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Layering transitions, disordered flat phases, reconstruction, and roughening
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~Received 24 June 1997!

We study in light of recent ellipsometry, vapor pressure isotherm and specific-heat measurements on the
thermodynamics of adsorbed thin films on graphite, the connection between the layering phase diagrams of
thin films on periodic substrates and the thermodynamics of the solid-vapor interface of a semi-infinite crystal.
The latter is the limit of the former when the film becomes infinitely thick, and we are interested in connecting
this limiting behavior to the thermodynamics of films of finite thickness. We argue that the concepts of surface
roughening, preroughening, and reconstruction provide a quantitatively useful framework within which to
discuss this connection. Through general renormalization-group arguments and, in more detail, through a
self-consistent mean-field treatment that explicitly accounts for all relevant phases, we show that the same
types of interactions that lead to these different surface phases lead also to the reentrant layering transitions
seen in the recent experiments. By appropriate tuning of the mean-field parameters we can semiquantitatively
reconstruct all the observed experimental phase diagrams. It turns out that certain experimental phase diagrams
with ‘‘zippers’’ require that the preroughening transition become first order. Our renormalization-group argu-
ments predict such behavior in certain parameter ranges. In addition, for different parameters we predict the
existence of an, as yet unobserved,u disordered flatphase with spontaneously broken particle-hole symmetry
and continuously varying surface height with an accompanying intermeshing layering phase diagram. The
underlying lattice in the experiments is triangular, and this actuallyenhancesthe stability of the disordered flat
phase and the corresponding reentrant layering transitions in the films.@S0163-1829~98!04307-0#
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I. INTRODUCTION

A. Surface critical phenomena

The study of interfaces between two different thermod
namic phases has yielded a remarkable variety of interes
phenomena. Some of the most fascinating behavior occu
the interface between a bulk semi-infinite crystal and its
por. When the temperature is below the bulk triple pointTt

~the temperature at which the crystal melts in the presenc
the vapor!, the thermodynamics of the bulk crystal is smoo
and nonsingular. The crystal surface, on the other hand,
exist in many different phases. The simplest phase is theflat
phasein which the surface looks essentially like a bulk cry
talline plane. This phase is characterized by the existenc
a positive surface step free energyf s , which discourages the
formation of plateaus or depressions in the surface. Altho
a finite density of such imperfections will always be entro
cally favored, the probability of their occurence will decrea
exponentially with their size. Furthermore, if the number
particles is such that the surface layer isincomplete, phase
separation will occur and a single one-dimensional interf
will separate two macroscopic flat regions with a unit heig
difference between them.

The flat phase is a special case of more generalrecon-
structedphases. Here the surface layer, though only parti
complete, nevertheless forms a periodic structure, comm
surate with the underlying bulk crystal lattice plane, but w
a larger unit cell, and a corresponding rational filling fracti
uR . There are analogous step free energiesf s,R , which dis-
courage configurations of particles that deviate from per
periodicity. If the number of particles is such that the over
filling fraction u of the surface layer deviates fromuR , the
surface will again phase separate with a single o
570163-1829/98/57~8!/4900~39!/$15.00
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dimensional interface separating two~possibly different! re-
constructed phases. In the event that the two phases are
ferent, coexistence requires that the surface free ener
must match.

Very different in character from the flat and reconstruct
phases is therough phase. At and above theroughening
temperature Tr,Tt the flat phase step free energy vanish
and it becomes entropically favorable for the surface to w
der. To describe this quantitatively, letr5n1a1n2b, where
n1 and n2 are integers anda and b are primitive vectors,
label the lattice points in the underlying crystal plane. L
h(r ) be the~integer! height of the surface above the lattic
point r . Then, at the roughening temperature, the variance
h(r ) diverges. More specifically, at and aboveTr , the
height-height correlation function,

G~r2r 8![ 1
2 ^@h~r !2h~r 8!#2&, ~1.1!

increases logarithmically with separation:

G~r !'
1

4pKR~T!
ln~r /a0!, r[ur u→`, Tr,T,Tt ,

~1.2!

wherea05uau, say, is a microscopic length scale, andKR(T)
may be thought of as a renormalized surface tilt modulus
the flat and reconstructed phases, the variance^@h(r )
2^h(r )&#2& is finite and equal to the larger limit of G(r ).

The transition into the rough phase is in the universa
class of the Kosterlitz-Thouless transition, which also d
scribes the low-temperature magnetic ordering in the tw
dimensionalXY model and the superfluid ordering in thi
4He films. A consequence of this is thatright at the rough-
ening temperature,T5Tr , the renormalized tilt modulus ha
4900 © 1998 The American Physical Society
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57 4901LAYERING TRANSITIONS, DISORDERED FLAT . . .
the universal valueKR(Tr)5p/2. The value ofKR jumps
discontinuously to infinity belowTr , and decreases mono
tonically with T aboveTr . In theXY model the heightsh(r )
appear in a dual representation of the original tw
component spin model, and 1/kBTKR(T) is proportional to
the spin stiffness~or superfluid density! Y. There is an in-
verse relationT}1/TXY between the temperatures in the tw
models since the flat phase, withKR(T)[`, corresponds to
the disordered phase of the magnet~or superfluid!, with
Y[0.1

It turns out that there is yet another class of possible s
face phases that may occur. These are thedisordered flat
~DOF! phases,2–5 which may be thought of as intermedia
between the reconstructed and rough phases. As an exa
consider the~100! surface of a cubic crystal, and suppo
that the atomic interactions are such that at low temperat
a kind of antiferromagnetic reconstructed phase with
checkerboard pattern (uR5 1

2 ) is stabilized. Now, as the tem
perature rises, this phase may proceeddirectly through a
roughening transition, analogous to that for the flat ph
~but with a form of long-range antiferromagnetic order p
sisting!. However, it is also possible, if the checkerboa
pattern is only weakly stable, for the system to undergo
Ising transition that destroys long-range antiferromagn
order without roughening the surface. The surface layer
then basically a two-dimensional lattice gas at half-fillin
This phase is called thedisordered flat phase. Raising the
temperature further finally roughens the surface complet

It is also possible to enter the DOF phase directly fro
the flat phase.2–5 The transition is driven by the entropy ga
entailed by a disordered surface, and can occur even if
energetics favors the flat phase. Note that this transi
causes adiscontinuouschange in the occupancy of the su
face layer. If the total number of particles is fixed, this mea
that the surface must phase separate into two disordered
phases, one with an extra half-layer of atoms, the other w
a half-layer of ‘‘holes.’’ The phase transition, at a tempe
ture Tpr,Tr , is calledprerougheningand lies in a different
universality class from that of all the other transitions d
cussed so far. For example, the specific-heat exponenta can
take any value between the Kosterlitz-Thouless value,a5
2`, and the four-state Potts value,a5 2

3, depending upon
the system parameters and, in particular, upon the pre
strength of the tendency toward reconstruction4 ~the more
nearly stable the reconstructed phase, the larger the valu
a). It turns out6 that the preroughening transition can ev
be driven first order, a possibility that was missed in ear
studies.2–5

The disordering of the checkerboard phase is only
example of a DOF phase. In principle, corresponding to
reconstructed phase is a disordered flat phase with the s
coverageuR separated from it by an Ising-~or perhaps
Potts-! type phase transition. However, we shall see t
DOF phases may also exist even without a correspond
reconstructed phase ever being stable. This is crucial for
triangular lattice substrates relevant to the experime
where the analogue of theuR5 1

2 ‘‘antiferromagnetic’’
checkerboard reconstructed phase is frustrated and doe
exist. Nevertheless, as we shall see, au5 1

2 disordered flat
phase does exist, and is even more stable than its sq
lattice counterpart! In fact, there are conditions6 under which
-
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a disordered flat phase withcontinuously varyingsurface
coverageu(T) can exist. ThisuDOF phasewas first pro-
posed by den Nijs4 as a consequence of particle-hole sy
metry breaking corner interactions. However, we find6 that
the same physics that gives rise to the first-order prerou
ening mentioned above can, for different parameters, lea
a spontaneousbreaking of particle-hole symmetry and co
respondinguDOF phase in a completely particle-hole sym
metric model. Whether or not a given system will exhibit
disordered flat phase depends upon the detailed atomic i
actions. It is clear that a rather sensitive balance of near
and further-neighbor interactions may be required.2–5 A two-
component ‘‘alloy’’ structure~as discussed in Sec. III an
Appendix D! seems to be required to observeuDOF behav-
ior.

B. Layering critical phenomena

Everything we have discussed so far relates to a free
face on a bulk semi-infinite crystal. This is important b
cause it means that the potential experienced by an atom
the surface is anexactly periodicfunction of the number of
layers: if a completed layer containsNA atoms, the addition
to the surface of a furtherNA atoms yields a state thermody
namically indistinguishable from the original. It is this prop
erty that makes roughening and preroughening so diffe
from more conventional two-dimensional critical phenom
ena.

If this discrete translational symmetry is broken, for e
ample, by considering a crystalline slab of finite thickness
by growing a finite number of layers of the crystal on
smooth substrate made of a different material, the surf
critical phenomena will change. Thermodynamics will n
longer be periodic in the number of layers, and the types
surface phases may change drastically from layer to la
Historically, experimental work was directed mostly towa
understanding monolayer physics. A rich variety of pheno
ena, including commensurate-incommensurate transit
between various registered and ‘‘floating’’ phases,7 recon-
stuction transitions, and dislocation mediated tw
dimensional melting,8 occur in very thin films. These phe
nomena have been explored experimentally using techniq
such as heat capacity measurements, x-ray scattering, v
pressure isotherms, neutron diffraction, and low-energy e
tron diffraction.9

However, our focus will be on multilayer phenomena10

Thus we observe that, for a sufficiently large number of la
ers, the surface thermodynamics must, in some way,
proach that of the perfect, bulk crystal surface. Convers
the bulk surface phases and phase transitions must be
flected somehow in the behavior of a finite but sufficien
thick film. Motivated by the results of some recent expe
ments on rare gases adsorbed on graphite11–14 and MgO
~Ref. 15! substrates, the purpose of this paper is to expl
precisely this latter issue. Figure 1 constitutes a comp
pictorial summary of our results. All phase diagrams in th
figure have been computed using a sophisticated plaqu
mean-field theory, to be introduced in later sections, app
to the restricted solid-on-solid~RSOS! model. The model,
which will be introduced in detail in Sec. II, contains tw
parameters,K5J1 /kBT and L5J2 /kBT, where J1 and J2
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4902 57ANOOP PRASAD AND PETER B. WEICHMAN
FIG. 1. Pictorial summary of the essential results in this paper. The central plot shows a global phase diagram, as computed using a plaquette
theory on a square lattice, for the RSOS model of a bulk interface, withK5J1 /kBT and L5J2 /kBT the nearest- and next-nearest-neighbor interactio
showing the six possible different surface phases. Strictly speaking, all the roughening lines are actually absent in mean-field theory. The theory ins
a narrow crossover that we have used to estimate the positions of these lines~see the discussion in Sec. IV C!. All other transitions, however, are sharp. Th
inset shows schematically an alternative scenario containing theuDOF phase. This scenario is not found in the RSOS model we study~hence the remaining
questions about how some of the transition lines connect up!, but is expected to appear in other models. Paths 1–5 represent possible experimental traj
through this phase diagram. The surrounding figures show the layering phase diagrams associated with these paths when a substrate potential is~a!
Pure roughening behavior and associated low-temperature layering transitions, path 1.~b! Continuous preroughening behavior and associated reen
layering, path 2.~c! First-order preroughening behavior and associated zippering, path 3.~d! uDOF phase behavior and associated intermeshing, path 38 @inset
to the central plot#. The layering phase diagram in this case is computed from the sine-Gordon theory~Sec. III! rather than the mean-field theory since o
RSOS model does not show this behavior.~e! DOF to reconstructed behavior and associated antiferromagnetic transitions within each layer, pat~f!
Reconstructed-rough behavior and associated surrounding antiferromagnetic line, path 5.~g! First-order flat to reconstructed behavior, similar to~b! but with
layering lines reversed, extension of path 1.~h! First-order reconstructed to flat behavior, similar to~c! but with an antiferromagnetic line at highe
temperature, extension of path 4. A similar extension of path 5~not shown! would move this antiferromagnetic line outwards, as in~g!, to surround the
layering lines.
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57 4903LAYERING TRANSITIONS, DISORDERED FLAT . . .
are, respectively, nearest- and second-nearest neighbor
actions between the surface heightsh(r ). For present pur-
poses one need only know that positiveJ1 energetically fa-
vors neighboring columns of equal height, while negativeJ1
favors a unit height difference;J2 is always kept positive,
and favors second neighboring columns of equal height.
central plot in Fig. 1 is the bulk interface phase diagram
this model. We see clearly here the six different phases
have discussed, and the transition lines between th
Shown also are five different experimental paths through
phase diagram that we will outline here, and consider
detail in later sections. Associated with each of these path
a layering phase diagram, Figs. 1~a!–~h!, corresponding to
the same RSOS model but now including a substrate po
tial.

Path 1 shows ordinary surface roughening behavior.
relation between this behavior and layering critical pheno
ena is actually well known~see especially Ref. 16!: the
roughening temperatureTr is the accumulation point for the
sequence of critical pointsTc,n that terminate the first-orde
layering transitions at lower temperatures@see Fig. 1~a!#. The
nth layering line separates phases with approximately inte
film thicknesses,n21 andn, and ends in an Ising critica
point Tc,n .

Paths 2, 3, and 38 cut, in various ways, through theJ1
.0 portion of the DOF phase, and are the primary focus
this paper. Path 2 corresponds to ordinary preroughen
Den Nijs has proposed some possible associated laye
phase diagrams.5 The basic idea is that there should be tw
sequences of layering transitions. At low temperaturesT
&Tpr there is a sequence of first-order layering transitio
between integer coverages, while at higher temperaturesTpr
&T&Tr there is a sequence of first-order layering transitio
between integer-plus-one-half~or, more generally, integer
plus-uR) coverages. The second set of lines must there
be reentrant, with upper and lower endpointsTc,n and Tn

2 ,
respectively. The low-temperature set have only upper e
points Tn

1 . The temperaturesTc,n still tend to Tr as n→`.
What was not previously understood is in what way~if at all!
the endpointsTn

2 and Tn
1 are connected together. Den Nij5

suggests two possibilities:~i! Tn
1 and Tn

2 are Ising critical
points, as areTc,n , with Tn

1 ,Tn
2→Tpr , and are not connecte

in any way@Fig. 1~b!#; ~ii ! Tn
2 andTn

1 aretriple points, zipped
together by a zigzagging sequence of first-order lines, w
Tn

1 ,Tn
2→T0 @Fig. 1~c!#. We distinguish betweenTpr and T0

for reasons that will become obvious below. Another pos
bility ~iii ! is that the two sets of layering linesintermesh,
with distinct limits Tn

1→TI
1 andTn

2→TI
2 whereTI

2,TI
1 @Fig.

1~d!#. The high-resolution heat capacity studies12–14 suggest
possibility ~ii !. We will show that, depending on the param
eters, all of these possibilities, as well as others, can oc
Possibility ~i! indeed corresponds to a continuous prerou
ening transition, path 2; while~ii ! corresponds to afirst-
order transition between flat and DOF phases (T0 denoting
then the first-order preroughening temperature!, path 3; and
~iii ! to a uDOF phase in the temperature intervalTI

2<T
<TI

1 , path 38. The bulk interface transitionsTI
2 andTI

1 are
also Ising like, and in theuDOF phase one has a contin
ously varying surface coverage, 0<u(T)< 1

2 with u(TI
1)50

andu(TI
2)5 1
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Although not relevant to present experiments, one m
also cut through the DOF phase withJ1,0, ending with a
reconstructed phase at lower temperatures. This is re
sented by path 4, and the associated layering phase dia
is shown in Fig. 1~e!. Here there is only one set of layerin
lines, between half-integer coverages. However, for e
given film thickness an Ising antiferromagnetic orderi
transition takes place at intermediate temperatures. This t
sition becomes the DOF-reconstructed phase boundary
the bulk interface. The roughening transition at higher te
peratures is again reflected in the sequence of Ising crit
pointsTc,n .

Path 5 shows behavior for largeruJ1u/J2, where the sur-
face roughens before it deconstructs, yielding an interme
ate reconstructed-roughphase. The associated layerin
phase diagram@Fig. 1~f!# displays a sequence of layerin
transitions between half-integer film thicknesses lyingcom-
pletely withinan antiferromagnetic phase boundary. The n
ture of the order within this boundary is quite subtle, cor
sponding to antiferromagnetic order in the magnitude of
mean-square fluctuationsof each column height, not in the
column heights themselves. The latter symmetry is bro
only belowTc,n .

We also show layering phase diagrams for somewhat
ciful continuations of paths 1 and 4 that cross the first-or
flat to reconstructed phase boundary@see Figs. 1~g,h!#. There
is no experimental evidence forJ1 changing sign as a func
tion of T, but the resulting phase diagrams are remarka
similar in appearance to Fig. 1~c!, associated with first-orde
preroughening, and the experimental results for Argon a
Krypton on graphite.12,13,17 The continuation of path 1
shown in Fig. 1~g!, is identical to Fig. 1~c!, except that the
integer and half-integer layering lines are interchang
Ellipsometry11 and vapor pressure isotherm me
surements,12–14,18 however, are sufficiently accurate to ru
out such an interchange. The continuation of path 4 show
Fig. 1~h! has the two sets of layering lines in the corre
order, but, just as in Fig. 1~e!, involves also an antiferromag
netic Ising phase boundary. A similar extension of path
~not shown! would detach this Ising boundary complete
from the layering lines, exactly as in Fig. 1~g!, and the phys-
ics would then have nothing to do with the DOF phase at
We have not shown this latter phase diagram explicitly
cause the mean-field theory becomes numerically very h
to control for larger uJ1u/J2 ~see the discussion in Sec
II C 2!. Once again, there is no evidence for any of the
scenarios in any of the experiments.

As mentioned, the experimental graphite substrate lat
is triangular. Indications are that the reentrant layerings n
ertheless occur at half-filling. AlthoughuR5 1

2 reconstructed
phases, such as those with every secondrow missing, do
exist on a triangular lattice, they do not arise in a natural w
if the interactions are isotropic. It is likely, then, that for th
models we consider here there is no stable half-filled rec
structed phase. Until now, this was thought to be a prob
for the DOF phase interpretation of reentrant layering.5 What
we will show, however, is that the absence of a reconstruc
phase actuallyenhancesthe DOF phase, and that there a
two factors that one must consider in determining the filli
fraction u at which it occurs. Thus, although it isenergetics
that favors a DOF phase with filling fractionuR , it is entropy
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4904 57ANOOP PRASAD AND PETER B. WEICHMAN
that drives the preroughening transition and disfavors inte
filling fractions. In the absence of the former, the latter w
tend to form a DOF phase halfway between the two bou
ing integer coverages even in the absence of an ‘‘attracti
incipient reconstructed phase, just as seen in the exp
ments. The triangular lattice bulk interface phase diagram
computed using our plaquette mean-field theory, is show
Fig. 2. As can be seen, the main difference between
figure and the central phase diagram in Fig. 1 is the abse
of the reconstructed and reconstructed rough phases, an
correspondingly expanded DOF phase. TheK.0 portion of
the phase diagram is, however, qualitatively unchanged.

C. Outline

In this paper we will examine various solid-on-solid mo
els of surface critical phenomena in the presence of a s
strate potential. It is our aim to understand the conditio
under which possibilities~i!, ~ii !, ~iii ! ~or perhaps something
entirely different! occur. Much can be understood qualit
tively based on the sine-Gordon~closely related to the Cou
lomb gas! representation of the roughening and prerough
ing transitions,4 generalized to include a substrate potent
However our main quantitative tool will be a mean-fie
theory sophisticated enough to account for all of the poss
surface phases. Since the issue here is really the topolog
the phase diagram, rather than the nature of the critical po
~which are all Ising like for finiten, and, in any case, the
experiments do not resolve detailed critical behavior! one
can go a long way with mean-field theory, even to the po
of obtaining semiquantitative results.

FIG. 2. Global phase diagram, as computed using a plaqu
mean-field theory on a triangular lattice, for the RSOS model o
bulk interface. The reconstructed and reconstructed rough ph
and transitions associated with them, are now absent, leading
much enlarged DOF phase. The behavior forK.0, however, is
qualitatively unchanged from that for a square lattice, Fig. 1.
particular, paths 1, 2, and 3 exhibit behavior qualitatively identi
to that shown in Figs. 1~a!–~c!. Path 4 yields behavior similar to
that in Fig. 1~e! except that the antiferromagnetic line is no
absent—the upper layer remains disordered to arbitrarily lowT.
The roughening line is again estimated~see the discussion in Sec
IV C!.
er
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In Sec. II we introduce the RSOS models of crystal-vap
interfaces and discuss their general properties. A great
of intuition can be obtained by considering the limit of
strong substrate potential and restricting the model to a sm
number~two or three! of layers. One then obtains effectiv
spin-j ~with j 5 1

2 or j 51) Ising models whose phase dia
grams can be understood quite generally. A plaquette me
field formalism is then developed for later detailed compu
tions.

In Sec. III we will use generalized sine-Gordon mode
along with renormalization-group arguments to discuss
phenomenology of the layering phase diagram. In so do
we will uncover the four basic classes of layering behav
for thick films shown in Figs. 1~a!–~d!.

In Sec. IV we explore solutions to the mean-field equ
tions, classifying, to some extent, the possible phase
grams. We find that the RSOS model exhibits, depending
parameters, the first three behaviors described above, bu
the fourth. As mentioned, theuDOF phase requires a mor
general ‘‘alloy’’ RSOS model. In addition, we explore
number of phase diagrams that do not have sine-Gor
model descriptions, namely, those that involve reconstr
tion. As alluded to above, some of these mimic closely so
of the phase diagrams involving preroughening, but there
significant experimentally observable differences.

In Sec. V we conclude by comparing the theoretical a
experimental phase diagrams. We also describe future w
that might help in the search for new experimental syste
that display the so far unobserved phase diagrams.

Various appendices contain more technical derivatio
Appendix A contains a formal development of consiste
plaquette mean-field theories. In Appendixes B and C
plicit expressions for the free energies on various lattices
for various plaquettes are derived. In Appendix D t
equivalence between the body-centered-cubic solid-on-s
~BCSOS! model and the Ashkin-Teller model is outlined an
this is used to exhibit an RSOS ‘‘binary alloy’’ model with
uDOF phase.

