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Anharmonic model of instability evolution near the bcc̃ hcp phase transition in Zr
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A local minimum is observed on the full-potential linear-muffin-tin-orbital curve of total energy versus the
amplitude of atomic displacements corresponding to transverse@11̄0# vibrations at theN point of the Brillouin
zone in Zr. The temperature dependence of the inelastic one-phonon neutron-scattering spectra is calculated
within the framework of a modified pseudoharmonic approximation. The appearance of the spectrum fine
structure with decreasing temperature is associated with the intermediate phase phonon whose frequency is
close to that of thea phonon of hcp Zr.@S0163-1829~98!06405-4#
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In a microscopic description of martensitic phase tran
tions from first principles, the model based on the study
the peculiarities of the lattice dynamics has been intensiv
used in the last ten years.1 The current status of the ban
theory and the development of consistentab initio methods
for calculating the electronic structure of crystals open
way for theoretical investigation of the lattice dynamic2

The simplest way of calculating the selected vibratio
modes is the ‘‘frozen-phonon’’ technique3 where the effec-
tive phonon potential is defined in terms of the difference
total energy between the perfect and distorted lattices
various magnitudes of the atomic displacement amplitu
Knowing this potential, one finds the frequency of the ph
non having a wave vector commensurate with the recipro
lattice vector.

The first-order bcc→hcp transition in Zr atT51136 K is
martensitic. Previously, this transition was suggested to
cur through atomic displacements corresponding to the tr
verse N phonon of bcc symmetry with a wave vectorq
5(2p/a)( 1

2 , 1
2 ,0) ~see, e.g., Ref. 4!. The calculation of the

N-phonon frequency within the harmonic approximati
yielded an imaginary frequency, which indicates that t
phase is unstable for Zr at low temperatures5. Allowance for
the anharmonicity effects makes it possible to stabilize
bcc structure at high temperatures.6 In our opinion, however,
the conventional approaches are not suitable for descri
the dynamics of strongly anharmonic modes. The goal of
work is to calculate the effective potential for theN phonon
by the full-potential linear-muffin-tin-orbital~FP-LMTO!
method and then to allow for the anharmonicity effects in
framework of the modified self-consistent phon
approximation.7

The total energy for three observed phases of Zr was
culated from first principles8 by the FP-LMTO method9 with
the use of the generalized gradient approximation10 for the
exchange-correlation energy. For all crystal structures of
the MT sphere radii were chosen to be equal and corresp
ing to one of the two types ofv phase atoms at the sit
(0,0,0): r MT52.747 a.u. The magnitudes of nonoverlappi
MT radii should be such as to enable atomic displaceme
in the cell. Upon calculation of the equilibrium lattice co
stantaeq56.7724 a.u. of bcc Zr, we can construct for it
four-atom supercell. The vibrational mode corresponding
570163-1829/98/57~9!/5002~3!/$15.00
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the N phonon can be defined through a distorted cell w
four displaced atoms. The displacements correspond to tr
verse vibrations in a plane perpendicular to thez axis. The
original cubic symmetry of the bcc lattice is reduced toD2h

17

with eight group operations,11 and the real-space unit cell i
doubled. Integration over the irreducible part of the Brillou
zone~BZ! is performed using 512k points. The maximum
values of the angular momentuml in the expansion of basis
functions in spherical harmonics inside the MT spheres
the re-expansion of MT orbitals outside the MT spheres,
well as in the crystalline potential and charge-density exp
sions are equal to 2, 4, and 8, respectively. Good con
gence is ensured by a double set of basis orbitals with fi
and properly spacedk ’s (k2 is the mean kinetic energy of a
electron in the interstitial region!.

The effective potentialU(x) which represents the differ
ence in total energy between the perfect and distorted su
cell of bcc Zr as a function of the amplitude of reduc
atomic displacementsx5u/a corresponding to transverse v

brations@1 1̄0# at theN point of the BZ is shown in Fig. 1.
The calculated curve is similar to that obtained in Ref. 6. T
maximum ofU(x) at x50 results in the following relation
for the frequency:v2;@]2U(x)/]x2#x50,0, which implies
the instability of the bcc phase at low temperatures. In w
follows we use the bcc-hcp phase-transition model from R
4 to interpret the results obtained. According to this mod

the atomic displacements along the@1 1̄0# direction reduce
the space symmetry fromOh

