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First-order phase transition of the exchange-interaction model studied
by the Handscomb quantum Monte Carlo method
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Department of Physics, Tunghai University, Taichung 400, Taiwan, Republic of China

~Received 28 February 1997!

Thermodynamic properties of the ferromagnetic spin-S exchange-interaction model are studied by the Hand-
scomb quantum Monte Carlo method. We have studied simple cubic lattices with sizes up to 12312312. We
show numerical evidence of hysteresis effects forS>2 that supports the prediction of a first-order transition in
mean-field theory. These results are further confirmed by using the histogram analysis of Monte Carlo data.
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The Handscomb quantum Monte Carlo~HQMC! method1

was introduced by Handscomb 30 years ago in the stud
the ferromagnetic Heisenberg model. Later in the 1980’s
method was revised independently by Lyklema2 and Chakra-
varty and Stein.3 They proved that more accurate results
ferromagnetic quantum spin system can be obtained by u
HQMC as compared with the Suzuki-Trotter quantum Mo
Carlo method.4 An important improvement of this metho
was put forward by Leeet al.5 who generalized the metho
to study antiferromagnetic Heisenberg model. Inspired
Anderson’s suggestion6 of the importance of antiferromag
netic interaction in the superconducting mechanism of hi
temperature superconductors, HQMC has been applie
study the low-energy properties of the two-dimensional
tiferromagnetic Heisenberg model.7 Recently, Sandviket al.
proposed a generalized scheme of HQMC to study the o
dimensional spin-S antiferromagnetic Heisenberg mode8

and Hubbard model.9 It is important to note that progres
along this direction is worthy of more attention.

In this paper we apply HQMC to study the thermod
namic properties of spin-S exchange interaction model10

~EIM! in a three-dimensional~3D! simple cubic lattice. The
Hamiltonian describing the EIM withN spins and M
(53N) bonds is given by

H52J(
^ i , j &

Pi j , ~1!

where Pi j is the exchange operator, which exchanges t
spin coordinates ofSi andSj , i.e., Pi j uSi ,Sj&5uSj ,Si&. For
S5 1

2, Pi j is the Dirac exchange operator. Hence EIM
identical to theS5 1

2 Heisenberg model. For higher spi
Shröedinger proved thatPi j can be expressed as a polyn
mial of (Si•Sj ). Therefore one can learn the effect of no
linear term (Si•Sj )

n on the critical properties of a spin sys
tem with EIM. In this paper we will consider th
ferromagnetic EIM, i.e.,J.0.

We have applied HQMC to study the one-dimensio
EIM ~Ref. 11! and obtained results in good agreement w
the Bethe ansatz and spin-wave analysis. For 3D EIM th
are many studies by using different methods. Chen
Joseph10 applied high-temperature series expansion to st
this model. Assuming the existence of a second-order ph
transition in all spins they found the critical temperatures a
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exponents for spinS<2. However, in a mean-field approx
mation Chenet al.12 obtained first-order phase transitions f
spin S>1. A similar conclusion of first-order phase trans
tion was also obtained forS51 EIM by using a Greens-
function decoupling method.13 This discrepancy motivates u
to apply HQMC to investigate the nature of the transition
3D EIM. An important advantage of employing HQMC
that due to the symmetric properties of exchange operato
the Hamiltonian, the calculations can be easily implemen
in the computing program.

In Handscomb’s approach, the partition function is wr
ten as

Z5(
r 50

`
Kr

r !
TrF (

^ i , j &
Pi j G r

5(
r 50

`

(
a51

Mr

Kr

r !
TrCr ,a , ~2!

whereK5J/kBT. The expansion of ((^ i , j &Pi j )
r containsMr

terms and each term is a product of a sequence ofr exchange
operatorsPi j . The ath sequence is denoted asCr ,a . Simi-
larly, the thermal average of a physical observableA of the
model

^A&5@TrA exp~2H/kBT!#/Z,

can also be expressed as

^A&5
1

Z(
r 50

`

(
a51

Mr

Kr

r !
TrACr ,a5(

r
(
a

FTrACr ,a

TrCr ,a
Gp r ,a

5(
r

(
a

Ar ,ap r ,a , ~3!

where

p r ,a5
1

Z

Kr

r !
TrCr ,a , ~4!

Ar ,a5~TrACr ,a!/~TrCr ,a!. ~5!