II. MODELS AND METHODS

A. Solid-on-solid models

Solid-on-solid~SOS! models are conventionally used t
model interface phenomena. In these models the vapor p
above the surface is taken to be a perfect vacuum, while
solid phase below is taken to be a perfect crystal, and sur
overhangs are ignored. The surface is then defined by a s
column heights h(r ) above a two-dimensional lattic
spanned by the indexr . To begin with we shall assume
simple square lattice withh(r ) taking integer values. Late
on we shall discuss the experimentally more relevant cas
a triangular lattice. In fact, the bulk crystals considered h
have a face-centered-cubic structure in which sequential
ers of atoms sit in the interstices of the previous layer.
though, for a givenr , h(r ) can change only in integer step
neighboring heights will then differ by noninteger amoun
For simplicity of modeling, we shall ignore this complicatio
and take the triangular lattices to lie one on top of the ot
so that allh(r ) are integers.19 In the restrictedsolid-on-solid
models, the further constraint is imposed that neighbor
column heights can differ by at most unity. This reflects t
physical constraint that it is energetically unfavorable
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57 4905LAYERING TRANSITIONS, DISORDERED FLAT . . .
form steps of greater than unit height. In the RSOS mod
the energy barrier against such steps is simply taken to
infinite. This constraint greatly reduces the number of s
face configurations and, therefore, simplifies certain anal
and numerical calculations~see below! without affecting the
basic physics. It also decreases the configurational entr
and roughness, of the surface relative to that of, say,
interface between oppositely magnetized domains in a th
dimensional Ising model. This tends to stabilize more d
cate phases, like the disordered flat phase, which rely o
critical balance between configurational entropy and s
free-energy barriers. Clearly, whether the SOS model, RS
model, or something in between, is most appropriate depe
upon the details of the system being modeled.

Following den Nijs,4 we first consider the RSOS Hami
tonian on a square lattice,

H5 1
2 J1 (

^r ,r8&
@h~r !2h~r 8!#21 1

2 J2 (
~r ,r9!

@h~r !2h~r 9!#2

1(
r

V@h~r !#, ~2.1!

where the first sum is over nearest neighbors and the se
sum is over second~i.e., diagonal! neighbors. We assum
J2.0 always, butJ1 can be either positive or negative. Th
external potential,V(h) @in the absence of which, Eq.~2.1! is
precisely the model treated in Ref. 4# is due to the substrate
and takes the form16 ~see Fig. 3!

V~h!5H hDm1v~h!, h>0

`, h,0,
~2.2!

with v(h)'ch2a for large h.20 For a van der Waals sub
strate potential,a52 andc.0. The linear coefficient,Dm
5mcoex2m, is the deviation of the chemical potential fro
bulk solid-vapor coexistence. ForDm.0 the bulk phase is
vapor, while forDm,0 the bulk phase is solid. A true bul
equilibrium interface exists only forDm50 ~precisely analo-
gous to external magnetic fieldH50 in an Ising model!. If
J1 and J2 are both positive, then at zero temperature
interface is perfectly flat and its equilibrium position is at t
minimum,h0(Dm,T50), of V(h) ~over integer values ofh).
For smallDm the minimum diverges as

h0~Dm!'S ac

Dm D 1/~11a!

;Dm2 1/3, Dm→0. ~2.3!

FIG. 3. Substrate potential,V(h).
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It is for this reason that absorption isotherms, which ess
tially measureheq(Dm,T)[^h(r )& as a function ofDm for
fixed T, are often plotted versusDm21/3: the steps due to the
sequence of layer completions then occur with roughly eq
spacing.12,13

The physics behind Eq.~2.1! is as follows. Consider first
a bulk interface withV[0. If J1 is positive and large com
pared toJ2, the energetics give preference to a flat interfa
and the model will produce a standard roughening transi
with increasing temperature whenK[J1 /kBT and L
[J2 /kBT are sufficiently small. IfJ1,0 and is large in
magnitude compared toJ2, neighboring column heights pre
fer to differ by unity. However, sinceJ2 prefers that diagona
nearest-neighbor column heights have equal height, an a
ferromagnetic order is stabilized at low temperature: this
the checkerboard reconstructed phase. AsK decreases, this
phase roughens, but still retains a generalized long-range
tiferromagnetic order.2 A second Ising-like transition, a
higher temperature, into a fully rough phase is required
finally eliminate this residual order. However, ifJ1,0 is
sufficiently small in magnitude, the antiferromagnetic ord
can be lost, via an Ising transition,beforethe surface rough-
ens: this is the transition to the disordered flat phase. T
phase actually persists also for smallJ1.0: the entropy gain
from disordering the surface more than offsets the loss
ferromagnetic energy. The central plot in Fig. 1 shows h
these four phases fit together.

Now, how are these phases affected by the presenc
V(h)? The effect on the rough phases is catastrophic! Si
V(h) prefers a set of values ofh nearh0(Dm), the correla-
tion functionG(r ) @see Eq.~1.1!# must always remain finite
as ur u→`. The logarithmic divergence in Eq.~1.2! must
saturate. We may estimate the saturation value as follo
assuming that the interface does not wander too far from
minimum, it will be governed by the effective Hamiltonian

H̄eff[
Heff

kBT
5

1

2E d2r @KRu¹hu21k~h2h0!2#, ~2.4!

where

kBTk5S ]2V

]h2 D
h5h0

'a~a11!S Dm

ac D ~21a!/~11a!

;Dm4/3

~2.5!

is the curvature at the minimum, andKR is the effective
long-wavelength~renormalized! tilt modulus @see Eq.~1.1!#
in the absence ofV. This Hamiltonian is Gaussian, an
yields

^~h2h0!2&'E
q&p/a

d2q

~2p!2

1

KRq21k
5

1

4pKR
lnF11

p2KR

ka2 G
'

21a

11a

1

4pKR
lnS c

Dm D!
1

k
, ~2.6!

which also estimates the saturation value ofG(r ). The final
inequality tells us, self-consistently, that although the int
face width diverges logarithmically asDm→0, the interface
remains sufficiently close toh0 that the quadratic approxima
tion remains valid.
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Clearly, the flat phases will be affected by the potentia
much more subtle ways. They will, of course, remain fl
The question we address is the nature of the various tra
tions between them in the presence ofV(h).

B. Effective layer Hamiltonians

From the general Hamiltonian~2.1! one can derive vari-
ous approximate effective Hamiltionians for describing t
thermodynamics of individual layers. The basic idea is tha
the effective potentialV(h) increases rapidly to either side o
the minimum nearh0(Dm), then large deviations of the co
umn heights fromh0 will be strongly discouraged, and, to
good approximation, one can suppress all values ofh(r ) out-
side of some narrow range. If this range encompasse
integer 2j 11 of values, one then has reduced the full Ham
tonian to one of a classical spin-j Ising model. It will tran-
spire that a description of the thin-film analogue of the d
ordered flat phase requiresj >1. However, we will begin our
discussion with the simpler spin-1

2 model.

1. Spin-j Ising models

A spin-1
2 description is valid if the the substrate potent

is so strong as to allow essentially only one value of
column heights, except when the value ofDm is such that
two column heights, sayn andn11, are nearly degenerat
in energy. In this latter situation the true minimum ofV(h)
lies nearn1 1

2, and V(n)'V(n11). Physically, we expec
this to be a valid description for films only a few layers thic
We define the spin-1

2 variabless(r ) via

s~r !5H 21 if h~r !5n

11 if h~r !5n11.
~2.7!

Ignoring all other possible values ofh(r ), the Hamiltonian
now becomes

H̄'H̄1/2[
1
2 K (

^rr 8&
@s~r !2s~r 8!#21 1

2 L (
~rr 9!

@s~r !2s~r 9!#2

2h(
r

s~r !, ~2.8!

where H̄[H/kBT, H̄1/2[H1/2/kBT, h5H/kBT with H
5 1

2@V(n)2V(n11)# an effective magnetic field, and w
have dropped an overall constant term,C5 1

2 @V(n)1V(n
11)#NA where NA is the number of atoms per layer. W
should really distinguish between the coupling constantsK
and L that appear in Eq.~2.8! and those that appear in Eq
~2.1! because the former are effective parameters that
differ somewhat from the latter in a way that depends up
how good an approximation the spin-1

2 model is. For simplic-
ity of notation, however, we will not make this distinctio
explicit. ForL50 this is the standard two-dimensional Isin
Hamiltonian. IfK.0 the model is ferromagnetic, and whe
H50 there is a phase transition to a state with finite mag
tization asK increases through a critical valueK5Kc @see
Fig. 4~a!#. If K,0 the model is antiferromagnetic. SinceH
does not couple directly to the staggered magnetization o
parameter in this case, there is aline of transitions, K
5Kc(H) @see Fig. 4~b!#, to states with finite staggered ma
netization. Thus, althoughH polarizes the spins somewha
.
si-

if

an
-

-

l
e

ill
n

-

er

antiferromagnetic order survives ifH is not too large.
Clearly, one must haveKc(0)52Kc . This line terminates at
T50(K52`) for a critical value of the field,H56Hc ,
with Hc522J1. Since L.0 encourages the alignment o
diagonal nearest-neighbor spins, it enhancesboth ferromag-
netic and antiferromagnetic order. IfL is not too large, the
phase diagrams are qualitatively unchanged.

For large L.0, new behavior occurs. SupposeK50.
Then the two interpenetrating sublattices are decoupled,
L provides a nearest-neighbor ferromagnetic coupling wit
each one. Thus, atH50 and a critical value,L5Kc , the two
sublattices will independently order ferromagnetically. W
may view a small value ofK as a perturbation on this be
havior, which then determines how these two sublattices
ent relative to one another. IfK.0 ~but arbitrarily small! the
two will order parallel to each other, yielding an overall fe
romagnetic state; ifK,0 ~but arbitrarily small! the two will
order antiparallel to each other, yielding an overall antifer
magnetic state. There is, therefore, a first-order transi
from one ordered state to the other whenK reverses sign a
large enoughL. This is seen in theK-L plane atH50 in Fig.
5~b!.

For nonzeroH the ferromagnetic part of the critical line i
destroyed@see Fig. 5~b!#, but the antiferromagnetic part su
vives, and must merge somehow with the extension of
first-order decoupling line,K50, L.Kc . For largeL it is
easy to see that the latter moves to negativeJ1.2 1

2 uHu
since a finiteK,0 is now required to overturn one sublattic
against the field. For smallL the transition remains second
order. How the two behaviors connect at intermediateL is
surprisingly complicated: for smallerH the two meet in a
tricritical point, while for largerH the second order line end
in a critical endpoint on the first-order line, while the firs
order line ends in an Ising critical pointinside the antiferro-

FIG. 4. ~a! Ferromagnetic and~b! antiferromagnetic Ising phas
diagrams forL50.
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57 4907LAYERING TRANSITIONS, DISORDERED FLAT . . .
magnetic phase. Atetracritical point, at a particular value of
H5Hc4, separates these two behaviors. This is shown s
matically in Fig. 5~a!. A three-dimensional phase diagram
the full H-K-L space is shown in Fig. 5~b!. All this will be
described in more detail in Sec. IV.

Let us now understand the relationship between this ph
diagram and the layering transitions in the solid-on-so
model. Consider firstK.0 andL50. At low temperatureK
will be larger thanKc , and asH passes through zero a firs
order transition will take place between the spin-down fer
magnetic phase and the spin-up ferromagnetic phase.
corresponds to a first-order layering transition~as a function
of Dm) betweenn completed layers, with a dilute gas o
atoms~whose density varies continuously withH,0) in the
partially completed (n11)st layer, andn11 completed lay-
ers with a dilute gas of ‘‘holes’’~whose density varies con
tinuously with H.0) in the (n11)st layer, occurring pre-
cisely whenV(n) and V(n11) are degenerate. This firs
order line terminates in an Ising critical point, above whi
the layers grow continuously.

As Dm decreases further,V(n12) eventually becomes
degenerate withV(n11), and we leave the domain of valid
ity of the Ising model~2.8!. However, we may now ignore
thenth layer, which is essentially full and inert, and consid
a new effective Ising model, of the same form as Eq.~2.8!,
for the (n11)st and (n12)nd layers. The effective param

FIG. 5. Ising phase diagrams forL.0: ~a! H vs T phase dia-
grams showing tricritical behavior forJ2 /uJ1u. j 4c and critical-end-
point behavior for J2 /uJ1u, j 4c . Figure 4~b! is recovered as
J2 /uJ1u→0. The paths labeled (i ), (i i ), (i i i ), and (iv) refer to the
corresponding parts of Fig. 19 below.~b! Three-dimensional plot,
with details of the tricritcial and critical-end-point structure show
e-

se

-
his

r

eters will be slightly different since the precise shape
V(h) has changed, but the same physics will now repe
with H5 1

2 @V(n11)2V(n12)#. In particular, a new layer-
ing transition betweenn11 andn12 layers will now occur.
Repeating this whole process indefinitely generates the e
infinite sequence of layering transitions@Fig. 1~a!#. Of
course, our assumption thatV(h) effectively isolates only
two layers breaks down as the number of layers increa
but the picture actually remains valid. The point is thatK
prefers a flat surface, and Huse16 has shown that the end
points of the layering transitions accumulate at the rough
ing transitionfrom the low-temperature side. Therefore the
renormalized tilt modulusKR in Eq. ~2.4! is still infinite, and
the interface is flat right through the Ising transition. It
therefore a combination of a weak minimum inV(h) and the
fact that Tc,n,Tr that maintains the correctness of o
simple picture. These results are qualitatively unaffected
L.0 sinceL just enhances the stability of the flat pha
somewhat.

Consider nextK,0. The original RSOS Hamiltonian
does not really make sense in this case ifJ250 since the
surface will always be rough: in the absence of a stron
localizing substrate potential, one needs a finiteJ2 to stabi-
lize a flat surface at low temperatures. The correspond
effective layer Hamiltonian must then have a positiveL. At
low temperatures, then, the first-order layering lines n
broaden out into second-order lobes enclosing checkerb
ordered phases that exist in the interval2Hc(T),H
,Hc(T) @see Figs. 4~b! and 5~a!#. As above, there will be
one such lobe for each value ofn. If V(h) is sufficiently
steep so thatH passes throughHc before V(n12)2V(n
11) becomes smaller than 8uJ1u, then the transition line
reaches right toT50 and is completely disjoined from th
checkerboard phases at neighboring coverages. In princ
all of the complicated triple-point or critical-end-point stru
ture will appear as well. This is shown towards the bottom
Fig. 1~e!. If, on the other hand,V(n12)2V(n11) becomes
smaller than 8uJ1u beforeH passes throughHc , the neigh-
boring lobes will overlap and one will have afirst-order
transition between neighboring checkerboard phases at
temperature. This must happen for sufficiently largen, and is
shown in the upper-left-hand parts of Fig. 1~e!.

What happens at higher temperatures? There are two
sibilities, depending upon the relative strengths ofJ1 andJ2.
If J2 is large compared toJ1, then the layering tendency i
stronger than the reconstruction tendency, and will survive
higher temperatures. Therefore, as the temperature rises
the reconstructed phase disorders, while the strongL contin-
ues to maintain a flat, roughly half-filled surface. Th
second-order antiferromagnetic Ising transitions then ter
nate at critical endpoints on the first-order layering lines.
the film thickens the reconstruction transitions accumulat
the bulk surface reconstruction transition,T5TR . Mean-
while, the first-order layering lines terminate at Ising critic
points Tc,n at higher temperatures. These critical points a
culmulate at the bulk surface roughening transition,T5Tr .
The bulk surface phase in the intervalTR,T,Tr is pre-
cisely the disordered flat phase. This scenario is picture
Fig. 1~e!.

If, on the other hand,J1 is large compared toJ2, the
reconstruction tendency is stronger than the layering t

.
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4908 57ANOOP PRASAD AND PETER B. WEICHMAN
dency. Therefore, as the temperature rises, the layering c
cal points,T5Tc,n , will occur completely withinthe recon-
structed phase. A single second-order reconstruc
transition line will now enclose all of the layering transitio
lines~for sufficiently largen), terminating at the bulk surfac
rough-to-reconstructed-rough transition. The layering e
points will accumulate at a lower temperature,T5Tr , cor-
responding to the bulk surface reconstructed-flat
reconstructed-rough transition. This scenario is pictured
Fig. 1~f!. The numerical convergence of the mean-fie
theory becomes quite finicky in this regime of strongly neg
tive J1 /J2, hence the overly jagged antiferromagnetic li
~better choices of parameters would improve this, but t
regime is not our primary interest and we have not purs
such improvements!.

Even more interesting behavior occurs if the effect
coupling K changes signas a function of temperature at
value ofL larger thanLc . One may obtain phase diagram
that show both integer and half-integer layering. In Fig. 1~g!
we show the case whereJ1 is antiferromagnetic at low tem
peratures, turning ferromagnetic at high temperatures.
result is similar to that shown in Fig. 1~c!, including a zig-
zagging line of first-order transitions that zip together t
two sets of layering lines, differing only in that it is now th
integer layering lines that are reentrant. In the bulk interfa
limit there are still two phase transitions. The surface is
constructed at low temperatures, converts to the flat ph
via a first-order transition atT5TR , and finally roughens a
T5Tr . The two sets of layering triple points,Tn

2 and Tn
1

must accumulate at the same point,T5TR , because when
J150 only J2 stabilizes the flat surface. For thick filmsJ2
does not distinguish between half-integer and integer lay
so the switch from one to the other must take place es
tially over a vanishingly small temperature step.

In Fig. 1~h! we show what happens ifJ1 is ferromagnetic
at low temperatures and antiferromagnetic at higher temp
tures. The possible behaviors are identical at high temp
tures to those shown in Fig. 1~e! @or to those shown in Fig
1~f! for a similar extension of path 5#. The only difference is
that at low temperatures a new series of layering transiti
between integer coverages takes over. These connect t
half-integer layering transitions in the same way as show
Fig. 1~g!, except that high and low temperatures are revers
In the bulk interface limit there are now three transitions
first-order transition from flat to reconstructed flat at lo
temperatures, followed by an Ising transition to the DO
phase, followed finally by a roughening transition to the fi
analogue of the reconstructed-rough phase~the last two
would be reversed for the similar extension of path 5!.

In neither of the two scenarios shown in Figs. 1~g! and~h!
is preroughening involved because the reconstructed sur
never disorders, but simply converts to the flat phase w
J1 changes sign. We emphasize these scenarios only bec
they mimic Fig. 1~c! but contain completely different phys
ics. Figure 1~h! is especially similar since it is the half
integer layering lines that are reentrant. In both phase
grams, the first-order zipper appears. The difference now
that there is a higher-temperature Ising line below which
rough surface reconstructs. For the experiments that we
discuss, these scenarios are unlikely as there does not
to be any indication that reconstruction takes place.
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Although checkerboard reconstruction is described by
effective spin-12 Hamiltonian, the layering behavior discusse
in the previous paragraphs is not since it involves three v
ues of n. To derive the layering behavior from the RSO
model one must use at least a spin-1 Hamiltonian, wh
takes the general form

H̄1[ 1
2 K (

^rr 8&
@s~r !2s~r 8!#21 1

2 L (
~rr 9!

@s~r !2s~r 9!#2

2h(
r

s~r !1h2(
r

s~r !2, ~2.9!

where we have used the parabolic form,2hs1h2s2, with
h25H2 /kBT, to fit V(h) for h5n21,n,n11, and dropped
an overall constantC15V(n)NA . Clearly the two param-
etersh,h2 are all that are required. The restricted solid-o
solid ~RSOS! condition now comes into play: since neare
neighbor sites can differ in height by at most unity, sp
configurations in whichs(r )511 and s(r 8)521 for
nearest-neighbor sitesr and r 8 are disallowed—in effectK
5` for us(r )2s(r 8)u52. Detailed computations of the lay
ering behavior described in the previous paragraphs u
this model will be described in Sec. IV.

2. Film analogue of the DOF phase

The spin-1 model is also required to understand the fi
analogue of the DOF phase. Recall that preroughening
volves a transition from a flat phase to a disordered rec
structed phase~i.e., a disordered flat phase!. In the context of
a thin film, the disordered flat phase will correspond to
checkerboard phase that has ‘‘melted,’’ but nevertheless
tains a preference for a certain density of atoms, name
half-filled layer. To describe this properly the model mu
allow for two such phases: one with an extra half-layer
top of the flat phase, and one with a half-layer missing fro
the flat phase. This is crucial because it will turn out th
these two phases arise from a kind ofsymmetry breakingin
the flat phase. Given this, it is clear that three different lay
enter the physics in a crucial way, and the effective la
Hamiltonian must allow three different values of the spin

The disordered-flat phase on a bulk crystal interface
curs for smallK and moderate, butL.0 sufficiently large
that uh(r )2h(r 9)u52, wherer andr 9 are second neighbors
is discouraged. The surface therefore is not rough, yetK and
L are weak enough thath(r ) does not condense into a flat o
reconstructed phase, preferring instead to take advantag
the entropy gain associated with a half-filled disorder
layer. ClearlyJ1 can have either sign, but we will be inte
ested inJ1.0 so that the flat phase eventually stabilizes
low temperature. In the context of a thin film we are the
fore asking the following question: ifH50 but H2>0 ~so
that s50 is nominally preferred! are there conditions unde
which both K and L are positive~so that, again,s50 is
nominally preferred!, and yet a spontaneously broken sym
metry exists withM[^s(r )&Þ0? Clearly theground stateof
H1 under these conditions iss(r )[0, but there may be an
entropy driventransition to a state withMÞ0 in some inter-
val of temperatures. At high temperatures this symme
breaking will be destroyed due to complete disordering
the film. At low temperatures it will be destroyed as energ
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57 4909LAYERING TRANSITIONS, DISORDERED FLAT . . .
ics wins out over entropy. Although this scenario yields
entrant behavior of the type we seek, a calculation is requ
to see which of Figs. 1~a!–~d! give the correct global picture
Note that it is theabsenceof reconstruction in the DOF
phase that eliminates the Ising line that is present in F
1~h!.

