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Anharmonic model of instability evolution near the bcc—hcp phase transition in Zr
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A local minimum is observed on the full-potential linear-muffin-tin-orbital curve of total energy versus the
amplitude of atomic displacements corresponding to transy&rs@] vibrations at theéN point of the Brillouin
zone in Zr. The temperature dependence of the inelastic one-phonon neutron-scattering spectra is calculated
within the framework of a modified pseudoharmonic approximation. The appearance of the spectrum fine
structure with decreasing temperature is associated with the intermediate phase phonon whose frequency is
close to that of the phonon of hcp Zr[S0163-182@08)06405-4

In a microscopic description of martensitic phase transithe N phonon can be defined through a distorted cell with
tions from first principles, the model based on the study offour displaced atoms. The displacements correspond to trans-
the peculiarities of the lattice dynamics has been intensivelyerse vibrations in a plane perpendicular to thaxis. The
used in the last ten yeatsThe current status of the band original cubic symmetry of the bcc lattice is reducedy,
theory and the development of consistabtinitio methods  with eight group operations,and the real-space unit cell is
for calculating the electronic structure of crystals open thedoubled. Integration over the irreducible part of the Brillouin
way for theoretical investigation of the lattice dynanfcs. zone(BZ) is performed using 51R points. The maximum
The simplest way of calculating the selected vibrationalyalues of the angular momentunin the expansion of basis
modes is the “frozen-phonon” techniq@vhere the effec-  functions in spherical harmonics inside the MT spheres, in
tive phonon potential is defined in terms of the difference inthe re-expansion of MT orbitals outside the MT spheres, as
total energy between the perfect and distorted lattices fovell as in the crystalline potential and charge-density expan-
various magnitudes of the atomic displacement amplitudesions are equal to 2, 4, and 8, respectively. Good conver-
Knowing this potential, one finds the frequency of the pho-gence is ensured by a double set of basis orbitals with fixed
non having a wave vector commensurate with the reciprocaland properly spaced's («? is the mean kinetic energy of an
lattice vector. electron in the interstitial region

The first-order bce-hep transition in Zr af =1136 K is The effective potentiall (x) which represents the differ-
martensitic. Previously, this transition was suggested to ocence in total energy between the perfect and distorted super-
cur through atomic displacements corresponding to the trangell of bcc Zr as a function of the amplitude of reduced
verse N phonon of bcc symmetry with a wave vectqr  atomic displacements=u/a corresponding to transverse vi-

=(2mla)(z,2,0) (see, e.g., Ref.)4 The calculation of the  prations[110] at theN point of the BZ is shown in Fig. 1.
N-phonon frequency within the harmonic approximationThe calculated curve is similar to that obtained in Ref. 6. The
yielded an imaginary frequency, which indicates that thismaximum ofU(x) atx=0 results in the following relation
phase is unstable for Zr at low temperatdredlowance for  for the frequencyw?~[ 92U (x)/9x?],_ <0, which implies
the anharmonicity effects makes it possible to stabilize thgnhe instability of the bce phase at low temperatures. In what
bee structure at high temperatufeis our opinion, however, follows we use the bee-hep phase-transition model from Ref.
the conventional approaches are not suitable for describing o interpret the results obtained. According to this model,
the dynamics of strongly anharmonic modes. The goal of our, ic displ | 101 directi d
work is to calculate the effective potential for thephonon € atomic displacements 9"" ong 5[713310] Irection reduce
the space symmetry fro®; to D3, . For the atomic dis-

by the full-potential linear-muffin-tin-orbital(FP-LMTO) . _
method and then to allow for the anharmonicity effects in thePlacement amplitude= V2/12, the problem symmetry turns