9 to D2h
17 . For the atomic dis-

placement amplitudex5A2/12, the problem symmetry turn
out to beD6h

4 ~see Ref. 4!, with further distortion leading to
the formation of the hcp phase whosez axis is directed along
@110#bcc. In this case the interplanar spacings remain ac
ally unchanged and theA point in the hcp BZ corresponds t
the N point in the bcc BZ. Within the framework of such
model, it is reasonable to associate the minima on theU(x)
curve with the intermediateD6h

4 structure of lower energy. It
should be mentioned that the minima of the calculated
tential do not quantitatively agree with the reduced atom
displacementx5A2/12 corresponding to theD6h

4 structure.
This is due to the fact that the first-principles calculation
U(x) at T50 was performed for the theoretical equilibriu
lattice constant which is less than the experimental one,
5002 © 1998 The American Physical Society
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57 5003BRIEF REPORTS
the entropy contribution was not taken into account. Hen
we cannot expect the phonon frequency to agree quan
tively with the experimental data.~Note that the calculation
was conducted with a value of the lattice constant less t
the real one, so we should expect overestimating the pho
frequencies!.

The main experimental tool for investigating the phon
frequencies is the slow neutron scattering on lattice vib
tions. The position and width of the peak of the different
section of one-phonon inelastic coherent neutron scatte
determine the phonon frequency and lifetime. The inten
of the spectral line is proportional to the imaginary part
the one-phonon Green function — the spectral den
gq(v,T):12

I q~v,T!;gq~v,T!5
1

p

G~vq ,T!

@v2ṽq~T!#21G2~vq ,T!
. ~1!

Hereṽq(T) is the renormalized phonon frequency;G(vq ,T)
is the phonon attenuation due to various scattering proces
We concentrate on the anharmonicity effects which seem
govern the phase transitions that can be described within
soft-mode model. As a rule, when describing the effect
anharmonicity on the position and shape of the phonon s
trum line, one restricts oneself to taking into account
third- and fourth-order anharmonic terms of perturbat
theory.12 For strongly anharmonic systems being unstable
the harmonic approximation, this approach is hardly valid

In this work we use a modified pseudoharmonic appro
mation developed in Ref. 7 for anharmonic quasilocal mo
associated with the low-frequency vibrations of the defe
Such an approach is also suitable for the delocalized pho
modes, since it implies that the dynamics of a phonon m
weakly interacting with a thermostat can be described by
Langevin equation which in this case involves the phon
mode amplitude rather than the defect coordinate. Rece
the possibility of such a description of the inelastic neutro

FIG. 1. Lattice potential versus the atomic displacement am
tudeuq ~in units of the lattice constant! for transverse vibrations o
the normalN mode. Open squares correspond to the calcula
values, and the solid line shows the polynomial approximati
Dashed line corresponds toU(x) from Ref. 6.
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scattering spectra temperature dependence has been
cussed in Ref. 13, where the Langevin and the correspon
Fokker-Planck equations have been solved numerically.
numerical solution of stochastic differential equations
rather complicated and requires great computational eff
for any new form of the potential.14 That is why it seems
reasonable to use approximate techniques, like the mod
pseudoharmonic approximation7 allowing for fluctuations of
the mean energy of a vibrational mode interacting with
thermostat.

In Ref. 7, a new variableE denoting the energy average
over the characteristic period of the oscillations in an anh
monic potential is introduced. This is a random variable w
the equilibrium distribution function:

r~E!5exp~2E/T!/T ~2!

and the mean valuêE&5T. The characteristic time of varia
tion of E is tE;1/G@1/vq , i.e., the variable is slow as
compared to the oscillation period. Therefore the hierarc
of times is realized here, which allows us to define the c
relator ^u2& and to use the pseudoharmonic approximat
for eachE.15,7 The partial densitygq(v) can now be found
by averaging expression~1! with distribution functionr(E).

The result obtained in this approach for a symmetric tw
well potential described by a fourth-degree polynomial c
be resumed as follows:7 at all temperatures, there exists
probability of basic~localized near the potential minima! vi-
brations with frequenciesvb close to the principal frequenc
v0 @v0

25(1/a2)]2U(x)/]x2ux5xmin
#, and excited~overbar-

rier! vibrations withve.v0/2. With increasing temperatur
the portion of basic vibrations diminishe
cb512exp(2Ec /T) (Ec is the energy of the ‘‘local
transition’’15!, and the share of the excited ones increa
ce512cb . New harmonics therewith arise, which leads to
shift of the peaks~the basic vibration peak shifts towards th
low-frequency range, and the excited peak—towards
high-frequency one! and to their anharmonic broadenin
The above results are in good agreement with some o
investigations,13,17 which allows this approximation to be
used in describing the dynamics of an anharmonic mode w
arbitrary potential and oscillator attenuation.