C. Mean-field formalism

The main calculational tool that we will use to explore t
questions raised in the previous subsection is a s
consistent mean-field formalism. The standard mean-fi
formalism replaces each individual fluctuating spin or hei
variable by an effective continuous single-site magnetizat
or average height, which adjusts self-consistently to the
fective field generated by its neighbors. Equivalently,
free energy is computed in a saddle-point approximati
with the phase space location of the saddle point determin
the single-site magnetizations. Since all sites are equiva
in a ferromagnetic state, such an essentially single s
theory suffices to capture the basic physics. For antife
magnetism on a square lattice, the two sublattices are
equivalent, but if the individual spins interact only with nea
est neighbors there is no ambiguity in the local effect
field. The single-spin mean-field theory then again suffice
capture the basic physics. However, if one wishes to desc
ordering into a state involving subtle competition betwe
correlations, one must improve the level of approximation
treating the fluctuations withinplaquettesof nearby spins
exactly. Interactions between different plaquettes are
treated self-consistently. The general formalism for do
this is outlined in Appendix A. In our case we are seekin
state that is formed by a delicate balance of nearest-neig
and next-nearest-neighbor interactions. We therefore m
keep enough spins that both types of interaction are pre
within a plaquette. For the square lattice we shall analyz
model using four spins in a given plaquette@see Fig. 6~a!#.
For the triangular lattice we shall analyze two models, o
with six-spin plaquettes@see Fig. 6~b!#, and one with seven
spin plaquettes@see Fig. 6~c!#.

1. Square lattice

In order to apply the mean-field formalism of Appendix
we need to tile the entire lattice with copies of the chos
plaquette, carefully distinguishing betweenintraplaquette
and interplaquette interactions. This tiling is not unique, b

FIG. 6. ~a! Four-spin plaquette for the square lattice contain
two spins from each of the two sublattices.~b! Six-spin plaquette
for the triangular lattice that violates the full rotational symmetry
the lattice, but treats the three sublattices symmetrically, kee
two spins from each.~c! Seven-spin plaquette for the triangul
lattice that has the full rotational symmetry of the lattice, but bre
the symmetry between the three sublattices.
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for the square lattice plaquette there is a natural choice wh
is shown in Fig. 7. Let us begin by ignoring the RSOS co
straint. Applying the formalism of Appendix A to the Hami
tonian~2.9!, the single plaquette Hamiltonian correspondi
to Fig. 7 is

H̄0
~4!5 1

2 K@~s12s2!21~s22s3!21~s32s4!21~s42s1!2#

1 1
2 L@~s12s3!21~s22s4!2#1 h̃2@s1

21s2
21s3

21s4
2#,

~2.10!

where h̃25h21l1K1 3
2 l2L, arising from multiplying out

(si2sj )
2 terms fori and j on different plaquettes. The inter

plaquette scale factorsl1 andl2, nominally equal to unity,
have been introduced for later convenience. Interactions
tween plaquettes then involve only products of pairs
single spins, so we need only introduce fieldsHa conjugate
to the individual spins,sa , a51,2,3,4. Defining the single
plaquette free energyF (4)$Ha% via Eq. ~A5! we obtain the
free-energy functional

F~4!$HPa ;sPa%5(
P

F~4!$HPa%2(
Pa

~HPa1hPa!sPa

2l1K(
P

~sP1sP141sP2sP131sP2sP31

1sP3sP34!2l2L(
P

~sP1sP13

1sP2sP141sP2sP241sP2sP34

1sP3sP311sP3sP41!, ~2.11!

whereP1 , P2 , P3, andP4 are neighboring plaquettes toP
~see Fig. 7!, andF (4) will be computed explicitly in Sec. IV.
Since the ordered phases we seek are all either ferromag
or antiferromagnetic we now take

hP15hP3[hA , hP25hP4[hB,

HP15HP3[HA , HP25HP4[HB,

sP15sP3[MA , sP25sP4[MB . ~2.12!

f
g

s

FIG. 7. A natural tiling of the full square lattice by the four-sp
plaquette that maintains the symmetry of the lattice as well as
symmetry between the two sublattices.
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The free energy per spin is then

1

N
F~4!~HA ,HB ;MA ,MB!5 1

4 F~4!~HA ,HB!2 1
2 ~HA1hA!MA

2 1
2 ~HB1hB!MB2l1KMAMB

2 3
4 l2L~MA

21MB
2 !. ~2.13!

Differentiating with respect toMA and MB we obtain the
first set of saddle-point conditions@see the first line of Eq.
~A9!#

MA5
1

2

]F~4!

]HA
, MB5

1

2

]F~4!

]HB
. ~2.14!

The mean-field free energy per spin is finally obtained
substituting these relations into Eq.~2.13! @this intermediate
form represents the Bogoliubov free energy—see Eq.~A16!#
and then minimizing overHA andHB . This is equivalent to
solving the second set of saddle-point equations@see the sec-
ond line of Eq.~A9!#

2HA52l1KMB13l2LMA1hA,

2HB52l1KMA13l2LMB1hB , ~2.15!

where, again, Eq.~2.14! should be substituted for theMA
andMB dependence. We emphasize that the order is imp
tant here: the alternative of using Eq.~2.15! first to eliminate
MA andMB often leads to a free energy in which the sad
point is not a minimum. It is also worth commenting that,
discussed in Appendix A, consistency of the theory impl
that the saddle-point conditions guarantee that

MA5^sP1&5^sP3&52
2

N

]F~4!

]hA
,

MB5^sP2&5^sP4&52
2

N

]F~4!

]hB
. ~2.16!

This allows one to follow the alternative route ofinverting
Eq. ~2.14! to eliminateHA andHB in favor of MA andMB ,
and computing theHelmholtzfree energy,

1

N
A~4!~MA ,MB!5

1

N
F~4!1 1

2 ~hAMA1hBMB!

5 1
4 F̄~MA ,MB!2 1

2 @HA~MA ,MB!MA

1HB~MA ,MB!MB#2l1KMAMB

2 3
4 l2L~MA

21MB
2 !, ~2.17!

where F̄ (4)(MA ,MB) is obtained from F (4)(HA ,HB)
through this elimination. The equilibrium magnetizations a
then obtained via the equations of state,

1
2 hA5

1

N

]A~4!

]MA
, 1

2 hB5
1

N

]A~4!

]MB
. ~2.18!

The advantage here is thatA(4) is abona fidemean-field free
energy dependingonly on theM variables, and we avoid th
‘‘mixed’’ representation containing all three sets of va
ables,h, H, andM .
y

r-

s

e

2. RSOS condition

Let us now turn to the inclusion of the RSOS conditio
Recall that this condition requires that nearest-neighbor s
differ by at most one, implying a nearest-neighbor intera
tion vR(s2s8) such that

e2bvR~s!5u~12usu!, ~2.19!

whereu(x) is the step function@we takeu(0)51#. The con-
dition is crucial for stabilizing the bulk crystal surface whe
K,0, since without it nearest-neighbor column height d
ferences would diverge. Within a plaquette, i.e., in the co
putation ofF, this condition is easily accounted for simp
by eliminating from the trace those spin configurations t
violate it. However, between plaquettes greater care mus
taken because one must now include the RSOS cond
explicitly in the interplaquette interaction termA defined in
Eq. ~A1!. The difficulty lies in the fact thatvR(s) is not
simply expressible as a polynomial ins. For integer values of
s, vR(s) is the largeA limit of vA(s)[As2(s221). This
form leads to new interaction termssi

2sj
2 andsi

3sj . Unfortu-
nately, within the mean-field approximation, the integer va
able s is replaced by a continuous variables, and the fact
that vA(s)→2` asA→` for 0,s2,1 leads to thermody-
namic instabilities. The form vA(s)5As2(s221)2 is
healthier in this regard, but now involves even higher pow
of the spins and still unphysically restricts the continuo
variables to the values 0,61 whenA→`. One really needs
vA(s)5Au(usu21), but this is nonpolynomial.

Our solution to this problem is to keep the RSOS con
tion within a plaquette, but ‘‘soften’’ it between plaquette
The condition’s main role is to discourage large neare
neighbor column height differences, and its exact form i
matter of convenience. We will consider then two ‘‘soft
forms forvR(s). Note that forK.0 it is safe to simply take
vR(s)[0, but for sufficiently largeK,0 this choice be-
comes unstable to unbounded height differences betw
neighboringplaquettes. One solution then is to setvR(s)
5„l1(K)21…Ks2 @effectively replacingK by l1(K)K for
all interplaquette interactions# with 0,l(K)<1 a smooth
function of K that decreases asK becomes more negative
therebycancellingat least part of the nearest-neighbor inte
action between plaquettes. At the same time one mighten-
hancethe interplaquette second-neighbor coupling, replac
L by l2(K)L with l2(K).1. This allowsL to stabilize the
reconstructed phase. It was precisely for this reason~as well
as others—see below! that we introducedl1 and l2 in Eq.
~2.11!. Our second choice is to takevR(s)5As4, with fixed
A.0 of order unity chosen for convenience. This form gu
antees thermodynamic stability withoutad hocvariation of
coefficients, at the expense of introducing higher powers
the spins. Unfortunately, it does allow ever larger neare
neighbor plaquette height differences asK becomes more
negative, violating the expected equivalence of
plaquettes. We have used precisely this form in comput
the phase diagram shown in Fig. 1~f! ~see Sec. IV A 2 for
details!, and the jaggedness of the antiferromagnetic line
probably due to all of these competing effects. Since
main focus is on ferromagneticJ1 we have not seriously
attempted to optimize our parameter choices here to impr
this figure.
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57 4911LAYERING TRANSITIONS, DISORDERED FLAT . . .
One is actually led to considering linear rescalings of
interplaquette interactions for other reasons. For exam
the relative number of nearest-neighbor and next-neigh
bonds internal to the plaquette in Fig. 6~a! ~namely, 2:1! does
not match the relative number in the full lattice~namely 1:1!.
One might, therefore, introduce phenomenological scale
tors into the terms in~2.11! that couple to the environmen
i.e., replaceK by l1K andL by l2L, and adjustl1 andl2
according to one’s preference, or simply to optimize co
parison with experiment.

It should now be clear how to write down spin-j Hamil-
tonians for arbitraryj , even j→`. Keeping more layers
should improve the accuracy of the approximation
thicker films. Similarly, the construction of the mean-fie
theory is identical. The major differences are that the s
free energyF becomes more complicated because there
more spin configurations to trace over.

3. Triangular lattice

The second-neighbor interaction divides the triangular
tice into three equivalent triangular sublattices,A, B, andC.
We consider mean-field theories based on each of the
plaquettes of spins shown in Figs. 6~b! and 6~c!. In the first,
we keep two spins from each sublattice. In the second,
keep a hexagonal plaquette of seven spins that contains
full rotational symmetry of the triangular lattice, but unfo
tunately does not treat the three sublattices symmetrica
three spins are kept from each of two of the sublattices,
only one spin from the third. In neither case are all sp
equivalent, which we will remedy somewhat by, again,
troducing fudge factorsl i that scale the couplings to th
surroundings.

In principle, to distinguish the three sublattices, we ne
three magnetic fieldshA , hB , and hC , with corresponding
sublattice magnetizationsMA , MB , and MC . However,
since even with negativeK frustration dictates that there ar
no phases that spontaneously break the symmetry betw
the three sublattices, we will keep only one fieldh and as-
sume the sublattice magnetizations to have all the same v
M . Note that this is a statement about the exact behavio
the model. The mean-field approximation may well pred
unphysical phases with broken symmetry. For this reason
will restrict triangular lattice computations toK.0. In dis-
cussing the effects of reconstructed phases we will alw
use a square lattice.

In order to apply the formalism of Appendix A we mu
again tile the plane with the basic plaquette. If one rema
completely faithful to the triangular lattice, this turns out
be very unnatural. Examples of tilings are shown in Figs
and 9. The hexagonal tiling maintains the rotational symm
try of the lattice, but has a ‘‘chirality,’’ and therefore brea
the inversion symmetry. The triangular tiling is clear
highly nonunique, requires two different orientations of t
basic plaquette, and breaks the rotational symmetry of
lattice more badly than does the triangle itself. The no
niqueness reflects itself in the differing identifications of
terplaquette and intraplaquette interactions implied by e
possible tiling. For example, the symmetry of the triang
would normally imply equivalency of the three corner sit
and equivalency of the three noncorner sites. However, in
tiling shown in Fig. 8 the top corner site connects to fo
e
e,
or

c-

-

r

e
re

t-

o

e
the

y:
ut
s
-

d

en

lue
of
t
e

s

s

8
-

e
-

h

e
r

different plaquettes through nearest-neighbor bonds, w
the right and left corner sites connect to three and to t
different plaquettes, respectively. All six sites are therefo
distinguishable and will have potentially different order p
rameter values. This is not only inconvenient for eventua
solving the mean-field equations, but may also give rise
unphysical reconstructed phases. It seems clear that this
be true for any tiling with this plaquette.

Only by distorting the triangular lattice somewhat can o
preserve the full symmetries of the plaquettes in the tilin
see Figs. 10 and 11. The drawback is that identifying sec
neighbors becomes ambiguous~see below!. In particular,
there is no way to preserve both the rotational symmetry a
the property that second-neighbor bonds join sites only
the same sublattice. Notice in any case that both in Figs.
and in Figs. 10,11, different tiles contain different orient
tions of the sublatticesA, B, and C, so any reconstructed
phase that is uniform on each sublattice will not have t
same periodicity as the tiling. A different choice of six-sp
plaquette, say, would have to be made to respect this per
icity ~for example, a parallelogram of two rows of thre
spins!, but such a choice would generally violate the rot

FIG. 8. A possible tiling of the full triangular lattice by the
six-spin plaquette. Note that two different orientations of the ori
nal plaquette are required, and that the tiling is far from unique

FIG. 9. A possible tiling of the full triangular lattice by the
seven-spin plaquette. Other possible tilings differ only by trans
tion or mirror reflection.
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4912 57ANOOP PRASAD AND PETER B. WEICHMAN
tional symmetry even further. Since we work only in th
mean-field approximation and with ferromagnetic intera
tions we feel that maintenance of qualitative symmetries
more important than that of quantitative details of intera
tions. In any case, our hope is that the basic physics sh
be dominated by the interactions within the plaquette, wh
are treated exactly. We emphasize that we go through all
trouble of embedding the plaquette in a real lattice only
ensure that we obtain a fully consistent mean-field theor

Keeping the above physical considerations in mind,
now write down the appropriate free energies. Detailed
pressions and comparisons of the expressions obtained
the distorted and undistorted lattices are contained in App
dix B. Here we exhibit only the simplified expressions va
in the unreconstructed phases.

First, the single plaquette Hamiltonian corresponding
Fig. 6~b! is given by

FIG. 10. A more symmetric tiling of a distorted triangular lattic
by the six-spin plaquette. Two different orientations of the origin
plaquette are still required, but the tiling is unique up to trans
tions. Choice of second-neighbor interactions becomes ambigu
but unreconstructed phases should not be sensitive to this.

FIG. 11. A more symmetric tiling of a distorted triangular lattic
by the seven-spin plaquette. The tiling is unique up to translatio
Choice of second-neighbor interactions becomes ambiguous
again unreconstructed phases should not be sensitive to this.
-
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H̄0
~6!5 1

2 K@~s12s2!21~s22s4!21~s42s5!21~s52s6!2

1~s32s6!21~s12s3!21~s22s3!21~s32s5!2

1~s22s5!2#1 1
2 L@~s12s5!21~s22s6!2

1~s32s4!2#1 h̃2
out@s1

21s4
21s6

2#

1 h̃ 2
in@s2

21s3
21s5

2#, ~2.20!

where h̃ 2
out5h212l1K1 5

2 l2L and h2
in5h21l1K1 5

2 l2L.
The scale factors,l1 andl2, have again been introduced fo
later convenience. LetF (6) be the plaquette free energy d
fined in Eq. ~A1! ~to be computed explicitly in Sec. IV!.
Ignoring once again the RSOS condition between plaque
the free-energy functional corresponding to Fig. 10 is th
~see Appendix B!

1

N
F~6!~H in ,Hout;M in ,Mout!

5 1
6 F~6!~H in ,Hout!2 1

2 @~Hout1h!Mout1~H in1h!M in#

2 1
2 l1K~3Mout

2 1M in
2 12M inMout!2l2L~Mout

2 1M in
2

13M inMout!. ~2.21!

Here Mout is the magnetization on the three corner sites
the plaquette, whileM in is the magnetization on the thre
edge sites. Except for very special values ofl1 and l2 the
two will in general be different in the mean-field approxim
tion. The same considerations apply to the fieldsHout and
H in .

Similarly, the plaquette Hamiltonian corresponding to t
hexagonal plaquette in Fig. 6~c! is given by

H̄0
~7!5 1

2 K@~s12s2!21~s22s5!21~s52s7!21~s72s6!2

1~s62s3!21~s32s1!21~s12s4!21~s22s4!2

1~s32s4!21~s52s4!21~s62s4!21~s72s4!2#

1 1
2 L@~s12s6!21~s12s5!21~s22s6!2

1~s52s6!21~s32s7!2#

1 h̃2
out@s1

21s2
21s3

21s5
21s6

21s7
2#1 h̃ 2

ins4
2 , ~2.22!

whereh̃ 2
out5h21 3

2 l1K12l2L and h̃ 2
in5h213l2L. If F (7)

is the corresponding plaquette free energy, the mean-fi
free energy corresponding to Fig. 11 is then~see Appendix
B!

1

N
F~7!~H in ,Hout;M in ,Mout!

5 1
7 F~7!~H in ,Hout!2 1

7 @6~Hout1h!Mout1~H in1h!M in#

2 9
7 ~l1K1l2L !Mout

2 2 6
7 l2LM inMout. ~2.23!

Here Mout is the magnetization on the outer ring of site
while M in is the magnetization on the inner site. FieldsH in
andHout are defined similarly.
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III. SINE-GORDON PHENOMENOLOGY: FIRST-ORDER
PREROUGHENING AND ZIPPERING

In this section we develop a general, large length-sc
‘‘hydrodynamic’’ theory of the layering phase diagram. Th
will serve as a rigorous guide to the different classes of
havior available to the system. A full microscopic calculati
is still required to determine the behavior of any giv
model. The plaquette mean-field formalism will be applied
this end in later sections.

The basic idea we exploit is that roughening and p
roughening are large-scale phenomena, governed only
few renormalized parameters. The small-scale structure
the surface~be it locally disordered, flat, or possibly eve
reconstructed! feeds into these parameters, but is otherw
irrelevant to the large-scale behavior. Of course, a ph
transition in the local structure could preempt the onset
long-range roughening or preroughening correlations~for ex-
ample, it might induce some kind of critical endpoint wi
the roughening or preroughening line then ending on a fi
order line!, but we assume this not to be the case. Imag
then, that the system is close to a roughening or preroug
ing transition so that the correlation length is very large. T
way we would formally derive the large-scale theory is
perform some kind of renormalization-group transformat
on the Hamiltonian of the system, iterating it until we en
the neighborhood of the fixed point that governs the tran
tion ~we will argue at the very end of Sec. IV, in fact, that th
plaquette mean-field theory accomplishes at least part of
step!. If we are not precisely at criticality, further iteratio
will move the Hamiltonian away from the fixed point onc
more, but along a very restricted set of paths. The poin
that during the approach to the fixed point all irrelevant va
ables have decayed away. Only one~or perhaps two, as we
shall see! relevant variables remain, and it is their eventu
growth that moves the Hamiltonian away from the fix
point. However, the dimension of this ‘‘escape manifold’’
just the number of relevant variables. If we then stop
renormalization process on some matching boundary, no
far from the fixed point, we may parametrize the final theo
with these one or two renormalized variables.

A. Sine-Gordon-type models

In many problems the detailed analysis of the fixed-po
region cannot be performed explicitly. The advantage in
present case is that this region may be characterized sim
and completely by a sine-Gordon-type model:

H̄SG5E d2r $ 1
2 K0u¹h~r !u21V0@h~r !#% ~3.1!

with

V0@h#52y0cos@2ph~r !#2u0cos@4ph~r !#1Vsub@h~r !#,
~3.2!

where h(r ) represents a coarse grainedcontinuoussurface
height field,K0 is a partially renormalized surface stiffnes
y0 represents the the fundamental Fourier component of
partially renormalized atomic periodic modulation,u0 is the
next harmonic, andVsub@h# is a partially renormalized sub
strate potential. The fixed point is actually a fixed line
le
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which only K0 is nonzero, and the critical behavior has a
ready been alluded to in Eq.~1.2!. As we will discuss in
detail below, for pure Kosterlitz-Thouless roughening w
may setu050, but in order to discuss preroughening w
must sometimes keepu0Þ0.4 All higher harmonics, how-
ever, are irrelevant and may be assumed to have decaye
zero in the neighborhood of the fixed line. The substr
potential grows steeper under renormalization, and the fo
~3.1! is valid only in the thick-film limit whereV@h# is ex-
tremely weak, so that the partially renormalizedV0(h) is
weak as well. SinceV@h# has power-law behavior~2.2! for
largeh, V0@h# will as well. The quadratic form,

Vsub@h#' 1
2 k0@h2h0~Dm!#2, h!h0~Dm!, ~3.3!

@see also Eq.~2.4!# with a renormalized curvaturek0 suffices
for thick films. Huse16 has written down general functiona
recursion relations for any potentialV0@h# and treated in
detail the caseu050, i.e., the interplay between roughenin
and layering. Here we will extend key parts of that analy
to the preroughening regimeu0Þ0. It will transpire thatu0
.0 andu0,0 can yield very different behaviors, and th
gives rise to very interesting physics in the layering pha
diagram.

To formalize what we have said so far we write down t
renormalization-group recursion relations for the Ham
tonian ~3.1!:16

dK

dl
5k2/2KL41~4p4/KL4!y21~64p4/KL4!u2,

dy

dl
5~22p/K !y1~4p2/KL2!yu,

du

dl
5~224p/K !u2~p2/KL2!y2,

dk

dl
52k2k2/KL2, ~3.4!

whereL;p/a is the~nonuniversal! momentum space cutof
due to the lattice. The flow parameterl is related to the
spatial rescaling factorb via b5b0el , whereb0 is the initial
rescaling factor required to enter the neighborhood of
fixed line and is assumed to depend smoothly on the par
eters of the initial RSOS model, say. The recursion relati
are valid for smally, u, andk and we have the initial con
ditions K( l 50)5K0 , y( l 50)5y0 , u( l 50)5u0, and
k( l 50)5k0, which are assumed to lie on some trajecto
incomingtoward the fixed line.

B. Roughening and preroughening

Let us now consider the various possible behaviors a
function of the initial condition. Consider first the substra
free case,k050. For small enoughK0 (K0&p/2 for small
y and u) both y and u flow to zero asl→`, while the
stiffnessK( l )→KR(K0), its fully renormalized value, which
then appears in Eq.~1.2!. This corresponds to the roug
phase.