Equation~3! indicates that̂ A& is the average ofAr ,a over
Cr ,a’s with the weightp r ,a , provided that allp r ,a>0, as in
our case withJ.0. Details of the Markov chain can b
found in Ref. 14.

Accordingly, the total energy per spinE, can be expressed
as
5009 © 1998 The American Physical Society
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E52~J/N!~] lnZ/]K !52
kBT

N (
r

(
a

rp r ,a , ~6!

and the magnetic second moment per spin,Y as

Y5
3

NS~S11!K F(
i

SizG2L 5(
r

(
a

F(
j

aj
2~r ,a!Gp r ,a ,

~7!

whereaj (r ,a) are the number of spins in thej th cycles of
the Cr ,a sequence.14

In Figs. 1~a!–1~e! we show the temperature dependen
of the magnetic second moment forS5 1

2, 1, 3
2, 3, and 5 with

lattice size ranging from 6 to 12. A periodic boundary co
dition is imposed. A typical result for energy is shown in F
1~f!. We performed 2210 3 104 Monte Carlo steps15

~MCS! for each data point depending on temperature
lattice size. The measurements of energy have better a

FIG. 1. ~a!–~e! Temperature dependence of the magnetic sec
moment forS5

1
2, 1, 3

2, 3, and 5, respectively. For each spin, t
lattice sizeL ranges from 6 to 12 as indicated in~e!. Error bars are
less than the size of symbols except those close to the transitio~f!
Temperature dependence of energy forS5

1
2, 1, 3

2, 2, 5
2, 3, and 5

with a fixed lattice sizeL512.
e

-

d
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racy than those of the magnetic second moment. It is in
esting to note that very accurate results are obtained by m
erate computation time and there is no need to
extrapolation in imaginary time.4 As we mentioned, the
mean-field theory predicts first-order phase transition foS
>1, in which cases a discontinuous jump in the order
rameter at transition is expected. This can be seen by c
paring the data for increasing values of spin. To have
intimate picture of how the transition changes qualitative
with spin, we put all energy data ofL512 for various spins
in Fig. 1~f!. It is obvious that the transition becomes sharp
as spin value increases.

Though there are indications of qualitative differences
tween low and high spins, it is still quite a delicate proble
to determine the nature of the transition in a weak first-or
transition revealed by Monte Carlo simulation. Several cri
ria have been proposed to determine the nature of transit
in the Potts model.16,17 One of the signatures of first-orde
transition in Monte Carlo simulation is the observation
hysteresis effect.

However, the occurrence of hysteresis may depend on
rate of heating and cooling and even worse it may also
present in a second-order transition due to critical slow
down. We indeed observed hysteresis for most spinsS
>2) with a high enough heating/cooling rate. Typical resu
are shown in Figs. 2~a!–2~d! for S5 1

2, 1, 3, and 5. We also
show the results for different rates of heating and cooli
From these we can see that as we slow down the rate o
hysteresis loop becomes narrower and eventually merge
the curve of equilibrium~Fig. 1!, in spite of the qualitative

d

FIG. 2. ~a!–~d! Hysteresis data of the energy forS5
1
2, 1, 3, and

5, respectively. Open symbols connected with solid lines are h
ing processes and filled symbols connected with dash lines are c
ing processes. The rate of heating/cooling process is indicate
the Monte Carlo steps performed between two successive temp
tures with differenceDT50.2 ~a,b! and 0.1~c,d!.
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difference between low and high spins. We have not fou
the clear evidence of first-order transition forS51 and3

2. As
compared with1

2 we have observed the enhanced fluctuatio
at the transition region.~With these it is sufficient to show
that they are at most of a weak first-order transition for th
low-spin cases.! On the other hand, the pronounced hyst
esis forS55 @Fig. 2~d!# suggests a strong first-order trans
tion. To assess the issue of the nature of transition with
ambiguity, we must study carefully the finite-size depe
dence. Fortunately, we found that the method of histogr
analysis introduced by Lee and Kosterlitz18,16 can be suc-
cessfully applied to determine the nature of the transition
EIM.

