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First-order phase transition of the exchange-interaction model studied
by the Handscomb quantum Monte Carlo method
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Thermodynamic properties of the ferromagnetic spiexchange-interaction model are studied by the Hand-
scomb quantum Monte Carlo method. We have studied simple cubic lattices with sizes up12X122. We
show numerical evidence of hysteresis effectsSer2 that supports the prediction of a first-order transition in
mean-field theory. These results are further confirmed by using the histogram analysis of Monte Carlo data.
[S0163-182698)01209-0

The Handscomb quantum Monte CafldQMC) method  exponents for spils<2. However, in a mean-field approxi-
was introduced by Handscomb 30 years ago in the study ahation Cheret al? obtained first-order phase transitions for
the ferromagnetic Heisenberg model. Later in the 1980’s thispin S=1. A similar conclusion of first-order phase transi-
method was revised independently by Lykléraad Chakra- tion was also obtained fo8=1 EIM by using a Greens-
varty and Steirt. They proved that more accurate results forfunction decoupling methotf. This discrepancy motivates us
ferromagnetic quantum spin system can be obtained by using apply HOMC to investigate the nature of the transition in
HQMC as compared with the Suzuki-Trotter quantum Monte3D EIM. An important advantage of employing HQMC is
Carlo method. An important improvement of this method that due to the symmetric properties of exchange operators in
was put forward by Leet al® who generalized the method the Hamiltonian, the calculations can be easily implemented
to study antiferromagnetic Heisenberg model. Inspired byn the computing program.

Anderson’s suggestiGrof the importance of antiferromag- In Handscomb’s approach, the partition function is writ-
netic interaction in the superconducting mechanism of highten as
temperature superconductors, HQMC has been applied to .
study the low-energy properties of the two-dimensional an- K" *Mokr
tiferromagnetic Heisenberg modeRecently, Sandvilet al. z=2 i 2P =2 > TCrar @
proposed a generalized scheme of HQMC to study the one- =0 L) rm0ast

dimensional spirS antiferromagnetic Heisenberg mofiel whereK=J/kgT. The expansion ofY; ;,P;;)" containsM"
and Hubbard modél.lt is important to note that progress terms and each term is a product of a sequencessthange
along this direction is worthy of more attention. operatorsP;; . The ath sequence is denoted & ,. Simi-

In this paper we apply HQMC to study the thermody- |arly, the thermal average of a physical observablef the
namic properties of spi§ exchange interaction mod&  model

(EIM) in a three-dimensiongBD) simple cubic lattice. The
Hamiltonian describing the EIM withN spins and M (A)=[TrA exp(—H/kgT)]/Z,
(=3N) bonds is given by

*© r

can also be expressed as

H=-J32 Py, 1 15 &K TrAC, ,
& ™ RIS R P B J LI
where Pj; is the exchange operator, which exchanges two
spin coordinates of; andS;, i.e., P;j|S,S)=1S;,S). For =S S A &)
S=3, P;; is the Dirac exchange operator. Hence EIM is e henhe
identical to theS=3 Heisenberg model. For higher spin,

Shreedinger proved thaP;; can be expressed as a polyno- where

mial of (§-S;). Therefore one can learn the effect of non- 1K'

linear term §-S;)" on the critical properties of a spin sys- Tra=7 r—|TrCr,a, (4)
tem with EIM. In this paper we will consider the '

ferromagnetic EIM, i.e.J>0. A o= (TIAC, )/(TIC, ). (5)