For intermediate values ofK0 (p/2&K0&2p for smally
and u) u( l ) still flows to zero, and may be ignored, but
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4914 57ANOOP PRASAD AND PETER B. WEICHMAN
y0Þ0, y( l ) eventually begins to grow again, as doesK( l ).
The strengthening corrugation potential, and increasing
face stiffness, signal the onset of a flat phase. Notice th
y0.0 the minima of the corrugation potential occur at in
ger h, while if y0,0 they occur at half-integerh. Since
y0(J1 ,J2 ,T) is a renormalized parameter we may, in fa
imagine that as a result of short scale fluctuations it mi
change sign. The minima then switch abruptly from intege
to half-integer. This precisely describes the physics of p
roughening, with the preroughening critical line correspon
ing to y0(T)50.4 The sign reversal is driven precisely by th
entropy of small-scale roughness discussed in previous
tions. As we shall see below, a negative value ofy0 could
also be associated with areconstructedsurface, which may
also roughen while maintaining a form of long-range reco
structed order. The sine-Gordon Hamiltonian does not dis
guish between these two cases, though the dependence
partially renormalized parameters on the original model
rameters would of course be different~possibly even singula
if a surface reconstruction transition takes place!. For y0
50 the fixed line is again stable, and we will haveu( l )→0
and K( l )→KR , with p/2,KR,2p. The critical surface is
thereforerough, but with alarger renormalized stiffness tha
is generically possible: the short-range fluctuations h
renormalized away the strongest Fourier component of
corrugation potential.

Finally, for even largerK0 (K0*2p for small y andu)
both y andu are relevant, so even ify050 the second har
monic of the corrugation potential will grow and the surfa
will flatten. Notice then that there are twice as many minim
This will be discussed in detail below. In principle, if we ha
a second free parameter at our disposal, we might ima
that both y0 and u0 could be made to vanish. Flattenin
would then take place only when thethird harmonic became
relevant, i.e., forK0.9p/2.21 This situation, however, doe
not seem to be experimentally relevant. Ify0 is not precisely
zero then bothu andy will grow under renormalization, and
the interesting question then arises of how the two Fou
components might constructively or deconstructively int
fere in the final renormalized corrugation potential. We sh
explore these effects in detail below, seeing that they h
very strong effects on both the surface and layering ph
diagrams.

C. Roughening and layering

Sinceu is strongly irrelevant forK0&2p, the asymptotic
behavior in the roughening and preroughening regions m
be addressed simply by settingu50 in the recursion rela-
tions, Eq.~3.4!. The usual roughening transition may then
described by studying the region where the starting mani
@y0(T),K0(T)# crosses the critical trajectory into the fixe
point at y50, K5p/2. For smally and l[22p/K this
trajectory is defined byl5 ỹ , whereỹ[(4A2p/L2)y. Cor-
rect to quadratic order inl and ỹ , the recursion relations
simplify to

dk

dl
52k;

dl

dl
5 ỹ 2;

d ỹ

dl
5l ỹ . ~3.5!

The flows generated by these equations are shown in Fig
r-
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By integrating the flows in region II of this figure, from th
starting manifold to some noncritical matching manifold, f
examplel5l f.0, Huse16 has shown that the Ising layerin
critical points Tc,n approach the bulk roughening temper
ture Tr from below asymptotically as

Tr2Tc,n}
4p2

~21a!2ln2~n/ ñ !
, ~3.6!

wherea, defined below Eq.~2.2!, describes the power-law
tail of the substrate potential,ñ is a nonuniversal amplitude
determined by the strength of the substrate potential, and
overall constant of proportionality depends on the detai
mapping of the origin model onto the sine-Gordon mode

D. Preroughening and reentrant layering

Preroughening, on the other hand, corresponds to
rather different situation in which the starting manifold b
gins in region III of Fig. 12. As the temperature rises t
manifold crosses y˜50 into region III8 at some positive
valuel0 of l. Precisely atỹ50 the system is on the fixed
line and the interface is rough. On either side ofỹ50 the
renormalization-group trajectories move away from the fix
line into an ordered phase. As before, region III correspo
to the flat phase. Region III8 corresponds to the DOF phas
Since ỹ,0 in the DOF phase, the minima in the corrugati
potential occur at half-integerh. The fractional fillingu of
the top layer of the interface then jumps discontinuou
from u50 to u5 1

2 at preroughening. As the temperatu
continues to rise, the trajectory eventually crosses into reg
II 8 and then into region I8. The latter corresponds to th
transition from the DOF to the rough phase. In the prese
of a substrate potential regions II8 and III8 give rise to first-

FIG. 12. Renormalization-group flows generated by Eqs.~3.5!.
Regions I, II, and III are bounded by the two separatrices that fl

into and out of the Kosterlitz-Thouless fixed point atỹ5l50. The
two thick lines represent possible physical starting manifolds, w
the arrows indicating increasing temperature. The upper-left p
corresponds to conventional roughening while the lower path r
resents preroughening@at the point (lx,0)# followed by roughening.

The solid lines atl5l f and ỹ5 ỹ f represent the two possibl
noncritical matching manifolds, discussed in the text, at which
trajectory integration is stopped.
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order layering transitions between half-integer coverag
The Huse16 computation for the critical points goes throug
in exactly the same way and leads once again to Eq.~3.6! for
the Tc,n @see Fig. 1~b!#.

The effect of the substrate on preroughening is quite
ferent. The bulk critical behavior is now determined by t
rate at which flows are pushed away from the fixed line
small ỹ . This is completely determined by the valuelX at
which the starting manifold crosses theỹ50 axis. In par-
ticular, ỹ itself now plays the role of the deviation from
criticality, the Kosterlitz-Thouless fixed point no longe
plays any role, and the flows are completely confined to
gions III and III’. The solutions to the flow equations in the
regions are given by

k~ l !5k0e2l , ỹ ~ l !52sgn~ ỹ0!B0csch~B0l 1f0!,

l~ l !52B0coth~B0l 1f0!, ~3.7!

where

B0
25l0

22 ỹ 0
25l~ l !22 ỹ ~ l !2.0, f05 1

2 lnS l02B0

l01B0
D,0.

~3.8!

We run the flows untilu ỹ ( l )u5 ỹ f , some fixed value. The
corresponding valuel f of l is then

l f52
1

B0
sinh21~B0 / ỹ f !2

f0

B0

'2
1

lX
sinh21~lX / ỹ f !2

1

lX
ln~ u ỹ0u/lX!, ~3.9!

where the second line is valid forỹ0!l0. At this point we
have

l f[l~ l f !5AB0
21 ỹ f

2'AlX
21 ỹ f

2. ~3.10!

Following Huse,16 for given values ofỹ andl, there will be
a critical value ofk5kc( ỹ ,l) at which the Ising layering
critical point occurs. Let us define

kc
6~lX!5kc~6 ỹ f ,AlX

21 ỹ f
2!. ~3.11!

Then, asỹ→0, we locate the value ofk0 at which the criti-
cal point occurs by demanding that

kc~6 ỹ f ,l f !'kc
6~lX!5k0e2l f , 6 ỹ 0.0, ~3.12!

which yields

k0'k̃ 6~lX!~ u ỹ0u/2lX!2/lX, ~3.13!

where

k̃ 6~lX![kc
6~lX!e~2/lX!sinh21~lX / ỹ f !. ~3.14!

Finally, from Eq.~2.3! for a van der Waals substrate we ha
k05a(a11)c/h0(Dm)21a, with the nth layering line cor-
responding toh0(Dm)5n2 1

2 for ỹ0.0 and toh0(Dm)5n
s.

f-

r

-

for ỹ0,0 ~i.e., exact degeneracy of two neighboring minim
in the renormalized corrugation potential!. This yields imme-
diately @see Fig. 1~b!#

Tpr2Tn
1} ỹ0'2lX~ ñ1/n!~21a!lX/2, ỹ0.0

Tn
22Tpr}2 ỹ 0'2lX~ ñ2/n!~21a!lX/2, ỹ0,0,

~3.15!

whereñ6(lX)5@a(a11)c/ k̃ 6(lX)#1/(21a) is a nonuniver-
sal amplitude. Once again the overall constants of prop
tionality are determined by the detailed mapping of the ori
nal model onto the sine-Gordon model. We see then that
critical points have a power-law rather than logarithmic a
proach to the preroughening point. The power is nonuniv
sal, depending onlX , and vanishes as the Kosterlitz
Thouless point is approached. We have therefore establis
Fig. 1~b! as the correct thick-film layering phase diagra
corresponding to a preroughening trajectory such as
shown in Fig. 12.

E. Recursion relations whenu is relevant

We have seen that the experimental phase diagrams
argon and krypton on graphite show rather different beh
ior, with apparent first-order lines that ‘‘zip’’ the integer an
half-integer layering lines together. It is possible that the
transitions arise from some confluence of preroughening
two-dimensional melting phenomena, where the melting a
preroughening temperatures are nearly the same. This is
tainly true in the first two layers where two-dimension
triple points are observed.12,13However, it seems an unlikely
coincidence that such a confluence would survive, as see
much thicker films, where the energetics of melting and p
roughening ought to be distinct. Here we offer a much si
pler and more natural explanation, phrased entirely wit
the physics of the sine-Gordon model. More detailed co
parisons between theory and experiment will be made in S
V.

The idea now is to consider values ofK0 in the region
where u becomes relevant. Typically,u will be of order
unity in the original model, so ifK0 is significantly larger
than 2p then even wheny[0 the renormalization-group
flows will never come close to the fixed line, and there w
be no simple analytic description of the behavior. We the
fore assume thatK0 is sufficiently close to 2p that, in the
absence ofy, u0 may be assumed small. Definingȳ
5A2py/L2, ū54A2pu/L2 and m5224p/K, correct
to quadratic order in these variables the recursion relati
~3.4! simplify to

dk

dl
52k,

d ȳ

dl
5 3

2 ȳ 1 1
4 m ȳ 1

A2

4
ū ȳ ,

dm

dl
5 ȳ 21 ū2,

d ū

dl
5m ū2A2 ȳ 2. ~3.16!

If ȳ 0!u0 these further simplify to
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dk

dl
52k;

dm

dl
5 ū2;

d ū

dl
5m ū ;

d ȳ

dl
5

3

2
ȳ ;

~3.17!

the first three of which are identical to Eq.~3.4! with m

replacingl and ū replacingỹ . The solutions, in the equiva
lent to region II, are

k~ l !5k0e2l , y~ l !5y0e3/2 l ,

ū~ l !5A0sec~A0l 1u0!, m~ l !5A0tan~A0l 1u0!
~3.18!

with A0
25 ū0

22m2.0 and u05tan21(m0 /A0). These solu-

tions hold up until ȳ' ū . In the absence ofȳ 0 we would
integrate these equations untilm5m( l f

0)[m f
0.0 @and

u ū ( l f
0)u5 ū f

0 where (ū f
0)25A0

21(m f
0)2# reaches some fina

value@just as in Huse’s analysis of Eq.~3.5!#. If ȳ 0 were to
remain zero for allm0 ~or, equivalently,K0), we would then
predict, as a function ofm0, first-order layering lines termi-
nating in Ising critical pointsevery half-layer. However,
since ȳ 0 vanishes only at the putative preroughening po
we conclude that there is only a single value ofm0 at which
this analysis is correct. Since we assume the model to b
region II, rather than region I, the bulk interface would be
the flat phase. In thick films we would therefore obser
first-order transitions every half-layer, with Ising critic
points observed only, perhaps, for an initial finite set of la
ers ~the closer the initial values to the incoming separatr
the greater the number of critical points!.

What happens away from this value ofm0 depends upon
the growth ofy0 under renormalization. Ify0 is so small that

ȳ f
0[ ȳ 0exp(32l f

0)!ūf
0 , then we may still use Eq.~3.18!, and

stop integrating atl f
0 as before. Thus, asy0 passes through

zero, the contributionyf
0 of the lowest harmonic to the cor

rugation potential is linear iny0. If, however, ȳ f
0* ū f then

we should stop integrating atl f such thatȳ ( l f)[ ȳ f'm f
0 ,

say, some final value. There is then a regime in the inte
tion where ȳ ( l )* ū ( l ), and the solutions~3.18! are no
longer valid. If ū ( l ) is not too much smaller thanȳ f we may
use the fact thatȳ is rapidly varying relative toū and m.
Thus in the time it takesȳ ( l ) to go from ū ( l ) to yf it is easy
to see thatū ( l ) andm( l ) change only byO(yf

2), which we

assume to be much smaller thanū ( l ). Thus ū f and m f are
essentially the unperturbed values ofm and ū at whichy( l )
‘‘crosses’’ ū ( l ). If, on the other hand,ū ( l ) and m( l ) are
very small compared toȳ f , then we may essentially delet
all but ȳ ( l ) from the right-hand sides of~3.16!: the flows are
driven entirely by ȳ ( l ). The final values,ū f and m̄ f , are
then of orderyf

2!yf .
To summarize, then, we are interested in the final ren

malized form of the corrugation potential. The above ana
sis shows that for smallȳ 0, the amplitude of the fundamenta
Fourier component varies linearly withȳ 0 and changes sign
precisely whenȳ 0 does, while the amplitude of the secon
harmonic can be taken as fixed. For largerȳ 0, the ratio of the
t,

in

e

-
,

a-

r-
-

amplitudes,ȳ f / ū f , is nonlinear, but monotonically increas
ing in ȳ 0. This is all we need to know for the purposes of t
following analysis.

F. Thermodynamics of the bulk interface whenu is relevant

Now that we have understood the general structure of
fully renormalized Hamiltonian, we must understand its th
modynamics. We are in a regime in which the corrugat
potential wins out over thermal fluctuations, leading to a fl
phase in which the interface height sits at a minimum of
potential. Since thermal fluctuations have not been co
pletely integrated out@K f54p/(22m f) is still finite—this
was necessitated by the restricted regime in which the fl
equations are valid# this is not entirely accurate: the interfac
still has fluctuations about this minimum. SinceK f is large,
however, these fluctuations may be taken as small~so long as
one is not too close to any second-order phase transitio
see further below!, leading to some slight renormalization o
the corrugation potential, but not altering its basic form.
cluding the substrate potential, we therefore arrive, ess
tially rigorously, at the following single variable free-energ
functional, which completely determines the thermodyna
ics:

f @h#52yRcos~2ph!2uRcos~4ph!1 1
2 kR~h2h0!2,

~3.19!

where the absolute minimum off (h) determines the equilib-
rium average interface height, andyR and uR are mildly
renormalized versions of yf[(L2/A2p) ȳ f and uf

[(L2/4A2p) ū f into which K f has been completely sub
sumed. Similarly forkR'k f[k0exp(2l f), where we assume
that k0 is sufficiently small thatl f is set only by the bulk
interface recursion relations. This means, for example,
kR is linearly related tok0. We reiterate that the validity o
this free energy presumes that the essential physics lies
in the large-scale, coarse-grained fluctuations. It is also p
sible that small scale energetics of the original model p
empt this physics at some temperature, beyond which
~3.19!, and the entire sine-Gordon analysis, fails~see further
below!. The control variable isyR , which switches sign,
while uR may be taken as fixed and nonzero, but either po
tive or negative.

1. uR>0: first-order preroughening and zippering

Begin with the bulk interface,kR[0. Suppose first tha
uR.0, and imagine beginning withyR@uR , then decreasing
yR through zero, and ending withyR!2uR . The evolution
of the corrugation potential is shown in Fig. 13~a!. We see
that whenyR54uR local minima develop at half-integerh.
Since these local minima are not absolute minima, the s
face height remains an integer. AsyR decreases these loca
minima decrease, and precisely atyR50 they become degen
erate with the integer minima. ForyR,0 the half-integer
minima lie below the integer minima, and therefore defin
the equilibrium surface height. We therefore have afirst-
order transition from the flat to the DOF phase. The pre
roughening line therefore has a tricritical point precise
where the fully renormalized stiffness reaches 2p.
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For clarity, this picture is contrasted in Fig. 13~b! with the
standard preroughening case in whichuR[0. There, atyR
50 the corrugation potential is competely flat and the int
face is free to wander.

Consider now the addition of the substrate potentialkR .
SincekR will vary only slowly with film thickness, our con-
trol variable ish0. Minimizing Eq. ~3.19! yields the equation

sin~4ph!1
yR

2uR
sin~2ph!52

kR

4puR
~h2h0!. ~3.20!

Suppose first thatyR50, in which case we require

sin~4ph!52
kR

4puR
~h2h0!. ~3.21!

By periodicity we may suppose thatn<h0<n1 1
2. The local

minima closest toh0 that solve this equation lie just aboven
and just belown1 1

2. Whenh05n1 1
4 they are symmetrically

located and degenerate. They exist for sufficiently smallkR ,
namely,

kR,~4p!2uR . ~3.22!

Thus for sufficiently thick films we will have, with increas
ing h0, a first-order transition precisely ath05n1 1

4 from
slightly more thann layers to slightly less thann1 1

2 layers.
As h0 increases further,h will increase to slightly more than
n1 1

2 layers until, precisely ath05n1 3
4, there is transition to

slightly less thann11 layers. If Eq.~3.22! is not satisfied the
substrate wipes out the corrugation and the film will gro
continuously until Eq.~3.22! is satisfied. The closer we are t
the triple point, the larger will bekR and the thicker the film
required to see layering.

FIG. 13. ~a! Corrugation potential for the bulk interface (kR

50) with uR.0 as a function ofyR . There is a first-order pre
roughening transition atyR50 when the integer minima exchang
stability with the half-integer minima.~b! For comparison, the cor
rugation potential in the continuous preroughening case,uR50.
-

In the opposite limit, whereuyRu.4uR , we may ignore
uR and obtain essentially the same picture as above, but
twice the period. Thus ifyR.0 there are first-order transi
tions between essentially integer interface heights preci
at h05n1 1

2, while if yR,0 the transitions are between e
sentially half-integer interface heights precisely ath05n.
Both sets of transitions are wiped out unlesskR
,(2p)2yR .

The interesting question is what happens for 0,uyRu
,4uR . Clearly the local minima at half-integerh are most
stable ifh05n1 1

2. This minimum can be an absolute min
mum only if kR is sufficiently large, namely,

kR.kR
t [16uyRuF11

uyRu
p2uR

2~p224!
yR

2

4p4uR
21OS uyRu3

uR
3 D G
~3.23!

for small kR /uR and yR /uR , which will be valid for thick
films close to the bulk first-order transition atyR50. If this
inequality is violated, which will always occur for suffi
ciently thick flims, only the transitions between integer su
face heights~for yR.0) or half-integer surface heights~for
yR,0) will be observed. If the inequality is satisfied, bo
sets of transitions will be seen. ForkR larger thankR

t , we
may compute the range,Dh0, of h0 aroundn1 1

2 (yR.0) or
n (yR,0) over which the new minimum is stable. Indee
one finds that

Dh05
1

4F12
2yR

p2uR
1OS yR

2

uR
2 ,

kR2kR
t

uR
D GkR2kR

t

kR
t .

~3.24!

ThuskR
t (yR) is a triple point, with two new first-order tran

sitions extending out linearly from the horizontal layerin
lines at largeruyRu. At yR50 these new lines are precise
the transitions atn6 1

4 found above. In the thick-film limit
kR→0 one sees from Eq.~3.24! that these lines are esse
tially straight. We have therefore confirmed precisely t
zippering picture shown in Fig. 1~c!.

Finally, sincekR;1/n21a and, inverting Eq.~3.23!, the
triple point positionyR

t (kR)'kR/16uR vanishes linearly with
kR , the two sequences of triple points on either side ofyR
50 converge to the bulk interface first-order preroughen
temperatureT0 also asuTn

1,22Tf ou;1/n21a ~with a52 for a
van der Waals substrate potential!.

To complete the analysis, we discuss the question of h
Fig. 1~c! converts to Fig. 1~b!, either askR increases or asK0
decreases into the region whereu is irrelevant. We shall see
that if kR /uR is sufficiently large, the triple points are wipe
out and replaced by ordinary Ising critical points. We wish
understand how this happens in detail.

We have already seen that whenyR50 the first-order
transitions ath05n6 1

4 disappear ifkR /uR.(4p)2. More
generally, the critical point that signals the first appeara
of the first-order transition occurs when the line represent
the right-hand side of Eq.~3.20! precisely kisses an inflection
point of the left-hand side@see Fig. 14~a!#. For yR50 this
inflection point is ath5n6 1

4, and the slope at this poin
gives the above critical value,kR/4puR5kc(yR50)[4p.
For yRÞ0 but small one finds that the inflection points are
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6~hin f l2n!5
1

4
1

yR

32puR
1

2p2

3 S yR

32puR
D 3

1OS yR
5

uR
5 D ,

~3.25!
and the~negative of the! slope is

kc~yR!54pF118p2S yR

32puR
D 2

1128p4S yR

32puR
D 4

1OS yR
6

uR
6 D G , ~3.26!

with corresponding value ofh0,

6~h0
c2n!54

yR

32puR
2

88p2

3 S yR

32puR
D 3

1OS yR
5

uR
5 D .

~3.27!

This is larger thankc(0), meaning that the first-order transi
tion is more stable for yRÞ0, existing for largerkR /uR .
Note that this computation assumes, effectively,KR→` so
that mean-field theory is exact. This is fine for first-ord
transitions, but for second-order transitions there will, in fa
be fluctuation corrections to this behavior so that both t
exact position of the critical point and the critical behavi
~which will be that of the two-dimensional Ising model! will
be different.

FIG. 14. Graphical solutions of Eq.~3.20! for uR.0, which
relates the layering phase diagram to the behavior of the bulk in
face in the first-order preroughening regime.~a! Inflection points
and the first appearance of first-order layering lines in the zip
regime. ~b! Equal areas construction for the position of the firs
order zipper layering line.~c! The triple point.~d! Ordinary layering
beyond the triple point.
r
t,
e

We expect, then, that the stability of the first-order tra
sition will continue to increase asyR increases. As further
evidence for this we may examine the stability of the trip
point, yR

t . As shown in Fig. 15, the triple point becomes
tricritical point, and then a critical point whenkR /uR be-
comes so large that the pair of inflection points on either s
of h5n1 1

2 mergewith the one ath5n1 1
2, forming a single

fifth-degreeinflection point ~which, within Landau theory,
defines a tricritical point!. The vanishing of the third deriva
tive at h5n1 1

2 occurs whenyR /uR516. The slope at this
point is thenkc

tri512p. Thus only forkR /uR.3(4p)2 is the
triple point washed out. This is quite a bit larger than t
value (4p)2 at which the first-order transition disappears
yR50.

