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Nonlocal symmetrized kinetic-energy density functional: Application to simple surfaces
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We study the properties of a nonlocal kinetic-energy functional, which includes a nonspherical average of
the density through a symmetrization procedure. We demonstrate that this functional can be used successfully
for both localized and extended systems. In particular, when applied to metallic jellium surfaces, the density
profiles, surface energies, work functions, and image plane positions compare very favorably to those obtained
using the exact Kohn-Sham method.@S0163-1829~98!08208-3#
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I. INTRODUCTION

Although in density-functional theory~DFT!,1–5 the ki-
netic energyTS@n# of a noninteracting electron system ca
be evaluated exactly using a set of one-electron wave fu
tions ~the Kohn-Sham orbitals!,6 the development and appl
cation of functionalsTS@n#, which depend explicitly on the
density, are of a wide interest. The use of suchorbital-free
functionals significantly reduces the computational effort
ground-state calculations and in first-principles molecu
dynamics simulations of complex systems.7–9 On the other
hand, the development of kinetic-energy functionals is
doubtedly of formal interest, due to the challenge of desc
ing a number of quantum properties using the density
rectly as the basic variable. Moreover, the ideas employe
this development can also be useful for the construction
exchange-correlation functionalsEXC@n#, which are not
known exactly but are, in any case, needed in every D
calculation.

Focusing on the discussion of the kinetic-energy functi
als, there are approximations that give good total ener
~and, in some cases, well-behaved density profiles! when ap-
plied to specific electron systems, but tend to fail in appli
tions to problems with different structure. This is the case
the widely used semilocal functional~based on density gra
dients terms! TF(l)W, which consists in a Thomas-Ferm
functional plus a Weizsa¨cker term multiplied by a prefacto
l. The optimum parameterl depends very sensitively on th
system under consideration,10,11 and, moreover, the obtaine
density profiles for any system do not show any quant
oscillations. This lack of universality also arises in more
cent models by Wang and Teter,12 Perrot,13 and Foley and
Madden,14 developed only for extended systems where
mean density can be defined. On the other hand, nonl
functionals, like the weighted-density approximation~WDA!
by Alonso and Girifalco15 and the averaged-density approx
mation ~ADA ! by Chaco´n, Alvarellos, and Tarazona,16 al-
though in principle can be used in any system, cannot
applied successfully to extended systems due to techn
reasons~the weight functions have a very long range!.17 As a
consequence, the development of a universal explicit kine
energy functional remains as an open question.
570163-1829/98/57~8!/4857~6!/$15.00
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All the nonlocal models mentioned above are based on
averaging using a weight function with spherical symmet
In a previous paper,18 we developed a symmetrized ADA
~sADA! functional, that uses a nonspherical average of
density, making possible a better description of the collect
effects of electronic systems. In particular, when applied
atoms, we obtain not only accurate ground energies, but
density profiles with a clear shell structure and with sp
polarized ground states for group-V b atoms. In order
check the universality of the model, in this work we prese
the application of the functional to a very different inhom
geneous electron system, the jellium surface. The jelli
surface is a clear example of a simple model in which
DFT provides an easy way to handle a description of
physical properties of interest.19–21

The outline of the paper is as follows. In Sec. II we su
marize the construction of the sADA functional. In Sec. I
we present and compare the ground-state properties~surface
energies, work functions, and density profiles! obtained with
the sADA functional. Section IV contains the discussion
these properties for the stabilized jellium model. As a fin
test of the capabilities of the functional, in Sec. V we stu
the density induced in linear order by a weak external fie
Conclusions are presented in Sec. VI.

II. THEORY. SCALING FACTOR

The sADA kinetic-energy functional is given by18

TS@n#5TW@n#1Tnl@n#5 1
8 E u,n~r !u2

n~r !
dr

1E n~r !$ 8
5 ts@ ñ~r !#2 3

5 ts@n~r !#%dr , ~1!