We have applied HQMC to study the one-dimensional
EIM (Ref. 11 and obtained results in good agreement withEquation(3) indicates thafA) is the average oA, , over
the Bethe ansatz and spin-wave analysis. For 3D EIM ther€, ,'s with the weightm, ,, provided that allw, ,=0, as in
are many studies by using different methods. Chen andur case withJ>0. Details of the Markov chain can be
Josepl’ applied high-temperature series expansion to studyound in Ref. 14.
this model. Assuming the existence of a second-order phase Accordingly, the total energy per spify can be expressed
transition in all spins they found the critical temperatures andas
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>
racy than those of the magnetic second moment. It is inter-
esting to note that very accurate results are obtained by mod-
erate computation time and there is no need to do

extrapolation in imaginary timé.As we mentioned, the
mean-field theory predicts first-order phase transitionSor
. =1, in which cases a discontinuous jump in the order pa-
FIG. 1. (a—(¢) Temperature dependence of the magnetic Seconflameter at transition is expected. This can be seen by com-
moment forS=3, 1, 3, 3, and 5, respectively. For each spin, the ,inq the data for increasing values of spin. To have an
::g'sctehztherzgiegff;zmsofg :fc:;tl?r?cl)csaeti(ljo(?é E)r:ﬁ; ?gj ;fgsn intimate picture of how the transition changes qualitatively
14 3 4+ 5 " with spin, we put all energy data &f= 12 for various spins
Temperature dependence of energy $¢3, 1, 5, 2,3, 3,and 5 . . . . "
with a fixed lattice sizd — 12, in F|g: 1f). It is obvious that the transition becomes sharper
as spin value increases.
T Though there are inc_iicat_io_ns o_f qua_litative cﬁfferences be-
E=—(JIN)(d InZ/9K) = — LE > rm,, (6 tweenlowand high spins, itis still quite a delicate problem
N “a ’ to determine the nature of the transition in a weak first-order

transition revealed by Monte Carlo simulation. Several crite-
ria have been proposed to determine the nature of transitions
in the Potts model®!” One of the signatures of first-order

Tr o transition in Monte Carlo simulation is the observation of
hysteresis effect.

However, the occurrence of hysteresis may depend on the
wherea;(r,a) are the number of spins in thjeh cycles of rate of heating and cooling and even worse it may also be
theC, , sequencé? present in a second-order transition due to critical slowing

In Figs. 1a)—1(e) we show the temperature dependencedown. We indeed observed hysteresis for most spis (
of the magnetic second moment 8+ 3, 1, 3, 3, and 5 with  =2) with a high enough heating/cooling rate. Typical results
lattice size ranging from 6 to 12. A periodic boundary con-are shown in Figs. @)—2(d) for S=1, 1, 3, and 5. We also
dition is imposed. A typical result for energy is shown in Fig. show the results for different rates of heating and cooling.
1(f). We performed 210 X 10* Monte Carlo stegS  From these we can see that as we slow down the rate of the
(MCS) for each data point depending on temperature andhysteresis loop becomes narrower and eventually merges to
lattice size. The measurements of energy have better accthe curve of equilibrium(Fig. 1), in spite of the qualitative

and the magnetic second moment per sjyiras

SERRES R
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FIG. 4. Finite-size behaviors of free enefgyE,L) for S=5 (a)
FIG. 3. Free energ¥(E,L) for S=3 (a) and 5(b) for various  and 3(b) with temperatures fixed &t.(L).

temperatures around transition at fixeer 12.

for higher spins in a way similar to what have been observed
difference between low and high spins. We have not foundor the g-state Potts model. We fail to observe unambiguous
the clear evidence of first-order transition =1 and3. As  double minima forS<2 for lattice sizeL <12. However we
compared with; we have observed the enhanced fluctuationglo find evidence fo6=2 in a larger lattice with_ =14 (not
at the transition region(With these it is sufficient to show Shown. To estimate the “free-energy barrielXF(E,L), it
that they are at most of a weak first-order transition for thesds necessary to locate the characteristic transition temperature
low-spin case$.On the other hand, the pronounced hyster-T¢(L) accurately. These were achieved by performing a
esis forS=5 [Fig. 2d)] suggests a strong first-order transi- shorter run of histogram data for various temperatures
tion. To assess the issue of the nature of transition withouround transition. From Fig. 3 we can see that the double-
ambiguity, we must study carefully the finite-size depen-minima structure has a sensitive response to temperature
dence. Fortunately, we found that the method of histogranyariation. This helps in locating the characteristic tempera-
analysis introduced by Lee and Kosterft2 can be suc- ture T¢(L) for different sizes and spins. Aftér,(L) is set,
cessfully applied to determine the nature of the transition ofve perform a long run of histograms &g(L) to obtain the