We finally obtain, then, the following picture of the dis
appearance of the zipper with increasingkR and/or decreas-
ing uR . The zipper, for a given value ofh0, first breaks in
the middle (yR50), forming a pair of two-pronged forks
The prongs then become shorter, eventually retracting

r-

r
FIG. 15. From triple point to tricriticality in the layering phas

diagram for uR.0. ~a! Continuous increase in film thicknes
@shown as patha in part ~c! of this figure#. ~b! Continuous increase
in film thickness that just passes through the layering critical po
@path b in part ~c!#. ~c! Schematic phase diagram with substra
potential strengthkR,kR

c taken as fixed, independent of film thick
ness for simplicity.~d! Merging of the three inflection points into
single fifth-order inflection point atkR548p andyR /uR516. The
triple point is now a tricritical point and film thickness grows co
tinuously @pathd in part ~f! of this figure#. ~e! Ordinary first-order
layering beyond the tricritical point@path e in ~f!#. ~f! Schematic
phase diagram forkR5kR

c 548p.
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57 4919LAYERING TRANSITIONS, DISORDERED FLAT . . .
the triple point. Precisely at the point where the prongs d
appear, the triple point becomes a tricritical point. Beyo
this the tricritical point becomes a simple Ising critical poin
and locally the picture is now indistinguishable from Fi
1~b!. Now, kR decreases ash0 increases. Hence as long a
uR.0 remains fixed as the film thickens, this process occ
in reverseorder, with the zipper reappearing for sufficient
thick films @see Fig. 1~c!#. In the higher, three-dimensiona
space, (h0 ,yR /uR ,kR /uR), this process can be viewed as
sequence of plane sections of the usual tricritical surface@see
Fig. 16#. Consequently, asK0 decreases toward the point
which u becomes irrelevant, one hasuR→0, and ever thicker
films will be required to see the zipper. This means t
integer and half-integer layering transitions ‘‘unzip’’ from
the bottom, becoming fully unzipped all the way to infini
layer thickness precisely whenu becomes marginal.22 Note
that the mapping of the original model onto this fully reno
malized description may lead to some nonmonotonic dep
dence of the renormalized parameters on the original o
~thus, for example,uR , yR , andkR are all functions ofJ1 ,
J2, andT). In thinner films one may, therefore, see behavi
different from the asymptotic behaviors we have found.

2. uR<0: Spontaneously broken particle-hole symmetry
and intermeshing

We next consider the caseuR,0, which turns out to yield
completely different behavior. The evolution of the substr
potential asyR goes through zero is shown in Fig. 17. Th
figure is actually identical to Fig. 13~a! turned upside down
The major difference now is that the absolute minima
integerh5n split continuously in twoat yR54uuRu. The two
new minima lie ath5n6u(yR) whereu(yR) grows continu-
ously from zero. Again, since this transition is continuou

FIG. 16. Zippered layering phase diagram as a sequenc
plane sections of the usual three-dimensional tricritical region.
-
d
,

rs

t

n-
es

s

e

t

,

fluctuation corrections will alter its nature and position. T
transition, which appears as a classical Landau mean-
critical point in our theory, must become a two-dimension
Ising critical point withu(yR);uyR2yR

c u1/8 and yR
c &4uuRu.

At yR50 one has, by symmetry,u(0)5 1
4, so that the equi-

librium mean surface heights are nowh5n6 1
4, rather than

h5n or h5n1 1
2 as found whenuR.0. For yR,0 the

minima at h5n1u(yR) and h5n112u(yR) move to-
gether, eventually merging ath5n1 1

2 when yR52yR
c

*4uR . The merging also corresponds to a two-dimensio
Ising critical point, with 1

2 2u(yR);uyR1yR
c u1/8. For yR,

2yR
c only minima ath5n1 1

2 remain, signifying the usua
DOF phase.

Thus instead of the preroughening line simply becom
first order, it splits into two second-order Ising lines, with
new intervening phase, which we call theuDOF phase,4 with
continuously varying mean surface height. Den Nijs4 first
introduced this phase as a consequence of particle-hole s
metry violating terms in the Hamiltonian~which we neglect
throughout this work!, completely analogous to magnetic
field terms in an Ising model. Here we find this phase a
result of spontaneousbreaking of particle-hole symmetr
driven byuR,0.

The layering phase diagram is now very simple to d
scribe. In the presence of the substrate potential it is clea
symmetry that neighboring minima can be degenerate o
when h05n or h05n1 1

2. If h05n1 1
2 degenerate minima

are, for large positiveyR , h.n andh.n11, signifying the
usual first-order transitions between essentially integer fi
thicknesses. However, whenyR&yR

c the degeneracy is be
tween h.n1u(yR) and h.n112u(yR) ~approximate
equality only due to the perturbative effect ofkR on the
positions of the minima!. WhenyR*2yR

c these two minima
merge, and the film thickness then varies continuou
aroundh5n1 1

2 for small deviations ofh0 from n1 1
2. The

layering line therefore terminates there in an Ising critic
point. On the other hand, ifh05n degenerate minima are
for large negativeyR , h.n6 1

4. WhenyR*2yR
c the degen-

eracy is betweenh.n6u(yR), and whenyR&yR
c these two

minima merge. The film thickness then varies continuou
aroundh5n for small deviations ofh0 from n. The layering
line therefore again terminates in an Ising critical point, b
this time asyR increases rather than decreases. In the in

of

FIG. 17. Evolution of the bulk interface corrugation potent
for uR,0. The newuDOF phase appears for an intermediate ran
of yR .
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4920 57ANOOP PRASAD AND PETER B. WEICHMAN
mediate regime,2yR
c &yR&yR

c , both sets of lines exist
Thus, unlike the caseuR50 where the two sets of lines ar
pushed apart so that there is a small region aboutyR50
where the film can grow continuously, the two sets, thou
independent and nonintersecting, are intermeshed so th
no time can one have unbounded continuous film gro
@see Fig. 18; this figure is also reproduced, with more ph
cal axes, in Fig. 1~d!#. Note, however, that if one variesyR in
an oscillatory fashion ash0 increases, one can, in principle
follow a snakelike path to grow an arbitrarily thick film with
out ever crossing a layering line. This is another signal t
the bulk interface transition is second order rather than
order. Asn→` the two sets of Ising critical points converg
to the bulk interface Ising transitions atyR56yR

c , with
TI ,n

1 2TI
1 ,TI

22TI ,n
2 ;n2(21a), just as for first-order pre-

roughening.

G. Global phase diagram

The computations in this section are relevant both
roughening and preroughening phenomena on the bulk in
face and to layering phenomena in film growth. The resu
for uRÞ0 are new and, as we have seen, have strong im
on the phase diagrams. In particular, some previous resul
the literature4 require some revision.

Thus, Fig. 2 in Ref. 4 shows the Ising transition betwe
DOF and reconstructed phases joining the preroughe
line precisely at the point labeledN whereu becomes rel-
evant. We believe this to be incorrect: the pointN will ge-
nerically lie to the left~toward smallerL5J2 /kBT) of the
Ising line, which we expect, assuming thatuR.0 for the
RSOS model, to join thefirst-order preroughening line at a
critical end pointN8 distinct from N @see the central phas
diagram in Fig. 1#. The pointN is therefore tricritical, rather
than bicritical as proposed by den Nijs.4 The physics of the
Ising line is separate from that of the preroughening line~in
fact, for a triangular lattice substrate the reconstructed ph
and hence the Ising line, is completely absent!, and we see
no reason why they should be connected atN. Our plaquette
mean-field calculations will lend further credence to the d
tinction betweenN andN8. We shall find, however, that th
first-order transition remains extremely weak, which may
plain why it was not seen in earlier numerical investigatio
of the RSOS model.

FIG. 18. Intermeshing layering phase diagram foruR,0. The
two sequences of layering critical points approach the boundarie
the uDOF phase as the film thickens.
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Alternatively, if uR,0 the preroughening line splits int
two Ising lines at the pointN, with the newuDOF phase in
between@see the inset to the central phase diagram in Fig.#.
How the reconstructed-DOF~Ising! transition line connects
up to this~if at all! is still not clear to us: this type of behav
ior is not seen in the RSOS models we investigate, but
been seen in the two-dimensional Ashkin-Teller model.23,24

As discussed in Appendix D, this model may be interpre
as a ‘‘binary alloy’’ interface model, but its detailed pha
diagram lacks an obvious correspondence to that appea
in Fig. 1. Nevertheless, these results hint that the place
look for a uDOF phase experimentally is in alloy films wit
more than one atomic~or molecular! constituent.

IV. CALCULATIONAL RESULTS

A. Single-spin computations

Many of the phases we are interested in can be inve
gated, often analytically, within a simple single-spin mea
field formalism. In order to gain insight we begin with the
computations. This allows one to discuss not only the us
layering phenomena, but also the interplay between the t
film analogues of reconstruction and roughening. In parti
lar, we shall elucidate the nature of the reconstructed-ro
phase. Multispin plaquettes will be used later to improve
accuracy of the calculations as well as to describe phases
the single-spin theory misses.

1. Spin-12 computations: tricriticality and tetracriticality
in reconstructed layering

If, in addition, one is interested only in phenomena
volving at most two different layers, a spin-1

2 model suffices.
The Hamiltonian is given by Eq.~2.8!, and its basic phenom
enology was outlined in Sec. II B 1. Here we fill in some
the details via explicit computations.

Applying the formalism of Appendix A, the single sit
mean-field free-energy functional is

F$Hi ,s i ;hi%52K(̂
i j &

s is j2L(
~ ik !

s isk2(
i

~Hi1hi !s i

2(
i

ln cosh~Hi !. ~4.1!

We assume thatL.0, but thatK can have either sign. The
first of the saddle-point equations~A9! yields s i5
2tanh(Hi). Substituting this relation into Eq.~4.1! we obtain
the Bogoliubov mean-field free energy

F$hi%5min
$s i %

FA$s i%2(
i

his i G , ~4.2!

where the mean-field Helmholtz free energy is@see also Eq.
~2.17! and the discussion preceding it#

A$s i%52K(̂
i j &

s is j2L(
~ ik !

s isk2
1

2(i
@~12s i !

3 ln~12s i !1~11s i !ln~11s i !#. ~4.3!

We restrict our attention to a bipartite lattice, with sublattic
A and B. Let there beq1 nearest neighbors andq2 next-

of
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nearest neighbors. We assume that the only relevant ph
are those with uniform magnetization,s i5mA for i PA and
s i5mB for i PB, on each sublattice, with correspondin
fields hA and hB . The ferromagnetic and antiferromagne
order parameters are, respectively,m[ 1

2 (mA1mB) and m†

[ 1
2 (mA2mB), with corresponding conjugate fieldsh5hA

1hB andh†5hA2hB . In terms of these Eq.~4.2! becomes

F$hi%/N[ f ~h,h†!5 min
m,m†

@a~m,m†!2hm2h†m†#,

~4.4!

where the Helmholtz free energy per site is

a~m,m†![A$s i%/N52 1
2 cm22 1

2 c†m†21 1
4 ~12m2m†!

3 ln~12m2m†!1 1
4 ~12m1m†!ln~12m1m†!

1 1
4 ~11m2m†!ln~11m2m†!1 1

4 ~11m1m†!

3 ln~11m1m†!, ~4.5!

and wherec5Kq11Lq2 andc†52Kq11Lq2. Notice that
c.c† wheneverK.0 and c†.c wheneverK,0. When
both K and L are positive we expectmA5mB5m and m†

50. In this casea(m) is identical to the mean-field fre
energy of a model with nearest-neighbor interactions on
but effective couplingKeff5K1q2L/q1, and we learn noth-
ing new. The second-neighbor coupling gives rise to int
esting new physics, then, only in the antiferromagnetic
gime,K,0.

Let us then use Eq.~4.4! to understand the onset of ant
ferromagnetism. The antiferromagnetic-paramagnetic ph
boundary is located by considering the stability of the pa
magnetic phase, wherem†50, to nonzerom†. To this end,
let m0(h) be the value ofm that minimizes the right-hand
side of Eq.~4.4! with m†[0 andh†[0, i.e.,

m0~h!5tanh@cm0~h!1h#, ~4.6!

and let the corresponding free energy bef 0(h). To see if this
is the true minimum we Taylor expand the right-hand side
Eq. ~4.4! in the deviationsdm[m2m0(h) and m† ~main-
taining h†50). Since we expect any phase transition to
driven by the onset ofm†, we further minimize the resulting
expression overdm for a givenm†, yielding

dm52
m0

~12m0
2!@12c~12m0

2!#
m†2

1
m0

~12m0
2!3@12c~12m0

2!#H m0
2

@12c~12m0
2!#2

2
113m0

2

@12c~12m0
2!#

1~11m0
2!J m†41O~m†6!.

~4.7!

We obtain then the result

a~m,m†!2hm5 f 0~m0!1 1
2 r †m†21u†m†41v†m†61w†m†8

1O~m†10!, ~4.8!

where
ses

,

r-
-

se
-

f

e

r †5
12c†~12m0

2!

~12m0
2!

,

u†5
~123m0

2!2c~113m0
2!~12m0

2!

12~12m0
2!3@12c~12m0

2!#
,

v†5
m0

2

6~12m0
2!5@12c~12m0

2!#3 @~m0
223!13c~m0

213!

3~12m0
2!26c2~11m0

2!~12m0
2!2#. ~4.9!

We have therefore obtained a standard Landau free-en
functional form†. Thus, if u†.0, there is an instability to-
ward antiferromagnetism whenr †,0. The antiferromagnetic
critical point therefore occurs when

c†[T†~h!/T0
†512m0~h!2, ~4.10!

whereT0
†5(uJ1uq11J2q2)/kB[J0

†/kB is the transition tem-
perature ath50. Note thatT/T0

†,1. For very largeh,
m0(h) will be very close to unity, andr †.0. As h de-
creases, for a given fixedT,T0

† , m0(h) decreases and even
tually the phase boundary will be reached for some criti
h5h†(T), which increases asT decreases. Below the trans
tion m† increases continuously from zero asm†;(h†2h)b

with b5 1
2 in this mean-field approximation~an exact theory

would yield the two-dimensional Ising resultb5 1
8 ).

Another possibility is thatu†,0 but v†.0. In this case
the transition will be first order, with the minimum atm†

50 trading stability with two degenerate minima at nonze
m†. The pointu†5r †50 where the transition converts from
second to first order is then a tricritical point. From Eq.~4.9!
we see thatu† is positive for

c[T/T0.
~12m0

2!~113m0
2!

123m0
2 , ~4.11!

whereT05(q2J22q1uJ1u)/kB[J0 /kB . This inequality will
be valid for sufficiently smallm0. Therefore the antiferro-
magnetic transition line will be second order ifT/T0

† is large
enough. On the other hand, the simultaneous conditionr †

50 andu†50 then yields a tricritical pointTtri at

kBTtri

J0
†

5
2

3

112J0 /J0
†

11J0 /J0
† . ~4.12!

This actually leads to aline of tricritical points in theK-L
plane. It is easy to check thatu† remains negative for allT
,Ttri .

WhenT,Ttri the transition line is no longer given byr †

50. Rather, one must look to see when the minimum
m†50 is no longer the absolute minimum. For small neg
tive u† one then finds a first-order transition atr †5u†2/2v†

.0 at whichm† jumps from zero tom†5A2u†/2v†. The
transition therefore takes placebefore the putative second
order line atr †50.

The tricritical point exists so long asv†.0. One may
check the sign ofv† on the tricritical line and verify that it is
positive for
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kBT

J0
† .

112A33

6
.0.8759. ~4.13!

The point kBTtet/J0
†5(112A33)/6 is tetracritical since

r †, u†, and v† all vanish simultaneously. ForkBT/J0
†

,(112A33)/6 new behavior occurs. In Fig. 19 we show t
structure of the minima in the free energy, Eq.~4.8!. One
finds that the tricritical point now becomes a critical e
point that terminates the second-order linebefore the first-
order line ends. The first-order line now terminates in a cr
cal point completely within the antiferromagnetic phase~see
Fig. 5!. Thus at temperatures below the critical end point,
a function of magnetic field, there is a first-order transition
the antiferromagnetic phase, while above it the transition
second order. However, at temperatures above, but clos
the critical end point, the second-order transition is follow
by a first-order transition from one nonzero value ofm† to
another. A 3D view of this structure is shown in Fig. 5~b!.
Note that the antiferromagnetic transition in the model w
nearest-neighbor interactions only (J250) is always second
order.

2. Spin-1 computations: the reconstructed-rough phase

We consider next the spin-1 model~2.9!. This will allow
us to deal with phases and phase transitions involving th
different layer thicknesses. It will turn out that this mod
contains essentially all the physics needed to explain all
phases in the exact Hamiltonian. The simplest applicatio
to layering in the ferromagnetic regime where the spin
model exhibits two layering transitions at low temperatur
between the phase withm.21 and the phase withm.0
and between the phase withm.0 and the phase withm
.1. However, the results here do not contain any new ph
ics, and the extension to the full layering phase diagram,
1~a!, is clear. In this subsection, therefore, we focus inst
on the film analogue of the reconstructed-rough phase,
transitions from it to the reconstructed-flat and disorde
flat phases. All of these may be elucidated from the sing
site mean-field theory. Only the preroughening transition
tween the flat and disordered flat phases requires the re
tion of a plaquette of spins, and this will be discussed in S
IV C.

For the spin-12 model the RSOS condition was redunda
because the spins could take only two values. In the sp

FIG. 19. Behavior of the free energy in the vicinity of the te
racritical point. The sequences shown correspond to paths~i!, ~ii !,
~iii !, and~iv! in Fig. 5~a!.
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case we must include it explicitly. Since we are still deali
only with single-site mean-field theories the condition mu
be imposed on the mean field alone and the discussio
Sec. III C 2 is relevant. We choose to approximate the RS
condition by a nearest-neighbor quartic interaction. Thus
consider the mean-field theory of the Hamiltonian,

H̄185H̄11 1
4 K8(̂

i j &
~si2sj !

452~K12K8!(̂
i j &

sisj

1 3
2 (̂

i j &
si

2sj
22L(

~ ik !
sisk2h(

i
si1 h̃2(

i
si

2 ,

~4.14!

with K8[J18/kBT.0, h̃25h21 1
2 Kq11 1

4 K8q11 1
2 Lq2 and

we have used the fact thatsi
35si .

Since the interactions between spins now include q
dratic terms the formalism in Appendix A tells us that th
most general single-site free-energy functional we need
consider is

F~H,H2!52 lnS 1
3 (

s50,61
e2Hs2H2s2D

52 ln$ 1
3 @112e2H2cosh~H !#%. ~4.15!

The full mean-field free-energy functional is now obtain
by associating independent saddle-point theory variabless i

with si andt i with si
2 , yielding

F52~K12K8!(̂
i j &

s is j1
3

2
K8(̂

i j &
t it j2L(

~ ik !
s isk

2(
i

~Hi1h!s i2(
i

~H2,i2 h̃2!t i1(
i

F~Hi ,H2,i !.

~4.16!

The only coupling between thes ’s and thet ’s is indirectly
through the coupling of theH ’s and H2’s in F. Notice the
antiferromagneticcoupling between thet ’s.

To elucidate the nature of the reconstructed-rough ph
specialize toh50. What we will show is that whenJ1,0
andJ2 is not too large there exists a phase in whichHi ,s i
[0, but t i has long-range antiferromagnetic order. Th
means that the magnetization vanishes on all sites, but t
is antiferromagnetic order in the magnitude of thefluctua-
tions on each site. This is intuitively plausible because if w
consider the special caseJ250, the exactT50 ground state
of H18 hassi[0 on one sublattice andsi561 randomly on
the other sublattice. Thus even though^si&50 everywhere,
si

2 alternates between 0 and 1. Note that the RSOS cond
is required to stabilize this state: in its absence the gro
state would havesi51 on one sublattice andsi521 on the
other. Similarly, in our mean-field treatment we expect su
a state to exist only in a certain range of sufficiently lar
J18 . At high enough temperature we expect this order to
destroyed, signaling the film analogue of the reconstruc
rough to fully rough transition@the negative part of theK
axis in the central phase diagram of Fig. 1#. We shall also see
below that inclusion ofJ2.0 allows for a transition to a
phase with true antiferromagnetic order in thesi . This cor-
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responds to the film analogue of the reconstructed-roug
reconstructed-flat transition@path 5 in Fig. 1#. This is again
intuitively plausible becauseJ2.0 will force the ground
state to break the symmetry ofsi561 on the second sublat
tice, forcing all thesesi to take a common value. There wi
then be a first-order layering-type transition as a function
field, h, between the state with alternating 0’s and 1’s a
that with alternating 0’s and21’s. WhenJ2 is large enough
we shall find that the antiferromagnetic order can be l
with increasing temperature before the layering line ter
nates, corresponding to a reconstructed-flat to disordered
transition@path 4 in Fig. 1#. Thus long-range positional orde
in the 0’s and 1’s~or 0’s and21’s! can be lost while still
maintaining a broken symmetry between 1’s and21’s. This
is the film analogue of theK,0 region of the DOF phase
As mentioned earlier, to describe the film analogue of
preroughening transition in theK.0 region of the centra
phase diagram in Fig. 1 we will require a plaquette of mo
than one spin~see Sec. IV C below!.

Specializing the free-energy functional~4.16! to a two
sublattice stucture fors i , t i , andH2,i we have

f [F/N52 1
2 ~K12K8!q1mAmB2 1

4 Lq2~mA
21mB

2 !

2 1
2 ~HA1h!mA2 1

2 ~HB1h!mB1 3
4 K8q1tAtB

2 1
2 ~H2A2 h̃2!tA2 1

2 ~H2B2 h̃2!tB2 1
2 ln$ 1

3 @112e2H2A

3cosh~HA!#%2 1
2 ln$ 1

3 @112e2H2Bcosh~HB!#%. ~4.17!

Variation with respect toH2A ,H2B yields

tA5
2e2H2Acosh~HA!

112e2H2Acosh~HA!
, tB5

2e2H2Bcosh~HB!

112e2H2Bcosh~HB!
.

~4.18!

Variation with respect toHA andHB yields

mA52
2e2H2Asinh~HA!