~atomic units are used throughout this paper! where ts(n0)
53(3p2n0)2/3/10 is the kinetic energy per particle of an h
mogeneous electron gas of densityn0 and TW@n# is the
Weizsäcker term.22 ñ(r ) is an averaged density calculate
using a universal weight functionv(r) through the expres-
sion
4857 © 1998 The American Physical Society
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ñ~r !5E n~r 8!@2z~r ,r 8!#3v~2z~r ,r 8!ur2r 8u!dr 8, ~2!

which includes a symmetric functionz(r ,r 8) of the densities
at r andr 8. The weight functionv(r) is obtained by requir-
ing that the functional correctly describes the energy a
Lindhard’s linear response23 of the homogeneous electro
gas. In the nonsymmetrized ADA functional16 z(r ,r 8)
5kF(r ), with the local Fermi momentum kF(r )
5@3p2n(r )#1/3; that means that average~2! is spherically
symmetric about the pointr . As commented upon in Sec. I
the long-ranged weight function of this model yields nume
cal problems in extended systems. Within the nonsymm
trized scheme, this limitation can be avoided averaging
the density, but the Fermi momentum~AFMA functional!,17

obtaining a nonlocal functional which gives good results
the jellium surface problem. However, both the ADA a
AFMA functionals give no shell structure for atoms.

As shown in the original paper,18 the sADA functional
solves the long-range problem of the weight function, a
gives a clear shell structure in atomic systems when the s
metric scaling factor

z~r ,r 8!5
1

21/b
@kF~r !b1kF~r 8!b#1/b ~3!

is used. We found that the free parameterb must lie in the
interval @21,1#, and its values do not drastically affect th
main results obtained with functional~1!. In that paper we
choseb52 1

2 for empirical reasons: this value gives the be
fitting of the Kohn-Sham ground-state energies of light
oms. Nevertheless, as shown in Table I, the total ener
become worse by only about 2%, and the chemical poten
~and the first ionization energies! are, in general, closer to th
Kohn-Sham values, when a valueb51 1

2 is used in Eq.~3!
instead ofb52 1

2. Further, as can be seen in Fig. 1, dens
profiles preserve the clear shell structure of the atoms. M
over, another achievement of the sADA functional, the s
polarization of atoms such N and P, is maintained. We
conclude that, at least for localized systems, the gen
trends of the results obtained with the functional do not
pend too much on the specific value ofb.

This independence is not the case for extended syste
For a metallic surface, with the jellium edge atz50, a nega-

TABLE I. Total energies and, between brackets, chemical
tentials for several closed-shell atoms~in atomic units! obtained
through the Kohn-Sham method and the sADA kinetic-energy fu
tionals usingb52

1
2 and 1

2 in the scaling function of Eq.~3!.

Atom Kohn-Sham sADA (b52
1
2 ) sADA (b5

1
2 )

He -2.834 ~-0.570! -2.848 ~-0.155! -2.679 ~-0.150!
Ne -128.23~-0.497! -128.70~-0.087! -126.57~-0.127!
Ar -525.93~-0.382! -521.62~-0.072! -516.64~-0.130!
Kr -2750.1~-0.309! -2742.7~-0.153! -2721.1~-0.130!

Be -14.446~-0.411! -14.786~-0.034! -14.139~-0.126!
Mg -199.13~-0.350! -198.43~-0.027! -195.71~-0.129!
Ca -675.73~-0.282! -671.15~-0.105! -665.11~-0.127!
Sr -3129.4~-0.263! -3120.8~-0.148! -3096.8~-0.129!
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tive value ofb implies that the weight function has an un
physical behavior. Specifically, Fig. 2~a! shows that the
weight function centered inside the bulk has a peak in
vacuum region: as a consequence, the averaged densityñ(z)
well inside the metal receives a spurious contribution fro
the density far outside the bulk. On the other hand, in F
2~b! we can observe that the weight function centered az8

@0 has a very long range inside the bulk, andñ(z) does not
go to zero whenz→1` @see Fig. 2~c!#. These unphysica
behaviors disappear forb.0.24 Since our aim is to use the
same kinetic-energy density functional for any electron s
tem, we conclude that theb value in the scaling factor~3!
must be positive. We takeb5 1

2, an intermediate value be
tween the geometric (b50) and the arithmetic (b51)
means. The scaling factorz(r ,r 8) will simply be

-

-

FIG. 1. Radial density 4pr 2n(r ) for the Kr atom. Thick solid
line: Kohn-Sham; solid line: sADA functional (b51

1
2 ); dashed

line: sADA functional (b52
1
2 ).

