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Layering transitions, disordered flat phases, reconstruction, and roughening
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We study in light of recent ellipsometry, vapor pressure isotherm and specific-heat measurements on the
thermodynamics of adsorbed thin films on graphite, the connection between the layering phase diagrams of
thin films on periodic substrates and the thermodynamics of the solid-vapor interface of a semi-infinite crystal.
The latter is the limit of the former when the film becomes infinitely thick, and we are interested in connecting
this limiting behavior to the thermodynamics of films of finite thickness. We argue that the concepts of surface
roughening, preroughening, and reconstruction provide a quantitatively useful framework within which to
discuss this connection. Through general renormalization-group arguments and, in more detail, through a
self-consistent mean-field treatment that explicitly accounts for all relevant phases, we show that the same
types of interactions that lead to these different surface phases lead also to the reentrant layering transitions
seen in the recent experiments. By appropriate tuning of the mean-field parameters we can semiquantitatively
reconstruct all the observed experimental phase diagrams. It turns out that certain experimental phase diagrams
with “zippers” require that the preroughening transition become first order. Our renormalization-group argu-
ments predict such behavior in certain parameter ranges. In addition, for different parameters we predict the
existence of an, as yet unobservédjisordered flapphase with spontaneously broken particle-hole symmetry
and continuously varying surface height with an accompanying intermeshing layering phase diagram. The
underlying lattice in the experiments is triangular, and this actwailyanceshe stability of the disordered flat
phase and the corresponding reentrant layering transitions in the f©%63-182@08)04307-0

I. INTRODUCTION dimensional interface separating twmossibly different re-
constructed phases. In the event that the two phases are dif-
ferent, coexistence requires that the surface free energies

The study of interfaces between two different thermody-must match.
namic phases has yielded a remarkable variety of interesting Very different in character from the flat and reconstructed
phenomena. Some of the most fascinating behavior occurs phases is thegough phase At and above thaoughening
the interface between a bulk semi-infinite crystal and its vatemperature T<T, the flat phase step free energy vanishes
por. When the temperature is below the bulk triple pdipt and it becomes entropically favorable for the surface to wan-
(the temperature at which the crystal melts in the presence @fer. To describe this quantitatively, letn;a+n,b, where
the vapoy, the thermodynamics of the bulk crystal is smoothn; andn, are integers ané and b are primitive vectors,
and nonsingular. The crystal surface, on the other hand, cdabel the lattice points in the underlying crystal plane. Let
exist in many different phases. The simplest phase idlghe h(r) be the(intege) height of the surface above the lattice
phasein which the surface looks essentially like a bulk crys- pointr. Then, at the roughening temperature, the variance of
talline plane. This phase is characterized by the existence ¢f(r) diverges. More specifically, at and abovg, the
a positive surface step free enerfgy which discourages the height-height correlation function,
formation of plateaus or depressions in the surface. Although S o
a finite density of such imperfections will always be entropi- G(r—r")=3([h(r)=h(r")]1%, 1.9
cally favored, thg probabi!ity of their occurence will decreasejncreases logarithmically with separation:
exponentially with their size. Furthermore, if the number of
particles is such that the surface layelinsomplete phase 1
separation will occur and a single one-dimensional interface G(r)~ mln(r/ao), r=rl—ow, T,<T<T,,
will separate two macroscopic flat regions with a unit height R 1.2
difference between them. '

The flat phase is a special case of more generabn-  Wherea,=|al, say, is a microscopic length scale, aag(T)
structedphases. Here the surface layer, though only partiallynay be thought of as a renormalized surface tilt modulus. In
complete, nevertheless forms a periodic structure, commerihe flat and reconstructed phases, the variagde(r)
surate with the underlying bulk crystal lattice plane, but with—(h(r))]?) is finite and equal to the largelimit of G(r).

a larger unit cell, and a corresponding rational filling fraction ~ The transition into the rough phase is in the universality
6r. There are analogous step free enerdigs, which dis- class of the Kosterlitz-Thouless transition, which also de-
courage configurations of particles that deviate from perfecscribes the low-temperature magnetic ordering in the two-
periodicity. If the number of particles is such that the overalldimensionalXY model and the superfluid ordering in thin
filling fraction 6 of the surface layer deviates frofly, the  “He films. A consequence of this is thaght at the rough-
surface will again phase separate with a single oneening temperaturd,=T,, the renormalized tilt modulus has

A. Surface critical phenomena
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the universal valuKg(T,)=n/2. The value ofKg jumps a disordered flat phase witbontinuously varyingsurface
discontinuously to infinity belowl,, and decreases mono- coveraged(T) can exist. This§DOF phasewas first pro-
tonically with T aboveT, . In the XY model the heighta(r) ~ posed by den Nifsas a consequence of particle-hole sym-
appear in a dual representation of the original two-metry breaking corner interactions. However, we Sitokat
component spin model, andkyTKg(T) is proportional to  the same physics that gives rise to the first-order prerough-
the spin stiffnesgor superfluid densityY. There is an in- €ning mentioned above can, for different parameters, lead to
verse relatiorT = 1/Tyy between the temperatures in the two & SPontaneousreaking of particle-hole symmetry and cor-
models since the flat phase, wiky(T)=x, corresponds to espondingdDOF phase in a completely particle-hole sym-
the disordered phase of the magriet superfluid, with ~ metric model. Whether or not a given system will exhibit a
vy=01 disordered flat phase depends upon the detailed atomic inter-

It turns out that there is yet another class of possible syractions. It is c!ear tha_lt a rather sensitive balance of nearest-
face phases that may occur. These arediserdered flat ~and further-neighbor interactions may be requifetiA two-
(DOF) phase€~° which may be thought of as intermediate compon.ent “alloy” structure(a§ discussed in Sec. Il and
between the reconstructed and rough phases. As an exampfiPPendix D seems to be required to obser#®OF behav-
consider the(100 surface of a cubic crystal, and suppose!or
that the atomic interactions are such that at low temperatures
a kind of antiferromagnetic reconstructed phase with a
checkerboard patterrgg= 3) is stabilized. Now, as the tem-
perature rises, this phase may procefctly through a Everything we have discussed so far relates to a free sur-
roughening transition, analogous to that for the flat phaséace on a bulk semi-infinite crystal. This is important be-
(but with a form of long-range antiferromagnetic order per-cause it means that the potential experienced by an atom on
sisting. However, it is also possible, if the checkerboardthe surface is aexactly periodicfunction of the number of
pattern is only weakly stable, for the system to undergo arayers: if a completed layer contaihg, atoms, the addition
Ising transition that destroys long-range antiferromagnetico the surface of a furthed, atoms yields a state thermody-
order without roughening the surface. The surface layer isnamically indistinguishable from the original. It is this prop-
then basically a two-dimensional lattice gas at half-filling. erty that makes roughening and preroughening so different
This phase is called thdisordered flat phaseRaising the from more conventional two-dimensional critical phenom-
temperature further finally roughens the surface completelyena.

It is also possible to enter the DOF phase directly from If this discrete translational symmetry is broken, for ex-
the flat phasé:° The transition is driven by the entropy gain ample, by considering a crystalline slab of finite thickness, or
entailed by a disordered surface, and can occur even if thiey growing a finite number of layers of the crystal on a
energetics favors the flat phase. Note that this transitio8mooth substrate made of a different material, the surface
causes aliscontinuouschange in the occupancy of the sur- critical phenomena will change. Thermodynamics will no
face layer. If the total number of particles is fixed, this meandonger be periodic in the number of layers, and the types of
that the surface must phase separate into two disordered flgtirface phases may change drastically from layer to layer.
phases, one with an extra half-layer of atoms, the other witlHistorically, experimental work was directed mostly toward
a half-layer of “holes.” The phase transition, at a tempera-understanding monolayer physics. A rich variety of phenom-
ture T, <T,, is calledprerougheningand lies in a different ena, including commensurate-incommensurate transitions
universality class from that of all the other transitions dis-between various registered and “floating” phade®con-
cussed so far. For example, the specific-heat expamexain  stuction transitions, and dislocation mediated two-
take any value between the Kosterlitz-Thouless valwe,  dimensional meltind, occur in very thin films. These phe-
—o, and the four-state Potts value= 32, depending upon nomena have been explored experimentally using techniques
the system parameters and, in particular, upon the precissich as heat capacity measurements, x-ray scattering, vapor
strength of the tendency toward reconstructigihe more  pressure isotherms, neutron diffraction, and low-energy elec-
nearly stable the reconstructed phase, the larger the value trbn diffraction®
). It turns ouf that the preroughening transition can even However, our focus will be on multilayer phenoméfia.
be driven first order, a possibility that was missed in earlierThus we observe that, for a sufficiently large number of lay-
studies?™ ers, the surface thermodynamics must, in some way, ap-

The disordering of the checkerboard phase is only ongroach that of the perfect, bulk crystal surface. Conversely,
example of a DOF phase. In principle, corresponding to anyhe bulk surface phases and phase transitions must be re-
reconstructed phase is a disordered flat phase with the sarflected somehow in the behavior of a finite but sufficiently
coverage g separated from it by an Isingfor perhaps thick film. Motivated by the results of some recent experi-
Potts) type phase transition. However, we shall see thaments on rare gases adsorbed on graphité and MgO
DOF phases may also exist even without a correspondingRef. 19 substrates, the purpose of this paper is to explore
reconstructed phase ever being stable. This is crucial for thprecisely this latter issue. Figure 1 constitutes a complete
triangular lattice substrates relevant to the experimentgictorial summary of our results. All phase diagrams in this
where the analogue of th&dg=3 “antiferromagnetic” figure have been computed using a sophisticated plaquette
checkerboard reconstructed phase is frustrated and does noean-field theory, to be introduced in later sections, applied
exist. Nevertheless, as we shall seef-ai disordered flat to the restricted solid-on-soli(RSOS model. The model,
phase does exist, and is even more stable than its squandich will be introduced in detail in Sec. Il, contains two
lattice counterpart! In fact, there are conditibnsder which ~ parametersk=J, /kgT and L=J,/kgT, whereJ; and J,

B. Layering critical phenomena
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T
Pictorial summary of the essential results in this paper. The central plot shows a global phase diagram, as computed using a plaquette mean-field

theory on a square lattice, for the RSOS model of a bulk interface, Kvtll, /kgT and L=J,/kgT the nearest- and next-nearest-neighbor interactions,
showing the six possible different surface phases. Strictly speaking, all the roughening lines are actually absent in mean-field theory. The theory instead shows
a narrow crossover that we have used to estimate the positions of thesgséreble discussion in Sec. I\J.Q\ll other transitions, however, are sharp. The

inset shows schematically an alternative scenario containird D& phase. This scenario is not found in the RSOS model we ghefce the remaining

guestions about how some of the transition lines connexthuy is expected to appear in other models. Paths 1-5 represent possible experimental trajectories
through this phase diagram. The surrounding figures show the layering phase diagrams associated with these paths when a substrate potenti@)is included:
Pure roughening behavior and associated low-temperature layering transitions, gathCbntinuous preroughening behavior and associated reentrant
layering, path 2(c) First-order preroughening behavior and associated zippering, path@OF phase behavior and associated intermeshing, pdinset

to the central pldt The layering phase diagram in this case is computed from the sine-Gordon ¢{Bearyill) rather than the mean-field theory since our

RSOS model does not show this behavi@. DOF to reconstructed behavior and associated antiferromagnetic transitions within each layer, (Path 4.
Reconstructed-rough behavior and associated surrounding antiferromagnetic line, (gatkirst-order flat to reconstructed behavior, similarp but with

layering lines reversed, extension of path () First-order reconstructed to flat behavior, similar(® but with an antiferromagnetic line at higher
temperature, extension of path 4. A similar extension of pathd shown would move this antiferromagnetic line outwards, aggh to surround the
layering lines.
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are, respectively, nearest- and second-nearest neighbor inter- Although not relevant to present experiments, one may
actions between the surface heighig). For present pur- also cut through the DOF phase wilh<0, ending with a
poses one need only know that positi¥genergetically fa- reconstructed phase at lower temperatures. This is repre-
vors neighboring columns of equal height, while negafilye sented by path 4, and the associated layering phase diagram
favors a unit height differencel, is always kept positive, is shown in Fig. 1e). Here there is only one set of layering
and favors second neighboring columns of equal height. Théines, between half-integer coverages. However, for each
central plot in Fig. 1 is the bulk interface phase diagram forgiven film thickness an lIsing antiferromagnetic ordering
this model. We see clearly here the six different phases weansition takes place at intermediate temperatures. This tran-
have discussed, and the transition lines between thensition becomes the DOF-reconstructed phase boundary on
Shown also are five different experimental paths through théhe bulk interface. The roughening transition at higher tem-
phase diagram that we will outline here, and consider irperatures is again reflected in the sequence of Ising critical
detail in later sections. Associated with each of these paths isoints T , .

a layering phase diagram, Figsiat-(h), corresponding to Path 5 shows behavior for larget;|/J,, where the sur-
the same RSOS model but now including a substrate poterface roughens before it deconstructs, yielding an intermedi-
tial. ate reconstructed-roughphase. The associated layering

Path 1 shows ordinary surface roughening behavior. Thehase diagraniFig. 1(f)] displays a sequence of layering
relation between this behavior and layering critical phenomiransitions between half-integer film thicknesses lyamgmn-
ena is actually well known(see especially Ref. }6the  pletely withinan antiferromagnetic phase boundary. The na-
roughening temperaturg, is the accumulation point for the ture of the order within this boundary is quite subtle, corre-
sequence of critical point$. ,, that terminate the first-order sponding to antiferromagnetic order in the magnitude of the
layering transitions at lower temperatufsse Fig. 1@)]. The  mean-square fluctuationsf each column height, not in the
nth layering line separates phases with approximately integezolumn heights themselves. The latter symmetry is broken
film thicknessesp—1 andn, and ends in an Ising critical only belowT .
point T . We also show layering phase diagrams for somewhat fan-

Paths 2, 3, and '3cut, in various ways, through th&  ciful continuations of paths 1 and 4 that cross the first-order
>0 portion of the DOF phase, and are the primary focus oflat to reconstructed phase boundgsge Figs. (g,h)]. There
this paper. Path 2 corresponds to ordinary preroughenings no experimental evidence fdy changing sign as a func-
Den Nijs has proposed some possible associated layerirtgpn of T, but the resulting phase diagrams are remarkably
phase diagranmsThe basic idea is that there should be twosimilar in appearance to Fig(d), associated with first-order
sequences of layering transitions. At low temperatufes preroughening, and the experimental results for Argon and
<T, there is a sequence of first-order layering transitionKrypton on graphité>*>" The continuation of path 1,
between integer coverages, while at higher temperaiflijes shown in Fig. 1g), is identical to Fig. {c), except that the
<T=T, there is a sequence of first-order layering transitiondnteger and half-integer layering lines are interchanged.
between integer-plus-one-halér, more generally, integer- Ellipsometry* and vapor pressure isotherm mea-
plus-fg) coverages. The second set of lines must thereforsurement$?—***8however, are sufficiently accurate to rule
be reentrant, with upper and lower endpoifts, and Tﬁ, out such an interchange. The continuation of path 4 shown in
respectively. The low-temperature set have only upper endrig. 1(h) has the two sets of layering lines in the correct
points TL. The temperature¥,, , still tend to T, asn—o.  order, but, just as in Fig.(&), involves also an antiferromag-
What was not previously understood is in what wiiat all) ~ Netic Ising phase boundary. A similar extension of path 5
the endpointsT2 and T% are connected together. Den Rijs (N0t shown would detach this Ising boundary completely
suggests two possibilitiegi) TX and T2 are Ising critical  [FO™ the layering lines, exactly as in Figigh, and the phys-
points as areT, ,, with Tﬁ,Tﬁ—>Tpr, and are not connected €S would then have nothing to do with the DOF phase at all.

: . - . ) ) We have not shown this latter phase diagram explicitly be-
in any way[Fig. .1(b)]; ('!) Ty andT, aretnple points z_|pped ..cause the mean-field theory bch):omes nu?nericall;? vergll hard
together by a zigzagging sequence of first-order lines, W'tl?o control for larger|J,|/J, (see the discussion in Sec.

Tn.Ta—To [Fig. 1c)]. We distinguish betweeli,, andTo || ¢ ). Once again, there is no evidence for any of these
fqr_ reasons that will become obvious b_elow. A_nother POSSiscenarios in any of the experiments.

bility (iii) is that thle IW? sets Sf Ia;z/erlng Ilnzeete[me_sh As mentioned, the experimental graphite substrate lattice
with distinct limits T, — Ty and T, — T whereT/<T; [Fig. s triangular. Indications are that the reentrant layerings nev-
1(d)]. The high-resolution heat capacity studfes’suggest  ertheless occur at half-filling. Althoughs=3 reconstructed
possibility (ii). We will s_hq\_/v_ that, depending on the param- phases, such as those with every secoma missing, do
eters, all of these possibilities, as well as others, can occupyist on a triangular lattice, they do not arise in a natural way
Possibility (i) indeed corresponds to a continuous preroughis the interactions are isotropic. It is likely, then, that for the
ening transition, path 2; whiléii) corresponds to dirst-  ogels we consider here there is no stable half-filled recon-
order transition between flat and DOF phasd@g @enoting  siructed phase. Until now, this was thought to be a problem
then the first-order preroughening temperatupath 3; and  for the DOF phase interpretation of reentrant layefivghat

(i) to a #DOF phase in the temperature inteVE{<T  we will show, however, is that the absence of a reconstructed
<T/!, path 3. The bulk interface transitiori? and T{ are  phase actuallyenhancegshe DOF phase, and that there are
also Ising like, and in th&dDOF phase one has a continu- two factors that one must consider in determining the filling
ously varying surface coverages®(T)=< 3 with 0(T,1)=0 fraction 6 at which it occurs. Thus, although it @nergetics
and 0(T|2) =1 that favors a DOF phase with filling fractidfy, it is entropy
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In Sec. Il we introduce the RSOS models of crystal-vapor
interfaces and discuss their general properties. A great deal
of intuition can be obtained by considering the limit of a
strong substrate potential and restricting the model to a small
number(two or three of layers. One then obtains effective
. spinj (with j=3 or j=1) Ising models whose phase dia-
grams can be understood quite generally. A plaquette mean-
field formalism is then developed for later detailed computa-
tions.

In Sec. Ill we will use generalized sine-Gordon models
along with renormalization-group arguments to discuss the
phenomenology of the layering phase diagram. In so doing
we will uncover the four basic classes of layering behavior
for thick films shown in Figs. (&)—(d).

In Sec. IV we explore solutions to the mean-field equa-
tions, classifying, to some extent, the possible phase dia-
grams. We find that the RSOS model exhibits, depending on
parameters, the first three behaviors described above, but not
the fourth. As mentioned, theDOF phase requires a more

FIG. 2. Global phase diagram, as computed using a plaquettgenerm “alloy” RSOS model. In addition, we explore a
mean-field theory on a triangular lattice, for the RSOS model of gy mber of phase diagrams that do not have sine-Gordon
bulk interface. The reconstructed and reconstructed rough phaseﬁlode| descriptions, namely, those that involve reconstruc-
and transitions associated with them, arg now absent, Ieadir)g tot?on. As alluded to above, some of these mimic closely some
muc.h e_nlarged DOF phase. The behavior #or 0, h_owevz_er, 'S" ofthe phase diagrams involving preroughening, but there are
qualitatively unchanged from that for a square lattice, Fig. 1. Insigniﬁcant experimentally observable differences
particular, paths 1, 2, and 3 exhibit behavior qualitatively identical In Sec. V we conclude by comparing the theolretical and
to that shown in Figs. (B)—(c). Path 4 yields behavior similar to ex erimeﬁtal hase diagrams. We also describe future work
that in Fig. 1e) except that the antiferromagnetic line is now hp iaht h Ip in th 9 h.f . |
absent—the upper layer remains disordered to arbitrarily Tow that mlg t help in the search for new expe.rlmenta systems
The roughening line is again estimatéske the discussion in Sec. that d'_Splay the so _far unobse_rved phase dlggrams._ .

IV C). Various appendices contain more technical derivations.
Appendix A contains a formal development of consistent

that drives the preroughening transition and disfavors integeplaquette mean-field theories. In Appendixes B and C ex-
filling fractions. In the absence of the former, the latter will Plicit expressions for the free energies on various lattices and
tend to form a DOF phase halfway between the two boundfor various plaquettes are derived. In Appendix D the
ing integer coverages even in the absence of an “attracting®€quivalence between the body-centered-cubic solid-on-solid
incipient reconstructed phase, just as seen in the expeBCSOS model and the Ashkin-Teller model is outlined and
ments. The triangular lattice bulk interface phase diagram, adis is used to exhibit an RSOS “binary alloy” model with a
computed using our plaquette mean-field theory, is shown i#fDOF phase.
Fig. 2. As can be seen, the main difference between this

figure and the central phase diagram in Fig. 1 is the absence Il. MODELS AND METHODS
of the reconstructed and reconstructed rough phases, and the A. Solid-on-solid models
correspondingly expanded DOF phase. Khie0 portion of
the phase diagram is, however, qualitatively unchanged.