112e2H2Acosh~HA!
,

mB52
2e2H2Bsinh~HB!

112e2H2Bcosh~HB!
. ~4.19!

Inverting these and substituting them back into~4.17! we
obtain the Bogoliubov free energy,

f Bog52 1
2 ~K12K8!q1mAmB2

1

4
Lq2~mA

21mB
2 !2 1

2 h~mA

1mB!1 3
4 K8q1tAtB1 1

2 ~tA1tB!@ h̃22 ln~2!#1 ln~3!

1 1
2 ~12tA!ln~12tA!1 1

2 ~12tB!ln~12tB!1 1
4 ~tA

1mA!ln~tA1mA!1 1
4 ~tA2mA!ln~tA2mA!1 1

4 ~tB

1mB!ln~tB1mB!1 1
4 ~tB2mB!ln~tB2mB!. ~4.20!

Focusing first on the reconstructed-rough phase, we
h50 and assume thatmA5mB50. Minimizing f Bog with
respect totA andtB then yields
to

f
d

t
i-
at

e

e

et

tA5
2e2 3/2 K8q1~tB2t0!

112e2 3/2 K8q1~tB2t0!
, tB5

2e2 3/2 K8q1~tA2t0!

112e2 3/2 K8q1~tA2t0!
,

~4.21!

where t052 2
3 h̃2 /K8q1 and h̃2 was defined below Eq

~4.14!. At high temperatures we expecttA5tB[ t̄ with 0
< t̄ <1 satisfying

t̄ 5
2e2 3/2 K8q1~ t̄ 2t0!

112e2 3/2 K8q1~ t̄ 2t0!
. ~4.22!

As T decreases we expect an instability either to a state w
t†[ 1

2 (tA2tB)Þ0, but mA5mB50 still, or to a state with
mA5mB[mÞ0, but t†50. Treating the first case first, le
t5 1

2 (tA1tB) and dt5t2 t̄ . Completely analogous to th
computation leading to Eq.~4.8!, we expand the free energ
in a double Taylor series int† and dt. Mininimizing the
result overdt we find

dt52
1

2

~12 t̄ !222 t̄ 22

3K8q1/21 t̄ 21~12 t̄ !21
t†21O~t†4!.

~4.23!

Substituting this into the free energy we obtain the Land
expansion int† alone:

f Bog5 f 01 1
2 r †t†21u†t†41O~t†6! ~4.24!

with

f 05 3
4 K8q1 t̄ 25 ln~3!1@ h̃22 ln~2!# t̄ 1 t̄ ln~ t̄ !

1~12 t̄ !ln~12 t̄ !,

r †5 t̄ 21~12 t̄ !212 3
2 K8q1,

u†5 1
12 @~12 t̄ !231 t̄ 23#

2
1

8

@~12 t̄ !222 t̄ 22#2

3K8q1/21 t̄ 21~12 t̄ !21
. ~4.25!

There is a unique minimum att†50 for t̄ 21(12 t̄ )21

53K8q1/2. Therefore the critical point occurs at a tempe
ture Tc determined by

t̄ c~12 t̄ c!5 T̄c , ~4.26!

where T̄[2kBT/3J18q1 and

t̄ c5
2e2~ t̄ c2t0!/ T̄c

112e2~ t̄ c2t0!/ T̄c
. ~4.27!

It is easy to check thatu†.0 at this point. Sincet̄ (12 t̄ )
< 1

4 it is clear thatt†50 for T̄. 1
4. Whether or not solutions

to Eqs. ~4.25!,~4.26! exist depends on the temperatur
independent parameter t052(2H21J1q11J2q2

1J18q1/2)/3J18q1 ~recall thatH25kBTh2 is the curvature of

the substrate potential!. For example, ift05 2
3 then t̄ 5 2

3 for
all T̄, and we haveT̄c5 2

9. If H250 on a square lattice (q1

54) then this situation corresponds touJ1u/J185 3
2. The maxi-
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mal T̄c is 1
4 and corresponds tot̄ c5 1

2. This occurs fort0

5„22 ln(2)…/4.0.3267. The general solution fort0 given
any 0, t̄ c,1 is

t05 t̄ c~12 t̄ c!$~12 t̄ c!
211 ln@ t̄ c/2~12 t̄ c!#%

'H t̄ cln~ t̄ c/2!→0, t̄ c→0

12~12 t̄ c!ln@2~12 t̄ c!#→1, t̄ c→1.
~4.28!

Treating now the second case, we taket†50 and expand
the free energy indt and m. Again, minimizing the result
with respect todt for given m we obtain

dt5
12 t̄

3 t̄
m21O~m4!. ~4.29!

Substituting this back into the free energy we obtain a L
dau expansion inm alone:

f Bog5 f 01 1
2 rm21um41O~m6!, ~4.30!

with

r 5 t̄ 212~K12K8!q12Lq2

u5~2 t̄ 221 t̄ 23!/36.0. ~4.31!

There is a phase transition to a ferromagnetic phaser
50. This yields a critical temperatureT0 determined by

t̄ 0[ t̄ ~T0!5 T̃0 , T̃[kBT/~J1q112J18q11J2q2!.
~4.32!

The temperaturesTc and T0 coincide when J1 ,
J18 , J2, andh2 satisfy the constraint

t05r~12r!$r211 ln@~12r!/2r#%,

r[~J1q112J18q11J2q2!/~3J18q1/2!, ~4.33!

wheret0 was defined below Eq.~4.27!. For givenJ1 , J18 and
h2 it is easy to check that forJ2 larger than that satisfying
Eq. ~4.33! one hasT0.Tc : the instability to the thin-film
analogue of the DOF phase occurs first, with a transition
reconstructed checkerboard state occurring only at lo
temperature. Conversely, for smallerJ2 one hasTc.T0: the
transition to the film analogue of the reconstructed-rou
phase occurs first, with the transition to the true antifer
magnetic state occuring only at lower temperature. The s
cial value ofJ2 at which T05Tc is bicritical with a direct
transition from the paramagnetic to antiferromagnetic st
In Fig. 20 we show a numerical computation of the fu
phase diagram in theH-T plane for various values ofJ2. The
behavior of the phase boundary nearTc changes asT0 passes
through Tc : one finds that TRec(H)2Tc;H2 for Tc
.T0 ; TRec(H)2Tc;H2/3 for Tc5T0; and TRec(H)2Tc
;uHu for Tc,T0.

B. Plaquette computations and preroughening

We have now established all of the essential physics
the various phases in the antiferromagnetic regime where
have seen that a single-spin mean-field theory suffices.
-

a
er

h
-
e-

e.

f
e
e

now turn to the more experimentally relevant problem of
understanding the thin-film analogue of the actual prerough
ening transition whenJ1.0 ~where it is now safe to take
J18[0). In this subsection we carry out detailed calculations
using the plaquette mean-field formalism constructed in Sec
II. We begin with the simplest spin-1 model on the square
lattice, Eq.~2.13!, and the two sublattice magnetizations, Eq.
~2.12!. The functionF (4)(HA ,HB) is computed in Appendix
C.

As we have discussed, the film analogue of preroughenin
corresponds to a second-order phase transition ath50 to a
state with uniform magnetizationMA5MB[MÞ0. As
usual, we perform a Taylor expansion of the free energy in
M in the neighborhood of the transition. From Eq.~2.15! we
have2H5g4M1h, whereg4[2l1K13l2L. ThereforeH
will be small whenM is.

To proceed correctly, we first solve Eq.~2.14!, which now
reads

M5
1

4

]F~4!

]H
, ~4.34!

FIG. 20. Spin-1 phase diagrams showing the thin-film analogues
of the reconstructed flat, reconstructed-rough and disordered fla
phases as the second-neighbor coupling,J2, varies: ~a! small J2,
showing the termination of the antiferromagnetic layering line in-
side the reconstructed-rough phase;~b! bicritical value ofJ2, show-
ing a direct transition from the rough to antiferromagnetic phase;~c!
largeJ2, showing first the appearance of the DOF phase, followed
by the antiferromagnetic phase.



,

ti

h

er

e

-

, a
te

, a

ib

r-

ion

lar
pin
in
all,

q.

is

57 4925LAYERING TRANSITIONS, DISORDERED FLAT . . .
for H(M ). Using Eq.~C4! and defining

^ l p&[ S (
l 50

4

l pal D Y S (
l 50

4

al D ~4.35!

we then obtain

2H5
4

^ l 2&
1

32

3

^ l 4&23^ l 2&

^ l 2&4 M31O~M5!. ~4.36!

Substituting this back intof (4) and using Eq.~2.17! we ob-
tain the Landau expansion for the Helmholtz free energy

1

N
A~4!5 f 0

~4!1 1
2 x21M21uM41O~M4!, ~4.37!

where

x215S ]2A~4!

]M2 D
M50

5
4

^ l 2&
2g4 ~4.38!

is the zero-field inverse susceptibility in the paramagne
phase, and

f 0
~4!52 1

4 lnS (
l 50

p

al D , u5
8

3

3^ l 2&22^ l 4&

^ l 2&4 . ~4.39!

As usual, if u is positive ~which may be checked!, the
second-order phase transition takes place in zero field w
the susceptibility diverges, i.e.,x2150. We must therefore
solve the equation

4

g4
5 S (

l 50

p

l 2al D Y S (
l 50

p

al D , ~4.40!

which will yield a critical surface in the three paramet
space (K,L,h2).

Let us first examine limiting cases. At low temperatur
whereK andL are large~and positive! the right-hand side of
Eq. ~4.40! vanishes exponentially in 1/T sincex, y, and z
~defined in Appendix C! do. The inverse of this term there
fore dominates at low temperature,x21 is large and positive,
M50, and there can be no symmetry breaking. Similarly
high temperature the inverse of this term again domina
since it remains of order unity whileg4 vanishes as 1/T.
Thus x21 is again positive andM50. We have therefore
established the reentrant property of the phase transition
suming that it exists.

To establish existence, let us look at the simplest poss
case,K5h250, keeping onlyL.0 ~note thath̃2 is positive
even if h250, which reflects the fact that fluctuations reno
c

en

s

t
s

s-

le

malizeh2 to larger values because there is more fluctuat
entropy available when the spin is zero!. We then havey
51 and z5e2g4/2. Defining x̄[x25e2L and taking l2
51 so thatz5x3, Eq. ~4.40! becomes

lnS 1

x̄
D 5

118 x̄ 214 x̄ 318 x̄ 4112x̄ 512 x̄ 6

6 x̄ 2~112 x̄ 14 x̄ 219 x̄ 314 x̄ 4!
. ~4.41!

Solving this equation numerically yields two roots,

x̄ 2.0.588, x̄ 1.0.439, ~4.42!

which implies that a nonzeroM exists in the intervalT2

,T,T1 , where

T2/J2 .1.214, T1/J2 .1.885. ~4.43!

We may similarly establish the existence on the triangu
lattice. As discussed in Sec. II, the six- and seven-s
plaquettes shown in Fig. 6 have inequivalent sites with,
general, unequal magnetizations. This effect should be sm
however, and we begin by simply takingH in5Hout[H and
M in5Mout[M in the plaquette free energies~C6! and~C9!.
We also begin by settingK50, h250, andl251.

For the six spin plaquette the free energy is given by E
~C6! and for these parameters one findszo5zi5x5, and the
equation to be solved is

5
6 ln~1/ x̄ !5~1112x̄ 316 x̄ 5130x̄ 616 x̄ 7124x̄ 8122x̄ 9

118x̄ 10124x̄ 11112x̄ 1312 x̄ 15!/~12x̄ 3124x̄ 5

196x̄ 61216x̄ 81150x̄ 91108x̄ 101384x̄ 11

1300x̄ 13172x̄ 15!. ~4.44!

The solutions are

x̄ 2.0.796, x̄ 1.0.547, ~4.45!

corresponding to upper and lower critical temperatures

T2/J2 .1.657, T1/J2 .4.372. ~4.46!

Similarly, for the seven-spin plaquette the free energy
given by Eq.~C9! and for these parameters one findsz5x4,
and the equation to be solved becomes
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4
7 ln~1/ x̄ !5~112 x̄ 2112x̄ 3124x̄ 5128x̄ 6118x̄ 7158x̄ 8

112x̄ 919 x̄ 10124x̄ 11120x̄ 12124x̄ 13

18 x̄ 14!/~2 x̄ 3112x̄ 3196x̄ 51108x̄ 6154x̄ 7

1550x̄ 81192x̄ 91900x̄ 101600x̄ 111522x̄ 12

1480x̄ 13198x̄ 14!. ~4.47!

The solutions are

x̄ 2.0.848 and x̄ 1.0.520, ~4.48!

corresponding to upper and lower critical temperatures

T2

J2
.1.528,

T1

J2
.6.075. ~4.49!

As claimed in the Introduction, the reentrant transiti
does indeed occur on the triangular lattice, despite the
sence of a reconstructed phase. We have chosen value
various fudge factors in a somewhat arbitrary manner, so
difficult to make quantitative comparisons between the th
calculations. It is nevertheless clear that the two calculati
on the triangular lattice yield similar results, and that ree
trant layering on the triangular lattice occurs over a mu
larger interval of temperatures than on the square lattice.
reentrant layering is driven by an entropic preference fo
disordered top layer, despite the energetic preference f
flat interface. This disordering entropy is presumably lar
for the triangular lattice because the second-neighbor in
action divides the lattice into three independent pieces
stead of only two, leading to a floppier, more loosely bou
interface. The absence of a reconstructed phase therefor
tually enhancesthe reentrant transition.

Translated into the language of layering phenomena,
T2,T,T1 the layer thickness will vary continuously wit
chemical potential for top layer coverages in the inter
211Mn21,x,2Mn , i.e., for some interval around half
filling of the nth layer, whereMn is the ‘‘magnetization’’
computed above for the spin-1 model centered on thenth
layer. However, when the coverage reachesx52Mn it will
jump discontinuously, via a first-order phase transition, t
coverage ofx5Mn , i.e., a partially filled (n11)st layer.
More accurately, going beyond the spin-1 approximation,
RSOS model would yield asymmetric magnetizations,Mn

2

and Mn
1 , with a jump betweenx52Mn

2 andx5Mn
1 . The

discontinuities are, therefore, centered on integer covera
as seen in the experiments.11–13 The reentrant interval will
shrink ash2 increases. It will shrink as well asK increases to
positive values, but grow asK decreases to negative value
On the square lattice, for sufficiently large negativeK, as we
have seen in the previous subsection, the various antife
magnetic phases will appear~see also the central phase di
gram in Fig. 1!. On the triangular lattice the DOF phas
presumably survives for arbitrarily negativeK ~see Fig. 2!.
One can imagine situations where a reconstructed phase
coveragexR different from 1

2 is stabilized at negativeK. In
this case, presumably,M will continuously approachxR ,
b-
for
is
e
s
-
h
he
a
a

r
r-
-

d
ac-

r

l

a

e

es,

.

o-

ith

rather than1
2, at the phase boundary between the reentr

and reconstructed phases. This clearly does not qualitati
~though it will quantitatively! affect the reentrant phase a
positive K. In particular, first-order jumps in coverage wi
always be centered near integer coverage no matter wha
nature of the potential reconstructed phase.

The essential message that emerges from these com
tions is that the interactions that give rise to preroughen
of a bulk crystal interface do indeed lead to layering tran
tions in films between states with roughly half-integer co
erage, and that the first-order layering lines are reentr
with well-defined upper and lower critical pointsTn

2 and
Tc,n , as shown in Fig. 1~b!.

C. Beyond spin-1: a correspondence between microscopi
and sine-Gordon theories

We have seen that all of the essential physics of the v
ous phases can be understood qualitatively by conside
only three layers. However, in order to see how the vario
layering transitions evolve as the film grows thicker we m
include many more layers. By keeping an effectively in
nitely large number of layers, a mean-field phase diagram
the bulk interface may also be worked out and compared
the predictions of the sine-Gordon theory. One way to do t
is to generalize the results of Appendix C and simply en
merate~numerically if necessary! all possible surface con
figurations for an ever increasing number of layers. Ho
ever, for thick films one may avoid such a tedious proced
by considering a very special substrate potential that allo
one to do everything analytically. In so doing we shall d
cover a very nice correspondence between the plaqu
mean-field theory and the sine-Gordon theory. In some se
the plaquette computation may be viewed as a sin
renormalization-group transformation thatalreadygenerates
parametersy0 , u0, andk0 for input into Eqs.~3.2! and~3.3!.
We have done numerical enumerations using the proper
der Waals substrate potential only in order to explore
detailed structure in very thin films.

So far we have discussed two rather different approac
to the study of surface phase transitions. We began our s
by looking at solid-on-solid models. These are microsco
system-dependent models, with parameters like the nea
and next-nearest-neighbor interaction strengths, lattice st
ture, chemical potential, substrate strength, etc. Such an
proach is useful when detailed comparisons with experim
or first-principles simulations are to be made.

In Sec. III we adopted a different point of view: sinc
much of the interesting physics should be amenable t
long-wavelength coarse-grained description, we examine
sine-Gordon Hamiltonian~3.1! with partially renormalized
parametersy0 ,u0 ,K0 and an effective substrate potenti
V0@h#. One may find the renormalization-group flow equ
tions for this model and then obtain detailed informati
about the manner in which the roughening and prerough
ing critical points of a film approach bulk behavior as t
film thickens. Moreover, simple assumptions about the
havior of y0(T) ~namely, that it changes sign at some te
peratureTc) and aboutu0 lead to phase diagrams that mat
qualitatively those obtained from the experimental data.

In order to use the sine-Gordon-type Hamiltonian for sp
cific microscopic systems, a method of mapping the discr
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lattice-based parameters of the RSOS model onto the
tially renormalized parameters of the sine-Gordon~SG!
Hamiltonian is needed. The renormalization connection
tween the eight-vertex model~which includes the BCSOS
model of roughening—see Appendix D! and the Gaussian
model has been studied in Refs. 25 and 26. The main go
these studies was to find which Gausssian operators are
erated by specific eight-vertex operators. While this
proach yields much useful information about the releva
of specific operators and about the universality class of
Hamiltonians, it does not provide an explicit mapping b
tween the RSOS Hamiltonian and the corresponding Ga
ian Hamiltonian. TherestrictedSOS condition further com
plicates attempts to find the precise correspondence betw
the microscopic and coarse-grained models. As we shall
however, the mean-field approximationdoesmake it pos-
sible to find an approximate mapping between the RSOS
the SG models.

1. Single-site theory

We first formulate the single-site mean-field theory of t
bulk crystal-vapor interface~no substrate!. The Hamiltonian
is

H̄5 1
2 K(

^ i , j &
~si2sj !

21 1
2 L (

~ i ,k!
~si2sk!

2

5a(
i

si
22K(

^ i , j &
sisj2L (

~ i ,k!
sisk , ~4.50!

where a5(q1K1q2L)/2. The formalism of Appendix A
leads to the single-site free energy

f MF~g!52a@s~g!2g#22 lnF (
s52`

`

e2a~s2g!2G
~4.51!

whereg5Hi /2a ~theHi , clearly all equal here, were define
in Appendix A!, and

s~g!5 S (
s52`

`

se2a~s2g!2D Y S (
s52`

`

e2a~s2g!2D
~4.52!

results from the second saddle-point equation~A9!. Physi-
cally, s(g) corresponds to the equilibrium film thickness.
the absence of a substrate the free energy will have an
nite sequence of minima reflecting the perfect periodicity
the system:f MF(g1n)5 f MF(g) for any integern. Thus ifg0
is a minimum, so isg01n. In order to retain this periodicity
we avoid truncating the sum overs in Eq. ~4.51! by using the
Poisson summation formula,

(
k52`

`

f ~k!5 (
m52`

` E
2`

`

dx f~x!e2 i2pmx, ~4.53!

which then yields
r-

-

of
en-
-
e
e
-
s-

en
e,

nd

fi-
f

(
s52`

`

e2a~s2g!2
5Ap/aF11 (

n51

`

2e2n2p2/acos~2png!G .

~4.54!

The factore2n2p2/a in the sum guarantees that this new s
ries is very rapidly convergent and for most purposes it
adequate to keep the first few terms, each of which is ma
festly periodic ing. Thus we have

f MF~g!52 1
2 ln~p/a!2yRcos~2pg!2uRcos~4pg!

1O~yR
9 !, ~4.55!

whereyR52e2p2/a anduR5O(yR
4)!yR . It is clear that in

the single-site mean-field theoryyR is always positive so tha
f MF is minimized for integer valuedg. Thus the film is al-
ways globally flat with integer valued thickness, and there
no possibility of either a rough phase or a disordered
phase. We shall see below that the plaquette mean-
theory doesgive a DOF phase, but even there an expon
tially small corrugation remains to arbitrarily high temper
ture ~i.e., smalla). This is an artifact of the mean-field ap
proximation, which misses entirely the subtle features of
roughening transition. However, for the purposes of estim
ing phase boundaries, as we have done in Figs. 1 and 2,
may define the roughening temperature as the point wh
the corrugation falls below some small value,yR

min . In Fig. 1
the vertical roughening line running through the pointsL and
M has actually been taken for convenience from the ex
solution of the six vertex model~discussed in Appendix D!,
while that running from theK50 axis to the pointL has
been estimated from the mean-field theory usingyR

min

51026 ~essentially the limit of our numerical resolution!.
The roughening line in Fig. 2 uses the sameyR

min , but, in
order to give a better feel for the errors involved, the wid
of the line corresponds to 20% adjustments to either side
this. Clearly the ambiguities are greatest close to the p
roughening line.

2. Plaquette theory

We shall next show that Eq.~4.55! remains valid for the
square lattice using a four-site mean-field theory, but thatyR
may nowchange signprecisely as indicated in Fig. 12, thu
exhibiting a DOF phase. We confine the discussion toJ1
.0, though we have also carried out a more involved cal
lation, which we shall not detail here, forJ1,0, to investi-
gate reconstructed phases. We will also now include a s
strate potential in order to exhibit layering.