framework of the modified self-consistent phonon Ut to beDg;, (see Ref. 4 with further distortion leading to
approximatior. the formation of the hcp phase whasexis is directed along
The total energy for three observed phases of Zr was cal-110lncc- In this case the interplanar spacings remain actu-
culated from first principlésby the FP-LMTO methotiwith  ally unchanged and th& point in the hcp BZ corresponds to
the use of the generalized gradient approximafidar the the N point in the bcc BZ. Within the framework of such a
exchange-correlation energy. For all crystal structures of zrmodel, it is reasonable to associate the minima onltfw)
the MT sphere radii were chosen to be equal and correspon@urve with the intermediat®g, structure of lower energy. It
ing to one of the two types ob phase atoms at the site should be mentioned that the minima of the calculated po-
(0,0,0):ry7=2.747 a.u. The magnitudes of nonoverlappingtential do not quantitatively agree with the reduced atomic
MT radii should be such as to enable atomic displacementgisplacemenk= \2/12 corresponding to thBg, structure.
in the cell. Upon calculation of the equilibrium lattice con- This is due to the fact that the first-principles calculation of
stantagq=6.7724 a.u. of bcc Zr, we can construct for it a U(x) at T=0 was performed for the theoretical equilibrium
four-atom supercell. The vibrational mode corresponding tdattice constant which is less than the experimental one, and
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0.004 scattering spectra temperature dependence has been dis-
cussed in Ref. 13, where the Langevin and the corresponding
0.003 7 Fokker-Planck equations have been solved numerically. The
0.002 - numerical solution of stochastic differential equations is
rather complicated and requires great computational efforts
0.001 - for any new form of the potentiaf. That is why it seems
":>: reasonable to use approximate techniques, like the modified
% 0.000 ~ pseudoharmonic approximatiballowing for fluctuations of
~_0.001 - the mean energy of a vibrational mode interacting with a
- thermostat.
-0.002 A In Ref. 7, a new variabl& denoting the energy averaged
over the characteristic period of the oscillations in an anhar-
—0.003 1 monic potential is introduced. This is a random variable with
—0.004 the equilibrium distribution function:
—0.005 T T T T
-0.15-0.10 -0.05 0.00 0.05 0.10 0.15

u p(E)=exp —E/M)IT 2

FIG. 1. Lattice potential versus the atomic displacement ampli- dth | _ he ch L .
tudeug (in units of the lattice constanfor transverse vibrations of a}n the mean valugE) =T. The characteristic time of varia-

the normalN mode. Open squares correspond to the calculatedion Of E is 7e~1M">1/wg, i.e., the variable is slow as
values, and the solid line shows the polynomial approximationcompared to the oscillation period. Therefore the hierarchy
Dashed line corresponds t(x) from Ref. 6. of times is realized here, which allows us to define the cor-

relator (u?) and to use the pseudoharmonic approximation
the entropy contribution was not taken into account. Hencefor eachE.*>’ The partial density,(w) can now be found
we cannot expect the phonon frequency to agree quantitdy averaging expressiai) with distribution functionp(E).
tively with the experimental datéNote that the calculation ~ The result obtained in this approach for a symmetric two-
was conducted with a value of the lattice constant less thawell potential described by a fourth-degree polynomial can
the real one, so we should expect overestimating the phond?e resumed as followsat all temperatures, there exists a
frequencies probability of basidlocalized near the potential minimai-

The main experimental tool for investigating the phononbrations with frequencies,, close to the principal frequency
frequencies is the slow neutron scattering on lattice vibrawo [w5=(1/2%)3*U(x)/x%y=y . 1. and excited(overbar-
tions. The position and width of the peak of the differentialrier) vibrations withwe= wo/2. With increasing temperature
section of one-phonon inelastic coherent neutron scatteringhe portion of basic vibrations diminishes
determine the phonon frequency and lifetime. The intensity, =1—exp(—E./T) (E. is the energy of the “local
of the spectral line is proportional to the imaginary part oftransition®), and the share of the excited ones increases
the one-phonon Green function — the spectral density, ,=1—c,. New harmonics therewith arise, which leads to a
gq(w,T)i12 shift of the peaksthe basic vibration peak shifts towards the

low-frequency range, and the excited peak—towards the
1 I'(wq,T) high-frequency oneand to their anharmonic broadening.
lg(@,T)~gq(@, T)=— ~ 2, 12 - (@ The above results are in good a t with th
T [w—og(T)2+T%(wg,T) _ bov | g greement with some other
a . investigations>'” which allows this approximation to be
HereZq(T) is the renormalized phonon frequenty(w,,T) used in describing the dynamics of an anharmonic mode with
is the phonon attenuation due to various scattering processed/bitrary potential and oscillator attenuation.
We concentrate on the anharmonicity effects which seem to To calculatew(e) we approximate the computed values
govern the phase transitions that can be described within thef U(x) by the polynomials of different degrees— 4,6,8,10.
soft-mode model. As a rule, when describing the effect ofAt the temperatures discussed the results do not depend
anharmonicity on the position and shape of the phonon spe¢jualitatively on the polynomial degree, below we show only
trum line, one restricts oneself to taking into account thethe results obtained for the eighth-degree polynomial which
third- and fourth-order anharmonic terms of perturbationdescribes quite well the behavior bf(x) for all considered
theory? For strongly anharmonic systems being unstable irvalues ofx. This potential is characterized by a barrier height
the harmonic approximation, this approach is hardly valid. e,=3.45 mRy, a “local transition” energg.=0.7E, and a