FIG. 2. Projected weight functions V(z,z8)5
2z(z,z8)v(2z(z,z8)uz2z8u) @panel ~a!: z85215 a.u.; panel~b!:

z8510 a.u.# and averaged densitiesñ(z)/no @panel ~c!# for a jel-
lium surface (r s54 a.u.!. Thick solid line: b51

1
2; dashed line:

b52
1
2. Note that the averaged densityñ(z) is given by ñ(z)

5*n(z8)V(z,z8)dz8.
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z~r ,r 8!5 1
4 @AkF~r !1AkF~r 8!#2. ~4!

This choice guarantees accurate results not only for local
systems~see Table I! but also, as we will see in Sec. III, fo
extended ones. So, in this paper, we will study the influe
in the description of the jellium surfaces due to the use of
symmetrization procedure given by Eq.~4!.

III. RESULTS

In this section, our aim is to compare our sADA fun
tional with the exact Kohn-Sham~KS! results, and with the
non-symmetrized AFMA functional. We will also compa
with the TF(l5 1

4 )W functional proposed by Chizmeshy
and Zaremba11 ~thel value was fitted empirically to give th
best energies for the jellium surface problem! and with the
square gradient approximation of fourth-order~SGA4!.25 We
must remark the empirical character of the TF(l51/4)W
approximation and the fact that the SGA4 functional do
not give good ground energies in localized systems.18,26

To obtain the ground-state properties of a jellium surfa
we minimized the total energy functionalE@n#, solving the
Euler-Lagrange equation

dE@n#

dn~z!
5m. ~5!

In every calculation in this section we will use the loca
density approximation~LDA ! of Dirac and Wigner27 for the
exchange-correlation functional. To solve Eq.~5!, we trans-
form the equation into a Schro¨dinger-like one by means o
the substitution28 C(z)5n(z)1/2 and, in order to speed up th
convergence of the iteration procedure, we treat the class
electrostatic term of the functional derivative ofE@n# using
the integral scheme proposed by Manninenet al.29

In Table II we compare the exact KS surface energies
the range of metallic densities (r s52ao;6ao) with those
obtained with the sADA functional, the nonlocal AFMA
functional, and the TF(l5 1

4 )W and SGA4 functionals. We
minimized the last functional using a conjugate gradi
method.30 Using the nonlocal functionals we obtain an ove
all agreement respect to the KS energies. However, thi
lost by the TF(l5 1

4 )W model for high densities, and by th

TABLE II. Surface energies~in erg cm22) and, between brack
ets, work functions~in eV! for jellium surfaces, obtained with the
Kohn-Sham method and the kinetic-energy functionals quoted
the text.

r s (ao) KS sADA AFMA TF(1/4)W SGA4

2 -1087 -1033 -1271 -640 -1090
~3.88! ~3.83! ~3.70! ~3.78! ~3.54!

3 189 164 154 270 153
~3.50! ~3.47! ~3.41! ~3.26! ~3.24!

4 155 143 143 172 132
~3.09! ~3.05! ~3.03! ~2.86! ~2.89!

5 97 91 90 98 81
~2.70! ~2.71! ~2.69! ~2.52! ~2.60!

6 59 58 56 58 50
~2.42! ~2.43! ~2.41! ~2.26! ~2.35!
d
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SGA4 functional for low ones. As can be seen in Table
and was commented upon in Sec. I, energy values are
erally good when using kinetic-energy functionals that d
pend explicitly on the density.