The Hamiltonian is exactly as in Eq.~4.50! except that we
now add a term1

2 k( i(si2h0)2, wherek models the strength
of the effective substrate potential andh0 determines the film
thickness. We shall see that this quadratic form of the s
strate potential still permits an analytic analysis. Followi
the formalism in Appendix A, we tile the lattice with 232
plaquettes and rewrite the Hamiltonian in the formH̄
5(P@H̄P1H̄interplaq# whereP denotes a sum over plaquette
and ~in the notation of Fig. 7!,
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H̄P5 1
2 K@~sP12sP2!21~sP22sP3!21~sP32sP4!2

1~sP42sP1!2#1 1
2 L@~sP12sP3!21~sP22sP4!2#

1~K1 3
2 L !~sP1

2 1sP2
2 1sP3

2 1sP4
2 !1 1

2 k@~sP12h0!2

1~sP22h0!21~sP32h0!21~sP42h0!2#, ~4.56!

and H̄interplaq contains terms such as2(K/2)sP1sP32 and

2(L/2)sP2sP24, which couple neighboring plaquettes. Fro
Appendix A, the mean-field free energy per site is then fou
to be

f MF52~K1 3
2 L !s21gs2 1

4 log~ZBog!, ~4.57!

where

ZBog5 ( 8
s1 ,s2 ,s3 ,s4

exp@2H̄P1g~s11s21s31s4!#

~4.58!

is an effective plaquette partition function ands(g)
5 1

4 ] lnZBog/]g is again the average film thickness. Th
prime on the summation is a reminder that the RSOS co
tion must be obeyed. Ifs1 is considered as an unconstrain
variable, then fors15n, this condition allows only 19 differ-
ent configurations for the other variables. The energye i of
configurationi may be written in the forme i5ain

21bin
1ci . For example, if all four spins take valuen we have
a154K16L12k, b1524g24h0k and c152kh0

2. The
partition function therefore takes the discrete Gaussian fo

ZBog5(
i 51

19

(
n52`

`

e2ain
22bin2ci. ~4.59!

Each sum overn can be reexpressed in terms of period
functions using Eq.~4.54! with the result

ZBog5A2p/Le22kh0
2
1m2/2L@A1Bcos~2pm/L!

1Ccos~4pm/L!1•••#, ~4.60!

where

L58K112L14k,

m54g14h0k,

A5114exp@2~k14K15L !#14exp@2~k14K15L !/2#

12exp@2~k16K13L !/2#

18exp@2~3k114K113L !/8#,

B52exp~22p2/L!~114exp@2~k14K15L !#

24exp@2~k14K15L !/2#

22exp@2~k16K13L !/2# !,
d

i-

,

C52exp~28p2/L!~114exp@2~k14K15L !#

14exp@2~k14K15L !/2#1exp@2~k16K13L !/2#

28exp@2~3k114K113L !/8# !. ~4.61!

From Eqs.~4.57! and ~4.59! we find

f MF~u!5 f 02yRcos~2pu!2uRcos~4pu!1 1
2 k@u2h0

2d~u!#2, ~4.62!

where f 0 is a constant. This free energy is now in the sin
Gordon form. A more convenient variational parameteru
54g1h0k/L is introduced here, and we have defined

d~u!5~2pyR /L!sin~2pu!1~4puR /L!sin~4pu!.
~4.63!

The sine-Gordon parameters may now be expressed in te
of K, L, andk as

yR5
B

4A
1OF S B

AD 3G ,
uR5

C

4A
2S 1

16
1

p2

8L D S B

AD 2

2
1

64S B

AD 4

1OF S B

AD 5G .
~4.64!

Once u(h0 ,g) is determined by minimizingf MF , the film
thickness is given bys5u2d(u).

It is not hard to see thatyR is positive at low temperature
~large K5J1 /T and L5J2 /T), but at high temperatures i
changes sign: although Eq.~4.61! implies thatA is always
positive,B, and henceyR'B/4A, change sign. This confirm
the existence of the DOF phase. Those portions of Fig. 1
do not involve reconstruction are based mainly on num
cally mapping out the surface and layering phase diagra
using Eq. ~4.57! @with the exception of Fig. 1~d!, whose
uDOF phase, as we have emphasized, does not appear in
model; we have substituted the phase diagram comp
from the sine-Gordon model in this case#. However, for
smaller film thicknesses we have also used the more real
van der Waals substrate potential shown in Fig. 3 and
merically enumerated the surface configurations to comp
the mean-field free energy. The phase diagrams involv
reconstruction obviously require more than a singleHi and
we have applied the appropriate generalizations of Eq.~4.57!
to their computation, again using numerical enumeration
a more realistic substrate potential at smaller film thic
nesses.

If we view u as a new renormalized continuous spin, r
placing the four original spins, thenf MF represents a corru
gation plus substrate potential that we should substitute
Eq. ~3.2!. Notice that the effective substrate part has be
modified slightly by the periodic terms. Missing from th
analysis is an estimate for the interplaquette couplingK0.
Thus a true renormalization-group transformation would a
generate renormalized couplings between the plaquettes
have not looked into this, but simple estimates could presu
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ably be made by comparing the estimated roughening t
peratures derived from the plaquette calculation and
single-site theory, Eq.~4.55!.

V. CONCLUSIONS

In this last section we briefly compare the theoretical
sults we have obtained from the RSOS and sine-Gor
models with the results of the experiments on noble gase
graphite substrates11–14,18and discuss other possible interpr
tations of the data. We end by discussing work for the futu

A. Comparison with experiment

If we accept the premise that the RSOS model ind
captures the essential physics of the thin-film equilibria, a
that the experimental measurements have not missed any
nificant features in the phase diagram, then it is difficult n
to conclude that the reentrant layering is indeed a reflec
of the DOF phase on the bulk interface. Thus, although F
1~g,h!, which involve reconstruction, show phase diagra
remarkably similar to Fig. 1~c! there are also distinct differ
ences. In Fig. 1~g! the experimental vapor pressure isother
will have steps at the wrong coverages, which seems to
ruled out by the experimental data. Similarly in Fig. 1~h!,
although the steps in the vapor pressure isotherms now o
at the correct coverages, there is a film analogue of the t
sition from the rough to reconstructed-rough phase at hig
temperatures that is not seen in the experiments. This tra
tion is second order, rather than first order, so it might
more difficult to see. Both these scenarios, however, le
open the question of what kind of triangular lattice reco
structed and reconstructed-rough phases might replace
square lattice checkerboard phase. Direct probes of the
face structure through scattering measurements would b
quired to see if, in fact, the upper layer of the film has no
trivial spatial order.

On the other hand, accepting the premise that the D
phase is responsible for the reentrant layering, and the
that there is not expected to be a reconstructed phase o
triangular lattice, we have seen that the phase boundary
tween the flat and DOF phases extends, in principle, to a
trarily largeJ2 /J1. However, the Kosterlitz-Thouless theo
tells us that only a finite segment of this boundary can b
continuous transition. Themajority of this boundary must
therefore be first order, and in retrospect it may not be
surprising then that the experimental data show evidence
first-order preroughening transition.

One might be concerned by the fact that the real unde
ing lattice structure of argon on graphite is fcc rather th
triangular. As mentioned in the Introduction, this means t
although individual layers indeed form two-dimensional t
angular lattices, they do not lie directly on top of one a
other, but are displaced horizontally from one another so
subsequent layers lie in the interstices of the preceding o
In principle, this will affect the quantitative predictions o
the RSOS model. This certainly should be checked,19 but all
evidence so far indicates that the results are not particul
sensitive to lattice structure. In the present work we ha
considered both square and triangular lattices while, for
ample, the original work of Rommelse and den Nijs w
based on a bcc lattice.2,3
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Another possibility is that a lattice model is simply insu
ficient for describing the properties of the film. Such wou
be the case, for example, if two-dimensional melting were
occur. The lattice model cannot describe a phase where
commensurability effects occur, i.e., when the film is in
floating solid phase, with a lattice structure incommensur
with that of the substrate. Such phases indeed occur in v
thin films: the data in Fig. 1 of Ref. 17 clearly show two
dimensional melting lines, as well as triple points where tw
dimensional liquid, vapor, and solid coexist, in the first tw
or three layers of argon on graphite. The RSOS mode
clearly inadequate if such phases were to persist in the u
layers of arbitrarily thick films.

In a recent letter, Phillips, Zhang, and Larese18 ~PZL! take
precisely this point of view. They report a Monte Car
simulation of up to several thousand Lennard-Jones ar
atoms on a two-dimensional substrate, with an extent s
that about 1000 atoms fill one layer, and studied films up
about three layers thick. They found the usual layering tr
sitions at lower temperatures, and smooth, continu
growth of the film at higher temperatures. However, at int
mediate temperatures they found, as a function of increa
coverage~or, equivalently, increasing chemical potential! at
fixed temperature, a sudden increase in the occupation o
fourth layer at the expense of the occupation of the th
layer just before third layer completion. This is accompan
by a positional disordering of the third layer, which is inte
preted as a melting transition. As more particles are add
the density in the third layer increases again, and at a no
nal coverage of about 3.5 layers the third layer appare
resolidifies. This resolidification, apparently induced by t
hydrostatic pressure of the particles above due to the bind
energy of the substrate, is argued to give rise to the step
the vapor pressure isotherms in the reentrant layering reg
This process is argued to repeat itself layer by layer as
film grows. Since their scenario involves both liquid an
solid phases in the film PZL question the use17 of the RSOS
lattice model.

There are various problems with this scenario.27 First of
all, the behavior of the third layer is rather different from th
of higher layers, where our DOF phase interpretation
claimed to be valid, and is, therefore, not a good basis
generalization. Thus, although the first and second layer
argon have independent two-dimensional solid, liquid, a
gas phases, complete with critical points, triple points, a
melting transitions, the fourth, fifth, and sixth layers beha
rather differently. In particular, they do not have triple poin
or two-dimensional liquid-gas critical points, but they d
have low-temperature layering transitions at integer la
coverages, and higher-temperature ‘‘reentrant’’ layer
transitions at half-integer coverages, zipped to the lo
temperature layering transitions by the zigzagging line
heat capacity peaks. The third layer, on the other hand, i
intermediate case, showing both types of behavior: there
two-dimensional triple point and a two-dimensional critic
point, but there is also the first reentrant layering transiti
marked by coexistence between 2.5 and 3.5 layers, wh
entrains the melting of the third layer. It is not surprisin
then, that PZL see evidence of melting associated with
rather complicated situation, but the very different nature
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the phase diagram for thicker films makes us skeptical of
generalizations they draw from that observation.

There are also two quantitative reasons for doubting
PZL scenario in third and higher layers. First, if they we
due to solidification we would expect the vertical steps
adsorption isotherms that are the signature of the phen
enon to be roughly 10% of a layer in height, the typic
density difference between liquids and solids~note, in fact,
that forcontinuoustwo-dimensional melting there is no den
sity difference at all!. Instead, all of the data, includin
PZL’s own isotherms, consistently show steps of roughl
full layer. Second, the hydrostatic pressure that is suppo
to induce the transition is negligible in the third layer a
smaller yet in higher layers. This point shows up clearly
the energetics: the binding energy of the third layer is lit
more thankBT/10, and decreases as the inverse cube of
film thickness. The canonical ensemble simulation meth
used by these authors does not allow a direct reconstruc
of the isotherms, so no prediction is given for the size of
discontinuous step, nor is any other direct thermodyna
evidence given for this freezing transition. The apparent
sence of melting phenomena leads us to believe that
RSOS model provides an adequate description of the thi
films in which the physics approaches that of the bulk int
face. The DOF phase predicted by this model then produ
the full step reentrant layering transitions~coexistence be-
tween n1 1

2 and n2 1
2 layers!. This, along with the natura

explanation of the zipper in terms of a first-order preroug
ening transition, demonstrates that the RSOS model ha
markable descriptive powers and the agreement of its pre
tions with the experimental data is striking. Its ve
simplicity, which is a shortcoming in thinner films, becom
a virtue in thicker films.

B. Future work

Given the RSOS model parametersJ1 andJ2 the theory
developed in the present work then allows reasonable
mates of the renormalized sine-Gordon parametersy and u
that determine the actual phase boundaries. Perhaps the
est gap in our theoretical understanding of the reentrant
ering phenomenon is the connection between themicro-
scopic interparticle interactionsand these effective RSO
model parameters. If one models the particles, as in Ref.
using a Lennard-Jones potential with hard core radiuss and
attractive minimum depth2«, the question is whether ther
is a reasonably well-defined mappingJ15J1(s,«,T) and
J25J2(s,«,T), and if so what range ofJ1 andJ2 the map-
ping covers for physically motivated ranges ofs and «. In
particular, can the effectiveJ2 be made small enough t
produce continuous preroughening, and do any of the co
sponding Lennard-Jones potentials match that of a real
terial? Answering this question theoretically would requ
extending the PZL simulations to other Lennard-Jones po
tials besides that of argon and to much thicker films.

Another point is that we have seen that the on
component RSOS model we study does not produc
uDOF phase. The two-component BCSOS model does h
a uDOF phase but there would be considerable experime
difficulty in investigating such a two-adsorbate system
suming that one existed. If this phase is, in fact, experim
e
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tally realizable for a system with a single-adsorbate spe
~as opposed to ‘‘alloys’’—see Appendix D! then we con-
clude, at the very least, that something beyond an RS
model with only first- and second-neighbor interactions
required. One can therefore ask: What potential would
required in order to generate auDOF phase in a one
component system?

To conclude, recent experiments have shown that ther
much new interesting physics to be found in thin-film a
bulk interface studies. The present work will hopefully m
tivate future experimental efforts in search of the as yet
seen phases and phase diagrams that we have found.
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APPENDIX A: PLAQUETTE MEAN-FIELD THEORIES

In this appendix we outline the general formalism for co
structing consistent mean-field theories, using plaquette
arbitrary size, based on any given Hamiltonian. By cons
tent we mean that the mean-field free energy should obe
thermodynamic principles. We guarantee this by demonst
ing that the mean-field theory becomes exact for a limit
case of a certain model Hamiltonian closely related to
original given one. The formalism we present here is a fa
straightforward generalization of that described in Ref. 2

The idea is to treat each plaquette as a single site wi
set of internal variables, each of which may interact with t
internal variables on other plaquettes. If we label t
plaquettes by an indexP, we denote thecomplete setof
internal variables by$SPa%, a51, . . . ,K. Often the different
plaquettes will be identical copies of one another, but this
not assumed in general. The internal variables will inclu
for example, not only the height variableshi within the
plaquetteP, but also all powers and products of them,hi

2 ,
hi

3 , hihj , hi
2hjhk

3 ~with i , j , andk all in P), etc. We consider

then a rather general reduced Hamiltonian,H̄5H/kBT, of
the form

H̄5(
P
H̄P$SPa%2(

P,a
hPaSPa1A$SPa%, ~A1!

where H̄P$SPa% depends only on the internal variables
plaquetteP, and the conjugate fieldshPa should not be con-
fused with the original height variableshi . If the plaquettes
are identicalH̄P will not depend onP. The potentialA con-
tains all interactions between different plaquettes. These
teractions are forbidden from containing products of theSPa
within the same plaquetteP. Technically this means that th
derivative ]A/]SPa is independentof SPb for all b
51, . . . ,K, and hence thatA is a sum of terms multilinear in
the SPa . From a practical point of view this means that
term like (hi2hj )

2 must be multiplied out so thathi
2 andhj

2

are included inH̄P for their respective plaquettes, while th
cross termhihj is included inA ~assuming thati and j lie in
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57 4931LAYERING TRANSITIONS, DISORDERED FLAT . . .
different plaquettes, otherwise the entire term belongs
H̄P). The conjugate fieldshPa are introduced in a term sepa
rate from H̄P and A for later convenience. The partitio
function,

Z$hPa%5E DSe2H̄$SPa%, ~A2!

is then a functional integral over some fundamental fieldS
out of which theSPa are constructed. The reduced free e
ergy isF/kBT[ F̄52 ln(Z).

We now introduce independent continuous variablessPa
and their conjugate fieldsHPa as follows: we first use the
variablessPa to represent the variablesSPa simply by intro-
ducing appropriated functions:

Z$hPa%5E DSe2(PH̄P$SPa%E Ds)
P,a

d~sPa2SPa!

3e2A$sPa%1(P,ahPasPa. ~A3!

We then introduce theHPa by using the usual Fourier rep
resentation of thed function:

d~s2S!5E
C

dH

2p i
eH~s2S!, ~A4!

where the integral is over a vertical contourC, extending
from c2 i` to c1 i` in the complexH plane, wherec is an
arbitrary real number, which will later be chosen for conv
nience to satisfy a certain saddle point condition. If we defi
the single plaquette reduced free energiesFP via

e2FP$Ha%[E DSe2H̄P$Sa%2(aHaSa, ~A5!

then the partition function may be written

Zn$hPa%5E DHE Dse2nF$HPa ,sPa ;hPa%, ~A6!

wheren51, but for convenience has been introduced a
free parameter, and the free-energy functional is

F$HPa ,sPa ;hPa%[(
P

FP$HPa%2(
P,a

~HPa1hPa!sPa

1A$sPa%. ~A7!

We now consider the saddle-point approximation, which
comes exact in the limitn→`: define the mean-field reduce
free energy,

F̄MF$hPa%5F$HPa
0 ,sPa

0 ;hPa%, ~A8!

where$HPa
0 ,sPa

0 % satisfy the saddle-point equations
in

-

-
e

a

-

S ]F
] HPa

D
0

50⇒sPa
0 5S ]FP

]HPa
D

0

,

S ]F
]sPa

D
0

50⇒HPa
0 1hPa5S ]A

]sPa
D

0

, ~A9!

where the subscript 0 indicates evaluation at the sad
point. Clearly the solutions must be real, and we may spe
the numberc in Eq. ~A4! to be HPa

0 for the corresponding
contour. We emphasize that because the integration is
complex values of theHPa , FMF is not in general the
minimum ofF over allHPa andsPa , not even over all real
values ofHPa and sPa . The direction of steepest desce
through the saddle point is often a nontrivial angle in t
complex plane. However, if there are multiple saddle poi
one must obviously choose the one with minimal free e
ergy. We will discuss at the end how to defineFMF through
a proper extremum principle. The first equation gives
mean-field approximation for2]F/]hPa5^SPa& in terms of
the effective single plaquette free energyFP while the sec-
ond equation gives the effective fieldsHPa acting on
plaquetteP due to the external fieldhPa as well as the mean
fields sP8a8 on plaquettesP8 with which it interacts. The
latter then serve as inputs toF in the first equation. Notice
that

2
] F̄MF

]hPa
52

]F
]hPa

2 (
P8a8

F S ]F
]HP8a8

D
0

]HP8a8
0

]hPa

1S ]F
]sP8a8

D
0

]sP8a8
]hPa

G5sPa
0 , ~A10!

where the last equality follows because the saddle-p
equations cause the second term to vanish identically. T
proves consistency, namely, thatsPa5^SPa&MF is indeed the
mean-field average ofSPa . Consistency is in fact guarantee
by the deeper result that the limitn→` may be realized as
an explicit model:28 it is straightforward to show that fo
general integern>1 the partition functionZn may be ob-
tained from the Hamiltonian,

H̄n5(
l 51

n

(
P
H̄P$SPa

~ l ! %2(
P,a

hPaSPa1nAH 1

n
SPaJ ,

SPa[(
l 51

n

SPa
~ l ! , ~A11!

where$SPa
( l ) % l 51

n aren identical copies of the original$SPa%
with identical single plaquette HamiltoniansH̄0 interacting
only through their mean values,$1/nSPa%, which appear in
A. The form~A6! follows by introducing the Fourier repre
sentation of thed functionsd(nsPa2SPa) and integrating
out the$SPa

( l ) % as before. In the limitn→` the saddle-point
equations represent an exact solution to this model.

It is worth reemphasizing that the free energy, Eq.~A8!,
depends only on the fields,$hPa%. Given onlyF̄MF$hPa% the
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4932 57ANOOP PRASAD AND PETER B. WEICHMAN
mean-field averages$sPa
0 % must be obtained through Eq

~A10!. It is sometimes preferable to perform a Legend
transformation and work with a free energy that depe
explicitly only on the$sPa

0 %. We define then the Helmholt
free energy,

AMF$sPa
0 %[ F̄MF1(

P,a
hPasPa

0 , ~A12!

in which Eq. ~A10! is used to eliminate the$hPa%. Equiva-
lently, we have

AMF$sPa
0 %5(

P
FP$HPa%2(

P,a
HPasPa

0 1A$sPa
0 %,

~A13!

in which thefirst line of Eq. ~A9! is used to eliminate the
$HPa% in favor of the $sPa

0 %. The result is explicitly inde-
pendent of the$hPa%, which are then computed fromAMF via

hPa5
]AMF

]sPa
0

. ~A14!

From Eq.~A13! we see that the computation ofAMF from the
functionalF given in Eq.~A7! is easier than the computatio
of F̄MF since it involves solving only one of the saddle-po
equations, Eq.~A9!.

One might be concerned about an obvious ambiguity
the definition ofH̄P . Clearly terms like(P,ahPaSPa , which
are linear in theSPa , could also be included in the singl
plaquette part of the Hamiltonian, thereby changing the fo
of the single plaquette free energyFP . Fortunately the
saddle-point equations are insensitive to this ambiguit28

which is easily seen only to result in a corresponding shif
the $HPa%: the sum,HPa

0 1hPa , is unchanged and from Eq
~A9! one immediately sees that the physical quantities$sPa%
are therefore unaffected. Notice from the second line of
~A9! that if A is independent of a particularSPa , then one
immediately has the solutionHPa52hPa . Therefore, un-
less SPa appears inside a nontrivial interplaquette intera
tion, one may simply include the termhPaSPa in H̄P and set
the correspondingHPa to zero. Therefore, the number of fre
minimization parameters$HPa% that need to be introduce
depends only on the complexity ofA and not on that ofH̄P .
For example, if interactions in the roughening model take
form (hi2hj )

2, only fields conjugate to the individual$hi%
need be introduced sincehi

2 ~as well ashihj for i and j in the
same plaquette! appear only in single plaquette terms.

It is worth commenting on the relation between this fo
malism and the intuitive idea of mean-field theory where o
makes a distinction between a particular plaquette of v
ables,Sa , which is treated exactly, and its ‘‘environment,
which then interacts with theSa only through its average
properties. In the present formalism these notions are m
precise through the distinction between the plaquette
energy,F, which contains an explicit trace over the fluct
ating internalSPa , and the interplaquette interactionsA,
which contain only the nonfluctuatingsPa . Now, in the in-
e
s

n

n

.