Solid-on-solid(SOS models are conventionally used to
model interface phenomena. In these models the vapor phase
above the surface is taken to be a perfect vacuum, while the
solid phase below is taken to be a perfect crystal, and surface

In this paper we will examine various solid-on-solid mod- overhangs are ignored. The surface is then defined by a set of
els of surface critical phenomena in the presence of a sulsolumn heights h(r) above a two-dimensional lattice
strate potential. It is our aim to understand the conditionspanned by the index. To begin with we shall assume a
under which possibilitie$i), (i), (iii) (or perhaps something simple square lattice with(r) taking integer values. Later
entirely differeny occur. Much can be understood qualita- on we shall discuss the experimentally more relevant case of
tively based on the sine-Gordduolosely related to the Cou- a triangular lattice. In fact, the bulk crystals considered here
lomb gas representation of the roughening and preroughenhave a face-centered-cubic structure in which sequential lay-
ing transitions’ generalized to include a substrate potential.ers of atoms sit in the interstices of the previous layer. Al-
However our main quantitative tool will be a mean-field though, for a giver, h(r) can change only in integer steps,
theory sophisticated enough to account for all of the possiblaeighboring heights will then differ by noninteger amounts.
surface phases. Since the issue here is really the topology &br simplicity of modeling, we shall ignore this complication
the phase diagram, rather than the nature of the critical pointand take the triangular lattices to lie one on top of the other
(which are all Ising like for finiten, and, in any case, the so that allh(r) are integers? In the restrictedsolid-on-solid
experiments do not resolve detailed critical behgviane  models, the further constraint is imposed that neighboring
can go a long way with mean-field theory, even to the pointtolumn heights can differ by at most unity. This reflects the
of obtaining semiquantitative results. physical constraint that it is energetically unfavorable to

C. Outline
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It is for this reason that absorption isotherms, which essen-
tially measurehe (A, T)=(h(r)) as a function ofA u for
fixed T, are often plotted versusu ~/3: the steps due to the
sequence of layer completions then occur with roughly equal
spacingt®*3

The physics behind Ed2.1) is as follows. Consider first
a bulk interface withv=0. If J, is positive and large com-
pared toJ,, the energetics give preference to a flat interface,
and the model will produce a standard roughening transition
with increasing temperature whekK=J,/kgT and L
=J,/kgT are sufficiently small. I1fJ;<0 and is large in
magnitude compared td,, neighboring column heights pre-
fer to differ by unity. However, sincé, prefers that diagonal

o nearest-neighbor column heights have equal height, an anti-
form steps of greater than unit height. In the RSOS modelgsrromagnetic order is stabilized at low temperature: this is

the energy barrier against such steps is simply taken to bge checkerboard reconstructed phase KAdecreases, this

infinite. This constraint greatly reduces the number of Sur'phase roughens, but still retains a generalized long-range an-

face configurations and, therefore, simplifies certain analytigitaromagnetic ordet. A second Ising-like transition, at
and numerical calculatiorisee below without affecting the  pigher temperature, into a fully rough phase is required to
basic physics. It also decreases the _conﬂguratlonal entropyma"y eliminate this residual order. However, <0 is
and roughness, of the surface relative to that of, say, thgiiciently small in magnitude, the antiferromagnetic order

interface between oppositely magnetized domains in a thrégs pe |ost, via an Ising transitiobeforethe surface rough-

dimensional Ising model. This tends to stabilize more deligng. this s the transition to the disordered flat phase. This

cate phases, like the disordered flat phase, which rely on F?hase actually persists also for smhlt>0: the entropy gain
critical balance between configurational entropy and step. ., disordering the surface more than offsets the loss of
free-energy barriers. Clearly, whether the SOS model, RSOCF

model, or something in between, is most appropriate depen
upon the details of the system being modeled.

Following den Nijs* we first consider the RSOS Hamil-
tonian on a square lattice,

4.0

V(h)

2.0

0.0

FIG. 3. Substrate potentia¥j(h).

rromagnetic energy. The central plot in Fig. 1 shows how
fiese four phases fit together.

Now, how are these phases affected by the presence of
V(h)? The effect on the rough phases is catastrophic! Since
V(h) prefers a set of values &f nearhy(Au), the correla-
tion functionG(r) [see Eq(1.1)] must always remain finite

H=13, D [h(r)—h(r")]>+33, > [h(r)—h(r")]? as |r|—o. The logarithmic divergence in Eq1.2 must
(rr’y (r.r" saturate. We may estimate the saturation value as follows:
assuming that the interface does not wander too far from the
+ > V[h(n)], (2.1  minimum, it will be governed by the effective Hamiltonian,
-
. . . - Hef‘f 1
where the first sum is over nearest neighbors and the second He= kaT =§J d?r[Kg/Vh|?+ k(h—hg)?], (2.4

sum is over secondi.e., diagongl neighbors. We assume
J,>0 always, butl; can be either positive or negative. The \yhere
external potentialy/(h) [in the absence of which, ER.1) is

precisely the model treated in Ref] i§ due to the substrate, 92V Ap|@rall+a
and takes the forfi (see Fig. 3 kBTK:<W) ~a(a+1) —C) ~AuB
h=h, @
hAu+v(h), h=0 (2.9
V(h)= 22 . . . .
«, h<0, is the curvature at the minimum, ari€; is the effective

long-wavelength(renormalized tilt modulus[see Eq.(1.1)]
in the absence o¥. This Hamiltonian is Gaussian, and
yields

with v(h)~ch™¢ for large h.?° For a van der Waals sub-
strate potentialg=2 andc>0. The linear coefficientA u
= Ueoex— M, 1S the deviation of the chemical potential from

bulk solid-vapor coexistence. Fdru>0 the bulk phase is d2q 1 1 Ky
vapor, while forA 4 <0 the bulk phase is solid. A true bulk ((h—hg)?)~ 2% Kot = 1K In| 1+ iz
equilibrium interface exists only fak u =0 (precisely analo- a=wfalem)” BRRA™T i 4TER K
gous to external magnetic field=0 in an Ising model If 240 1 c\ 1

J; and J, are both positive, then at zero temperature the ~17a 47TKRIn H <;, (2.6

interface is perfectly flat and its equilibrium position is at the

minimum, ho(A w, T=0), of V(h) (over integer values df).  \yhich also estimates the saturation valueaqf). The final

For smallA x the minimum diverges as inequality tells us, self-consistently, that although the inter-
face width diverges logarithmically asu— 0, the interface

13 Au—0. (2.3 remains sufficiently close tiy that the quadratic approxima-

ac | Ma+a) -
Dl tion remains valid.

ho(&“)*(m
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Clearly, the flat phases will be affected by the potential in

much more subtle ways. They will, of course, remain flat. (@) Hy (K>0)
The question we address is the nature of the various transi- First order
tions between them in the presenceugh). (hemtD) F fie h=n+172
e [
B. Effective layer Hamiltonians i T, T 1K)
From the general Hamiltoniaf2.1) one can derive vari- ()
ous approximate effective Hamiltionians for describing the
thermodynamics of individual layers. The basic idea is that if
the effective potentiaV/(h) increases rapidly to either side of
the minimum neahy(A x), then large deviations of the col-
umn heights fromh, will be strongly discouraged, and, to a (K<0)
good approximation, one can suppress all valudy of out- ® y
side of some narrow range. If this range encompasses an o e o
integer J +1 of values, one then has reduced the full Hamil- He / 2 ordertine
tonian to one of a classical spjnising model. It will tran- h=n+1/2
spire that a description of the thin-film analogue of the dis- taias /; R
ordered flat phase requirgs 1. However, we will begin our A T, T(«_UK)'
discussion with the simpler spifimodel. /’
1. Spin-j Ising models He W e

A spin-3 description is valid if the the substrate potential
is so strong as to allow essentially only one value of the FIG. 4. (a) Ferromagnetic an¢b) antiferromagnetic Ising phase
column heights, except when the value &of. is such that diagrams for.=0.
two column heights, sag andn+1, are nearly degenerate
in energy. In this latter situation the true minimum\éth)
lies nearn+ 3, andV(n)~V(n+1). Physically, we expect
this to be a valid description for films only a few layers thick.
We define the spig-variabless(r) via

antiferromagnetic order survives ifl is not too large.
Clearly, one must havi€.(0)= —K,. This line terminates at
T=0(K=—) for a critical value of the fieldH=+H,,
with H.=—2J,. SinceL>0 encourages the alignment of
—1 if h(r)=n diagonal nearest-neighbor spins, it enhartoeth ferromag-

s(r)= . (2.7 netic and antiferromagnetic order. It is not too large, the
+1 if h(r)=n+1. . g
phase diagrams are qualitatively unchanged.
Ignoring all other possible values &if(r), the Hamiltonian For large L>0, new behavior occurs. Suppoge=0.
now becomes Then the two interpenetrating sublattices are decoupled, and

L provides a nearest-neighbor ferromagnetic coupling within
H~Hy=3K > [s(r)—s(r')]2+iL Y, [s(r)—s(r")]? each one. Thus, & =0 and a critical valuel, =K, the two

(') (" sublattices will independently order ferromagnetically. We
may view a small value oK as a perturbation on this be-
- hEr s(r), (2.8 havior, which then determines how these two sublattices ori-

ent relative to one another. k>0 (but arbitrarily small the
where H=H/kgT, Hip=Hip/keT, h=H/kgT with H  two will order parallel to each other, yielding an overall fer-
=3[V(n)—V(n+1)] an effective magnetic field, and we romagnetic state; IK<0 (but arbitrarily small the two will
have dropped an overall constant ter@®=3[V(n)+V(n  order antiparallel to each other, yielding an overall antiferro-
+1)]N4 where N, is the number of atoms per layer. We magnetic state. There is, therefore, a first-order transition
should really distinguish between the coupling constdts from one ordered state to the other whemeverses sign at
andL that appear in Eq2.8) and those that appear in Eg. large enouglt. This is seen in th&-L plane atH =0 in Fig.
(2.1 because the former are effective parameters that wilb(b).
differ somewhat from the latter in a way that depends upon For nonzerd the ferromagnetic part of the critical line is
how good an approximation the spjrmodel is. For simplic-  destroyedsee Fig. B)], but the antiferromagnetic part sur-
ity of notation, however, we will not make this distinction vives, and must merge somehow with the extension of the
explicit. ForL=0 this is the standard two-dimensional Ising first-order decoupling lineK=0, L>K_.. For largeL it is
Hamiltonian. IfK>0 the model is ferromagnetic, and when easy to see that the latter moves to negatlye: —3|H|
H=0 there is a phase transition to a state with finite magnesince a finiteK <0 is now required to overturn one sublattice
tization asK increases through a critical valke=K; [see  against the field. For small the transition remains second-
Fig. 4(@]. If K<0 the model is antiferromagnetic. Sinee  order. How the two behaviors connect at intermediatis
does not couple directly to the staggered magnetization ordesurprisingly complicated: for smallgd the two meet in a
parameter in this case, there isliae of transitions, K tricritical point, while for largeH the second order line ends
=K,(H) [see Fig. 4b)], to states with finite staggered mag- in a critical endpoint on the first-order line, while the first-
netization. Thus, although polarizes the spins somewhat, order line ends in an Ising critical poiiisidethe antiferro-
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(a) eters will be slightly different since the precise shape of
H H V(h) has changed, but the same physics will how repeat,
15 20 with H=3[V(n+1)—V(n+2)]. In particular, a new layer-
—_ ing transition between+ 1 andn+ 2 layers will now occur.
\ i \\\,\\ Repeating this whole process indefinitely generates the entire
os =y \ infinite sequence of layering transitiori$ig. 1(a]. Of

\ course, our assumption th&t(h) effectively isolates only
; two layers breaks down as the number of layers increases,
s / / but the picture actually remains valid. The point is tiat
' 0 / prefers a flat surface, and Hd8éas shown that the end-
A / points of the layering transitions accumulate at the roughen-
ing transitionfrom the low-temperature siddherefore the
fii) i) 0 renormalized tilt modulu& in Eq. (2.4) is still infinite, and
(iv) (i) the interface is flat right through the Ising transition. It is
therefore a combination of a weak minimum\igh) and the
fact that T, ,<T, that maintains the correctness of our
simple picture. These results are qualitatively unaffected if
L>0 sincel just enhances the stability of the flat phase
somewhat.
Consider nextK<0. The original RSOS Hamiltonian
does not really make sense in this casd.f0 since the
15 onder susface between surface will always be rough: in the absence of a strongly
wo AFM phases localizing substrate potential, one needs a fidifdo stabi-
A P lize a flat surface at low temperatures. The corresponding
2 arder suface effective layer Hamiltonian must then have a positiveAt
retracritical point low temperatures, then, the first-order layering lines now
line of tricritical points broaden out into second-order lobes enclosing checkerboard
ordered phases that exist in the intervalH (T)<H
FIG. 5. Ising phase diagrams for>0: (8) H vs T phase dia- <H/(T) [see Figs. &) and 5a)]. As above, there will be
grams showing tricritical behavior fdk, /|J;|> ], and critical-end-  one such lobe for each value of If V(h) is sufficiently
point behavior forJ,/|J1|<js.. Figure 4b) is recovered as steep so thaH passes throughi, before \(n+2)—V(n
J21|3,|—0. The paths labeled, (ii), (iii), and (v) refertothe 4+ 1) becomes smaller than|B|, then the transition line
corresponding parts of Fig. 19 belown) Three-dimensional plot, yeaches right tof =0 and is completely disjoined from the
with details of the tricritcial and critical-end-point structure shown. ~heckerboard phases at neighboring coverages. In principle,
all of the complicated triple-point or critical-end-point struc-
magnetic phase. £etracritical point at a particular value of ture will appear as well. This is shown towards the bottom of
H=H_,4, separates these two behaviors. This is shown schd=ig. 1(e). If, on the other handy(n+2)—V(n+1) becomes
matically in Fig. %a). A three-dimensional phase diagram in smaller than §,| beforeH passes throughi., the neigh-
the full H-K-L space is shown in Fig.(B). All this will be boring lobes will overlap and one will have fast-order
described in more detail in Sec. IV. transition between neighboring checkerboard phases at low
Let us now understand the relationship between this phasemperature. This must happen for sufficiently langand is
diagram and the layering transitions in the solid-on-solidshown in the upper-left-hand parts of Figel
model. Consider firsK>0 andL=0. At low temperatur& What happens at higher temperatures? There are two pos-
will be larger tharK., and asH passes through zero a first- sibilities, depending upon the relative strengthd paindJ,.
order transition will take place between the spin-down ferrodf J, is large compared td;, then the layering tendency is
magnetic phase and the spin-up ferromagnetic phase. Thétronger than the reconstruction tendency, and will survive to
corresponds to a first-order layering transiti@s a function  higher temperatures. Therefore, as the temperature rises, first
of Au) betweenn completed layers, with a dilute gas of the reconstructed phase disorders, while the sttoagntin-
atoms(whose density varies continuously with<0) inthe ues to maintain a flat, roughly half-filled surface. The
partially completed 1§+ 1) st layer, andi+1 completed lay- second-order antiferromagnetic Ising transitions then termi-
ers with a dilute gas of “holes’{whose density varies con- nate at critical endpoints on the first-order layering lines. As
tinuously withH>0) in the (h+1)st layer, occurring pre- the film thickens the reconstruction transitions accumulate at
cisely whenV(n) and V(n+1) are degenerate. This first- the bulk surface reconstruction transitioh=Tg. Mean-
order line terminates in an Ising critical point, above whichwhile, the first-order layering lines terminate at Ising critical
the layers grow continuously. points T, ,, at higher temperatures. These critical points ac-
As A decreases furthel(n+2) eventually becomes culmulate at the bulk surface roughening transitioe; T, .
degenerate witV(n+1), and we leave the domain of valid- The bulk surface phase in the intervBk<T<T, is pre-
ity of the Ising model(2.8). However, we may now ignore cisely the disordered flat phase. This scenario is pictured in
thenth layer, which is essentially full and inert, and considerFig. 1(e).
a new effective Ising model, of the same form as Ex8), If, on the other hand), is large compared td,, the
for the (n+1)st and 6+ 2)nd layers. The effective param- reconstruction tendency is stronger than the layering ten-
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dency. Therefore, as the temperature rises, the layering criti- Although checkerboard reconstruction is described by the
cal points,T=T,,, will occur completely withirthe recon-  effective spins Hamiltonian, the layering behavior discussed
structed phase. A single second-order reconstructioin the previous p_aragraphs is_not since _it involves three val-
transition line will now enclose all of the layering transition ues ofn. To derive the layering behavior from the RSOS
lines (for sufficiently largen), terminating at the bulk surface model one must use at least a spin-1 Hamiltonian, which
rough-to-reconstructed-rough transition. The layering endtakes the general form

points will accumulate at a lower temperatufies T, , cor-

responding to the bulk surface reconstructed-flat to Hy=1K E [s(r)—s(r’)]2+ 5L 2 [s(r)—s(r")]?

reconstructed-rough transition. This scenario is pictured in (' ("

Fig. 1(f). The numerical convergence of the mean-field

theory becomes quite finicky in this regime of strongly nega- _ hE s(r)+ hzz s(r)?, 2.9
tive J;/J,, hence the overly jagged antiferromagnetic line T r

(better choices of parameters would improve this, but this
regime is not our primary interest and we have not pursue
such improvemenjs

Even more interesting behavior occurs if the effective
coupling K changes sigras a function of temperature at a
value ofL larger thanL.. One may obtain phase diagrams
that show both integer and half-integer layering. In Fig) 1
we show the case whetk is antiferromagnetic at low tem-

peratures, turning ferromagnetic at high temperatures. The' e ) )
result is similar to that shown in Fig.(d), including a zig- ~ .~ for [s(r) —s(r")|=2. Detailed computations of the lay-

zagging line of first-order transitions that zip together the®"NY behavpr descnbe_d N .the previous paragraphs using
two sets of layering lines, differing only in that it is now the tis model will be described in Sec. IV.

integer layering lines that are reentrant. In the bulk interface
limit there are still two phase transitions. The surface is re-
constructed at low temperatures, converts to the flat phase The spin-1 model is also required to understand the film
via a first-order transition af=Tg, and finally roughens at analogue of the DOF phase. Recall that preroughening in-
T=T,. The two sets of layering triple pointd;> and T:  volves a transition from a flat phase to a disordered recon-
must accumulate at the same poifit= Tr, because when structed phasé.e., a disordered flat phasén the context of
J;=0 only J, stabilizes the flat surface. For thick filnds a thin film, the disordered flat phase will correspond to a
does not distinguish between half-integer and integer layerg&heckerboard phase that has “melted,” but nevertheless re-
so the switch from one to the other must take place essert@ins a preference for a certain density of atoms, namely a
tially over a vanishingly small temperature step. half-filled layer. To describe this properly the model must

In Fig. 1(h) we show what happens J, is ferromagnetic  allow for two such phases: one with an extra half-layer on
at low temperatures and antiferromagnetic at higher temperdop of the flat phase, and one with a half-layer missing from
tures. The possible behaviors are identical at high temperdhe flat phase. This is crucial because it will turn out that
tures to those shown in Fig(é [or to those shown in Fig. these two phases arise from a kindsyimmetry breakingn
1(f) for a similar extension of path]5The only difference is the flat phase. Given this, it is clear that three different layers
that at low temperatures a new series of layering transitiongnter the physics in a crucial way, and the effective layer
between integer coverages takes over. These connect to th@miltonian must allow three different values of the spin.
half-integer layering transitions in the same way as shown in The disordered-flat phase on a bulk crystal interface oc-
Fig. 1(g), except that high and low temperatures are reversedurs for smallK and moderate, but>0 sufficiently large
In the bulk interface limit there are now three transitions: athat|h(r)—h(r")|=2, wherer andr” are second neighbors,
first-order transition from flat to reconstructed flat at low is discouraged. The surface therefore is not roughKyand
temperatures, followed by an Ising transition to the DOFL are weak enough thé&i(r) does not condense into a flat or
phase, followed finally by a roughening transition to the film reconstructed phase, preferring instead to take advantage of
analogue of the reconstructed-rough phate last two the entropy gain associated with a half-filled disordered
would be reversed for the similar extension of path 5 layer. ClearlyJ; can have either sign, but we will be inter-

In neither of the two scenarios shown in Fig&g)land(h)  ested inJ;>0 so that the flat phase eventually stabilizes at
is preroughening involved because the reconstructed surfadew temperature. In the context of a thin film we are there-
never disorders, but simply converts to the flat phase whefore asking the following question: =0 butH,=0 (so
J, changes sign. We emphasize these scenarios only becaubats=0 is nominally preferredare there conditions under
they mimic Fig. 1c) but contain completely different phys- which bothK and L are positive(so that, agains=0 is
ics. Figure 1h) is especially similar since it is the half- nominally preferrefl and yet a spontaneously broken sym-
integer layering lines that are reentrant. In both phase diametry exists withM =(s(r))# 0? Clearly theground stateof
grams, the first-order zipper appears. The difference now i%{; under these conditions &r)=0, but there may be an
that there is a higher-temperature Ising line below which theentropy drivertransition to a state witM #0 in some inter-
rough surface reconstructs. For the experiments that we willal of temperatures. At high temperatures this symmetry
discuss, these scenarios are unlikely as there does not sedmeaking will be destroyed due to complete disordering of
to be any indication that reconstruction takes place. the film. At low temperatures it will be destroyed as energet-

here we have used the parabolic formhs+h,s?, with
>=H,/kgT, to fit V(h) for h=n—1,n,n+1, and dropped
an overall constan€;=V(n)N,. Clearly the two param-
etersh,h, are all that are required. The restricted solid-on-
solid (RSOS condition nhow comes into play: since nearest-
neighbor sites can differ in height by at most unity, spin
configurations in whichs(r)=+1 and s(r’')=-1 for
@earest-neighbor sitasandr’ are disallowed—in effecK

2. Film analogue of the DOF phase
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FIG. 6. (a) Four-spin plaquette for the square lattice containing | PN
: ) . . . o > ° o
two spins from each of the two sublatticéb) Six-spin plaquette 3 |# 73 4
for the triangular lattice that violates the full rotational symmetry of Pe - P P
. : . X o 6o | 058 | 0 4e
the lattice, but treats the three sublattices symmetrically, keeping 2 1 2 1
two spins from each(c) Seven-spin plaquette for the triangular
lattice that has the full rotational symmetry of the lattice, but breaks ¢ o e ©o e O
the symmetry between the three sublattices.