To calculatev(e) we approximate the computed value
of U(x) by the polynomials of different degrees— 4,6,8,1
At the temperatures discussed the results do not dep
qualitatively on the polynomial degree, below we show on
the results obtained for the eighth-degree polynomial wh
describes quite well the behavior ofU(x) for all considered
values ofx. This potential is characterized by a barrier heig
eb53.45 mRy, a ‘‘local transition’’ energyec.0.7Eb and a
principal frequencyn05v0/2p53.51 THz. We assume tha
the principal frequency corresponds to that of the interme
ate phase phonon and is close to the frequency of the hcA
phonon. The minimum frequency of the excited vibration
approaching that of the high-temperature bcc phaseN pho-
non, is about half as large asn0. The ratio between the fre
quencies of bccN and hcpA phonons for Zr agrees with th
observed one, although their absolute magnitudes excee
experimental values by a factor of 1.5–2~Refs. 16,17!.
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In spectrum calculations, it is necessary to specify
phonon nucleator attenuation at any energyE. We confine
ourselves to the processes of soft-phonon scattering by e
trons and phonons. The nucleator attenuation is assume
depend only on̂E&5T, the mean value of the variableE:

G~vq ,E!5G~vq ,T!5Ge~vq ,T!1Gp~vq ,T!. ~3!

At high temperatures, the attenuation due to electron-pho
interaction,Ge , is frequency and temperature independe
and the attenuation caused by phonon-phonon interactio
proportional in this limit to the temperature:18 Gp,i
5G0,iT/Eb . Here the subscripti 5b,e determining the type
of vibrations allows us to take account of the difference
attenuation between the basicb and excitede vibrations.
Since the intermediate phase is of nonequilibrium charac
it is reasonable to suppose that the phonon-phonon inte
tion in this phase is stronger than in the high-temperat
equilibrium bcc phase, i.e., the attenuation of basic vib
tions is larger than that of the excited ones. Figure 2 displ
the calculated functionsgq(v) for Gp,b52Gp,e.0.046v0 at
different temperatures. The low-temperature curve~1! exhib-
its the fine structure of the spectrum consisting of a hi
frequency basic peak and a low-frequency excited one.
stronger attenuation of the basic vibrations at high temp
tures results in smearing of the high-frequency peak,
spectrum fine structure is no longer revealed, and curv
qualitatively corresponds to the experimental one.16

Within the framework of the modified pseudoharmon
approximation the spectrum density of the phonon line
represented by two peaks corresponding to basic~localized
near the minima! and excited~overbarrier! vibrations. At
high temperatures~in the range of the existence of bcc Zr!,
the portion of strongly attenuated basic vibrations is sm
and the one-phonon inelastic neutron-scattering spect
constitutes a broad peak which is mainly due to the exc
vibrations. In our opinion, theN-phonon frequency in the
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high-temperature bcc phase is determined by the positio
this peak. In the model considered, the evolution of insta
ity in the bcc phase is connected with the increase of
share of high-frequency basic vibrations corresponding to
intermediateD6h

4 phase. We believe the frequency of the
vibrations to be close to that of the hcpA phonon. The sug-
gested model of the instability evolution for the martensi
transformation substantially differs from that proposed
Ref. 13 whose authors associate the high-frequency b
vibrations with theN phonon of the high-temperature bc
phase, interpreting the formation of the fine structure of
elastic neutron-scattering spectra with increasing tempera
as a manifestation of the ‘‘nonphonon’’ behavior of the sy
tem. The inelastic neutron-scattering experiments carried
in a wide temperature range of the bcc Zr existence wo
confirm the validity of our model.

The authors are indebted to S. Savrasov for providing
FP-LMTO code.

FIG. 2. Spectrum density of the transverseN phonon at two
temperatures:T50.5Eb ~1!; T52.5Eb ~2!. The frequency is ex-
pressed in terms of the principal frequencyv0.
d
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