-

e

e
i-

de
e

tuitive picture it is not obvious precisely what aspects of t
average environmental behavior are relevant. For exam
suppose the fundamental field has spinj , taking valuessi5
2 j ,2 j 11, . . . ,j on each sitei with corresponding equilib-
rium probabilitiespi(si). In principle, all of these 2j inde-
pendent probabilities on each site ought to be determi
self-consistently in the mean-field theory. Equivalently, w
may determine the mean powers,^si

m&5( l 52 j
j l mpi( l ), m

51, . . . ,2j (m51 corresponding to the order paramete!.
Within the formalism, however, the powerssi

m must be con-
tained in the$SPa%, and their averages contained in th
$sPa%. The consistency of the theory indeed demands tha
of these variables~and more if the plaquettes contain mo
than one site! enter appropriately, though, as we have se
great simplifications occur for those that do not appear
plicitly in the interplaquette interaction termA.

Finally, in order to define the theory through a true ext
mum principle, we make the connection to the Bogoliub
method for constructing mean-field theories. The Bogoliub
inequality states that for any two HamiltoniansH̄ and H̄1,
with corresponding reduced free energiesF̄ and F̄1,

F̄< F̄11^H̄2H̄1&1 , ~A15!

where the average is with respect toH̄1. The strategy is to
pick an appropriate family of exactly soluble model Ham
toniansH̄1(l) depending on a set of free parameters gen
cally denoted byl. One then defines the Bogoliubov mea
field free energy via

FBog5min
l

$ F̄1~l!1^H̄2H̄1~l!&1%. ~A16!

Can one connect this procedure to the saddle-point me
above? The answer is yes:FBog is precisely equal toF̄MF
with the choice

H̄15(
P
HP$SPa%1(

P,a
HPaSPa . ~A17!

The minimization is over real values of the$HPa%. It may
seem curious that the$sPa% do not appear explicitly any-
where. In fact, the functional being minimized on the rig
hand side of Eq.~A16! is preciselyF$HPa ,sPa$HPa%;hPa%
in which the first line of Eq.~A9! has already been subst
tuted for the dependence of the$sPa% on the $HPa%. This
parametric dependence of the$sPa% on the$HPa% defines a
particular trajectory that not only is guaranteed to pa
through the saddle point, but for which the saddle point
actually an extremum.

The Bogoliubov procedure often produces an inconsis
free energy. The procedure above is guaranteed not to s
from this problem. The key ingredient, as we have seen
that a free minimization parameterHPa should be introduced
for each and every single plaquette variableSPa that appears
in A. This can actually be seen directly within the Bogoli
bov procedure: just asHPa in Eq. ~A7! vanishes if the cor-
respondingsPa does not appear inA$sPa%, it is easy to
show that the same is true in Eq.~A17!. Thus Eq.~A17! is
the most general form ofH̄1(l) that one need consider.
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APPENDIX B: FREE ENERGIES: INTERPLAQUETTE CONTRIBUTION

Using the formalism developed in Appendix A, the free-energy functional corresponding to the tiling shown in Fi
given by

F~6!$HPa ;sPa%5(
P

F~6!$HPa%2(
Pa

~HPa1hPa!sPa2l1K(
P

@sP1~sQ111sQ261sQ54!1sP2~sQ541sQ52!

1sP3~sQ231sQ36!1sP4~sQ451sQ461sQ511sQ52!1sP5~sQ441sQ45!1sP6~sQ231sQ211sQ44!#

2l2L(
P

@sP1~sQ131sQ231sQ52!1sP2~sQ261sQ451sQ511sQ55!1sP3~sQ111sQ251sQ21

1sQ441sQ54!1sP4~sQ441sQ431sQ531sQ54!1sP5~sQ231sQ421sQ461sQ52!

1sP6~sQ261sQ221sQ361sQ45!#2l1K(
P

sP1sP46

2l2L(
P

~sP1sP141sP1sP451sP2sP46!1~P→Q!, ~B1!

where we have defined two sublattices,P and Q, for the two different plaquette orientations, and the plaquette labels
shown in Fig. 10. The final term, denoted symbolically, is the interaction between plaquettes on the same sublatticQ and
takes the same form as the two previous terms. The scale factors,l1 andl2, have again been introduced. Notice that there
no obvious rotational symmetry to the interactions, and hence that the saddle-point values of thesPa will all be different even
in the unreconstructed phases. Note, however, that there is sufficient translational and inversion symmetry that the
independent ofP andQ.

Similarly, the free-energy functional corresponding to the distorted lattice tiling shown in Fig. 10 is given by

F~6!$HPa ;sPa%5(
P

F~6!$HPa%2(
Pa

~HPa1hPa!sPa2l1K(
P

@sP1~sQ241sQ36!1sP2sQ221sP3sQ33

1sP4~sQ211sQ56!1sP5sQ551sP6~sQ311sQ54!#2a1(
P

@sP2~sQ231sQ251sQ331sQ55!

1sP3~sQ321sQ351sQ221sQ55!1sP5~sQ521sQ531sQ221sQ33!#2a2(
P

@sP1~sQ251sQ35!

1sP2~sQ361sQ56!1sP3~sQ241sQ54!1sP4~sQ231sQ53!1sP5~sQ211sQ31!1sP6~sQ321sQ52!#

2b(
P

@sP1sQ111sP4sQ441sP6sQ66#2g(
P

FsP1~sQ221sQ33!1sP2~sQ211sQ24!

1sP3~sQ311sQ36!1sP4~sQ221sQ55!1sP5~sQ541sQ56!1sP6~sQ331sQ55!

2 1
2 d(

P
@sP1~sP161sP24!1sP4~sP361sP51!1sP6~sP441sP61!#2 1

2 d~P→Q!, ~B2!
e
o

e
nt
-
I
s

s

the
where the plaquette labels are shown in Fig. 10, and wh
the final term is again the interaction between plaquettes
the same sublatticeQ and takes the same form as the imm
diately preceding term. We choose the coefficie
a1 , a2 , b, g, d in order to best mimic the inter
plaquette interactions on the original undistorted lattice.
order to obtain the same overall interaction between each
and the other plaquettes we require 2l1K12a21b12g
12d54l1K15l2L ~for the corner sites! and l1K14a1
re
n

-
s

n
ite

12a212g52l1K15l2L ~for the edge sites!. This also en-
sures the correct values ofh2

in and h2
out quoted below Eq.

~2.20!. By somewhat arbitrarily matching up the variou
bonds in Figs. 8 and 10, we take

a15a25 1
2 l2L, b5 2

3 g5d5 1
3 ~l1K12l2L !. ~B3!

Finally specializing to the unreconstructed phases where
s ’s take the valueMout on the corner sites andM in on the
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4934 57ANOOP PRASAD AND PETER B. WEICHMAN
edge sites, we obtain the free energy

1

N
F~6!~H in ,Hout;M in ,Mout!

5 1
6 F~6!~H in ,Hout!2 1

2 @~Hout1h!Mout1~H in1h!M in#

2~l1K1 1
2 b1d!Mout

2 2~ 1
2 l1K12a1!M in

2

22~a21g!MoutM in . ~B4!

Substituting Eq.~B3! yields the final result~2.21! on which
we base our computations.

The seven site plaquette tiling shown in Fig. 9 yields t
free energy

F~7!$HPa ;sPa%

5(
P

F~7!$HPa%2(
Pa

~HPa1hPa!sPa

2 1
2 l1K(

P
FsP1~sP651sP161sP17!1~five terms!

2 1
2 l2L(

P
@sP1~sP671sP621sP141sP23!

1~five terms!#2 1
2 l2L(

P
sP4~sP171sP26

1sP331sP411sP521sP65!, ~B5!

where the plaquette labels are shown in Fig. 9. Similarly,
distorted lattice tiling in Fig. 11 yields

F~7!$HPa ;sPa%

5(
P

F~7!$HPa%2(
Pa

~HPa1hPa!sPa

2 1
2 l1K(

P
@sP1~sP651sP16!1~five terms!#

2 1
2 a(

P
@sP1~sP671sP17!1~five terms!#

2 1
2 b(

P
@sP1~sP621sP131sP231sP52!

1~five terms!#2 1
2 g(

P
@sP1~sP641sP14!

1~five terms!1sP4~sP651sP161ten terms!#. ~B6!

In order to best match the overall interactions betwee
given site and other plaquettes in Eqs.~B5! and ~B6! we
choose

a5 1
2 ~l1K1l2L !, b5g5 1

2 l2L. ~B7!
e

e

a

Specializing to unreconstructed phases thes ’s take the value
Mout on the outer ring of six sites and the valueM in on the
central site, we obtain

1

N
F~7!~H in ,Hout;M in ,Mout!

5 1
7 F~7!~H in ,Hout!2 1

7 @6~Hout1h!Mout1~H in1h!M in#

2 1
7 ~6l1K16a112b!Mout

2 2 12
7 gMoutM in . ~B8!

Substituting Eq.~B7! yields the final result, Eq.~2.23!, on
which we base our computations. In fact, since the tiling
Fig. 9 ~unlike that in Fig. 8! retains the rotational symmetr
of the plaquette, one may also simplify Eq.~B5! usingMout
andM in . The result is in factidentical to Eq. ~2.23!, which
further supports the choice of parameters, Eq.~B7!.

APPENDIX C: FREE ENERGIES:
INTRAPLAQUETTE CONTRIBUTION

In this appendix we perform the trace over intern
plaquette variables required to computeF (p). This computa-
tion is completely independent of previous consideratio
about how to embed the plaquette in the full lattice. In ad
tion, we may now account properly for the RSOS constra
simply by restricting the trace to those configurations t
respect it.

We begin with the simplest spin-1 model on the squ
lattice, Eq.~2.13! @Fig. 6~a!#, and the two sublattice magne
tizations, Eq.~2.12!. To obtain the free energy we need on
sum over all possible configurations of the four spins. T
RSOS condition implies that spins11 and 21 cannot be
nearest neighbors. There are 21 energetically distinct
lowed spin configurations and we obtain

F~4!~HA ,HB!52 ln@ tr~e2H̄0
~4!

2HA~s11s3!2HB~s21s4!!#,

52 lnF (
m50

2

(
n50

2

amncosh~mHA1nHB!G ,

~C1!

where, to simplify notation, we define

x5e2 1/2 L, y5e2 1/2 K, z5e2 h̃2, ~C2!

where h̃25h21l1K1 3
2 l2L. In terms of these variables,

a005114x4y4z2, a015a1054xy2z,

a025a2052y4z2, a1158x2y2z2,

a125a2154xy2z3, a2252z4. ~C3!

These equations, in conjunction with the saddle-point con
tions ~2.14! and ~2.15!, completely determine the thermody
namics of the model. Note that all spins are clearly equi
lent for this plaquette and we need not worry about inner a
outer values ofH andM as we did for the triangular lattice
@see Eqs.~2.21! and ~2.23! and below#. To describe the un-
reconstructed phases we may takeHA5HB[H. Equation
~C1! then simplifies to
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F~4!~H !52 lnF (
m50

4

amcosh~mH!G , ~C4!

where

a05114x4y4z2, a158xy2z,

a258x2y2z214y4z2, a358xy2z3, a452z4.
~C5!

For the six spin triangular lattice plaquette@Fig. 6~b!# we
consider only unreconstructed phases. As discussed in
II C 2 and in Appendix B we still need to keep two field
Hout and H in . There are 47 energetically distinct allowe
spin configurations and we obtain then

F~6!~H in ,Hout!

52 ln„tr$exp@2H̄0
~6!2Hout~s11s41s6!

2H in~s21s31s5!#%…

52 lnF (
m50

3

(
n521

3

amncosh~mHout1nHin!G . ~C6!

Defining x andy as in Eq.~C2!, and

zo5e2 h̃2
out

, zi5e2 h̃2
in
, ~C7!

where h̃2
out5h212l1K1 5

2 l2L and h̃2
in5h21l1K1 5

2 l2L,
the nonvanishingamn are

a005116x2y4zo
2 , a1056xy2zo16x3y6zo

3,

a0156xy4zi112x5y6zozi , a2056x2y4zo
2,

a0256x2y6zi
2 , a11512x2y4zozi16y6zozi ,

a1,2156x4y6zozi , a3052x3y6zo
3, a0352x3y6zi

3 ,

a2156x3y4zo
2zi112xy6zo

2xi ,

a1256x3y4zozi
2112xy6zozi

2 ,

a3156x2y6z0
3zi , a1356x2y4zozi

3 ,

a22512x2y4zo
2zi

216y6zo
2zi

2, a3256xy4zo
3zi

2 ,

a2356xy2zo
2zi

3 , a3352zo
3zi

3 . ~C8!

For the seven spin plaquette@Fig. 6~c!# there are 63 ener
getically distinct allowed spin configurations, and we obta

F~7!~H in ,Hout!

52 ln„tr$exp@2H̄0
~6!2Hout~s11s21s31s51s61s7!

2H ins4#%…

52 lnF (
m50

6

(
n50

1

amncosh~mHout1nHin!G . ~C9!

Using Eqs. ~C2! amd ~C7!, where now h̃2
out5h21 3

2 l1K

12l2L and h̃2
in5h213l2L, the nonvanishingamn are
ec.

a0051112x6y6zo
216x4y6zo

216x12y8zo
4 , a0152y6zi ,

a10512x2y3zo124xy8zo
3112x8y9zo

3 , a1152x2y7zozi ,

a20512x4y4zo
2112x2y6zo

316x4y6zo
2112x10y8zo

4 ,

a21512x4y6zo
2zi112x2y8zo

2zi16x4y8zo
2zi ,

a30512x4y5zo
3124x4y7zo

3 ,

a31512x4y5zo
3zi124x4y7zo

3zi14y9zo
3 ,

a40512x4y6zo
4112x2y8zo

416x4y8zo
4 ,

a41512x4y4zo
4zi112x2y6z0

4zi16x4y6zo
4zi ,

a50512x2y7zo
5 , a51512x2y3zo

5zi ,

a6052y6z0
6 , a6152zo

6zi . ~C10!

APPENDIX D: AN EXPLICIT RSOS MODEL
WITH A uDOF PHASE

In Sec. II we observed very generally that in a model w
renormalized parameteruR,0, whenyR changes sign, one
expects to see auDOF phase, characterized by a contin
ously varying upper layer coverage. However, none of
solid-on-solid models we have treated show this phase
this appendix we outline briefly the derivation of a mo
complicated RSOS model which does contain auDOF
phase.

The basic steps in the derivation are as follows. We fi
introduce the staggered eight-vertex~8V! model, which is
then shown to be equivalent to a staggered body-cent
cubic solid-on-solid~BCSOS! model.29 The free energy of
the staggered 8V model is invariant under a certain sym
try operation and this fact is then used to obtain a m
convenient 8V model. We then show that this modified 8
model is exactly mappable to a system of interpenetra
Ising spins with four-spin interactions. Finally we show th
the isotropic Ashkin-Teller~AT! model24 can be mapped
onto exactly the same Ising system. The AT model conta
a uDOF phase and this sequence of mappings then prod
a BCSOS model with this phase and a corresponding in
meshed layering phase diagram.

1. Vertex models

The 8V models are defined on a square lattice withdi-
rectedbonds between sites. Each site is constrained to h
an even number of bonds going in or out of it. This leads
six types of vertex with two bonds in and two bonds out, o
type with four bonds in, and one type with four bonds o
for a total of eight. Each vertex type has an associa
Boltzmann weight,wi5e2be i.0, i 51, . . . ,8. If thelast two
are given zero weight one obtains thesix-vertex ~6V!
model.30 The latter have a direct mapping to an RSOS mo
with the additional condition thatany two neighboring
plaquettes have a unit height difference. Thus each dire
line is associated with a surface step~up to the right, down to
the left!, and a unique correspondence can be made with
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pattern of bonds and a set of surface heights~see Fig. 21!.
Since nearest-neighbor heights always differ by one,
heights on each of the two antiferromagnetic sublattices
have the same parity: one sublattice will have all ev
heights, the other all odd. One may conveniently identify t
with the ~100! surface of a body-centered-cubic structu
and this mapping of the 6V model, therefore,definesthe
BCSOS model of the surface.

The 6V model can be solved exactly when the additio
symmetriesw15w2[a, w35w4[b, and w55w6[c are
imposed.31 The model shows a Kosterlitz-Thouless roughe
ing transition on the linea1b5c between a checkerboar
ordered phase (a1b,c) and a rough phase (a1b.c). If
the last pair of vertices, with weightsw75w8[d, are in-
cluded~see Fig. 22!, there is no longer a consistent mappi
to a set of surface height models, but exact solubility
maintained in certain subspaces.32 Although in our applica-
tions to roughening we shall always setd50, it is useful to
carry it along more generally until the end.

We shall require a further generalization of these mod
Since the two antiferromagnetic sublattices now corresp
to two different sets of~100! planes in a bcc structure,
natural generalization is to atwo-componentmodel with the
two sets of planes composed of two different species of
oms,A andB, forming a NaCl type of structure. As shown
Fig. 23 the 6V model now generalizes to astaggeredBCSOS
model with 12 vertices. As shown, we will still consider on
a three-parameter subspace of these models. The stag
8V model is defined similarly. As stated, it will be formall
useful to carry along the four extra staggered 8V model v
tices as well, all with weightd that will vanish in the end.

2. Equivalence of staggered BCSOS and AT models

In an obvious notation, letZ(a,b,c,dub,a,c,d) be the
partition function of the class of staggered 8V models
fined above. In order to map this model onto the AT mo
we will need the identity

FIG. 22. Vertices included~with, in the end, zero weight! to
allow the 6V model to be considered as a special case of the
model.

FIG. 21. The six-vertex model. Shown below each vertex i
schematic of the corresponding surface configuration.
e
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Z~a,b,c,dub,a,c,d!5Z~c,d,a,buc,d,b,a!. ~D1!

To see Eq.~D1! simply note that the vertices of the 8V
model can be thought of as lying in one of two sublatticesL1
andL2. For a given configuration, on any bond of the lattic
reverse the direction of the arrow only if the edge is horizo
tal ~vertical! and there is a site of sublatticeL2 immediately
to the right~bottom! of the edge. If the vertices are labele
by v i ,(i 51, . . . ,8) then under this transformation:v1↔v5 ,
v2↔v6 , v3↔v7, and v4↔v8 on both sublattices and w
have generated a new configuration. The weight of each c
figuration of the original model can be thought of as t
weight of this resultant configuration in a different 8V mod
and this immediately yields Eq.~D1!.

An Ising spin model with four-spin interactions is no
associated with the staggered 8V model introduced abov
follows. On each plaquette~of eitherA or B type! of this 8V
model we place an Ising spin and assume that spin on
special siteS0 is fixed so that it can only point up. A corre
spondence between the 8V configurations and the spin
figurations is established. If the arrow on an edge points
the right or up~left or down! then the product of the spins o
either side of the edge is11(21). We see that for each
arrow configuration there is a unique spin configurati
when we fix the one spin. Thus there is a clear mapping to
Ising spin system where interactions around a vertex~i.e.,
four-spin interactions! are allowed. It is then easy to see th
if we consider a Hamiltonian of the form

H52P (
^ i j &PA

si A
sj A

2Q (
^kl&PB

skB
sl B

2R(
V

si A
sj A

skB
sl B

,

~D2!

where the first two sums are over nearest neighbors on thA
andB sublattices and the last sum is over plaquettes, then
correspondences

c5exp~P1Q1R!, d5exp~2P2Q1R!,

b5exp~2P1Q2R!, a5exp~Q2P2R! ~D3!

@substituted into the right-hand side of Eq.~D1!; the mapping
produces an 8V model with nonzerod, and it is here that the
symmetry ~D1! is required to produce the required 6
V

FIG. 23. The 12 distinct vertices in the two-component BCS
model along with their Boltzmann weights.
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model# produces precisely the same Boltzmann weights
the two models. Freeing the constraint on the one spe
spin we haveZspin52Zstaggered 8V. Thus the staggered 8V
model is isomorphic to this Ising model.

Now, the AT model is defined on a simple square latti
On each lattice sitei there aretwo Ising spins,si and s i .
Spins on nearest-neighbor sites are coupled by two-
four-spin interactions:

HAT52(̂
i j &

~Ksisj1Ks is j1K4sisjs is j !. ~D4!

This defines theisotropicAT model ~more generally the two
K ’s could have been different; an extreme anisotropic lim
maps onto a certain one-dimensional quantum problem.25! If
a duality transformation is performed on one set of spins~say
the s spins; see Ref. 32 for details! then the AT model can
be expressed as a system of two interpenetrating square
lattices with four-spin interactions, precisely as above, w
the same Hamiltonian~D2!. The relation betweenP, Q, and
R of Eq. ~D2! andK andK4 of Eq. ~D4! is

exp~P1Q1R!5e2K1K4~11e24K!/A2,

exp~2P2Q1R!50,

exp~2P1Q2R!5A2e2K1K4e22~K1K4!,

exp~Q2P2R!5e2K1K4~12e24K!/A2. ~D5!

This completes the mapping of the BCSOS model o
the isotropic AT model. The AT model has been stud
extensively. Its full phase diagram can be found in Ref. 32
we definea5e2JA, b5e2JB, normalizec51 and taked
50 we then find

JA52K41 ln cosh~2K !, JB52 ln tanh~2K !. ~D6!

The phase diagram of the staggered BCSOS model can
be mapped out in terms ofJA andJB ; the relevant portion of
it is shown in Fig. 24. There is a line of continuously varyin
n
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.

d
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ing
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o
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en

exponents that splits into two Ising lines. In region I th
average height of the surface is an even integer and theA
sublattice is essentially completely ordered while theB lat-
tice is disordered with about half theB atoms at a height one
layer above theA lattice height and half of theB atoms one
layer below. In region III one has the complementary situ
tion in which theB lattice is ordered and theA lattice is
disordered. In region II symmetry breaking occurs, and t
average column height either increases or decreases cont
ously, interpolating between the phases in regions II and I
Thus if, as the temperature is varied, the system follows t
path PQ shown in the figure, then there will be two Ising
transitions with continuous surface height growth occurrin
between them. When, in addition, a substrate potential
present and the full chemical potential versus temperatu
phase diagram is mapped out, it will be as shown in Fi
1~d!. It should be noted that the filling factor of the top laye
u ranges continuously from 0 to 1~rather than from 0 to half
as in previous sections! because we have chosen to defin
one unit of height as one layer ofA atoms or one layer ofB
atoms instead of as being the sum of one layer of each.

FIG. 24. Staggered BCSOS model phase diagram witha
[e2JA, b[e2JB, andc51. The line labeled PQ is a path through
phase space that would yield the layering diagram shown in Fig.
with region I corresponding toy,2yR

c , region II to 2yR
c ,yR

,yR
c , and region III toy.yR
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