In this work we use a modified pseudoharmonic approxi-principal frequencyyy= wo/27=3.51 THz. We assume that
mation developed in Ref. 7 for anharmonic quasilocal modethe principal frequency corresponds to that of the intermedi-
associated with the low-frequency vibrations of the defectate phase phonon and is close to the frequency of theAhcp
Such an approach is also suitable for the delocalized phonagphonon. The minimum frequency of the excited vibrations,
modes, since it implies that the dynamics of a phonon modapproaching that of the high-temperature bcc pHéaggho-
weakly interacting with a thermostat can be described by th@on, is about half as large ag. The ratio between the fre-
Langevin equation which in this case involves the phonongquencies of bctN and hcpA phonons for Zr agrees with the
mode amplitude rather than the defect coordinate. Recentlypbserved one, although their absolute magnitudes exceed the
the possibility of such a description of the inelastic neutron-experimental values by a factor of 1.5¢Refs. 16,17.




5004 BRIEF REPORTS 57

In spectrum calculations, it is necessary to specify the 3.0
phonon nucleator attenuation at any eneEyWe confine
ourselves to the processes of soft-phonon scattering by elec-
trons and phonons. The nucleator attenuation is assumed to a
depend only ofE)=T, the mean value of the variabke

T'(0q,E)=T(0q,T)=Te(wq, )+ p(wg,T). (3

At high temperatures, the attenuation due to electron-phonon
interaction, I, is frequency and temperature independent,
and the attenuation caused by phonon-phonon interaction is
proportional in this limit to the temperatutd: [pi T 2 _
=TI'o;T/Ep. Here the subscrigt=b,e determining the type 0.0 0.5 1.0 15 20
of vibrations allows us to take account of the difference in W

attenuation between the badicand excitede vibrations. .

Since the intermediate phase is of nonequilibrium characte{ FIG. 2. Spe_ctrum den_s'ty_Of the transveriephonon at two
- . emperaturesT=0.5E, (1); T=2.5, (2). The frequency is ex-
it is reasonable to suppose that the phonon-phonon interac: . -
S . ; . . ressed in terms of the principal frequensy.
tion in this phase is stronger than in the hlgh—temperaturg

equilibrium bec phase, i.e., the attenuation of basic vibranigh emperature bec phase is determined by the position of
tions is larger than that of the excited ones. Figure 2 displayg,js peak. In the model considered, the evolution of instabil-
the calculated functiongq(w) for I'p p=21", ¢=0.04Gwg @t iy in the bec phase is connected with the increase of the
different temperatures. The low-temperature cuteexhib-  ghare of high-frequency basic vibrations corresponding to the

its the fine structure of the spectrum consisting of a hig "mtermediateDgh phase. We believe the frequency of these

frequency basic peak and a onv—fr(_eque_ncy exciFed one. Th@ibrations to be close to that of the hépphonon. The sug-
stronger attenuation of the basic vibrations at high temper jested model of the instability evolution for the martensitic

turest resufl_ts In tsmtearln_g of tlhe h|gh-freqlljedncy zeak, th ansformation substantially differs from that proposed in
spectrum Tiné structure 1S no longer revealed, and CUve go¢ 13 whose authors associate the high-frequency basic

qualitatively corresponds to the experimental dhe. o . I
Within the framework of the modified pseudoharmonicVIbratlonS with theN phonon of the high-temperature bee

roximation th trum density of the ohonon lin iéz)hase, interpreting the formation of the fine structure of in-
approximatio € spectru ensity of the pnonon fin€ 15, 5 qtic neutron-scattering spectra with increasing temperature
represented by two peaks corresponding to bésialized

near the minima and excited(overbarriey vibrations. At as a manifestation of the “nonphonon” behavior of the sys-

) ; ; tem. The inelastic neutron-scattering experiments carried out
high temperatureéin the range of the existence of bcc)Zr g exp

. in a wi mperature ran f th Zr existence woul
the portion of strongly attenuated basic vibrations is small a wide temperature range of the bee Zr existence would

. . ; nfirm the validity of our model.
and the one-phonon inelastic neutron-scattering spectrurtﬁO the validity of our mode

constitutes a broad peak which is mainly due to the excited The authors are indebted to S. Savrasov for providing the
vibrations. In our opinion, theN-phonon frequency in the FP-LMTO code.
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