FIG. 7. A natural tiling of the full square lattice by the four-spin
laguette that maintains the symmetry of the lattice as well as the
mmetry between the two sublattices.

ics wins out over entropy. Although this scenario yields re-
entrant behavior of the type we seek, a calculation is require
to see which of Figs. (&)—(d) give the correct global picture.
Note that it is theabsenceof reconstruction in the DOF {qr the square lattice plaguette there is a natural choice which
phase that eliminates the Ising line that is present in Figis shown in Fig. 7. Let us begin by ignoring the RSOS con-
1(h). straint. Applying the formalism of Appendix A to the Hamil-

tonian(2.9), the single plaquette Hamiltonian corresponding

C. Mean-field formalism to Fig. 7 is

The main calculational tool that we will use to explore the H® =1k 2 2 2 2
) . . ; . ) =5K[(81=55)°+(S5—S3)°+(S3—S4)“+(S4—S
guestions raised in the previous subsection is a self- 0" = 2KL(S178) 4 (5,7 89) "+ (Sg = 8) "+ (84— 51)°]

consistent mean-field formalism. The standard mean-field +3L[(51—S5)2+ (S~ 54)?] + N[ 3+ 52+ 52+ 52],
formalism replaces each individual fluctuating spin or height
variable by an effective continuous single-site magnetization, (2.10

or average height, which adjusts self-consistently to the ef\'/vhereﬁ —ha+ MK+ 2L arising from multiolving out
fective field generated by_its neighbors..Equivalen_tly, Fhe si—s-)zzterrris fo?i anéjzoﬁ differe?]t plaquettestj. thg inter-
free energy is computed in a saddle-point approximation Iaquette scale factows, and\,, nominally equal to unity,

with the phase space location of the saddle point determinin ave been introduced for later convenience. Interactions be-

the single-site magnetizations. Since all sites are equivale_%een plaguettes then involve only products of pairs of

in a ferromagnetic state, such an essentially single Splrs‘ingle spins, so we need only introduce fieldlg conjugate
theory suffices to captureI the ba.:,llc physm:st;I For antlferro,E0 the individual spinse, , @=1,2,3,4. Defining the single
magnetism on a square lattice, the two sublattices are in- o [ .
equivalent, but if the individual spins interact only with near- plaquette free energ@™H,} via Eq. (A5) we obtain the

est neighbors there is no ambiguity in the local eﬁectivefree-energy functional

field. The single-spin mean-field theory then again suffices to

capture the basic physics. However, if one wishes to describ& *{Hp,;0pa} = ®@{Hp,}— > (Hp,+hpa)opy
ordering into a state involving subtle competition between P Pa

correlations, one must improve the level of approximation by

treating the fluctuations withiplaguettesof nearby spins — MK (0P10P 4T OP20P 3T 0p20P 1
exactly. Interactions between different plaguettes are still P

treated self-consistently. The general formalism for doing

this is outlined in Appendix A. In our case we are seeking a + Up30p34)—?\z|-2 (0p10p,3

state that is formed by a delicate balance of nearest-neighbor P

and next-nearest-neighbor interactions. We therefore must +0p20p 4t Tp20p 4t T2

keep enough spins that both types of interaction are present

within a plaquette. For the square lattice we shall analyze a +0p30p, 1T Op30p,1), (2.1

model using four spins in a given plaquefsee Fig. 6a)].

For the triangular lattice we shall analyze two models, onévherePy, P, P3, andP, are neighboring plaquettes ®

with six-spin plaquettefsee Fig. )], and one with seven- (see Fig. 7, and®® will be computed explicitly in Sec. IV.

spin plaquettegsee Fig. 60)]. Since the ordered phases we seek are all either ferromagnetic
or antiferromagnetic we now take

1. Square lattice . .
hpy=hpz=ha, hpy=hp,=hg,

In order to apply the mean-field formalism of Appendix A
we need to tile the entire lattice with copies of the chosen Hp;=Hps=H,, Hpy,=Hp,=Hg,
plaquette, carefully distinguishing betweentraplaguette
andinterplaquette interactions. This tiling is not unique, but op1=0p3=Mp, 0Opr=0ps=Mg. (2.12
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The free energy per spin is then
1
Nf(“)(HA'HB?MA’MB):%‘DM)(HA.HB)—%(HA“‘hA)MA

—3(Hg+hg)Mg—N KMaMg
(2.13

Differentiating with respect taiM, and Mg we obtain the

—32\,L(MZ+M3).

first set of saddle-point conditiorisee the first line of Eq.

(A9)]

1 9™
Me=3 GHg -

1 9™
Ma=3 SH,

(2.19

The mean-field free energy per spin is finally obtained b
substituting these relations into EQ.13 [this intermediate

form represents the Bogoliubov free energy—see(Bd6)]

and then minimizing oveH , andHg . This is equivalent to
solving the second set of saddle-point equatimes the sec-

ond line of Eq.(A9)]
_HAZZ)\lKMB+3)\2LMA+hA,

_HBZZ)\lKMA+3)\2LMB+hB, (215)
where, again, Eq(2.14 should be substituted for thiel 5

andMpg dependence. We emphasize that the order is impo

tant here: the alternative of using Eg.19 first to eliminate

M, andMp often leads to a free energy in which the saddle
point is not a minimum. It is also worth commenting that, as
discussed in Appendix A, consistency of the theory impliestio

that the saddle-point conditions guarantee that

2 9FW
MA:<SP1>:<SP3>:_N ohy

2 9F W
MB:<SP2>:<SP4>:_N ohg

(2.16

This allows one to follow the alternative route imiverting
Eq. (2.19 to eliminateH, andHg in favor of M, andMg,
and computing thédelmholtzfree energy,

1 1
NAM)(MAnMB): N}—MH‘ 2(haMa+hgMp)

=7P(Ma,Mg)— 3[HA(Mp,Mg)M
+Hg(Ma,Mg)Mg] =N 1KMaMg

2.17

where ®@(M,,Mg) is obtained from ®@(H, Hg)

—INL(MA+MP),

through this elimination. The equilibrium magnetizations ar

then obtained via the equations of state,

1 9A™
N Mg

1 9AW
lh -
2Z7ATN aM,

N[

hg

(2.18

The advantage here is that*) is abona fidemean-field free

r-

e
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2. RSOS condition

Let us now turn to the inclusion of the RSOS condition.
Recall that this condition requires that nearest-neighbor spins
differ by at most one, implying a nearest-neighbor interac-
tion vr(s—s') such that

e PRE=6(1-|s]), (2.19

wheref(x) is the step functiofiwe taked(0)=1]. The con-
dition is crucial for stabilizing the bulk crystal surface when
K<0, since without it nearest-neighbor column height dif-
ferences would diverge. Within a plaquette, i.e., in the com-
putation of®, this condition is easily accounted for simply
by eliminating from the trace those spin configurations that
violate it. However, between plaquettes greater care must be

ytaken because one must now include the RSOS condition

explicitly in the interplaquette interaction ters defined in

Eqg. (Al). The difficulty lies in the fact thavg(s) is not
simply expressible as a polynomialsnFor integer values of

s, vr(s) is the largeA limit of va(s)=As*(s>—1). This
form leads to new interaction ternsgs; ands’s; . Unfortu-
nately, within the mean-field approximation, the integer vari-
able s is replaced by a continuous variabke and the fact
thatv A(s)— —© asA—x for 0<s?<1 leads to thermody-
namic instabilities. The formua(s)=As*(s>—1)? is
healthier in this regard, but now involves even higher powers
of the spins and still unphysically restricts the continuous
variableo to the values G; 1 whenA— . One really needs
va(S)=A6(|s|—1), but this is nonpolynomial.

Our solution to this problem is to keep the RSOS condi-
n within a plaquette, but “soften” it between plaquettes.
The condition’s main role is to discourage large nearest-
neighbor column height differences, and its exact form is a
matter of convenience. We will consider then two “soft”
forms forvg(s). Note that forK>0 it is safe to simply take
vr(s)=0, but for sufficiently largeK<<0 this choice be-
comes unstable to unbounded height differences between
neighboringplaquettes One solution then is to setg(s)
=(\1(K)—1)Ks? [effectively replacingK by \;(K)K for

all interplaquette interactiofsvith 0<A(K)=<1 a smooth
function of K that decreases d§ becomes more negative,
therebycancellingat least part of the nearest-neighbor inter-
action between plaquettes. At the same time one naght
hancethe interplaguette second-neighbor coupling, replacing
L by A»(K)L with N»,(K)>1. This allowsL to stabilize the
reconstructed phase. It was precisely for this regasnwell

as others—see belgvihat we introduced\; and\, in Eq.
(2.12). Our second choice is to take(s)=As* with fixed
A>0 of order unity chosen for convenience. This form guar-
antees thermodynamic stability withoatl hocvariation of
coefficients, at the expense of introducing higher powers of
the spins. Unfortunately, it does allow ever larger nearest-
neighbor plaquette height differences ldsbecomes more
negative, violating the expected equivalence of all
plaguettes. We have used precisely this form in computing
the phase diagram shown in Fig(f)L(see Sec. IV A2 for
detaily, and the jaggedness of the antiferromagnetic line is
probably due to all of these competing effects. Since our

energy dependingnly on theM variables, and we avoid the main focus is on ferromagnetidé; we have not seriously
“mixed” representation containing all three sets of vari- attempted to optimize our parameter choices here to improve

ables,h, H, andM.

this figure.
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One is actually led to considering linear rescalings of the © ¢ ¢ ° ¢ ¢ ©° ¢ @ ©° ¢ © ©
interplaquette interactions for other reasons. For example o o o o /o\Ne o o/e\ s o s o
the relative number of nearest-neighbor and next-neighbc

bonds internal to the plaquette in Figab(namely, 2:1 does AR
not match the relative number in the full lattiteamely 1:3.  * ° °_*/° ° *\fP/L° ° °A° * °
One might, therefore, introduce phenomenological scale fac o o /o \o o o 3\,/\*' ° o/ e\ e o
tors into the terms irf2.11) that couple to the environment, o o /o o\ oqg o7/ P YN Qe /6 o\ s o
i.e., replaceK by A ;K andL by \,L, and adjust; and\, o /e o o\ p o/ o e X .
according to one’s preference, or simply to optimize com- I

L] ] o] L ) @ (o] L] ®

parison with experiment. AN |
It should now be clear how to write down spjinHamil- oNe o/op3e\ o000/ ep,e\ 0ze/ & o
tonians for arbitraryj, evenj—o. Keeping more layers , .\ o /e o olNe/ /o o e\ o/ o e o
should improve the accuracy of the approximation for -
thicker films. Similarly, the construction of the mean-field
theory is identical. The major dlffe_rences are that the site FIG. 8. A possible tiling of the full triangular lattice by the
free ene_rgytb b?Com_eS more complicated because there ar%x-spin plaquette. Note that two different orientations of the origi-
more spin configurations to trace over. nal plaquette are required, and that the tiling is far from unique.

L @ o L] @ o L] ® el L ® o

3. Triangular lattice different plaquettes through nearest-neighbor bonds, while

The second-neighbor interaction divides the triangular latthe right and left corner sites connect to three and to two
tice into three equivalent triangular sublatticAs,B, andC. different plaquettes, respectively. All six sites are therefore
We consider mean-field theories based on each of the twdistinguishable and will have potentially different order pa-
plaquettes of spins shown in Figgbpand &c). In the first, rameter values. This is not only inconvenient for eventually
we keep two spins from each sublattice. In the second, weolving the mean-field equations, but may also give rise to
keep a hexagonal plaquette of seven spins that contains thphysical reconstructed phases. It seems clear that this will
full rotational symmetry of the triangular lattice, but unfor- be true for any tiling with this plaguette.
tunately does not treat the three sublattices symmetrically: Only by distorting the triangular lattice somewhat can one
three spins are kept from each of two of the sublattices, bupreserve the full symmetries of the plaquettes in the tiling:
only one spin from the third. In neither case are all spinssee Figs. 10 and 11. The drawback is that identifying second
equivalent, which we will remedy somewhat by, again, in-neighbors becomes ambiguoisee below In particular,
troducing fudge factors\; that scale the couplings to the there is no way to preserve both the rotational symmetry and
surroundings. the property that second-neighbor bonds join sites only on

In principle, to distinguish the three sublattices, we needhe same sublattice. Notice in any case that both in Figs. 8,9
three magnetic fields,, hg, andhc, with corresponding and in Figs. 10,11, different tiles contain different orienta-
sublattice magnetization®,, Mg, and M. However, tions of the sublattice#\, B, and C, so any reconstructed
since even with negativi frustration dictates that there are phase that is uniform on each sublattice will not have the
no phases that spontaneously break the symmetry betwe&ame periodicity as the tiling. A different choice of six-spin
the three sublattices, we will keep only one fiélcand as-  plaquette, say, would have to be made to respect this period-
sume the sublattice magnetizations to have all the same valigity (for example, a parallelogram of two rows of three
M. Note that this is a statement about the exact behavior ¢¥Ping, but such a choice would generally violate the rota-
the model. The mean-field approximation may well predict
unphysical phases with broken symmetry. For this reason we
will restrict triangular lattice computations #>0. In dis-
cussing the effects of reconstructed phases we will always
use a square lattice.

In order to apply the formalism of Appendix A we must
again tile the plane with the basic plaguette. If one remains
completely faithful to the triangular lattice, this turns out to °
be very unnatural. Examples of tilings are shown in Figs. 8
and 9. The hexagonal tiling maintains the rotational symme-
try of the lattice, but has a “chirality,” and therefore breaks o
the inversion symmetry. The triangular tiling is clearly
highly nonunique, requires two different orientations of the
basic plaquette, and breaks the rotational symmetry of the
lattice more badly than does the triangle itself. The nonu-
nigueness reflects itself in the differing identifications of in-
terplaguette and intraplaquette interactions implied by each
possible tiling. For example, the symmetry of the triangle
would normally imply equivalency of the three corner sites FIG. 9. A possible tiling of the full triangular lattice by the
and equivalency of the three noncorner sites. However, in theeven-spin plaquette. Other possible tilings differ only by transla-
tiling shown in Fig. 8 the top corner site connects to fourtion or mirror reflection.
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HE = 3K (51 82)%+ (S, 54)°+ (84— 85)° + (S5~ S6)?
\ +(S3—86) %+ (S1783)°+ (S~ 83)°+ (S5~ 85)°
2 L
AN +(8p—85)?]+ 5L[(S1—S5)°+ (S, Sg)°
. \ +(s3—54) 2]+ 3" 2+ 2+ 2]
St/ .\\ +hi[s3+s3+s2], (2.20
* ¢ o WherngUt=h2+2)\lK+§)\2L and hg.l:hz'f')\lK"f‘g)\zL
o o e The scale factorsy; and\,, have again been introduced for
/ later convenience. Lab(®) be the plaquette free energy de-
. g *% fined in Eq.(Al) (to be computed explicitly in Sec. IV
./ Ignoring once again the RSOS condition between plaquettes,
* N/ the free-energy functional corresponding to Fig. 10 is then

(see Appendix B
FIG. 10. A more symmetric tiling of a distorted triangular lattice

by the six-spin plaguette. Two different orientations of the original q
plaguette are still required, but the tiling is unique up to transla-—F % (H;,,Hou;Min,Mou)
tions. Choice of second-neighbor interactions becomes ambiguous,
but unreconstructed phases should not be sensitive to this.
= %q)(G)(Hin Houw) — %[(Houﬁ' h)Moyt (Hin+h)M;p]

tional symmetry even further. Since we work only in the —INK(BM2, 4 M2+ 2M M o) — AL (M2, + M2
mean-field approximation and with ferromagnetic interac-
tions we feel that maintenance of qualitative symmetries is +3MinMou)- (2.21

more important than that of quantitative details of interac-

tions. In any case, our hope is that the basic physics shoul ere M, is the magnetization on the three comer sites of

be dominated by the interactions within the plaquette, whicﬁt de plaquette, Wh”ivli“ is the mqglneulzatmnfondthe Lhree
are treated exactly. We emphasize that we go through all thigo ¢ Sites. Except for very special va uesk@ anda, t ©
: o will in general be different in the mean-field approxima-

trouble of embeddln_g the plaquett_e in a real Iqttlce only totion. The same considerations apply to the fighis, and
ensure that we obtain a fully consistent mean-field theory. H.
i P ; ; ; ; in -
Keeping the above physical considerations in mind, we “gjmjjarly, the plaquette Hamiltonian corresponding to the
now vynte down the appropnate free energies. Deta_uled ®Xhexagonal plaquette in Fig(® is given by
pressions and comparisons of the expressions obtained from
the distorted and undistorted lattices are contained in Appen-

(7 _1 e )2 a2 a2 a2
dix B. Here we exhibit only the simplified expressions valid Ho' = 2KL(S1782) "+ (S 85) "+ (S5 57) "+ (S7—S¢)

in the unreconstructed phases. _ +(Sg—S3)2+ (S3—51)2+(S;—S4) %+ (S,—54)2
First, the single plaquette Hamiltonian corresponding to ) ) ) )
Fig. 6b) is given by +(S3=54) "+ (S5—54) "+ (Se—S4) "+ (S7=54) "]
+3L[(51—56)%+ (51— 55)°+ (S~ S6)?
v e e e . +(s5—56) 2+ (53— 57)°]
"N. o/° P, "\, ./T +ho'[s?+s5+s3+s2+si+s2]+his?, (222
L] ’ ’ L L]
./ b ) \\m/ ./ by N whereh SU'=h,+ 2\ ;K +2\,L andh '=h,+3\,L. If &)
o e e {e & e is the corresponding plaquette free energy, the mean-field
N, o ZWE . /" free energy corresponding to Fig. 11 is thesee Appendix
* L ] L ] /3 4 5 L] L] * B)
i L J POS L] 6 L ] P03 L] * 1
. . . . Nﬁ7)(Hianout;MinvMout)
* * P4 L ] L]
. * : . . ' : . :%q)(Y)(Hin:Hout)_%[G(Hout+h)Mout+(Hin+h)Min]
= 2N K+ NL)ME = LM M g (2.23

FIG. 11. A more symmetric tiling of a distorted triangular lattice
by the seven-spin plaquette. The tiling is unique up to translationstiere My, is the magnetization on the outer ring of sites,
Choice of second-neighbor interactions becomes ambiguous, buthile M, is the magnetization on the inner site. Fieldg
again unreconstructed phases should not be sensitive to this.  andH,, are defined similarly.
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[ll. SINE-GORDON PHENOMENOLOGY: FIRST-ORDER which only K, is nonzero, and the critical behavior has al-
PREROUGHENING AND ZIPPERING ready been alluded to in Eq1.2). As we will discuss in

. . detail below, for pure Kosterlitz-Thouless roughening we
In this section we develop a general, large length-scale

“hydrodynamic” theory of the layering phase diagram. This Mmay setuo=0, but in order to discuss preroughening we

. 4 . . _
will serve as a rigorous guide to the different classes of be[nUSt sometimes keepo#0." All higher harmonics, how

havior available to the system. A full microscopic calculation ggﬁ;’ iireir:ge.],i\{ar?é;?gﬂaﬁfbﬁ]gsﬁfgjeﬁ,fg h_?r\llg csiﬁgz%/;?eto
is still required to determine the behavior of any given 9 )

6 : : . potential grows steeper under renormalization, and the form
tmhic;d::; dT ir‘nelgﬁ?‘fetéﬁ el field formalism will be applied o5 1" 2lid only in the thick-film limit whereV[h] is ex-

The basic idea we exploit is that roughening and pre_tremely weak, so that the partially renormaliz¥g(h) is

roughening are large-scale phenomena, governed only byvgeak as well. S!nce/[h] has power-law behavig2.2) for
few renormalized parameters. The small-scale structure dfr9€n: Volh] will as well. The quadratic form,

the surface(be it Ioc_aIIy disordered, flat, or po;sibly even Vo lh]=iko[h—ho(Am)]?, h<ho(Aw), (3.3
reconstructedfeeds into these parameters, but is otherwise

irrelevant to the large-scale behavior. Of course, a phasksee also Eq2.4)] with a renormalized curvature, suffices
transition in the local structure could preempt the onset ofor thick films. Husé® has written down general functional
long-range roughening or preroughening correlatiéosex- ~ recursion relations for any potentiad[h] and treated in
ample, it might induce some kind of critical endpoint with detail the casei,=0, i.e., the interplay between roughening
the roughening or preroughening line then ending on a firstand layering. Here we will extend key parts of that analysis
order ling, but we assume this not to be the case. Imaginelo the preroughening regima# 0. It will transpire thatu,
then, that the system is close to a roughening or preroughen=0 andu,<0 can yield very different behaviors, and this
ing transition so that the correlation length is very large. Thegives rise to very interesting physics in the layering phase
way we would formally derive the large-scale theory is todiagram.

perform some kind of renormalization-group transformation To formalize what we have said so far we write down the
on the Hamiltonian of the system, iterating it until we enterrenormalization-group recursion relations for the Hamil-
the neighborhood of the fixed point that governs the transitonian (3.1):*°

tion (we will argue at the very end of Sec. IV, in fact, that the

plaguette mean-field theory accomplishes at least part of this _K = k22K A4+ (47K AY) Y2+ (B4 K A% U2,

step. If we are not precisely at criticality, further iteration dl

will move the Hamiltonian away from the fixed point once

more, but along a very restricted set of paths. The point is dy 2 2
that during the approach to the fixed point all irrelevant vari- E_(Z_W/K)YJF(‘“T KA%yu,

ables have decayed away. Only djoe perhaps two, as we

shall se¢ relevant variables remain, and it is their eventual du ) o 5

growth that moves the Hamiltonian away from the fixed ar = @ 4alKyu—(mTKAT)Y",

point. However, the dimension of this “escape manifold” is

just the number of relevant variables. If we then stop the dx

renormalization process on some matching boundary, not too WZZK_ K2IKA2, (3.9

far from the fixed point, we may parametrize the final theory

with these one or two renormalized variables. whereA ~ 7/a is the(nonuniversglmomentum space cutoff

due to the lattice. The flow parameteris related to the

A. Sine-Gordon-type models spatial rescaling factds via b=b,e', whereby, is the initial

rescaling factor required to enter the neighborhood of the

In many problems the detailed analysis of the fixed-pointﬂxed line and is assumed to depend smoothly on the param-
region cannot be performed explicitly. The advantage in the

. . . . . Fters of the initial RSOS model, say. The recursion relations
present case is that this region may be characterized Slmpé/ lid f | d q h he initial
and completely by a sine-Gordon-type model: re valid for smally, u, andx and we have the initial con-

ditions K(1=0)=K,, y(=0)=y,, u(l=0)=u, and
L k(I=0)= Ky, which are assumed to lie on some trajectory
HSG=J d2r{3Ko|Vh(r)|2+ Vo h(n)]} (3.1)  incomingtoward the fixed line.

with B. Roughening and preroughening

_ _ Let us now consider the various possible behaviors as a
Volh]=~yocod 27h(r)] uocos{4wh(r)]+Vsut[h(r)§,2) function of the initial condition. Consider first the substrate

free casexy=0. For small enougtk, (Ky==/2 for small
whereh(r) represents a coarse grainedntinuoussurface y andu) bothy and u flow to zero asl—o, while the
height field,K, is a partially renormalized surface stiffness, stiffnessk (1) —Kg(Ky), its fully renormalized value, which
yo represents the the fundamental Fourier component of ththen appears in Eq.2). This corresponds to the rough
partially renormalized atomic periodic modulatian, is the  phase.
next harmonic, and/,[ h] is a partially renormalized sub- For intermediate values &, (7w/2<Ky <27 for smally
strate potential. The fixed point is actually a fixed line onandu) u(l) still flows to zero, and may be ignored, but if
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yo# 0, y(I) eventually begins to grow again, as dd€d).