The quality of the sADA functional is manifested mo
clearly when comparing the density profiles. In Fig. 3 we c
see that the density which minimizes the total energy sho
Friedel oscillations~but a little shifted respect to the KS
profile!; moreover, there is no difference between the t
profiles in the surface and vacuum regions. When the AFM
functional is used, the Friedel oscillations are quick
damped, and the density close to the surface is descr
slightly worse. The semilocal functionals, TF(l5 1

4 )W and
SGA4, give densities with no Friedel oscillations at all a
there is no agreement with the KS profiles in the vacu
region. Finally, as is well known, the density profile whic
minimizes the energy including the SGA4 functional, has
power-law decay rather than an exponential one.19

The work functionF is directly related to the density
behavior in the vacuum region through the equality19

n~z!}exp@2~8F!1/2z#. ~6!

As we show in Table II, the coincidence in the vacuum b
tween the KS profiles and those obtained with the nonlo
functionals sADA and AFMA translates into an excelle
agreement of the work functions given by these function
~except in the limit of high metallic densities for the AFMA
nonlocal model!. This concordance is lost when using th
semilocal functionals. Moreover, although the decay of
density profiles obtained with the semilocal functionals a
not well behaved, the corresponding work functions a
rather good because Eq.~6! is not verified by these function
als.

IV. STABILIZED JELLIUM MODEL

In their seminal articles,20 Lang and Kohn emphasized
clear limitation of the jellium model: the surface energies
high-density metals are negative and, therefore, the b
metal is mechanically unstable. Preserving the simplicity
the jellium model, this defect can be solved by means of
stabilized jellium model,31,32 where a constant~structureless
pseudopotential! is added to the external potential in the bu

in

FIG. 3. Electronic density profile for a jellium surface (r s

55ao) using several kinetic-energy density functionals. Thick so
line: Kohn-Sham; solid line: sADA; dotted line: AFMA; dashe
line: TF(l5

1
4 )W; dot-dashed line: SGA4.
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region, in order to simulate the effect arising from the cry
talline ionic array in the metal.

As an additional test for the sADA functional, in Table I
we present the surface energy and the work function for
alkali metals. We compare these results with the exact Ko
Sham ones,33 and with those obtained by us after a comple
minimization of the total energy using the SGA4 function
The EXC@n# functional used in the calculations is the LD
proposal by Perdew and Zunger,34 which was used in the
above quoted works.

We see that the good results obtained with the sA
functional are maintained in this more realistic description
the metallic surface. However we must comment that
good results for the SGA4 functional quoted in Ref. 31 a
accidental. These authors use a parametrized form for
density profile and, as consequence, the minimization of
total energy is not complete. This partial minimization ove
estimates both the surface energy and the work function.31,35

V. LINEAR INDUCED DENSITY

We would like to finish our tests on the quality of th
sADA kinetic-energy functional with a very hard one: th
calculation of the density induced by a weak static exter
electric fielddE acting normally to the jellium surface. Writ
ing this external field asdE522psez , wheres is the net
surface charge density induced by the external field, the
ear induced density can be expressed as

dn~z!5sn1~z!1o~s2!. ~7!

Further, the centroid of this induced charge

z15E
2`

1`

zn1~z!dz ~8!

defines the image plane position.20 The dynamical sum rule36

allows us to writez1 only in terms of the values of the
induced density outside the metal,

z15E
0

1`

zn1~z!dz. ~9!

Since this sum rule is classical, it must be satisfied by
explicit kinetic-energy functional, and we have checked,
an additional test for the convergence of our calculatio
that the centroids obtained using both equations coincid
all the calculations we have made.

TABLE III. Surface energiessT ~in erg cm22) and work func-
tions F ~in eV! for alkaline metals, using the stabilized jellium
model, obtained with the Kohn-Sham~KS! method and the sADA
and SGA4 functionals.

sT F

Metal r s (ao) KS sADA SGA4 KS sADA SGA4

Li 3.28 302 262 252 3.36 3.33 2.99
Na 3.99 171 155 143 2.93 2.91 2.69
K 4.96 89 83 74 2.48 2.48 2.36
Rb 5.23 74 71 63 2.38 2.37 2.25
-

e
n-

.

f
e
e
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e

-

l

-

y
s
s,
in

Note that this calculation is a first test to check the qua
of the static linear-response function given by the functio
in a nonhomogeneous electron system. We saw in Se
that the density profiles obtained are extremely accurate.
the other hand, any ADA functional exactly reproduces
linear-response function of the noninteracting homogene
electron gas. For both reasons we expect to obtain a g
linear induced density when the sADA functional is used
jellium surfaces.

