation func- angle (Om= arCCF’@l/ﬁ]) with the[010] aX'S’_ one C_OU|d see
tion of the symmetric §,=J,=J) and asymmetricJ,=J+ 8J andJ,=J how the dynamics changes from a three-dimensional behav-
— 83, with 51/3=0.1) lattices. The thin line is a parabolic approximation. ior (Jy=—d/2, J,=—d/2, J,=d), with a symmetric diffu-
sion in thexy plane, that of a two-dimensional systeid, (
slower one is a very remarkable result of our simple theory~ —d; Jy=0,J,=d). The change from the initial orientation
consistent with the numerical solutions. would allow a study of a crossover i6C similar to that
A simple experimental test of the spin dynamics is thediscussed above. The application of these concepts would be

linewidth of a magnetic resonance spectrum. Different locafVen more direct for magnetically two-dimensional systems
environments in a system of noninteracting spins produce aflz=0), whereJ, andJ, can be controlled independently. In
inhomogeneously broadened absorption line, where each fr@0th cases multiple quantum coherefficexperiments and
quency corresponds to spins seeing a different local fieldSPin diffusion pulse sequencesould be used to obtain
However, through the flip-flop mechanism, each spin excitac®mplementary mform_audﬁ about the asymmetric spread-
tion explores different lattice sites producing an averaging of"d of magnetic polarization. A more conventional experi-
the field. Thus, the narrowed linewidth is Ap  Mentisto apply a magnetic field gradient along one crystal
o [Z(SE(t) SE)ydt (eventually the integral extends up to a cut- dﬁrection(sayy) which, by detuning t'he resonance frequen-
off time). Then, the slower the dynamics the wider the line,Ci€S Of nuclei at differenkz planes, is equivalent to a de- -
It is not usually possible to control the magnitude of the ©r¢@S€ Of(;[he interplane gouplmg_. Results opta_med using this
exchange interaction for electronic spins. However, this iéeChn'q”é are also consistent with our _predmﬂo_ns. In sum-
just the situation observétifor a family of Cu(@a), single mary, we have put the _problem of Spin d|ﬁu5|on under a
crystals wherea stands for amino acid. If thea is present perspective that could stlmula}te a series of experiments and
in'a mixture 50% dextrogyre and 50% levogyi®,( ), the calculations to understand spin dynamics.
Cu?* paramagnetic centers occupy sites with inversion sym- This work was done at LANAIS de RMN(UNC-
metry in a two-dimensional coupling network. The Cu atomsCONICET) with financial support from FundaaioAntor-
are connected by OCO bridges, with the differemt resi-  chas, CONICET, CONICOR, and SeCyT-UNC. We are
dues playing the role of separators between layers. Igrateful to P. R. Levstein for critically reading this manu-
Cu(L-aa), crystals(100%L-aa), however, a breakdown of script and numerous discussions. H.M.P. also acknowledges
this symmetry occurs. The amount of asymmetrization of thev.. Tomaselli and Professor D. Cory for conversations about
lattice depends on theea. The very important increase of the their unpublished results.
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