The strengthening corrugation potential, and increasing sur-
face stiffness, signal the onset of a flat phase. Notice that if
yo=>0 the minima of the corrugation potential occur at inte- ol ThyoTe) T

y,

/

_//’/
ger h, while if yo<<O they occur at half-integeh. Since \Yff/
Yo(J1,J5,T) is a renormalized parameter we may, in fact, \ \ N IL/ / / VA
imagine that as a result of short scale fluctuations it might % R ‘ / Ay

change signThe minima then switch abruptly from integer
to half-integer. This precisely describes the physics of pre-
roughening, with the preroughening critical line correspond-
ing toyo(T)=0.% The sign reversal is driven precisely by the
entropy of small-scale roughness discussed in previous sec-
tions. As we shall see below, a negative valueygfcould
also be associated withraconstructedsurface, which may
also roughen while maintaining a form of long-range recon-
structed order. The sine-Gordon Hamiltonian does not distin- o
guish between these two cases, though he dependence o oeC. 12 romaison gt fous cereen TR,
partially renormalized parame?ers on th(_e original model pafntc?and o'ut 'of the Kosterlitz-ThouIe);s fixed poin%&t:)\—o The
ir:l r;estﬁ:fsa\::vg urlgctz)fncsctxruurigoaet(:;f:]esriﬁgt;Sf;ilélse\lgzld;nrg;;ar two thick Iin_es _rep_rese_nt poss_ible physical starting manifolds, with
=0 the fixed line is again stable, and we will hav@)—0 the arrows indicating increasing temperaturfe. The upper-left path
andK (1)—Kg, with m/2<K <27’T The critical surface is corresponds to conyentlonal rpughenlng while the lower pgth rep-
R . R : . . resents preroughenirgt the point §,,0)] followed by roughening.
thereforerough, but with alarger renormalized stiffness than o ~ ~ .
is generically possible: the short-range fluctuations have " SOl lines atv=x; and y=y; represent the wo possible
. : noncritical matching manifolds, discussed in the text, at which the
renormalized away the strongest Fourier component of th?rajectory integration is stopped
corrugation potential. '

Finally, for even largeK, (Ko=2 for smally andu)
bothy andu are relevant, so even if;=0 the second har-
monic of the corrugation potential will grow and the surface
will flatten. Notice then that there are twice as many minima. . .| points T, , approach the bulk roughening tempera-
This will be discussed in detail below. In principle, if we had | -7 ¢ belcérC/v asymptotically as
a second free parameter at our disposal, we might imagine r

By integrating the flows in region Il of this figure, from the
starting manifold to some noncritical matching manifold, for
examplex = \¢>0, Husé® has shown that the Ising layering

that bothy, and uy could be made to vanish. Flattening A2
would then take place only when thigird harmonic became Ti—Ten* ——————= (3.6
relevant, i.e., folK,>97/2.2* This situation, however, does (2+a)“In*(n/n)

not seem to be experimentally relevanty{fis not precisely

zero then bothu andy will grow under renormalization, and wherea, defined below Eq(2.2), describes the power-law

the interesting question then arises of how the two Fouriefil Of the substrate potentiaf is a nonuniversal amplitude
components might constructively or deconstructively inter.determined by the strength of the substrate potential, and the

fere in the final renormalized corrugation potential. We shallverall constant of proportionality depends on the detailed
explore these effects in detail below, seeing that they hav8'PPing of the origin model onto the sine-Gordon model.

very strong effects on both the surface and layering phase
diagrams. D. Preroughening and reentrant layering

Preroughening, on the other hand, corresponds to the
C. Roughening and layering rather different situation in which the starting manifold be-

Sinceu is strongly irrelevant foK <2, the asymptotic gins in region III:)f Fig. 12. As the temperature rises the
behavior in the roughening and preroughening regions magnanifold crosses y=0 into region Il at some positive
be addressed simply by setting=0 in the recursion rela- value\, of A. Precisely aly =0 the system is on the fixed
tions, Eq.(3.4). The usual roughening transition may then bejine and the interface is rough. On either sideyof 0 the
described by studying the region where the starting manifoldenormalization-group trajectories move away from the fixed
[Yo(T).Ko(T)] crosses the critical trajectory into the fixed |ine into an ordered phase. As before, region Il corresponds
point aty=0, K=m/2. For smally and\=2—m/K this  tg the flat phase. Region lltorresponds to the DOF phase.
trajectory is defined by =y, wherey=(4\2m/A%)y. Cor-  Sincey <0 in the DOF phase, the minima in the corrugation
rect to quadratic order it andy, the recursion relations potential occur at half-integdr. The fractional filling 6 of

simplify to the top layer of the interface then jumps discontinuously
from #=0 to §=3 at preroughening. As the temperature

dk dv dy ~ continues to rise, the trajectory eventually crosses into region
HZZK; a=y ; HZM/- (3.5 II" and then into region’l The latter corresponds to the

transition from the DOF to the rough phase. In the presence
The flows generated by these equations are shown in Fig. 12f a substrate potential regions Bnd Il give rise to first-
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order Iay%ring transitions between half-integer coveragesory,<0 (i.e., exact degeneracy of two neighboring minima
The Huse® computation for the critical points goes through in the renormalized corrugation potentiarhis yields imme-

in exactly the same way and leads once again to &6) for
the T, , [see Fig. )].

The effect of the substrate on preroughening is quite dif-
ferent. The bulk critical behavior is now determined by the

diately [see Fig. 1b)]

To— Thyo=2Ax(nT/n) M2y >0

rate at which flows are pushed away from the fixed line for

smally. This is completely determined by the valig at
which the starting manifold crosses tlye=0 axis. In par-

ticular, y itself now plays the role of the deviation from
criticality, the Kosterlitz-Thouless fixed point no longer

plays any role, and the flows are completely confined to re=

gions Il and III'. The solutions to the flow equations in these
regions are given by

k(1) =rko€?, y(I)=—sgn(yo)BocschBol + o),

)\(I): - BOCOtI’( Bol + ¢O)! (37)
where
~ ~ Ao~ Bo
(3.8

We run the flows untily(I)|=Yy;, some fixed value. The
corresponding valug of | is then

1 &
= — —gqj 1 ——
|f BQSlnh (Bolyf) BO

1 - 1
~— —sinh 00y )~ = In(Yoln0, (39
X X

where the second line is valid fary<\,. At this point we
have

(3.10

Following Huse'® for given values ofy and, there will be

a critical value ofk=k.(y,\) at which the Ising layering
critical point occurs. Let us define

ke (Ax)=ke( £y, VAZ+YD). (3.11

Then, asy —0, we locate the value of, at which the criti-
cal point occurs by demanding that

M=M= VBY+H Y~ I+ YE

ke( £V N )~k (A\)=Ko€%,  *£y>0, (3.12

which yields

Ko~ K (M) ([Y ol 20 5) 2P, (3.13

where

R () =K (M) 2SI YD),

(3.19

Finally, from Eq.(2.3) for a van der Waals substrate we have
ko= a(a+1)c/hg(Aw)? ¢, with the nth layering line cor-

responding tcho(Ax)=n— 1 for y,>0 and tohy(Ax)=n

T2-T

A= T —Yo=2Nx(n " /n)ET a2y <0

'(3.19

wheren® (Ay) =[a(a+1)c/k* (Ay)]¥?* ) is a nonuniver-

sal amplitude. Once again the overall constants of propor-
tionality are determined by the detailed mapping of the origi-
nal model onto the sine-Gordon model. We see then that the
critical points have a power-law rather than logarithmic ap-
proach to the preroughening point. The power is nonuniver-
sal, depending om\y, and vanishes as the Kosterlitz-
Thouless point is approached. We have therefore established
Fig. 1(b) as the correct thick-film layering phase diagram
corresponding to a preroughening trajectory such as that
shown in Fig. 12.

E. Recursion relations whenu is relevant

We have seen that the experimental phase diagrams for
argon and krypton on graphite show rather different behav-
ior, with apparent first-order lines that “zip” the integer and
half-integer layering lines together. It is possible that these
transitions arise from some confluence of preroughening and
two-dimensional melting phenomena, where the melting and
preroughening temperatures are nearly the same. This is cer-
tainly true in the first two layers where two-dimensional
triple points are observed:**However, it seems an unlikely
coincidence that such a confluence would survive, as seen, to
much thicker films, where the energetics of melting and pre-
roughening ought to be distinct. Here we offer a much sim-
pler and more natural explanation, phrased entirely within
the physics of the sine-Gordon model. More detailed com-
parisons between theory and experiment will be made in Sec.
V.

The idea now is to consider values Kf, in the region
where u becomes relevant. Typically will be of order
unity in the original model, so K, is significantly larger
than 27 then even whery=0 the renormalization-group
flows will never come close to the fixed line, and there will
be no simple analytic description of the behavior. We there-
fore assume thak is sufficiently close to # that, in the

absence ofy, u, may be assumed small. Defining_
=\2mylA%, u=4\27u/A? and u=2-47/K, correct

to quadratic order in these variables the recursion relations
(3.4) simplify to

dx dy ,— , — V2

qr "2k grT Y tamytuy,

du — — U

—'u:y2+u2, —=pu—+2yZ (3.16

dl

If %< Ug these further simplify to
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dx du — du _ dy 3_ amplitudes,y_f/u_f, is nonlinear, but monotonically increas-

a2y ing in y . This is all we need to know for the purposes of the
(3.17 following analysis.

the first three of which are identical to E¢.4) with u

. — L~ . . . F. Thermodynamics of the bulk interface whenu is relevant
replacingh andu replacingy. The solutions, in the equiva-

lent to region Il, are Now that we have understood the general structure of the
fully renormalized Hamiltonian, we must understand its ther-

k(N=kee?, y(l)=yye?, modynamics. We are in a regime in which the corrugation

potential wins out over thermal fluctuations, leading to a flat

u()=AgsecAgl + 8y), wu(l)=AgtanAgl + 6o) phase in which the interface height sits at a minimum of the

(3.19  potential. Since thermal fluctuations have not been com-
pletely integrated oufK;=4x/(2— u;) is still finite—this
with A2=u2—u?>0 and gy=tan *(uq/A,). These solu- was necessitated by the restricted regime in which the flow
tions hold up untily~u. In the absence of , we would  €quations are valﬂdhis is not entirely accurate: the interface
integrate these equations untik=pu(1)=u?>0 [and Still has fluctuations about this minimum. Sinke is large,
|u(|?)| :U? where (U?)Z=A +(Mf)2] reaches some final howgver, these fluctuations may be taken as s¢eallong as
_ _ one is not too close to any second-order phase transition—
value[just as in Huse’s analysis of E(B.9)]. If Yowereto  see further beloyy leading to some slight renormalization of
remain zero for allu, (or, equivalentlyKo), we would then  the corrugation potential, but not altering its basic form. In-
predict, as a function ofio, first-order layering lines termi-  ¢|yding the substrate potential, we therefore arrive, essen-
nating in Ising critical pointsevery half-layer However,  tially rigorously, at the following single variable free-energy
sincey, vanishes only at the putative preroughening pointfunctional, which completely determines the thermodynam-
we conclude that there is only a single valueugf at which  ics:
this analysis is correct. Since we assume the model to be in
region Il, rather than region |, the bulk interface would be in [ h]= —yrcog27h) —ugcog4mh) + & kp(h—hg)?,
the flat phase. In thick films we would therefore observe (3.19
first-order transitions every half-layer, with Ising critical
points observed only, perhaps, for an initial finite set of lay-where the absolute minimum &th) determines the equilib-
ers (the closer the initial values to the incoming separatrix,rium average interface height, ang and ug are mildly
the greater the number of critical points renormalized versions ofy;=(A%\2m)y; and u;
What happens away from th.'s \{alue /05. depends upon E(/\2/4\/577)u_f into which K; has been completely sub-
the gEWth ofyy under renormahzauoln. iy, is so small that sumed. Similarly forkg=~ x;= xoexp(d;), where we assume
yi=yoexp@l)<uf, then we may still use E¢3.18, and  that kg is sufficiently small that; is set only by the bulk
stop integrating at? as before. Thus, ag, passes through interface recursion relations. This means, for example, that
zero, the contributiory? of the lowest harmonic to the cor- «g is linearly related toc,. We reiterate that the validity of
rugation potential is linear iy,. If, however,y?=u; then  this free energy presumes that the essential physics lies only
we should stop integrating &t such thaty ()=~ /-L(f)! in the large-scale, coarse-grained fluctuations. It is also pos-
say, some final value. There is then a regime in the integra S|ble that small scale energetics of the original model pre-

empt this physics at some temperature, beyond which Eq.
tion where y(I)=u(l), and the solutions3.18 are no (3.19, and the entire sine-Gordon analysis, fa#se further

longer valid. Ifu(l) is not too much smaller thays we may  below). The control variable isyg, which switches sign,
use the fact thay is rapidly varying relative tou and .  while ur may be taken as fixed and nonzero, but either posi-
Thus in the time it takeg (1) to go fromu(l) toy; itis easy  tive or negative.

to see that(l) and (1) change only bp(yf) which we
assume to be much smaller tharl). Thus Suy and uy are

essentially the unperturbed valuesgofand u at whichy(l) . 5 e : ;
ug>0, and imagine beginning withs>ug, then decreasing

“crosses” u(l). If, on the other handu(l) and u(l) are Yg through zero, and ending wityy<<—ugr. The evolution
very small compared ty,, then we may essentially delete of the corrugation potential is shown in Fig. (88 We see
all buty (1) from the e right-hand sides ¢8.16): the flows are  that whenyg=4ug local minima develop at half-integér.
driven ent|rely byy(l) The final valuesuf and u¢, are  Since these local minima are not absolute minima, the sur-
then of orderyf<yf face height remains an integer. &g decreases these local
To summarize, then, we are interested in the final renorMinima decrease, and preciselyat=0 they become degen-
malized form of the corrugation potential. The above analy-£rate with the integer minima. Fofr<<0 the half-integer
sis shows that for smayo, the amplitude of the fundamental minima lie below the integer minima, and therefore define

Fouri s [i v witn. and ch . the equilibrium surface height. We therefore havdirat-
ourier component varies linearly wi, and changes sign . yer ransition from the flat to the DOF phase. The pre-

precisely wheny, does, while the amplitude of the second roughening line therefore has a tricritical point precisely
harmonic can be taken as fixed. For Iarg@r the ratio of the  where the fully renormalized stiffness reaches. 2

1. ug>0: first-order preroughening and zippering

Begin with the bulk interfacexg=0. Suppose first that
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(@) ug>0,x3=0 In the opposite limit, wheréyg|>4ug, we may ignore
Ug and obtain essentially the same picture as above, but with

ceen:2 n-1 n+l  n42--- . . . . H
FaVaVaVay o twice the period. Thus iffjg>0 there are first-order transi-
A §“=4M’* tions between essentially integer interface heights precisely
RO at ho=n+3, while if yy<O the transitions are between es-
NN SN 0<rsug sentially half-integer interface heights precisely hgt=n.
»=0 Both sets of transitions are wiped out unless
/\ﬁ /\/\/\ 0>ypz-up <(2’7T)2yR
VA VAV VR VAR The interesting question is what happens fox|9g|
4 <4ug. Clearly the chal minima at half-integdr are most
ny \n§/ n¥d \na_g/ YR <<uy stable ifhy=n+ 3. This minimum can be an absolute mini-
(b)  ug=01p=0 mum only if kg is sufficiently large, namely,
coen-2 n-1 n n+tl  n+2--- 2 3
: 0<ygp<l y
NSNS oo > K= 16y 1+ 8 — (2 a) 2240 'y—Rs'—)
PNV NFaNVaA T UR 4 ug Ug
w=0 (3.23
T canco for small kg/Ug andyg/ug, which will be valid for thick
NN NS N g0 films close to the bulk first-order transition y=0. If this
SR L SN SR inequality is violated, which will always occur for suffi-

ciently thick flims, only the transitions between integer sur-
face heightgfor yg>0) or half-integer surface heightsor
yr<0) will be observed. If the inequality is satisfied, both
sets of transitions will be seen. Fag larger thanky, we
may compute the rangéh,, of hy aroundn+3 (yg>0) or

n (yr<0) over which the new minimum is stable. Indeed
one finds that

FIG. 13. (a) Corrugation potential for the bulk interfacecy
=0) with ug>0 as a function ofyg. There is a first-order pre-
roughening transition atlgz=0 when the integer minima exchange
stability with the half-integer minimab) For comparison, the cor-
rugation potential in the continuous preroughening cage;0.

For clarity, this picture is contrasted in Fig. (b3 with the
standard preroughening case in whigk=0. There, atyg

2
=0 the corrugation potential is competely flat and the inter- 1 2YRr Yr KR~ KR| |Kr— KR
) Ahy=—1- —-—+0| —, .
face is free to wander. 4 TUR Uz  UR KR

Consider now the addition of the substrate potential (3.24
Since kg will vary only slowly with film thickness, our con-
trol variable ishy. Minimizing Eq. (3.19 yields the equation Thus xk(yg) is a triple point, with two new first-order tran-
sitions extending out linearly from the horizontal layering
_ YR . KR lines at largefyg|. At yr=0 these new lines are precisely
sin(4mh) + ERS'H(ZTFh): - 47-ruR(h_h°)' (320 the transitions ah= found above. In the thick-film limit
kr—0 one sees from Ed3.24) that these lines are essen-
Suppose first thagg=0, in which case we require tifally s_traig_ht. We have_the_refore confirmed precisely the
zippering picture shown in Fig.(&).
Finally, sincexg~1/n2*® and, inverting Eq(3.23, the

KR

sin(4mh)=— = (h—hg). (3.2) triple point positiony(kg) ~ kr/16ug vanishes linearly with
R KR, the two sequences of triple points on either sideyof

L . . e 1,2 a ; —
minima closest td, that solve this equation lie just abowe ~ temperaturel, also agT, —Tfo|_~1/n2+ (with @=2 for a
and just belown+ 3. Whenhy=n+ 1 they are symmetrically Vvan der Waals substrate potential

located and degenerate. They exist for sufficiently small ~ To complete the analysis, we discuss the question of how
namely, Fig. 1(c) converts to Fig. (b), either ascg increases or aK,
decreases into the region whares irrelevant. We shall see
kr<(47)%ug. (3.22 that if kg/ug is sufficiently large, the triple points are wiped

out and replaced by ordinary Ising critical points. We wish to
Thus for sufficiently thick films we will have, with increas- understand how this happens in detail.
ing hy, a first-order transition precisely &,=n+ 3 from We have already seen that whgr=0 the first-order
slightly more tham layers to slightly less than+ 3 layers.  transitions athy=n= ; disappear ifkg/ug>(47)%. More
As hy increases furtheh will increase to slightly more than generally, the critical point that signals the first appearance
n+ 3 layers until, precisely ai,=n+ 2, there is transition to  of the first-order transition occurs when the line representing
slightly less tham+ 1 layers. If Eq(3.22 is not satisfied the the right-hand side of Eq3.20 precisely kisses an inflection
substrate wipes out the corrugation and the film will growpoint of the left-hand sidé¢see Fig. 149)]. For yg=0 this
continuously until Eq(3.22 is satisfied. The closer we are to inflection point is ath=n= %, and the slope at this point
the triple point, the larger will b&g and the thicker the film gives the above critical valuesg/4mug=Kk.(yr=0)=4.
required to see layering. Foryr# 0 but small one finds that the inflection points are at
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SIN(4oeh )} H(yp/ 20 g)SIn(2rh) = =K (-, )ity (a) (d)
(a) 4 Kp<K§ 10
. y o single 5th order
heg. jnflection S (yg>0) R¥R™ inflection point
T / /\ 2 5
“1/4, 0 ko LA 172 374 h-n
M 0 /4 17 374 h-n 0 174 1/ 3/4 h-n
h L Generic case; -2 -5
intersections mark
maxima and minima 4
(b) o Symmetrically located -10)
1 /— inflection ransition as b,
y; . / Fix xp, up and (b) (e) Yrlug=16
B, A ; Kolup=4
R T FaEn T g erease vy ) o /itg=487
eq Rt . 4 Kp<Kp 10
-1 =
Egqual areas for Yr/Hg b

degenerate minima kg, K3, 2

174 34 \ h-n 0 71/4 12
(c) Yr=Yr 2 5| g
=2 . .
Triple Point /
| Kg=lohsy 4 -10
iz

Inflection points

i) N
h-n Yplug>16
Symmetrically located K /up=48m
transitions coincide at hn=1/2 )
ol aleas (c) Kr<Kf; held constant i) K§=48m held constant

d) fe)
M, @m n+2—e 2
(d) n+32 D 312
hy sticks at 112 . nHl——, n+l nHl——e n+l
>
TRk ntif2 P ntf2
hO n s n hO n . n
area(A+B)=area(C+D} n-172 >, n-1 /2
< L.
0 “B 0 16
FIG. 14. Graphical solutions of Ed3.20 for ug>0, which IR y
> -

relates the layering phase diagram to the behavior of the bulk inter-
face in the first-order preroughening reginta) Inflection points
and the first appearance of first-order layering lines in the zippe
regime. (b) Equal areas construction for the position of the first-
order zipper layering lingc) The triple point.(d) Ordinary layering
beyond the triple point.

; FIG. 15. From triple point to tricriticality in the layering phase
diagram for ug>0. (a) Continuous increase in film thickness
[shown as patla in part(c) of this figurd. (b) Continuous increase
in film thickness that just passes through the layering critical points
[path b in part (c)]. (c) Schematic phase diagram with substrate
) 3 5 potential strengthkg< k§ taken as fixed, independent of film thick-
. YR n 2m / YR Yr ness for simplicity(d) Merging of the three inflection points into a
4 32mug 3 \327TUR ug ’ single fifth-order inflection point akgr=487 andyg/ug=16. The

triple point is now a tricritical point and film thickness grows con-
. . (3.29 tinuously[pathd in part (f) of this figurd. (e) Ordinary first-order
and the(negative of thgslope is layering beyond the tricritical poirfipath e in (f)]. (f) Schematic
phase diagram fokg= k= 48.