Let us define the ‘‘free energy’’ in terms of probabilit
distribution function,

F~E,L !52 ln„Pr~E,L !…, ~8!

where Pr(E,L) is the probability of the configuration with
energyE and lattice sizeL appears in the simulation. In th
vicinity of transition, F(E,L) has a characteristic double
minima structure, correspondingly, a double-peak struc
in Pr(E,L). The characteristic transition temperature for t
finite lattice, Tc(L), is defined as the temperature at whi
two minima have equal depth. Then we define the fr
energy barrier,DF(L), as the difference between the max
mum and minimum atTc(L). According to Lee and Koster
litz, for a temperature-driven phase transition we c
determine the properties of the transition by studying
finite-size behavior ofDF(L). At a first-order transition,
DF(L) is a monotonically increasing function ofL, rather
than a constant for continuous transition. This criterion h
been tested for theq-state Potts model both in 2D and 3
cases.

In our HQMC, energy is proportional to the numberr of
the operators of sequenceCr ,a @Eq. ~6!#. Therefore the his-
togram data of the energy can be directly obtained by co
ing the frequency of which the numberr appears in the Mar-
kov chain. In our simulations,r is updated in each step
which appears to be an excellent observable for histog
analysis. In Fig. 3 we show the histogram results forS52,
5
2 , 3, and 5 for temperatures close to the transition reg
From these we see that there are prominent double min

FIG. 3. Free energyF(E,L) for S53 ~a! and 5~b! for various
temperatures around transition at fixedL512.
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for higher spins in a way similar to what have been obser
for theq-state Potts model. We fail to observe unambiguo
double minima forS<2 for lattice sizeL<12. However we
do find evidence forS52 in a larger lattice withL514 ~not
shown!. To estimate the ‘‘free-energy barrier’’DF(E,L), it
is necessary to locate the characteristic transition tempera
Tc(L) accurately. These were achieved by performing
shorter run of histogram data for various temperatu
around transition. From Fig. 3 we can see that the dou
minima structure has a sensitive response to tempera
variation. This helps in locating the characteristic tempe
ture Tc(L) for different sizes and spins. AfterTc(L) is set,
we perform a long run of histograms atTc(L) to obtain the
free-energy barrierDF(E,L).

In Fig. 4 we present the free energy ofS53 ~a! and 5~b!
for L58, 10, and 12 at the temperatureTc(L). We can see
that the free-energy barrier grows monotonically with i
creasing lattice size for both cases. This confirms the fi
order transition for higher spins. Moreover, the rapid
crease ofDF(E,L) for S55 indicates a strong first-orde
transition which is consistent with the hysteresis@Fig. 2~d!#
observed forS55 even in a slow heating and cooling rate

For S51 and 3
2, due to large correlation length we ar

unable to determine the nature of their transition with curr
computational power and limited lattice size. Calculations
a larger latticeL.12 is necessary to detect the signals of t
first-order transition. On the other hand, if we assume
second-order transition forS51 and 3

2, then we can apply a
phenomenological renormalization method14 to determine
the critical temperatures and exponents. Using this metho
analyze the data of Figs. 1~a!–1~c!, we obtain the critical
temperatures and exponents agreeing with the results
high-temperature series expansion. This situation resem
very much the ‘‘pseudocritical behavior’’ observed in th
Potts model where the weak first-order transition
featured.16

In conclusion, we have applied the Handscomb quant
Monte Carlo method to investigate the thermodynamic pr
erties of the 3D exchange interaction model. Accurate d
can be obtained with moderate computer time. Pronoun
hysteresis effects are observed for high spins. By the us
the histogram analysis of the energy data, we confirm
first-order transition predicted in previous mean-field theo
for S>2. On the other hand, it is interesting to compa

FIG. 4. Finite-size behaviors of free energyF(E,L) for S55 ~a!
and 3~b! with temperatures fixed atTc(L).
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these results with the critical properties of the Heisenb
model of general spins.19 One finds that~1! they are consis-
tent with second-order transition for all spins and~2! there is
little change in the critical exponents for spins from12 to `
~classical Heisenberg model!, hence universality is valid
Obviously, the appearance of a higher-order term
(Si•Sj ) in the exchange operator is the origin of the fir
order transition in EIM. It is interesting to point out that th
histogram method which has been successfully employe
the q-state Potts model also works well for EIM which is
quantum-spin system with continuous symmetry. It is pro
v.
g

f

to

-

ising that this method may be applied to study the ph
separation~expected to be a first-order transition! in the t-J
model20 and other related models of strongly correlat
electrons.21,22
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