The left panel of Fig. 4 presents theexactKohn-Sham-
induced densityn1(z), the one obtained with sADA and th
one corresponding to the TF(l5 1

4 )W functional. The result
of the last functional has the maximum displaced with
spect to the exact peak, and has no Friedel oscillations.
n1(z) density given by our nonlocal functional reproduc
almost exactly that main peak and the behavior in
vacuum region (z.0). Inside the metal, the induced densi
shows well-defined Friedel oscillations but, as in the grou
state density, shifted when compared to the Kohn-Sh
ones. The latter shift has no influence on the value of
image plane position because the dynamical sum rule
poses that*2`

0 zn1(z)dz be zero for any functional. In the
right panel of Fig. 4 we can clearly see this: there is
excellent agreement between the exact centroids and t
given by the sADA functional, because thez.0 values of
n1(z) are almost the same in both calculations. On the ot
hand, for the TF(l5 1

4 )W functional, even if the density pro
file seems quite good indeed, the small differences inn1(z)
for z.0 give only a qualitative description of the depe
dence of z1 on the bulk density, as already shown b
Chizmeshya and Zaremba.11

VI. CONCLUSIONS

In this paper we discussed some properties of the sA
kinetic-energy functional. In the first place, we can conclu
that the sADA kinetic-energy functional, withb5 1

2, is a uni-
versal functional, i.e., that gives good results, when co
pared to the Kohn-Sham method, for localized~atoms! and
inhomogeneous extended systems~jellium surfaces!. We
have confirmed that the nonspherical averaging proced
given by Eqs.~2! and ~3! is essential in the improvement o

FIG. 4. Left panel: induced densityn1(z) for a jellium surface
(r s52ao); right panel: image plane positionz1 in terms of r s .
Thick solid line: Kohn-Sham; solid line: sADA; dashed line
TF(l5

1
4 )W.
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57 4861NONLOCAL SYMMETRIZED KINETIC-ENERGY DENSITY . . .
the kinetic-energy functional, specifically when discuss
the structure of the density profiles. We must remark that
sADA functional is acontinuousdensity functional, i.e., it
has no derivative discontinuities~in the sense of Perdew an
Levy37!. Thus it cannot describe, for instance, the stepl
evolution of the ionization energy with the number of ele
trons for a fixed nuclear charge. This does not prevent
accurate kinetic functional, such as the one presented h
which describes almost exactly the density both in the in
~K shell! and in the outer region of an atom, from givin
structured atomic profiles.18

When the sADA kinetic-energy functional is applied
jellium surfaces, we obtained excellent results for t
ground-state properties: surface energies, work functio
and density profiles. Moreover, the results for the linear
duced density, directly related to the linear response of
functional, are very good. This is in agreement with the
curate linear-response matrix obtained with the sADA fu
tional in one-dimensional electron systems.38

Because the symmetrization procedure considerably
proves the description of the nonlocality of the kinetic e
ergy, we guess that the long standing puzzle of
asymptotic limit of the image potential in surfaces39 may be
d

l

e

9

g
e

e
-
n
re,
r

e
s,
-
e
-
-

-
-
e

solved by the symmetrization of the WDA exchang
correlation functional.15,40,41 This symmetrization is in
progress, in order to clarify if it is the way to obtain th
correct asymptotic behavior of the image potential.

Finally, in Sec. I we commented that one of the motiv
tions for the development of aTS@n# functional is the sim-
plification of orbital-free DFT calculations in complex sys
tems. Although our sADA model is easier to apply than t
Kohn-Sham method in molecular-dynamics simulations,
own complexity makes it more difficult to apply than oth
kinetic functionals. For instance, the functionals develop
specifically for solids by Wang and Teter12 and Perrot13 are
much simpler than the sADA. Nevertheless, the sADA fun
tional, with some simplifications suggested by the struct
of the problem at hand, could be easier to apply, and co
achieve similar results to the ones obtained with those fu
tionals.
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