*(hinp—n) =

2 4
_ 2 4 YR
Ke(yp)=4m 1+8m (327-ruR> +128m (3277UR) We expect, then, that the stability of the first-order tran-
6 sition will continue to increase agg increases. As further
10 E) (3.26 evidence for this we may examine the stability of the triple
ug/ |’ ' point, yk. As shown in Fig. 15, the triple point becomes a

tricritical point, and then a critical point wherg/ug be-
comes sollarge that the pair of inflectio? points on either side
2 3 5 of h=n+ 3 mergewith the one abh=n+ 3, forming a single
R 88m / YR ) (E) fifth-degreeinflection point (which, within Landau theory,
32mur 3 |32mug defines a tricritical point The vanishing of the third deriva-
327 tive at h=n+% occurs whernyg/ug=16. The slope at this
This islarger thank,(0), meaning that the first-order transi- point is thenk{'= 127 Thus only forkg/ug>3(4m)? is the
tion is more stable foryg#0, existing for largerxkg/ug.  triple point washed out. This is quite a bit larger than the
Note that this computation assumes, effectividy,—> so  value (4m)? at which the first-order transition disappears at
that mean-field theory is exact. This is fine for first-orderyg=0.
transitions, but for second-order transitions there will, in fact, We finally obtain, then, the following picture of the dis-
be fluctuation corrections to this behavior so that both theappearance of the zipper with increasiag and/or decreas-
exact position of the critical point and the critical behavioring ug. The zipper, for a given value dfy, first breaks in
(which will be that of the two-dimensional Ising mogelill the middle ¢r=0), forming a pair of two-pronged forks.
be different. The prongs then become shorter, eventually retracting into

with corresponding value dij,

+(h¢=n)=
*(hg—n)=4 ug'
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(a) <o n-2 n-1 n n+l n+2 -
yr/ug /\ /\ Yp>>Up
line of triple points
(meeting of three 1st
ho \ order surfaces)
tricritical point (meeting \/\/\/\/AJ\
KR/uR of three critical lines) -7
yr=0
v ANVANVANANVIN
(b) transitions (c) incomplete zipper
iriple N AN
point 5 f f ; YRr<<iup
critical triple n-z n=z n+f n+i

point

FIG. 17. Evolution of the bulk interface corrugation potential
for ug<0. The newdDOF phase appears for an intermediate range
of yg.

integer or half-integer
layering line

fluctuation corrections will alter its nature and position. The
transition, which appears as a classical Landau mean-field
critical point in our theory, must become a two-dimensional
Ising critical point with (yg) ~|yr—Y&|*® andyi=<4|ug|.
o e et At yr=0 one has, by symmetry)(0)= %, so that the equi-
layering line librium mean surface heights are ndw=n= 3, rather than
h=n or h=n+3 as found whenug>0. For yz<O the
FIG. 15. Zippered layering phgse di_agram_as__a sequence Ghinima at h=n+ 6(yr) and h=n+1-6(yg) move to-
plane sections of the usual three-dimensional tricritical region. gether, eventually merging abh= n+% when yg= _ch

=4ug. The merging also corresponds to a two-dimensional
the triple point. Precisely at the point where the prongs disising critical point, with 3 — 6(yg)~|yr+ Y&l For yg<
appear, t.he. t.riple point becomes a tricritical point. Beyond_— y& only minima ath=n+ } remain, signifying the usual
this the tricritical point becomes a simple Ising critical point, poF phase.
and locally the picture is now indistinguishable from Fig.  Thys instead of the preroughening line simply becoming
1(b). Now, «r decreases &, increases. Hence as long as first order, it splits into two second-order Ising lines, with a
ug>0 remains fixed as the film thickens, this process occurgey intervening phase, which we call tABOF phasé,with
in reverseorder, with the zipper reappearing for sufficiently continuously varying mean surface heighten Nij¢ first
thick films [see Fig. Lc)]. In the higher, three-dimensional introduced this phase as a consequence of particle-hole sym-
space, lio.yr/Ur.xr/UR), this process can be viewed as a metry violating terms in the Hamiltoniafwhich we neglect
sequence of plane sections of the usual tricritical surifa_ee throughout this work completely analogous to magnetic-
Fig. 16]. Consequently, aK, decreases toward the point at field terms in an Ising model. Here we find this phase as a
vyh|ch u_becomes |_rrelevant, one hﬂﬁf’O, and gverth|cker result of spontaneousbreaking of particle-hole symmetry
films will be required to see the zipper. This means thalgrjven by ug<O.
integer and half-mt_eger Iayerln_g transitions “un2|p”_ fr_o_m The layering phase diagram is now very simple to de-
the bottom, becoming fully unzipped all the way to infinite scribe. In the presence of the substrate potential it is clear by
layer thickness precisely whanbecomes marg_m&?. Note  symmetry that neighboring minima can be degenerate only
that the mapping of the original model onto this fully renor- when hy=n or hy=n+3%. If hy=n+1 degenerate minima
malized description may lead to some nonmonotonic deperyye, for large positivgr, h=n andh=n+1, signifying the
dence of the renormalized parameters on the original onegsya| first-order transitions between essentially integer film

(thus, for exampleyr, yr, andxg are all functions o)y,  thicknesses. However, wherksyp the degeneracy is be-
J,, andT). In thinner films one may, therefore, see behaviorsyyeen h=n+ 8(yr) and h=n-+1-6(yg) (approximate

different from the asymptotic behaviors we have found. equality only due to the perturbative effect af, on the

positions of the minima Whenyg= —y§ these two minima
2. ur<0: Spontaneously broken particle-hole symmetry merge, and the film thickness then varies continuously
and intermeshing aroundh=n+ 1 for small deviations oh, from n+ 3. The
We next consider the casg< 0, which turns out to yield layering line therefore terminates there in an Ising critical
completely different behavior. The evolution of the substratg?oint. On the other hand, iip,=n degenerate minima are,
potential asyg goes through zero is shown in Fig. 17. This for large negative/r, h=n=z. Whenyg= -y the degen-
figure is actually identical to Fig. 18) turned upside down. eracy is betweeh=n= 6(yg), and whenyg=<yg these two
The major difference now is that the absolute minima atminima merge. The film thickness then varies continuously
integerh=n split continuously in twatyg=4|ug|. The two  aroundh=n for small deviations oh, from n. The layering
new minima lie ah=n= (yg) wheref(yg) grows continu- line therefore again terminates in an Ising critical point, but
ously from zero. Again, since this transition is continuous,this time asyy increases rather than decreases. In the inter-



4920 ANOOP PRASAD AND PETER B. WEICHMAN 57

Alternatively, if ug<<O the preroughening line splits into
two Ising lines at the poin, with the newdDOF phase in
betweer{see the inset to the central phase diagram in Hig. 1
How the reconstructed-DOHsing) transition line connects
up to this(if at all) is still not clear to us: this type of behav-
ior is not seen in the RSOS models we investigate, but has
been seen in the two-dimensional Ashkin-Teller mddéf.

As discussed in Appendix D, this model may be interpreted
as a “binary alloy” interface model, but its detailed phase
diagram lacks an obvious correspondence to that appearing
in Fig. 1. Nevertheless, these results hint that the place to
| look for a {DOF phase experimentally is in alloy films with

el ¥i=0 Yy Tl more than one atomitor moleculay constituent.

heq =nH(yg)

n+2

n-1

n-2

| |
| |
I |
| I
1 |
| f
t |
| f
n+l } .
| t
t |
| 1
} |
| t
+ |
| |
{ }

FIG. 18. Intermeshing layering phase diagram dig<0. The
two sequences of layering critical points approach the boundaries of IV. CALCULATIONAL RESULTS
the 9DOF phase as the film thickens. A. Single-spin computations

mediate regime,—y%<yg=<y%, both sets of lines exist. Many of the phases we are interested in can be investi-
Thus, unlike the caseg=0 where the two sets of lines are 9ated, often analytically, within a simple single-spin mean-
pushed apart so that there is a small region alygut0 field formalism. In order to gain insight we begin with these
where the film can grow continuously, the two sets, thoug omputatlons. This allows one to ghscuss not only the usqal
independent and nonintersecting, are intermeshed so that 4Y€7iNg pPhenomena, but also the interplay between the thin-
no time can one have unbounded continuous film growt{!m analogues of_ reconstruction and roughening. In particu-
[see Fig. 18; this figure is also reproduced, with more physi-ar' we shall elucidate the nature of the reconstructed-rough
cal axes, in Fig. (d)]. Note, however, that if one varigs, in phase. Multispin plaqugttes will be used later to improve the
an oscillatory fashion ab, increases, one can, in principle accuracy of the calculations as well as to describe phases that
follow a snakelike path to grow an arbitrarily thick film with- the single-spin theory misses.

out ever crossing a layering line. This is another signal that
the bulk interface transition is second order rather than first
order. Asn— o the two sets of Ising critical points converge

1. Spin% computations: tricriticality and tetracriticality
in reconstructed layering

to the bulk interface Ising transitions gk=*yg, with If, in addition, one is interested only in phenomena in-
Tll,n—Tlan—Tﬁn“n_(“a), just as for first-order pre- Volving at most two different Iayers,asp_ﬁmodgl suffices.
roughening. The Hamiltonian is given by Eq2.8), and its basic phenom-

enology was outlined in Sec. Il B 1. Here we fill in some of
the details via explicit computations.

Applying the formalism of Appendix A, the single site
The computations in this section are relevant both tomean-field free-energy functional is

roughening and preroughening phenomena on the bulk inter-
face and to layering phenomena in film growth. The results ]
for ug#0 are new and, as we have seen, have strong impact}_{Hi 0N} = _K% ‘T‘Ui_L(iEk) Uiak—; (Hi+hi)o
on the phasg diagrams. In particular, some previous results in
the literaturé require some revision.

Thus, Fig. 2 in Ref. 4 shows the Ising transition between _Ei Incosh(H;). 4.
DOF and reconstructed phases joining the preroughening ) )
line precisely at the point labele whereu becomes rel- We assume thdt>0, but thatk can have either sign. The
evant. We believe this to be incorrect: the potiwill ge-  first of the saddle-point equationgA9) yields o=
nerically lie to the left(toward smallel. =J,/kgT) of the ~ —tanh@;). Substituting this relation into E¢4.1) we obtain
Ising line, which we expect, assuming thag>0 for the the Bogoliubov mean-field free energy
RSOS model, to join théirst-order preroughening line at a
critical end pointN’ distinct fromN [see the central phase F{h;}=min
diagram in Fig. 1. The pointN is therefore tricritical, rather {o}}
than bicritical as proposed by den Nfjghe physics of the
Ising line is separate from that of the preroughening (ine
fact, for a triangular lattice substrate the reconstructed phas
and hence the Ising line, is completely abgeahd we see 1
no reason why they should be connectetlaOur plaquette Alo}=—K2X oj0j—LY gio— > [(1—ay)
mean-field calculations will lend further credence to the dis- (i) (ik) 29
tinction betweerN andN’. We shall find, however, that the
first-order transition remains extremely weak, which may ex-
plain why it was not seen in earlier numerical investigationsWe restrict our attention to a bipartite lattice, with sublattices
of the RSOS model. A and B. Let there beq; nearest neighbors angh next-

G. Global phase diagram

, 4.2

A{Ui}_zi hio;

where the mean-field Helmholtz free energysse also Eq.
é2.17) and the discussion preceding it

XIn(1—07)+(1+ o) In(1+07)]. 4.3
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nearest neighbors. We assume that the only relevant phases 1—cT(1—mS)
are those with uniform magnetizatiosr,=mj, for i e A and rT=ﬂ2)—,
o,=mg for i eB, on each sublattice, with corresponding ( 0
fields hy andhg. The ferromagnetic and antiferromagnetic 5 ) )
order parameters are, respectivaty=2(ma+mg) and m’ T:(1—3m0)—c(1+3m0)(1—mo)
=1(ma—mg), with corresponding conjugate fields=h, 12(1-m3)3[1—c(1-md)]
+hg andh™=h,—hg. In terms of these Eq4.2) becomes
2
VN = = mi 1y _ hea htmt f Mgy 2 2
F{h;}/N=1(h,h") nTrLr:[a(m,m )—hm—h"m'], v 6(1—m(2))5[1—c(1—m(2))]3[(m0 3)+3c(mg+3)
49 X (1—m3)—6c(1+ md)(1—m3)?]. (4.9

where the Helmholtz free energy per site is
We have therefore obtained a standard Landau free-energy
a(m,mMH=A{o;}/N=—}cm?—ic'm"?+1(1-m-m") functional form™. Thus, ifu™0, there is an instability to-
1 + N ward antiferromagnetism wheni<0. The antiferromagnetic
XIn(1=m=mH+z(1-m+mHIn(l-m+m’)  qitical point therefore occurs when
1 _mt iyl t
+z(L+m-—mYHYIn(L+m-m"+z(1+m+m') cTETT(h)/ngl—mo(h)z, .10
XIn(1+m+m"), (4.5
_ where Th=(]31]q1+J,0,)/kg=J}/Kg is the transition tem-
and wherec=Kg, +Lg, andc’= —Kag; +La,. Notice that  perature ath=0. Note that T/T{<1. For very largeh,
c>c’ wheneverK>0 andc'>c wheneverK<0. When mo(h) will be very close to unity, and>0. As h de-

" A t
both K andL are positive we expeana=mg=m andm’  croa5eg, for a given fixeB<T},, my(h) decreases and even-

=0. In this casea(m)_ is identical to the ’.“ea”'f"?'d free tually the phase boundary will be reached for some critical
energy of a model with nearest-neighbor interactions Onlyhth(T), which increases aE decreases. Below the transi-

but effective couplinger=K+qL/qy, and we leamn noth- 5, mt jncreases continuously from zero g~ (h'—h)?
INg NEw. The sepond—ne|ghbor _coupllng gives rise 1o Intery, B= 1 in this mean-field approximatiofan exact theory
esting new physics, then, only in the antiferromagnetic relvould yield the two-dimensional Ising resigt=12)

5).

gime, K<0. Another L T T .
. possibility is thati'<<0 butv'>0. In this case
Let us then use Eq4.4) to understand the onset of anti- the transition will be first order, with the minimum at'

ferromagn_etism. The antifer_romggnetic—par&}magnetic phasgo trading stability with two degenerate minima at nonzero
boundary is located by fﬁns'de“”g the St"fr‘b'“ty of the para; . 1y,q pointu’=r"=0 where the transition converts from
magnetic phase, whera'=0, to nonzeran'. To this end,

let my(h) be the value ofn that minimizes the right-hand :Veecggg iﬁngtigrsgsr:iﬁv;h?;ra tricritical point. From &4,9)

side of Eq.(4.4) with m'=0 andh'=0, i.e.,

(1-md)(1+3m3)
1-3m3 ’

mo(h)=tanjcmy(h)+h], (4.6) c=T/Ty>

and let the corresponding free energyféh). To see if this

is the true minimum we Taylor expand the right-hand side ofwhere To=(q,J2—04]J1])/kg=Jo/Kg . This inequality will
Eq. (4.4 in the deviationssSm=m—my(h) andm' (main-  be valid for sufficiently smalm,. Therefore the antiferro-
taining h'=0). Since we expect any phase transition to bemagnetic transition line will be second order‘l’ung is large
driven by the onset o', we further minimize the resulting enough. On the other hand, the simultaneous conditfon

(4.11

expression ovebm for a givenm?', yielding =0 andu’=0 then yields a tricritical poinT; at
Mo keTyi 2 1+230/3)
Sm= — mt2 Blwi_ 4 0/YJo
(1—m(2))[1—C(1—m(2))] J(‘g 3 1+\]0/‘]g' (4.12
mo [ m3 . . _— o
+ — > T This actually leads to #ine of tricritical points in theK-L
(1=mp)*[1—c(1—my)]|[1-c(1—mf)] plane. It is easy to check thaf remains negative for all
1+3m? <Tui-
- —°2+(1+ m3) { m"*+0(m'®). WhenT<T,; the transition line is no longer given by
[1-c(1-mp)] =0. Rather, one must look to see when the minimum at

(4.7) m'=0 is no longer the absolute minimum. For small nega-
. tive u' one then finds a first-order transitionrdt=u?2v*
We obtain then the result >0 at whichm' jumps from zero tom'=\/—u%/2o7. The
transition therefore takes pladeeforethe putative second-
a(m,m")—hm=fo(mo) + zr'm"+u'm™+o™m™+w'm™ et line ar=0. P P
+0(m'1o) (4.9 The tricritical point exists so long as'>0. One may
' check the sign 06" on the tricritical line and verify that it is
where positive for
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ANVAING
1 be imposed on the mean field alone and the discussion in
(ii) \/\/\/ \'Aﬂj ‘ Vﬂj Sec. lll C 2 is relevant. We choose to approximate the RSOS
\ L ~ | condition by a nearest-neighbor quartic interaction. Thus we
: \ consider the mean-field theory of the Hamiltonian,
» T

R
M 'MJ 771:771+%K'<2> (Si_sj)4:_(K+2K,)<2> SiSj
T 1) ij
(iv) v K.N/\,/ \”AAJ \,ﬁﬂ,} +3 Sizsjz_l_% sisc—hY si+hy>) 2,
(i i i

{n

‘ case we must include it explicitly. Since we are still dealing
only with single-site mean-field theories the condition must

g/

FIG. 19. Behavior of the free energy in the vicinity of the tet- (4.19
racritical point. The sequences shown correspond to gath6i), . L — 1 L .
(ii), and(iv) in Fig. 5a). with K'=J;/kgT>0, hy=h,+3;Kq;+3K'q;+35LQ, and
we have used the fact thaf=s; .
keT 11—433 Since the interactions between spins now include qua-
—>————=0.8759. (4.13 dratic terms the formalism in Appendix A tells us that the
Jo 6 most general single-site free-energy functional we need to
consider is

The point kgTe/Jo=(11—33)/6 is tetracritical since
rf, uf, and v all vanish simultaneously. FokgT/J]

_ _ 2
< (11— /33)/6 new behavior occurs. In Fig. 19 we show the ®(H,Hz)=—In %s:o+1 e HeTHze
structure of the minima in the free energy, Eg4.8). One B
finds that the tricritical point now becomes a critical end — —In{}[1+2e HecoshH)]}. (4.15

point that terminates the second-order limeforethe first-
order line ends. The first-order line now terminates in a criti-The full mean-field free-energy functional is now obtained
cal point completely within the antiferromagnetic phgsee by associating independent saddle-point theory variadjes
Fig. 5. Thus at temperatures below the critical end point, awith s; and 7; with siz, yielding

a function of magnetic field, there is a first-order transition to
the antiferromagnetic phase, while above it the transition is
second order. However, at temperatures above, but close t
the critical end point, the second-order transition is fgf)llowed
by a first-order transition from one nonzero valuenof to =

aﬁother. A 3D view of this structure is shown in Fighb 2 (Hi+h)o, Z (Hz, h2)7i+zi ®(HiHz)).
Note that the antiferromagnetic transition in the model with

3
g:_(K‘f‘ZK,)Z O'HTj'f‘EK’Z TiTj_LZ O'iO'k
(i) (i) (ik)

nearest-neighbor interactions only,& 0) is always second (4.16
order. The only coupling between the’s and ther’s is indirectly
through the coupling of thél’s andH,’s in ®. Notice the

2. Spin-1 computations: the reconstructed-rough phase antiferromagneticcoupling between the’s.
We consider next the spin-1 mod@.9). This will allow To elucidate the nature of the reconstructed-rough phase,

us to deal with phases and phase transitions involving thregP€cialize toh=0. What we will show is that whed, <0
different layer thicknesses. It will turn out that this model @1dJ2 is not too large there exists a phase in whitho;
contains essentially all the physics needed to explain all th&0» but 7 has long-range antiferromagnetic order. This
phases in the exact Hamiltonian. The simplest application i§'€@ns that the magnetization vamshes_on all sites, but there
to layering in the ferromagnetic regime where the spin-1'S antiferromagnetic order in the magnitude of fhectua-
model exhibits two layering transitions at low temperatures.“ons_on each site. This is intuitively plausible because if we
between the phase witihn=—1 and the phase witm=0 consider the special cadg=0, t_he exacil =0 ground state
and between the phase with=0 and the phase witm  Of 71 hass;=0 on one sublattice ang|=+1 randomly on
=1. However, the results here do not contain any new phystge other sublattice. Thus even though) =0 everywhere,
ics, and the extension to the full layering phase diagram, FigSi alternates between 0 and 1. Note that the RSOS condition
1(a), is clear. In this subsection, therefore, we focus insteads required to stabilize this state: in its absence the ground
on the film analogue of the reconstructed-rough phase, angtate would have;=1 on one sublattice ang|=—1 on the
transitions from it to the reconstructed-flat and disorderecdther. Similarly, in our mean-field treatment we expect such
flat phases. All of these may be elucidated from the single@ state to exist only in a certain range of sufficiently large
site mean-field theory. Only the preroughening transition bed; . At high enough temperature we expect this order to be
tween the flat and disordered flat phases requires the reteflestroyed, signaling the film analogue of the reconstructed
tion of a plaquette of spins, and this will be discussed in Sectough to fully rough transitiorithe negative part of th&
IV C. axis in the central phase diagram of Fig. We shall also see
For the spins model the RSOS condition was redundantbelow that inclusion ofJ,>0 allows for a transition to a
because the spins could take only two values. In the spin-phase with true antiferromagnetic order in #e This cor-
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responds to the film analogue of the reconstructed-rough to
reconstructed-flat transitiofpath 5 in Fig. 1. This is again
intuitively plausible becausd,>0 will force the ground
state to break the symmetry gf= +1 on the second sublat-
tice, forcing all theses; to take a common value. There will
then be a first-order layering-type transition as a function . .
field, h, between the state with alternating 0's and 1's and*-14- At h_lgh_temperatures we expeef=r7p=7 With 0
that with alternating 0's ane- 1's. WhenJ, is large enough = 7=<1 satisfying
we shall find that the antiferromagnetic order can be lost
with increasing temperature before the layering line termi-
nates, corresponding to a reconstructed-flat to disordered flat
transition[path 4 in Fig. 1. Thus long-range positional order
in the 0’'s and 1's(or 0's and—1's) can be lost while still As T decreases we expect an instability either to a state with
maintaining a broken symmetry between 1's antl’s. This 7 =3(7a—78)#0, butm,=mg=0 still, or to a state with
is the film analogue of th&<0 region of the DOF phase. Ma=Mg=m=0, but r'=0. Treating the first case first, let
As mentioned earlier, to describe the film analogue of ther=3(74+ 7g) and 67=7— 7. Completely analogous to the
preroughening transition in thik>0 region of the central computation leading to Eq4.8), we expand the free energy
phase diagram in Fig. 1 we will require a plaquette of morein a double Taylor series in" and 87. Mininimizing the
than one spir(see Sec. IV C below result oversr we find

Specializing the free-energy function&t.16 to a two . s
sublattice stucture fos;, 7;, andH,; we have 1 (1—7) 2= 772

C23K'qyf2+r H1-7) !