EIM. free-energy barrieAF(E,L).
Let us define the “free energy” in terms of probability ~ In Fig. 4 we present the free energy®# 3 (a) and 5(b)
distribution function, for L=8, 10, and 12 at the temperatufg(L). We can see
that the free-energy barrier grows monotonically with in-
F(E,L)=—In(PrE,L)), (8) creasing lattice size for both cases. This confirms the first-

order transition for higher spins. Moreover, the rapid in-
where Prg,L) is the probability of the configuration with crease ofAF(E,L) for S=5 indicates a strong first-order
energyE and lattice sizd. appears in the simulation. In the transition which is consistent with the hystereidtg. 2(d)]
vicinity of transition, F(E,L) has a characteristic double- observed foiS=5 even in a slow heating and cooling rate.
minima structure, correspondingly, a double-peak structure For S=1 and 2, due to large correlation length we are
in Pr(E,L). The characteristic transition temperature for theunable to determine the nature of their transition with current
finite lattice, T¢(L), is defined as the temperature at which computational power and limited lattice size. Calculations on
two minima have equal depth. Then we define the freea larger lattice. > 12 is necessary to detect the signals of the
energy barrierAF(L), as the difference between the maxi- first-order transition. On the other hand, if we assume a
mum and minimum al(L). According to Lee and Koster- second-order transition f@=1 andZ, then we can apply a
litz, for a temperature-driven phase transition we camphenomenological renormalization methbddo determine
determine the properties of the transition by studying thehe critical temperatures and exponents. Using this method to
finite-size behavior ofAF(L). At a first-order transition, analyze the data of Figs.(@-1(c), we obtain the critical
AF(L) is a monotonically increasing function &f, rather  temperatures and exponents agreeing with the results of
than a constant for continuous transition. This criterion hasigh-temperature series expansion. This situation resembles
been tested for thg-state Potts model both in 2D and 3D very much the “pseudocritical behavior” observed in the

cases. Potts model where the weak first-order transition is
In our HQMC, energy is proportional to the numbreof  featured®
the operators of sequen€k , [Eq. (6)]. Therefore the his- In conclusion, we have applied the Handscomb quantum

togram data of the energy can be directly obtained by countMonte Carlo method to investigate the thermodynamic prop-
ing the frequency of which the numbemppears in the Mar- erties of the 3D exchange interaction model. Accurate data
kov chain. In our simulationst is updated in each step, can be obtained with moderate computer time. Pronounced
which appears to be an excellent observable for histogramysteresis effects are observed for high spins. By the use of
analysis. In Fig. 3 we show the histogram results$er2, the histogram analysis of the energy data, we confirm the
3, 3, and 5 for temperatures close to the transition regionfirst-order transition predicted in previous mean-field theory

From these we see that there are prominent double minimfmr S=2. On the other hand, it is interesting to compare
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these results with the critical properties of the Heisenbergsing that this method may be applied to study the phase
model of general spin€.One finds that1) they are consis- separationexpected to be a first-order transitjan the t-J

tent with second-order transition for all spins a@ithere is  modef® and other related models of strongly correlated
little change in the critical exponents for spins frgnto o« electronl 22

(classical Heisenberg modglhence universality is valid. i

Obviously, the appearance of a higher-order term of The author is grate_zful to _Professc_)r H. H. Chen and Dr. S.
(S-S)) in the exchange operator is the origin of the first- C- (_Sou for vgluable dlscu§5|0ns. This work was supported by
order transition in EIM. It is interesting to point out that the National Science Council under Grant No. NCHC-86-02-
histogram method which has been successfully employed t810. Part of the research was conducted using the resources
the g-state Potts model also works well for EIM which is a of National Center for High-performance Computing
quantum-spin system with continuous symmetry. It is prom{NCHC) in Taiwan. We are thankful for their support.
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