2~ 3/2K’qq(7g—70) 26 3/2K'qq(7pa—T0)

T = T = y
A B 1+ 2e 32K ay(ra—10)

(4.29

OfWhere To=—2h,/K’q,; and h, was defined below Eq.

1+2e~ 3/2K'qq(rg—7g)’

2~ 312K qy(7—10)

(4.22

= 1+2e~ 3/2K'qq(7—7g)

24 O(TTA).

(4.23

Substituting this into the free energy we obtain the Landau
expansion inr' alone:

f=FIN=—3(K+2K')qmamg— ;L ao(m3+m3)
—3(Hath)ma—3(Hg+h)mg+ 3K’ 0y 7475

—3(Haa— o) 7a—3(Hog—hy) mg— 3In{3[ 1+ 2 H2n

fgog=f0+%rTTT2+ u'7M4+0(71%) (4.29
X cosi{Hp) 1} — 3In{3[1+2e "2ecosi{Hg)]}. (4.1 with
Variation with respect tdd,, ,H ields _ - .
P 2a: 128 Y fo=2K'q, 72=In(3)+[h,—In(2)] 7+ 7In(7)
—H —H N J—
pao 28 HeostiHy) o 2e TecostiHg) +(1= 7)In(1- 1),
1+2e H2acoshH,) 1+2e M28cosi{Hp) o o
(4.18 rf=7"%1-7)"1-3K’q,,
Variation with respect t¢d, andHg yields —_3 —
p A BY uf=4[(1—7) "3+ 7 3]
B 2e Haagin(Hp) 1 [(1-7)2=-72)2
mA— - *H2A ) _ = — — . (425)
1+2e "2acosl{Ha) 8 3K'qy/2+ 7 11— 1) *
26~ Hzesint(Hy) There is a unique minimum at’'=0 for 7 11— 7)1
mg=— B (4.19 =3K'q,/2. Therefore the critical point occurs at a tempera-

1+2e M28cosi{Hg)

Inverting these and substituting them back iftbl?) we
obtain the Bogoliubov free energy,

1
fBog= — 3 (K+2K')gymamg— Zqu(miJr M)~ 3h(my

+mg)+ 3K gy 7a7s+ 3(7a+ 78) [N — In(2)]+In(3)
+3(1=7a)In(1—7a) +3(1— 78)IN(1— 78) + 3(7a
+mMa)IN(Ta+ma) +3(7a—Ma)IN(7aA— M) + 2 (7

(4.20

+mB)|n( TB+ mB)+ %(’TB_mB)ln(TB_mB).

ture T, determined by

(1= 7)=T,, (4.26
where T=2kgT/3J}q; and
— 2e_(T_c_To)/T_c
(4.2

T,
¢ 1+2e (eI Te

It is easy to check that’>0 at this point. Sincer(1— 7)
<1itis clear thatr'=0 for T> 1. Whether or not solutions
to Egs. (4.25,(4.26 exist depends on the temperature-
independent parameter 7o=—(2H,+J.q;tJ>0,
+J310:/2)/331q; (recall thatH,=kgTh, is the curvature of

H _2 —_2
Focusing first on the reconstructed-rough phase, we séfe substrate potentjalFor example, ifro=3 then 7 =3 for

h=0 and assume thah,=mg=0. Minimizing fg,q with
respect tor, and 7z then yields

all T, and we haveT_c= £ If H,=0 on a square latticegg
=4) then this situation corresponds|t|/J;= 3. The maxi-
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mal T, is  and corresponds te.= 1. This occurs forr, (a) 40
=(2-In(2))/4=0.3267. The general solution faf, given —
any o< Tc< 1lis H 20f Recons. Rec. Rough Para.
- — _ _ IYXYRYYYY ‘s
70T Tc(l_ Tc){(l_ Tc) +In[ TC/Z(l_ TC)]} 00 FVYYyvyey T, ¥ ¥viTe T
Tdn(72)—0, 7.—0
~ — — — (4.28
1-(1-7-)In[2(1— 7)]—1, 7.—1.
2.
Treating now the second case, we take=0 and expand (b) 40

the free energy id7 and m. Again, minimizing the result

with respect tod+ for given m we obtain 200 Recons. Para.
R H [XEXXLX LR
- T 0.

o= L7 m2+0(m?). (4.29 vy Te=To T
37
-2.0
Substituting this back into the free energy we obtain a Lan-
dau expansion im alone: 4053 T
fgog= fo+ 3rm?+um*+0(m°), (4.30

. (c) 3.0

with

r=7 1—(K+2K’)gq;—Lq, H o Recons. |POF
- o [XXEX XXX X AMAA A S
u=(27"%+ 77 °)/36>0. (4.30) R I W T, & | T
There is a phase transition to a ferromagnetic phase at o
=0. This yields a critical temperatui, determined by 2.0
3.0
70=7(To)=To, T=kgT/(J101+2J701+J50). e " e
(4.32 FIG. 20. Spin-1 phase diagrams showing the thin-film analogues
o of the reconstructed flat, reconstructed-rough and disordered flat
The temperaturesT, and T, coincide when J, phases as the second-neighbor couplihg, varies: (a) small J,,
Ji, J,, andh, satisfy the constraint showing the termination of the antiferromagnetic layering line in-
side the reconstructed-rough phad®;bicritical value ofJ,, show-
0= P(l—P){P71+ In[(1—p)/2p]}, ing a direct transition from the rough to antiferromagnetic phéase;
large J,, showing first the appearance of the DOF phase, followed

p=(J101+23101+J,0,)/(33101/2), (4.33 by the antiferromagnetic phase.

wherer, was defined below Eq4.27). For givenJ,, J; and ,
h, it is easy to check that fa, larger than that satisfying NOW turn to the more t_axpenmentally relevant problem of
Eq. (4.33 one hasT,>T,: the instability to the thin-film understandl_n_g the thin-film analogug (_)f the actual prerough-
analogue of the DOF phase occurs first, with a transition to £N'NY transition wherd; >0 (where it is now safe to take
reconstructed checkerboard state occurring only at lowef1=0). In this subsection we carry out detailed calculations
temperature. Conversely, for smaller one hasT.>T,: the ~ USINg the p_Iaqu.ette mee}n—fleld formahsm constructed in Sec.
transition to the film analogue of the reconstructed-rougH!- We begin with the simplest spin-1 model on the square
phase occurs first, with the transition to the true antiferroJattice, Eq.(2.13, and the two sublattice magnetizations, Eq.
magnetic state occuring only at lower temperature. The spe2-12. The function®)(H, ,Hg) is computed in Appendix
cial value ofJ, at which To=T, is bicritical with a direct C- ) ] ]
transition from the paramagnetic to antiferromagnetic state. AS we have discussed, the film analogue of preroughening
In Fig. 20 we show a numerical computation of the full corresponds to a second-order phase transitidn=a to a
phase diagram in thid-T plane for various values df,. The  State with uniform magnetizatioM,=Mg=M#0. As
behavior of the phase boundary n@archanges a¥, passes Usual, we perform a Taylor expansion of the free energy in
through T.: one finds that TredH)—T.~H?2 for T, Min the neighborhood of the transition. From Eg.15 we
>To;  TredH)—Tc~H2B for T.=Ty; and Tred H) —Te hgve— H=y,M+h, vv_herey4£ 2N 1K+ 3\,L. ThereforeH
~|H]| for T,<T,. will be small whenM is.

To proceed correctly, we first solve Hg.14), which now

B. Plaguette computations and preroughening reads

We have now established all of the essential physics of
. X . ; ) 1 9@
the various phases in the antiferromagnetic regime where we _= (4.34
have seen that a single-spin mean-field theory suffices. We 4 oH "’ |
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for H(M). Using Eq.(C4) and defining malize h, to larger values because there is more fluctuation
entropy available when the spin is zgréWe then havey

=1 and z=e #2. Defining x=x2=e ! and taking\,

4 4
=1 so thatz=x3, Eq. (4.40 becomes
|Py= |Pa, a 4.3 '
<>n§ J/«%.) (4.3
we then obtain 1\ 1+8x2+4x3+8x%+12x5+2x5
In|=l=— —————_ (4.4))
X 6x%(1+2x +4x%+9x3+4x%

e 4 32<|4>—3<|2>M3 Mo A
“H=m s T ggE MOV (436 . . o
Solving this equation numerically yields two roots,

Substituting this back inté(*) and using Eq(2.17 we ob-

tain the Landau expansion for the Helmholtz free energy, _ _
x_=0.588, x,=0.439, (4.42

£A<4>:f(4)+%X—1M2+uM4+O(M4) (4.37) which implies that a nonzert exists in the intervall _
N 0 ’ <T<T., where

where
T_/3,=1.214, T,/J,=1.885. (4.43
[ 0PAW 4
X =T NG (4.38 We may similarly establish the existence on the triangular
M=0 lattice. As discussed in Sec. Il, the six- and seven-spin

plaguettes shown in Fig. 6 have inequivalent sites with, in

is the zero-field inverse susceptibility in the paramagneti@deneral, unequal magnetizations. This effect should be small,

phase, and however, and we begin by simply tak|mgn_=HoutEH and
Mi,=M,=M in the plaquette free energi€é&6) and(C9).
We also begin by setting =0, h,=0, and\,=1.

p 8 3(12)2—(14) For the six spin plaquette the free energy is given by Eq.
fih=— %In( > a|), u=-———>7—. (439 (C6) and for these parameters one firajs-z,=x°, and the
1=0 3 (9 equation to be solved is

As usual, if u is positive (which may be checked the
second-order phase transition takes place in zero field whe
the susceptibility diverges, i.ey,”*=0. We must therefore
solve the equation

(/%) = (1+12x3+ 6 X5+ 30x°+ 6 X 7+ 24x5+ 229
+18x 104+ 24x 4 12x BB+ 2x 19/ (12x 3+ 24x >

R ] +96x°-+216x 5+ 150x °+ 108x 10+ 384x 1
— = 2 — .
— ( 2 a|) / ( 2 a,) : (4.40 +300x 3+ 72x ™). (4.44

which will yield a critical surface in the three parameter
space K,L,h,).

Let us first examine limiting cases. At low temperatures
whereK andL are large(and positivé the right-hand side of
Eq. (4.40 vanishes exponentially in T/sincex, y, andz ~ vy
(defined in Appendix €do. The inverse of this term there- X-=0.796, x,=0.547, (4.49
fore dominates at low temperatung, * is large and positive,

M =0, and there can be no symmetry breaking. Similarly, acorresponding to upper and lower critical temperatures
high temperature the inverse of this term again dominates
since it remains of order unity while, vanishes as T/
Thus y ! is again positive and=0. We have therefore
established the reentrant property of the phase transition, as-
suming that it exists.

To establish eXiStence, let us look at theflmplest pOSSible S|m||ar|y, for the Seven-spin p|aquette the free energy is
caseK=h,=0, keeping onlyL >0 (note thath, is positive  given by Eq.(C9) and for these parameters one firmsx?,
even ifh,=0, which reflects the fact that fluctuations renor- and the equation to be solved becomes

The solutions are

T_13,~1.657, T./3,~4.372. (4.46
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J— J— — — — — — 1
4n(1/X) = (1+2x2+ 12x 3+ 24x5+ 28x°+ 18x '+ 58x° rather thans, at the phase bogndary between the reentrant
and reconstructed phases. This clearly does not qualitatively

1+ 12%x 94+ 9x 104 24x 114 o0x 124 24x 13 (though it will quantitatively affect the reentrant phase at
L L L L L L positive K. In particular, first-order jumps in coverage will
+8x/(2x3+ 12x3+96x°+108x °+ 54x ’ always be centered near integer coverage no matter what the
_ _ _ _ _ nature of the potential reconstructed phase.
+550x 8+ 192x °+ 900x 1%+ 600x 11+ 522x 12 The essential message that emerges from these computa-
—T3 . T4 tions is that the interactions that give rise to preroughening
+480x "+ 98x ™). (4.47) of a bulk crystal interface do indeed lead to layering transi-

tions in films between states with roughly half-integer cov-
erage, and that the first-order layering lines are reentrant,
with well-defined upper and lower critical poinf&2 and

X_=0.848 and x,=0.520, (4.489  Tcn, as shown in Fig. ().

The solutions are

corresponding to upper and lower critical temperatures ~ C. Beyond spin-1: a correspondence between microscopic
and sine-Gordon theories

T T, We have seen that all of the essential physics of the vari-
—=1.528, —=6.075. (4.49 ous phases can be understood qualitatively by considering
2 J2 only three layers. However, in order to see how the various
) ) ) .. layering transitions evolve as the film grows thicker we must
As_clalmed in the Introdu_ctlon, the r_eentrant Frans't'oninclude many more layers. By keeping an effectively infi-
does indeed occur on the triangular lattice, despite the abﬁitely large number of layers, a mean-field phase diagram of
sence of a reconstructed phase. We have chosen values fgg py|k interface may also be worked out and compared to
various fudge factors in a somewhat arbitrary manner, so it ig,o predictions of the sine-Gordon theory. One way to do this
difficult to make quantitative comparisons between the thregy generalize the results of Appendix C and simply enu-
calculations. It is nevertheless clear that the two Ca|CU|ati°”ﬁ1erate(numerically if necessajyall possible surface con-
on the triangular lattice yield similar results, and that réeNtigurations for an ever increasing number of layers. How-
trant layering on the triangular lattice occurs over & muchgyer for thick films one may avoid such a tedious procedure
larger interval of temperatures than on the square lattice. Thgy considering a very special substrate potential that allows
reentrant layering is driven by an entropic preference for gne t0 do everything analytically. In so doing we shall dis-
disordered top layer, despite the energetic preference for gyer a very nice correspondence between the plaquette
flat interface. This disordering entropy is presumably larger,can-field theory and the sine-Gordon theory. In some sense
for the triangular lattice because the second-neighbor integ,o plaquette computation may be viewed as a single
action divides the lattice into three independent pieces i”fenormalization—group transformation tralteady generates
stead of only two, leading to a floppier, more loosely boundparameteryo, Uo, and, for input into Egs(3.2) and(3.3).
interface. The absence of a recon_sf[ructed phase therefore gk have done numerical enumerations using the proper van
tually enhanceshe reentrant transition. der Waals substrate potential only in order to explore the
Translated into the language of layering phenomena, fofjatailed structure in very thin films.
T_<T<T, the layer thickness will vary continuously with g4 far we have discussed two rather different approaches
chemical potential for top layer coverages in the interval the study of surface phase transitions. We began our study
—1+M;_1<x<—My, i.e., for some interval around half- 1, |noking at solid-on-solid models. These are microscopic
filling of the nth layer, whereM, is the “magnetization”  gysiem-dependent models, with parameters like the nearest-
computed above for the spin-1 model centered onrttie 5 next-nearest-neighbor interaction strengths, lattice struc-
layer. However, when the coverage reackes— M, it will  tyre chemical potential, substrate strength, etc. Such an ap-
jump discontinuously, via a first-order phase transition, t0 gyroach is useful when detailed comparisons with experiment
coverage ofx=M,, i.e., a partially filled (+1)st layer. o first-principles simulations are to be made.
More accurately, going beyond the spin-1 approximation, the | Sec. 11l we adopted a different point of view: since
RSOS model would yield asymmetric magnetizatioM,  much of the interesting physics should be amenable to a
andM, , with a jump betweerx=—M_ andx=M, . The  long-wavelength coarse-grained description, we examined a
discontinuities are, therefore, centered on integer coveragesine-Gordon Hamiltoniar{3.1) with partially renormalized
as seen in the experimer{s:!® The reentrant interval will parametersy,,u,,K, and an effective substrate potential
shrink ash, increases. It will shrink as well @6 increasesto  Vy[h]. One may find the renormalization-group flow equa-
positive values, but grow & decreases to negative values. tions for this model and then obtain detailed information
On the square lattice, for sufficiently large negatiVeas we  about the manner in which the roughening and preroughen-
have seen in the previous subsection, the various antiferréng critical points of a film approach bulk behavior as the
magnetic phases will appeésee also the central phase dia- film thickens. Moreover, simple assumptions about the be-
gram in Fig. 2. On the triangular lattice the DOF phase havior of yo(T) (namely, that it changes sign at some tem-
presumably survives for arbitrarily negatie (see Fig. 2  peratureT) and about, lead to phase diagrams that match
One can imagine situations where a reconstructed phase witjualitatively those obtained from the experimental data.
coveragexy different from 3 is stabilized at negativ&. In In order to use the sine-Gordon-type Hamiltonian for spe-
this case, presumablyyl will continuously approachxg, cific microscopic systems, a method of mapping the discrete
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lattice-based parameters of the RSOS model onto the par- = *

tially renormalized parameters of the sine-Gord(®G) E e *~9°= \[n/q 1+E 2e”2”2’“co§\27rng)}.
Hamiltonian is needed. The renormalization connection be- 5~~~ n=1

tween the eight-vertex modéWhich includes the BCSOS (4.59

model of roughening—see Appendix) @nd the Gaussian
model has been studied in Refs. 25 and 26. The main goal ofhe factore """ in the sum guarantees that this new se-

these studies was to find which Gausssian operators are gefes is very rap|d|y convergent and for most purposes it is

erated by specific eight-vertex operators. While this apadequate to keep the first few terms, each of which is mani-
proach yields much useful information about the relevancgestly periodic ing. Thus we have

of specific operators and about the universality class of the

Hamiltonians, it does not provide an explicit mapping be-

tween the RSOS Hamiltonian and the corresponding Gauss- __1 _ _

ian Hamiltonian. Theestricted SOS condition further com- fur(9) =~ zIn(m/a) —ygeos2mg) ~ Ugcos 4mg)

plicates attempts to find the precise correspondence between +0(yR), (4.59

the microscopic and coarse-grained models. As we shall see,

however, the mean-field approximati@ioes make it pos- )

sible to find an approximate mapping between the RSOS an@thereyr=2e~""* andug=0(yg)<yg. It is clear that in

the SG models. the single-site mean-field theoyy, is always positive so that
fume IS minimized for integer valued. Thus the film is al-

1. Single-site theory ways globally flat with integer valued thickness, and there is
no possibility of either a rough phase or a disordered flat
phase. We shall see below that the plaquette mean-field
theory doesgive a DOF phase, but even there an exponen-
tially small corrugation remains to arbitrarily high tempera-
ture (i.e., smalla). This is an artifact of the mean-field ap-
proximation, which misses entirely the subtle features of the

We first formulate the single-site mean-field theory of the
bulk crystal-vapor interfacéno substrate The Hamiltonian
is

H=3K> (si—s)?+3L EK (si—s)° roughening transition. However, for the purposes of estimat-
(L) R ing phase boundaries, as we have done in Figs. 1 and 2, one
may define the roughening temperature as the point where
_ 2_ _ i
_O‘Ei Si K%‘g SiS; ng) SiSk 450 the corrugation falls below some small valy@". In Fig. 1

the vertical roughening line running through the pointand
where a=(q;K+q,L)/2. The formalism of Appendix A M has actually been taken for convenience from the exact
leads to the single-site free energy solution of the six vertex modétiscussed in Appendix D
while that running from theK=0 axis to the point. has
w been 6estimated from the mean-field theory usipg"
__ N2 —a(s—g)? =10"° (essentially the limit of our numerical resolutjon
fur(0) alo(9)~g] InL_EOC © The roughening line in Fig. 2 uses the sagd?!”, but, in
(4.5 order to give a better feel for the errors involved, the width
of the line corresponds to 20% adjustments to either side of
this. Clearly the ambiguities are greatest close to the pre-
roughening line.

o(g)= * * 2. Plaquette theor
(9) ( s Se_a(s_g)2> /( 5 e_a(s_g)2> q y

whereg=H;/2a (theH;, clearly all equal here, were defined
in Appendix A), and

We shall next show that Eq4.55 remains valid for the
square lattice using a four-site mean-field theory, but yhat
may nowchange sigrprecisely as indicated in Fig. 12, thus
exhibiting a DOF phase. We confine the discussion]{o
>0, though we have also carried out a more involved calcu-
[ation, which we shall not detail here, fd;<0, to investi-

ate reconstructed phases. We will also now include a sub-
strate potential in order to exhibit layering.

The Hamiltonian is exactly as in EG4.50 except that we
now add a ternd «=(s;— hg)?, wherex models the strength
of the effective substrate potential ahgldetermines the film
thickness. We shall see that this quadratic form of the sub-
strate potential still permits an analytic analysis. Following
the formalism in Appendix A, we tile the lattice with>22

kz fl= > fﬁmdx‘c(x)efizwmx' (453 plaquettes and rewrite the Hamiltonian in the fork

=—00 m=—x —_— R
= 2p[ Hp+ Hinterplag WhereP denotes a sum over plaquettes
which then yields and (in the notation of Fig. ¥,

4.5
results from the second saddle-point equatiff). I(Dhyszi)-
cally, o(g) corresponds to the equilibrium film thickness. In
the absence of a substrate the free energy will have an inf
nite sequence of minima reflecting the perfect periodicity o
the systemfz(g+n)=fye(g) for any integen. Thus ifgg
iS @ minimum, so igy+n. In order to retain this periodicity
we avoid truncating the sum ovsiin Eq. (4.51) by using the
Poisson summation formula,
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Hp=3K[(Sp1—Sp2) >+ (Sp2— Sp3) 2+ (Spg— Spa)? C=2exp—8m*/A)(1+4exi] — (k+4K+5L)]
+(Spa—5p1) ]+ 3LI(Sp1— Spa)*+ (Sp2— Spa)’] +4ex — (k+4K+5L)/2]+exd — (k+6K+3L)/2]
+(K+3L)(s5,+55,+ 53+ S54) + 3 k[ (Sp1—ho)? —8exg —(3x+14K+13L)/8]). (4.61)

+(spp—hg)?+ (sp3—ho) %+ (sps—ho)?], (456  From Egs.(4.57) and(4.59 we find

and Hipterpiag CONtaINS terms such as (K/2)spisp , and
—(L/2)spzsp24, which couple neighboring plaquettes. From

Appendix A, the mean-field free energy per site is then found —d(9)1%, (4.62
to be

fMF( 9): fo_yRCOiZWG)_URCOQ47TB)+ %K[a_ho

wheref, is a constant. This free energy is now in the sine-
. ) Gordon form. A more convenient variational parameger
fur= —(K+3L)o?+go—3l09(Zgoy), (457  =4g+hox/A is introduced here, and we have defined

where
d(0)=(27yr/A)sSiN276O)+ (4dmug/A)sin(4m0).
(4.63

!
Zgog= > exd —Hp+9(s1+S,+S3+84)]
$1,5,53,54

The sine-Gordon parameters may now be expressed in terms
(4589 ofK,L,andk as
is an effective plaquette partition function ana(g) 5
=3dInZgoy/dg is again the average film thickness. The —E+O B
prime on the summation is a reminder that the RSOS condi- yR_4A Al
tion must be obeyed. K, is considered as an unconstrained
variable, then fos; =n, this condition allows only 19 differ-
ent configurations for the other variables. The ene¢gpf C ( 1 772)(5)2 1 ( B)4+ [(E °
Al |

A
+c;. For example, if all four spins take value we have (4.69
a;=4K+6L+2k, b;=—4g—4hok and c;=2«h3. The

partition function therefore takes the discrete Gaussian form2Nce (No,9) is determined by minimizingye, the film
thickness is given byr=6—d(#6).

configurationi may be written in the forme;=a;n%+b;n URTZA 1_6+ 8A/\A] 64 A

19 o It is not hard to see thaty is positive at low temperature
ZBOQZE > e-ain’-bin—c; (459  (largeK=J,/T andL=J,/T), but at high temperatures it
i=1ln=-o changes sign: although E(.61) implies thatA is always

positive,B, and henceg/r~B/4A, change sign. This confirms

the existence of the DOF phase. Those portions of Fig. 1 that
do not involve reconstruction are based mainly on numeri-
cally mapping out the surface and layering phase diagrams

Each sum oven can be reexpressed in terms of periodic
functions using Eq(4.54 with the result

— T A a—2xh3+u2i2A using Eqg.(4.57 [with the exception of Fig. (), whose
Zoog= V2mIAe ’ [A+Beog2mulA) #DOF phase, as we have emphasized, does not appear in this
+Ccog4mulA)+---], (4.60 model; we have substituted the phase diagram computed
from the sine-Gordon model in this cdseHowever, for
where smaller film thicknesses we have also used the more realistic
van der Waals substrate potential shown in Fig. 3 and nu-
A=8K+12L +4x, merically enumerated the surface configurations to compute

the mean-field free energy. The phase diagrams involving

reconstruction obviously require more than a singleand
u=4g9+4hgx, we have applied the appropriate generalizations of £&.7)

to their computation, again using numerical enumeration and

a more realistic substrate potential at smaller film thick-
A=1+4exg —(k+4K+5L)]+4exd — («+4K+5L)/2] nesses.

+2exd — (k+6K+3L)/2] If.we view 0 as a new rgnormalized continuous spin, re-
placing the four original spins, thei,e represents a corru-
+8exd — (3x+ 14K +13L)/8], gation plus substrate potential that we should substitute into

Eqg. (3.2. Notice that the effective substrate part has been
) modified slightly by the periodic terms. Missing from this
B=2exp —2m“/A)(1+4exd — (x+4K+5L)] analysis is an estimate for the interplaquette coupkag
—dexyf — (k+4K+5L)/2] Thus a true renormalization-group transformation would also
generate renormalized couplings between the plaquettes. We
—2exg — (k+6K+3L)/2]), have not looked into this, but simple estimates could presum-
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ably be made by comparing the estimated roughening tem- Another possibility is that a lattice model is simply insuf-
peratures derived from the plaquette calculation and théicient for describing the properties of the film. Such would

single-site theory, Eq4.55. be the case, for example, if two-dimensional melting were to
occur. The lattice model cannot describe a phase where in-
V. CONCLUSIONS commensurability effects occur, i.e., when the film is in a

. . . . floatin lid ph with a latti r re incommensur
In this last section we briefly compare the theoretical re- oating solid phase, with a lattice structure incommensurate

sults we have obtained from the RSOS and sine-GordoW'itrr]l ETrits-Ofﬂfze dzt::sitnra;?. Slucc:;: g;?si? IQI(;Z?Id Zﬁg\l’c :Ngf:ry
models with the results of the experiments on noble gases 0(51 S | melting li 9- " .t ol . 3,[/ here t
graphite substratés1418and discuss other possible interpre- 2IMenstonatmefting lin€s, as weil as triple points where two-

tations of the data. We end by discussing work for the futuredimensional liquid, vapor, and solid coexist, in the first two

or three layers of argon on graphite. The RSOS model is
clearly inadequate if such phases were to persist in the upper
layers of arbitrarily thick films.

If we accept the premise that the RSOS model indeed |n a recent letter, Phillips, Zhang, and Lar€s@ZL) take
captures the essential physics of the thin-film equilibria, angyrecisely this point of view. They report a Monte Carlo
that the experimental measurements have not missed any sigmuylation of up to several thousand Lennard-Jones argon
nificant features in the phase diagram, then it is difficult noty;yms on a two-dimensional substrate, with an extent such
to conclude that the reentrant layering is indeed a reflection, 5« about 1000 atoms fill one layer, and studied films up to
of the DOF phase on the bulk interface. Thus, although Figs,,, ¢ three layers thick. They found the usual layering tran-
1{g.n, which involve reconstruction, show phase Ollagramssitions at lower temperatures, and smooth, continuous

remarkably similar to Fig. (t) there are also distinct differ- ) . .
ences. In I):/ig. @) the exger(ir;ental vapor pressure isothermsgrowth of the film at higher temperatures. However, at inter-

will have steps at the wrong coverages, which seems to b@ediate tempera_tures they found,. asa func_:tion of increasing
ruled out by the experimental data. Similarly in Fighj cpverage(or, equivalently, Increasing <_:hem|cal poterjt|at
although the steps in the vapor pressure isotherms now occﬂ?‘ed temperature, a sudden increase in the Qccupat|on Of, the
at the correct coverages, there is a film analogue of the trafourth layer at the expense of the occupation of the third
sition from the rough to reconstructed-rough phase at highd@Yer just before third layer completion. This is accompanied
temperatures that is not seen in the experiments. This trandpy @ positional disordering of the third layer, which is inter-
tion is second order, rather than first order, so it might be’reted as a melting transition. As more particles are added,
more difficult to see. Both these scenarios, however, leavée density in the third layer increases again, and at a nomi-
open the question of what kind of triangular lattice recon-nal coverage of about 3.5 layers the third layer apparently
structed and reconstructed-rough phases might replace ttiesolidifies. This resolidification, apparently induced by the
square lattice checkerboard phase. Direct probes of the sunydrostatic pressure of the particles above due to the binding
face structure through scattering measurements would be renergy of the substrate, is argued to give rise to the steps in
quired to see if, in fact, the upper layer of the film has non-the vapor pressure isotherms in the reentrant layering regime.
trivial spatial order. This process is argued to repeat itself layer by layer as the
On the other hand, accepting the premise that the DORIm grows. Since their scenario involves both liquid and
phase is responsible for the reentrant layering, and the fasblid phases in the film PZL question the t/sef the RSOS
that there is not expected to be a reconstructed phase on tlagtice model.
triangular lattice, we have seen that the phase boundary be- There are various problems with this scenafidirst of
tween the flat and DOF phases extends, in principle, to arbiall, the behavior of the third layer is rather different from that
trarily large J,/J,. However, the Kosterlitz-Thouless theory of higher layers, where our DOF phase interpretation is
tells us that only a finite segment of this boundary can be &laimed to be valid, and is, therefore, not a good basis for
continuous transition. Thenajority of this boundary must generalization. Thus, although the first and second layers of
therefore be first order, and in retrospect it may not be to@rgon have independent two-dimensional solid, liquid, and
surprising then that the experimental data show evidence ofgas phases, complete with critical points, triple points, and
first-order preroughening transition. melting transitions, the fourth, fifth, and sixth layers behave
One might be concerned by the fact that the real underlyrather differently. In particular, they do not have triple points
ing lattice structure of argon on graphite is fcc rather thamor two-dimensional liquid-gas critical points, but they do
triangular. As mentioned in the Introduction, this means thahave low-temperature layering transitions at integer layer
although individual layers indeed form two-dimensional tri- coverages, and higher-temperature ‘“reentrant” layering
angular lattices, they do not lie directly on top of one an-transitions at half-integer coverages, zipped to the low-
other, but are displaced horizontally from one another so thaemperature layering transitions by the zigzagging line of
subsequent layers lie in the interstices of the preceding onebeat capacity peaks. The third layer, on the other hand, is an
In principle, this will affect the quantitative predictions of intermediate case, showing both types of behavior: there is a
the RSOS model. This certainly should be checKdai;t all  two-dimensional triple point and a two-dimensional critical
evidence so far indicates that the results are not particularlpoint, but there is also the first reentrant layering transition,
sensitive to lattice structure. In the present work we havemarked by coexistence between 2.5 and 3.5 layers, which
considered both square and triangular lattices while, for exentrains the melting of the third layer. It is not surprising,
ample, the original work of Rommelse and den Nijs wasthen, that PZL see evidence of melting associated with that
based on a bcc lattice’ rather complicated situation, but the very different nature of

A. Comparison with experiment
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the phase diagram for thicker films makes us skeptical of théally realizable for a system with a single-adsorbate species
generalizations they draw from that observation. (as opposed to “alloys”—see Appendix)Othen we con-
There are also two quantitative reasons for doubting thelude, at the very least, that something beyond an RSOS
PZL scenario in third and higher layers. First, if they weremodel with only first- and second-neighbor interactions is
due to solidification we would expect the vertical steps inrequired. One can therefore ask: What potential would be
adsorption isotherms that are the signature of the phenommequired in order to generate 8DOF phase in a one-
enon to be roughly 10% of a layer in height, the typical component system?
density difference between liquids and solig®te, in fact, To conclude, recent experiments have shown that there is
that for continuouswo-dimensional melting there is no den- much new interesting physics to be found in thin-film and
sity difference at a)l Instead, all of the data, including bulk interface studies. The present work will hopefully mo-
PZL’s own isotherms, consistently show steps of roughly aivate future experimental efforts in search of the as yet un-
full layer. Second, the hydrostatic pressure that is supposesken phases and phase diagrams that we have found.
to induce the transition is negligible in the third layer and
smaller yet in higher layers. This point shows up clearly in ACKNOWLEDGMENTS
the energetics: the binding energy of the third layer is little
more thankgT/10, and decreases as the inverse cube of the We thank Peter Day, David Goodstein, and David Huse
film thickness. The canonical ensemble simulation methodor enlightening conversations. The support of the NSF
used by these authors does not allow a direct reconstructidghrough Grant No. DMR-9308205 is gratefully acknowl-
of the isotherms, so no prediction is given for the size of theedged.
discontinuous step, nor is any other direct thermodynamic
evidence given for this freezing transition. The apparent ab- APPENDIX A: PLAQUETTE MEAN-FIELD THEORIES
sence of melting phenomena leads us to believe that the ) ) ] )
RSOS model provides an adequate description of the thicker !N this appendix we outline the general formalism for con-
films in which the physics approaches that of the bulk inter_strqctlng c_onS|stent mean—ﬁeld_ theones,.usmg plaquetteg of
face. The DOF phase predicted by this model then produceditrary size, based on any given Hamiltonian. By consis-
the full step reentrant layering transition@oexistence be- (€nt we mean that the mean-field free energy should obey all
tweenn+ 1 andn—1 layers. This, along with the natural f[hermodynamlc pr|n_C|pIes. We guarantee this by dempnts'_trat-
explanation of the zipper in terms of a first-order prerough-nd that the mean-field theory becomes exact for a limiting
ening transition, demonstrates that the RSOS model has r&2s€ of a certain model Hamiltonian closely related to the
markable descriptive powers and the agreement of its predi@fginal given one. The formalism we present here is a fairly
tions with the experimental data is striking. Its very stralghtfoanrd generalization of that descrlbgd in Ref. 28.
simplicity, which is a shortcoming in thinner films, becomes ~ 1N€ idea is to treat each plaquette as a single site with a
a virtue in thicker films. set of internal variables, each of which may interact with the
internal variables on other plaquettes. If we label the
plaguettes by an indel, we denote thecomplete sebf
B. Euture work internal variables bySy,}, =1, ... K. Often the different

. plaguettes will be identical copies of one another, but this is
Given the RSOS model parametersand J, the theory not assumed in general. The internal variables will include,

developed in the present work then allows reasonable es%r example, not only the height variablés within the

mates of the renormalized sine-Gordon paramefeasid u laquetteP, but also all powers and products of theid
. . y ity
that determine the actual phase boundaries. Perhaps the Iej%: hh. h?hjhﬁ (with i, j, andk all in P), etc. We consider

est gap in our theoretical understanding of the reentrant la e =

ering phenomenon is the connection between ttiero-  then a rather general reduced Hamiltonidfs H/kgT, of
scopic interparticle interactionsnd these effective RSOS the form

model parameters. If one models the particles, as in Ref. 18,

using a Lennard-Jones potential with hard core radiznd _ .

attractive minimum depth- ¢, the question is whether there H=2 Hp{Spa}— 2 NpaSpat A{Spa}, (A1)
is a reasonably well-defined mappidg=J,(o,e,T) and P P

J2=Jz(0,e,T), and if so what range ai, andJ, the map- pore Hp{Sp,} depends only on the internal variables in

ping covers for physically motivated ranges @fande. In plaquetteP, and the conjugate fields.,, should not be con-

particular, can the effectivd, be made small enough to - - - ;
produce continuous preroughening, and do any of the correfyS(ad with the original height variablés. If the plaquettes

sponding Lennard-Jones potentials match that of a real mé&'€ identicalip will not depend orP. The potentiald con-
terial? Answering this question theoretically would require!@ns all interactions between different plaquettes. These in-
extending the PZL simulations to other Lennard-Jones poterf€ractions are forbidden from containing products of $ag
tials besides that of argon and to much thicker films. within the same plaquett. Technically this means that the
Another point is that we have seen that the one-derivative dA/dSp, is independentof Sps for all g
component RSOS model we study does not produce 1, ... K, and hence 'ghatl is a sum qf term§ multilinear in
9DOF phase. The two-component BCSOS model does ha/d€ Spa - From azprac'ucal point of view this means thzat a
a ADOF phase but there would be considerable experimentd®rm like (h;—h;)* must be multiplied out so that’ andh;
difficulty in investigating such a two-adsorbate system asare included irfH{p for their respective plaquettes, while the
suming that one existed. If this phase is, in fact, experimeneross termh;h; is included inA (assuming thait andj lie in
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different plaquettes, otherwise the entire term belongs in OF 0 aPp

Hp). The conjugate fieldsp,, are introduced in a term sepa- (a Hpa) OZO:UP“: ( oH Pa) o

rate fromHp and A for later convenience. The partition

function,
7 =0=HY_+hp,= (A9)
ao’Pa Pa Pa ao’Pa ’

0 0

Z{hp,}= | DSe MSedl, A2 o .
thed} f © (A2) where the subscript 0 indicates evaluation at the saddle

. ) . point. Clearly the solutions must be real, and we may specify
is then a _functlonal integral over some fundamental f8ld {he numberc in Eq. (A4) to beHga for the corresponding
out of which theSp,, are constructed. The reduced free en-contour. We emphasize that because the integration is over
ergy isF/kgT=F=—In(Z). complex values of théHp,, Fye is not in general the
We now introduce independent continuous varialetes  minimum of F over allHp, andop,,, not even over all real
and their conjugate fieldslp, as follows: we first use the values ofHp, and op,. The direction of steepest descent
variablesop, to represent the variabl&, simply by intro-  through the saddle point is often a nontrivial angle in the
ducing appropriate functions: complex plane. However, if there are multiple saddle points
one must obviously choose the one with minimal free en-
o ergy. We will discuss at the end how to defiRgg through
Z{hPa}:f DSe—EpHp{Spa}f DUH 8(0p,—Sp,) a proper extremum principle. The first equation gives the
P.a mean-field approximation for 9F/ohp,=(Sp,) in terms of
the effective single plaquette free ener@y while the sec-
ond equation gives the effective fielddp, acting on

We then introduce thélp, by using the usual Fourier rep- plaguetteP due to the external fieltp, as well as the mean

X e_A{UPa}+EP,ahPaUPa_ (A3)

resentation of thes function: fields op:,, ON plaquettesP’ with which it interacts. The
latter then serve as inputs b in the first equation. Notice
that

dH
5(0’—5):f TGH(G_S), (A4) — 0
ceml IF ue OF ( oF ) Hp,

where the integral is over a vertical contoGr extending e Npo g | \Hprar 0 ey

from c—io to c+ic in the complexH plane, where is an

arbitrary real number, which will later be chosen for conve- n oF doprar| A10

nience to satisfy a certain saddle point condition. If we define dopr ) . INpa ~OPa: (A10)

a'lg

the single plaquette reduced free energigsvia

where the last equality follows because the saddle-point
- equations cause the second term to vanish identically. This

e*‘I’P{Ha}EJ DSe MpiSal=2aHaSa, (A5)  proves consistency, namely, that,=(Sp,)vr is indeed the

mean-field average @&, . Consistency is in fact guaranteed
by the deeper result that the limmt—o may be realized as
an explicit modef® it is straightforward to show that for
general integen=1 the partition functionZ, may be ob-
tained from the Hamiltonian,

then the patrtition function may be written

Zn{hPa}:f DHJ Doe "iHpa opaiNpal (AB)

n
wheren=1, but for convenience has been introduced as a 7Tn:2 E E{S(F[)}_E NpoS pg+ NA EEPQ},
free parameter, and the free-energy functional is =1°P Y P n
n
f{HPQIUPa;hPa}E; q)P{HPa}_PE (HPa+hPa)0-Pa EPQEZ:L SSDIZW (All)
+ Aopat. (A7) where{SU}"_, aren identical copies of the origingISp,}

We now consider the saddle-point approximation, which beywth identical single plaquette Hamiltoniarig, interacting

' L o e only through their mean value§l/n3p,}, which appear in
;222?]:;(;;'[ inthe limit—c=: define the mean-field reduced A. The form(A6) follows by introducing the Fourier repre-

sentation of thes functions 8(nop,—p,) and integrating
out the{Si)} as before. In the limin— the saddle-point
F_MF{hPa}:]:{Hga a3 :hp,t, (A8) equa_tions represent an exact solution to this model.
It is worth reemphasizing that the free energy, EB),
0

where{H%_,o% ! satisfy the saddle-point equations depends only on the fieldéhp,}. Given onIyF_MF{hpa} the
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mean-field average$s®,} must be obtained through Eg. tuitive picture it is not obvious precisely what aspects of the
(A10). It is sometimes preferable to perform a Legendreaverage environmental behavior are relevant. For example,
transformation and work with a free energy that dependsuppose the fundamental field has spirtaking valuess;=
explicitly only on the{o,}. We define then the Helmholtz —j,—j+1, ... on each sité with corresponding equilib-
free energy, rium probabilitiesp;(s;). In principle, all of these P inde-
pendent probabilities on each site ought to be determined
self-consistently in the mean-field theory. Equivalently, we

Aur{ o3, ) =F e+ >, hpol,, (A12) may determine the mean poyve|<${“)=2{=,jlmpi(l), m
P =1,...,3 (m=1 corresponding to the order paramgter

in which Eq.(A10) is used to eliminate théhp,}. Equiva-  Within the formalism, however, the powesg must be con-
lently, we have tained in the{Sp,}, and their averages contained in the

{opo}- The consistency of the theory indeed demands that all
of these variablegand more if the plaquettes contain more
AMF{Uga}:E (I)P{HPQ}_E Hp,o,+AloS,}, than one siteenter appropriately, though, as we have seen,
P P.a great simplifications occur for those that do not appear ex-
(A13)  plicitly in the interplaquette interaction term.

Finally, in order to define the theory through a true extre-

in which thefirst line of Eqg. (A9) is used to eliminate the mum principle, we make the connection to the Bogoliubov
{Hp,} in favor of the{oD,}. The result is explicitly inde- method for constructing mean-field theories. The Bogoliubov

pendent of théhp .}, which are then computed frofyr via  inequality states that for any two Hamiltoniafs and H;,

with corresponding reduced free energieand F,,
_ 9AwF

hpy, . (A14)

002, F=Fi+(H—Hy)1, (A15)

From Eq.(A13) we see that the computation &f,- fromthe ~ Where the average is with respect#q. The strategy is to

functional F given in Eq.(A7) is easier than the computation Pick an appropriate family of exactly soluble model Hamil-

of Fy since it involves solving only one of the saddle-point toniansH;(\) depending on a set of free parameters generi-

equations, Eq(A9). cally denoted by\. One then defines the Bogoliubov mean-
One might be concerned about an obvious ambiguity irfield free energy via

the definition ofHp . Clearly terms like2p ,hp,Sp,, which

are linear in theSp,, could also be included in the single
plaquette part of the Hamiltonian, thereby changing the form
of the single plaquette free energhp. Fortunately the . .
saddle-point equations are insensitive to this ambigfdity, Can one connect th|§ procedur.e to th? saddle-ponlmethod
which is easily seen only to result in a corresponding shift inabove? The answer is yeBy,q is precisely equal td-yr

the {Hp,}: the sumHS_+hp, , is unchanged and from Eq. With the choice

(A9) one immediately sees that the physical quanttties,} o

are theref_ore gngffected. Notice from t_he second line of Eq. lez Hp{spa}JrE Hp,Spy - (A17)

(A9) that if A is independent of a particul&y,, then one P Pa

immediately has the solutiollp,=—hp,. Therefore, un-  The minimization is over real values of tHeip,}. It may
less Sp,, appears inside a nontrivial interplaquette interac-seem curious that théop,} do not appear explicitly any-
tion, one may simply include the terhp,Sp, in Hp and set  where. In fact, the functional being minimized on the right
the correspondinglp,, to zero. Therefore, the number of free hand side of Eq(A16) is preciselyF{Hp, ,0p{Hpot;Npat
minimization parameter§Hp,} that need to be introduced in which the first line of Eq(A9) has already been substi-
depends only on the complexity of and not on that of{,.  tuted for the dependence of thep,} on the{Hp,}. This

For example, if interactions in the roughening model take théarametric dependence of thep,} on the{Hp,} defines a
form (h;—h;)?, only fields conjugate to the individugh;} ~ particular trajectory that not only is guaranteed to pass
need be introduced sin¢\§ (as well ash;h; for i andj in the through the saddle point, but for which the saddle point is
same plaquetjeappear only in single plaquette terms. actually an extremum. _ _

It is worth commenting on the relation between this for- ~ The Bogoliubov procedure often produces an inconsistent
malism and the intuitive idea of mean-field theory where ondree energy. The procedure above is guaranteed not to suffer
makes a distinction between a particular plaguette of varifrom this problem. The key ingredient, as we have seen, is
ab|eS,Sa, which is treated exacuy, and its “environment,” that a free minimization parametHrpa Sh0u|d be introduced
which then interacts with th&, only through its average for each and every single plaquette variaBjg, that appears
properties. In the present formalism these notions are mad8 A. This can actually be seen directly within the Bogoliu-
precise through the distinction between the plaquette fre€0V procedure: just alp, in Eq. (A7) vanishes if the cor-
energy,®, which contains an explicit trace over the fluctu- respondingop, does not appear itd{op,}, it is easy to
ating internalSp,,, and the interplaquette interaction$, ~ Show that the same is true in EGA17). Thus Eq.(A17) is
which contain only the nonfluctuatings, . Now, in the in-  the most general form df{;(\) that one need consider.

Fog=Min{F 1(A\) +(H—Hy(\))4}. (A16)
A
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APPENDIX B: FREE ENERGIES: INTERPLAQUETTE CONTRIBUTION

Using the formalism developed in Appendix A, the free-energy functional corresponding to the tiling shown in Fig. 8 is
given by
ﬁe){HPa;UPa}:EP: ‘D(G){Hpa}_% (HPa+hPa)0-Pa_)\lK§P: [opi(oqut oqet 0gu)topaogat og,2)
+op3(0q,3t 0q,e) T opa(0qst 0qeT 0qut Q) T Ops(0qut 0q,s) T ops(0q,3t 0qt 0q,4)]
— )\2L; [opi( 0'Q13+ O'Q23+ 0Q52) + oo 0'Q26+ 0'Q45+ UQ51+ 0'Q55) + opa( O'Qll+ (TQ25+ 0Q,1
toQut 0'Q54) + opyl 0Quatoqatogat 0Q54) + 0'p5(ch23+ Q2T oqet O'Q52)

+UP6(0Q26+UQ22+UQ36+UQ45)]_)\1K; Tp10Pp,6

_RzL; (0p10pat0Op10p 5T 0p20p,6) T (P—Q), (BY)

where we have defined two sublatticés,and Q, for the two different plaquette orientations, and the plaquette labels are
shown in Fig. 10. The final term, denoted symbolically, is the interaction between plaquettes on the same sQbdattice
takes the same form as the two previous terms. The scale fagtoasnd\ ,, have again been introduced. Notice that there is
no obvious rotational symmetry to the interactions, and hence that the saddle-point values gf thiél all be different even

in the unreconstructed phases. Note, however, that there is sufficient translational and inversion symmetry that they will be
independent oP andQ.

Similarly, the free-energy functional corresponding to the distorted lattice tiling shown in Fig. 10 is given by

6 . _ 6

FOfHpo;0p0=2 ®OfHp b= (Hp,t+hpo)ope—A KD [op1(0q,at0qe) t Tp20q,2T 0P30Q 3
P Pa 3
+UP4(0Q21+UQ56)+O'PSO'Q55+0'P6(O'Q31+O'Q54)]_a1; [opa(0q,3t0qst 0q3t0q.5)
+UP3(UQ32+UQ35+O'Q22+UQ55)+UP5(0Q52+O'Q53+0'Q22+0'Q33)]_azzp [opi(oq,sT0q,s5)
T opa(0Qet 0qe) T op3(0q,at )t Tpa(0q3t o) T ops(0q,1t0qu) T ope(0get 0g.2)]
_,3; [U'P10'Q11+0'P4UQ44+0'P60'Q66]_‘)’EP: op1(0Q2t o)t opa(0q,1t 0q,q)
top3(0q,1t 0q.e) T opa(0q,2t 0qs) T ops(0qut 0qe) T ops(0q 3t Tg.5)

- %5; [0p1(0p6+ 0p,u) + 0pa(0p et aPsL)+0pg(0pat apa)]—78(P—Q), (B2

where the plaquette labels are shown in Fig. 10, and wherJerza2+27_2)‘1K+5)\2L (for Te edgsmsne)s This also en-
the final term is again the interaction between plaquettes o ures the correct values _GE _and h quoted below E_q.
the same sublattic® and takes the same form as the imme-(2-20- By somewhat arbitrarily matching up the various
diately preceding term. We choose the coefficients?0nds in Figs. 8 and 10, we take

a1, ay, B, vy, 6 in order to best mimic the inter-
plaquette intgractions on the orjginal u_ndistorted lattice. In a1=ay=i,L, B=2y=8=1(\,K+2\,L). (B3
order to obtain the same overall interaction between each site

and the other plaquettes we requird K+2a,+B8+2y Finally specializing to the unreconstructed phases where the
+26=4NK+5\,L (for the corner sitesand \1{K+4a, o’s take the valueM ,; on the corner sites andl;, on the
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edge sites, we obtain the free energy Specializing to unreconstructed phasesdfetake the value
Mt ON the outer ring of six sites and the vallg, on the

1 central site, we obtain
N]:(G)(Hin rHout; I\/lin aMout)

1
P (Hin Houi Min M
=20 (Hiy,Hou) — 3[ (Hourt MM gyt (Hin+h) Mg NS (Hin Houi Min, Mou)

_()\1K+%B+5)M2 (%A1K+2a1)Mﬁ1 :%q)(Y)(Hin-Hout)_%[G(Hout"'h)Mout+(Hin+h)Min]

out

_2(a2+'}’)MoutMin- (B4) _%(6)\1K+6a+12B)M§ut_¥7MoutM in- (B8)

I . . : Substituting Eq.(B7) yields the final result, Eq(2.23, on
Substituting Eq(B3) yle_lds the final resul{2.21) on which which we base our computations. In fact, since the tiling in
we base our computations.

. . - . Fig. 9 (unlike that in Fig. 8 retains the rotational symmetry
fregr;en::aven site plaquette tiling shown in Fig. 9 yields theOf the plaquette, one may also simplify E@&5) using M,
9y andM;,. The result is in factdenticalto Eq. (2.23), which
further supports the choice of parameters, @Y).
f(Y){HPa;U'Pa}
APPENDIX C: FREE ENERGIES:

INTRAPLAQUETTE CONTRIBUTION

=2 @V {Hp,} =2 (Hp,+hp,)op, , ) ,
P Pa In this appendix we perform the trace over internal

plaquette variables required to compdi€”). This computa-
tion is completely independent of previous considerations
about how to embed the plaquette in the full lattice. In addi-
tion, we may now account properly for the RSOS constraint
. simply by restricting the trace to those configurations that
LY [opi(opgtopatopatop,s) respect it.
P We begin with the simplest spin-1 model on the square
lattice, Eq.(2.13 [Fig. 6(@)], and the two sublattice magne-
+(five term3]—30,L >, opa(op 7+ 0p g tizations, Eq(2.12. To obtain the free energy we need only
P ! 2 sum over all possible configurations of the four spins. The
RSOS condition implies that spins1 and —1 cannot be
+0op 3t op,1t Op 2t Op,s5), (B5)  nearest neighbors. There are 21 energetically distinct al-
lowed spin configurations and we obtain
where the plaquette labels are shown in Fig. 9. Similarly, the
distorted lattice tiling in Fig. 11 yields D@ (H,, Hp) = _|n[tr(e*??o4)*HA<51+53>7HB<52+S4>)],

_%XlK; 0'p1(0'p65+ 0'p16+ 0'p17)+(ﬁve tel’mS

2 2
7) H .
F{Hpa;0pa} =—In| >, > apcosimHy+nHp) |,
m=0 n=0

:EP (DU){HPL!}_% (Hpothpo)ope (C1)

where, to simplify notation, we define

—INKDY [opi(opstape) +(five termg] ~
= x=e 12L  y—g U2K  z_gF; (C2)

. - _ 3 .
_ %a; [0p1(0P67+UP17)+(f'Ve terms] whereh,=h,+ A, K+ 3\,L. In terms of these variables,

age=1+4x%*z2, ay=a;0=4xy’z,

1
~3B2 [opi(ap ot op st apatop) s 5 2o
P Qpp=ay=2y" 2%, aq1=8x°yz*,

+(five termg]— 3y, [opyl Opatop ) A=, =4xy?2°, apn=27" (C3
P

These equations, in conjunction with the saddle-point condi-
+ (five term9 + opy(op s+ op s ttenterms]. (B6)  tions(2.14) and(2.15, completely determine the thermody-
namics of the model. Note that all spins are clearly equiva-
In order to best match the overall interactions between &ent for this plaquette and we need not worry about inner and
given site and other plaquettes in EqB5) and (B6) we  outer values oH andM as we did for the triangular lattice
choose [see Egs(2.21) and(2.23 and below. To describe the un-
reconstructed phases we may takg=Hg=H. Equation
a=3(NK+NL), B=y=3\,L. (B7)  (C1) then simplifies to
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4
OB (H)=— In{ > ancosiimH) |, (C4)
m=0
where
ag=1+4x%*z2, a,;=8xy?z
a,=8x%y?Z?+4y*z2, az=8xy?z%, a,=27%
(CH)

For the six spin triangular lattice plaquefféig. 6(b)] we

consider only unreconstructed phases. As discussed in Sec.
I C 2 and in Appendix B we still need to keep two fields,
Hout and H;,. There are 47 energetically distinct allowed

spin configurations and we obtain then
(I)(G)(Hin vHout)
= —In(tr{exd — HY — HoulS1+ Sa+ Se)

—Hin(s;+s3+55)1})

3 3
=—In E 2 amrcosiimHy,+nH;y) | (Co)
m=0 n=-1

Definingx andy as in Eq.(C2), and

zy=e "2 z=e M2, (C7)
WherngUt=h2+2k1K+gR2L and —ﬁg:h2+)\lK+g)\2L,
the nonvanishing,, are

3,,653

ago=1+6x%y*z2, a;o=6xy?z,+6x%y°z3,

a91=6xy*z +125y%2,7;, a,y=6x°y*Z?,
a=6x%y%7,  ay =12y 2,7+ 6y°z7;,

a, 1=6x%02,7;, ag=2x%%23, ag=2x%°7,
a,,= 6x3y*72z, + 12xy8Z2x;
21 y ZoZ|+ Y ZoXi,
a1,=6x3y*z,22+ 12xy%z, 77,
— Ay2y653. — ay2ydy 3
az=6Xxy°z5z;, a;3=6xy"z,z7,
— 2.,452.,2 62,2 _ 3,2
ay=12x%y47278+ 6y°257°,  az=6xy*zoz’,

a,3=6xy?22Z%, ay=2737. (C8)

For the seven spin plaquefteig. 6(c)] there are 63 ener-
getically distinct allowed spin configurations, and we obtain

®<7)(Hin -Hout)
= |n(t|’{eXﬁ: - 7?06) - Hout(Sl-i- Sz+ Sg"’ 55+ SG+ 37)
- Hins4]})
6 1
=—In| D, > ancoshimHou+nHiy) | (C9)
m=0 n=0

Using Egs.(C2) amd (C7), where nowh9"=h,+ $)\;K
+2N\,L andﬁg‘zh2+ 3\,L, the nonvanishing,,, are

4935

ago=1+12x°y°22+ 6x%yz2+ 6x'38Z%,  ay=2y%z,

a10= 12¢%y37,+ 24xy8Z3+ 128y°23,  ay,=2x%y 7,7,

ay0=12*y*Z2+ 12x%y5Z3+ 6x*ySz2 + 12x'% 872,

o
ay=12x*y%727,+ 12x%y87%z,+ 6x*y®23z, ,
age=12x*y523+24x%y 723,
ag,=12*y°23z;+ 24x%y 237, + 4y°Z2,
as=12x*y%za+ 12x%y8z2 + 6x*y®22
asn=12x*y*z0z,+ 12x%y523z, + 6x*y®zaz ,

aso=122%y7zy, a5 =12%3z3z;,

ago=2y%25, ag=27%7. (C10
APPENDIX D: AN EXPLICIT RSOS MODEL
WITH A 6DOF PHASE

In Sec. Il we observed very generally that in a model with
renormalized parametery<0, whenyg changes sign, one
expects to see @DOF phase, characterized by a continu-
ously varying upper layer coverage. However, none of the
solid-on-solid models we have treated show this phase. In
this appendix we outline briefly the derivation of a more
complicated RSOS model which does containéBOF
phase.

The basic steps in the derivation are as follows. We first
introduce the staggered eight-verté®/) model, which is
then shown to be equivalent to a staggered body-centered
cubic solid-on-solid BCSOS model?® The free energy of
the staggered 8V model is invariant under a certain symme-
try operation and this fact is then used to obtain a more
convenient 8V model. We then show that this modified 8V
model is exactly mappable to a system of interpenetrating
Ising spins with four-spin interactions. Finally we show that
the isotropic Ashkin-TellerfAT) modef* can be mapped
onto exactly the same Ising system. The AT model contains
a 6DOF phase and this sequence of mappings then produces
a BCSOS model with this phase and a corresponding inter-
meshed layering phase diagram.

1. Vertex models

The 8V models are defined on a square lattice wiith
rectedbonds between sites. Each site is constrained to have
an even number of bonds going in or out of it. This leads to
six types of vertex with two bonds in and two bonds out, one
type with four bonds in, and one type with four bonds out,
for a total of eight. Each vertex type has an associated
Boltzmann weightw;=e #¢>0, i=1,...,8. If thelast two
are given zero weight one obtains theix-vertex (6V)
model*° The latter have a direct mapping to an RSOS model
with the additional condition tha@ny two neighboring
plaguettes have a unit height difference. Thus each directed
line is associated with a surface sigp to the right, down to
the left), and a unique correspondence can be made with any
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5 v, v, v, v, Vs Vs

a a b b c ¢ <

AlB AlB A}B AlB AlB AlB

BlA B A B}A Bla BlA BlA

boltzmann
BtA BlA B}A BlA BlA BlA welghts
alB AlB A’B AlB AlB AlB
b a a c c -

£ €y €3 €4 £g €6 FIG. 23. The 12 distinct vertices in the two-component BCSOS

model along with their Boltzmann weights.
FIG. 21. The six-vertex model. Shown below each vertex is a

schematic of the corresponding surface configuration.
Z(a,b,c,d|b,a,c,d)=2Z(c,d,a,b|c,d,b,a). (D1)

pattern of bonds and a set of surface heigste Fig. 2L

Since nearest-neighbor heights always differ by one, thgdo see Eq.(D1) simply note that the vertices of the 8V
heights on each of the two antiferromagnetic sublattices alinodel can be thought of as lying in one of two sublattices
have the same parity: one sublattice will have all everandL,. For a given configuration, on any bond of the lattice,
heights, the other all odd. One may conveniently identify thisreverse the direction of the arrow only if the edge is horizon-
with the (100 surface of a body-centered-cubic structure,tal (vertica) and there is a site of sublattitey immediately
and this mapping of the 6V model, thereforefinesthe to the right(bottom of the edge. If the vertices are labeled
BCSOS model of the surface. byv;,(i=1,...,8)then under this transformation; —uvs,

The 6V model can be solved exactly when the additionab ,<vg, v3—v7, andv,—vg on both sublattices and we
symmetriesw;=w,=a, w;=w,=b, and ws=wgz=c are have generated a new configuration. The weight of each con-
imposed®! The model shows a Kosterlitz-Thouless roughen-figuration of the original model can be thought of as the
ing transition on the line+b=c between a checkerboard weight of this resultant configuration in a different 8V model
ordered phasea(+b<c) and a rough phasea@-b>c). If  and this immediately yields E¢D1).
the last pair of vertices, with weights,=wg=d, are in- An Ising spin model with four-spin interactions is now
cluded(see Fig. 22 there is no longer a consistent mapping associated with the staggered 8V model introduced above as
to a set of surface height models, but exact solubility isfollows. On each plaquett®f eitherA or B type) of this 8V
maintained in certain subspac&sAlthough in our applica- model we place an Ising spin and assume that spin on one
tions to roughening we shall always skt 0, it is useful to  special siteS, is fixed so that it can only point up. A corre-
carry it along more generally until the end. spondence between the 8V configurations and the spin con-

We shall require a further generalization of these modelsfigurations is established. If the arrow on an edge points to
Since the two antiferromagnetic sublattices now corresponthe right or up(left or down then the product of the spins on
to two different sets of100 planes in a bcc structure, a either side of the edge is-1(—1). We see that for each
natural generalization is to tavo-componeninodel with the  arrow configuration there is a unique spin configuration
two sets of planes composed of two different species of atwhen we fix the one spin. Thus there is a clear mapping to an
oms,A andB, forming a NaCl type of structure. As shown in Ising spin system where interactions around a vefte,

Fig. 23 the 6V model now generalizes tetaggeredBBCSOS  four-spin interactionsare allowed. It is then easy to see that

model with 12 vertices. As shown, we will still consider only if we consider a Hamiltonian of the form

a three-parameter subspace of these models. The staggered

8V model is defined similarly. As stated, it will be formally

useful to carry along the four extra staggered 8V model ver- ,,_ e _ e

tices as well, all with weightl that will vanish in the end. ¢ szeA SiaSla %%B S5l R 51,51,50
(D2)

2. Equivalence of staggered BCSOS and AT models ] )
where the first two sums are over nearest neighbors oA the

In an obvious notation, leZ(a,b,c,d|b,a,c,d) be the ;4B s plattices and the last sum is over plaquettes, then the
partition function of the class of staggered 8V models de-

' . correspondences
fined above. In order to map this model onto the AT model P
we will need the identity

c=expP+Q+R), d=exg—-P-Q+R),

v, Vg
+ + b=exp(—P+Q—-R), a=expQ-P-R) (D3

boltzmann weight d=0

FIG. 22. Vertices includedwith, in the end, zero weightto ~ [Substituted into the right-hand side of EB.1); the mapping
allow the 6V model to be considered as a special case of the gproduces an 8V model with nonzedoand it is here that the
model. symmetry (D1) is required to produce the required 6V
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model produces precisely the same Boltzmann weights fol

the two models. Freeing the constraint on the one speci: 20 ol A
spin we haveZgpn=2Zgaggered gy ThUs the staggered 8V = o =
model is isomorphic to this Ising model. Ls; I ‘ .
Now, the AT model is defined on a simple square lattice. ; 10 9
On each lattice sité there aretwo Ising spins,s; and o . IB 10 P dsing__ Z 7
Spins on nearest-neighbor sites are coupled by two- an ,\ 4 5
four-spin interactions: 05| &ty | 2 3
1
0'00.0 0.5 1.5 2.0 rr I ¢ m

1.0
JA

(a) b)

HAT:_% (Ksi5j+KG’i(Tj+K4SiSjO'iO'j). (D4)

ij

This defines thésotropic AT model (more generally the two
K’s could have been different; an extreme anisotropic limit FIG. 24. Staggered BCSOS model phase diagram with
maps onto a certain one-dimensional quantum proBferi. =e %A, b=e ’s, andc=1. The line labeled PQ is a path through
a duality transformation is performed on one set of sggay  phase space that would yield the layering diagram shown in Fig. 18
the o spins; see Ref. 32 for detgjilthen the AT model can with region | corresponding ty<-—yg, region Il to —yg<yg

be expressed as a system of two interpenetrating square Isirigyr and region Il toy>yg.

lattices with four-spin interactions, precisely as above, with o ) . ]

the same HamiltoniafD2). The relation betweeR, Q, and  €Xponents that splits into two Ising lines. In region | the

R of Eq. (D2) andK andK, of Eq. (D4) is average height of the surface is an even integer andithe
sublattice is essentially completely ordered while Bidat-
exp(P+Q+R)=e?*Ka(1+e7%¢)/ /2, tice is disordered with about half tieatoms at a height one
layer above thé\ lattice height and half of th8 atoms one
exp—P—-Q+R)=0, layer below. In region Ill one has the complementary situa-
tion in which theB lattice is ordered and thA lattice is
exp(— P+Q—R)= 22K Kag=2(K+Kq), disordered. In region Il symmetry breaking occurs, and the

average column height either increases or decreases continu-
exp(Q— P—R)=e2K*Ka(1-e74)/ /2. (D5)  ously, interpolating between the phases in regions Il and Il
) ] Thus if, as the temperature is varied, the system follows the
This completes the mapping of the BCSOS model ontgyath PQ shown in the figure, then there will be two Ising
the isotropic AT model. The AT model has been studiedyansitions with continuous surface height growth occurring
extenS|_ver. Its full phase diagram can be found in Ref. 32. Ifyetween them. When, in addition, a substrate potential is
we definea=e 4, b=e™’s, normalizec=1 and taked  present and the full chemical potential versus temperature
=0 we then find phase diagram is mapped out, it will be as shown in Fig.
_ _ 1(d). It should be noted that the filling factor of the top layer
Ja=2K,FIncosi(2K),  Jg=—Intanf(2K). (D6) ranges continuously from 0 to(tather than from 0 to half
The phase diagram of the staggered BCSOS model can thes in previous sectiondecause we have chosen to define
be mapped out in terms df, andJg ; the relevant portion of one unit of height as one layer &f atoms or one layer d8
it is shown in Fig. 24. There is a line of continuously varying atoms instead of as being the sum of one layer of each.
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