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Nonlocal symmetrized kinetic-energy density functional: Application to simple surfaces
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We study the properties of a nonlocal kinetic-energy functional, which includes a nonspherical average of
the density through a symmetrization procedure. We demonstrate that this functional can be used successfully
for both localized and extended systems. In particular, when applied to metallic jellium surfaces, the density
profiles, surface energies, work functions, and image plane positions compare very favorably to those obtained
using the exact Kohn-Sham meth¢80163-182@8)08208-3

I. INTRODUCTION All the nonlocal models mentioned above are based on an
averaging using a weight function with spherical symmetry.
Although in density-functional theoryDFT),1~5 the ki-  In a previous papef we developed a symmetrized ADA
netic energyT4 n] of a noninteracting electron system can (SADA) functional, that uses a nonspherical average of the
be evaluated exactly using a set of one-electron wave fundensity, making possible a better description of the collective
tions (the Kohn-Sham orbital$ the development and appli- €ffects of electronic systems. In particular, when applied to
cation of functionalsT{[n], which depend explicitly on the atoms, we obtain not only accurate ground energies, but also
density, are of a wide interest. The use of sochital-free density profiles with a clear shell structure and with spin-
functionals significantly reduces the computational effort inPolarized ground states for group-V b atoms. In order to
ground-state calculations and in first-principles molecularcheck the universality of the model, in this work we present
dynamics simulations of complex systef$.0On the other the application of the functional to a very different inhomo-
hand, the development of kinetic-energy functionals is ungeneous electron system, the jellium surface. The jellium
doubtedly of formal interest, due to the challenge of describsurface is a clear example of a simple model in which the
ing a number of quantum properties using the density diDFT provides an easy way to handle a description of the
rectly as the basic variable. Moreover, the ideas employed iRhysical properties of interet-**
this development can also be useful for the construction of The outline of the paper is as follows. In Sec. Il we sum-
exchange-correlation functionalEyc[n], which are not marize the construction of the sADA functional. In. Sec. I,
known exactly but are, in any case, needed in every DFVe present and compare the ground-state propetigface
calculation. energies, work functions, and density profjlebtained with
Focusing on the discussion of the kinetic-energy function_the sADA functional. Section IV contains the discussion of
als, there are approximations that give good total energief1ese properties for the stabilized jellium model. As a final
(and, in some cases, well-behaved density profieeen ap-  test of the capabilities of the functional, in Sec. V we study
plied to specific electron systems, but tend to fail in applicathe density induced in linear order by a weak external field.
tions to problems with different structure. This is the case ofconclusions are presented in Sec. VI.
the widely used semilocal functionédbased on density gra-
dients terms TF(A)W, which consists in a Thomas-Fermi
functional plus a Weizsker term multiplied by a prefactor
\. The optimum parametér depends very sensitively onthe ~ The sADA kinetic-energy functional is given By
system under consideratidéh!! and, moreover, the obtained

Il. THEORY. SCALING FACTOR

density profiles for any system do not show any quantum 1V n(r)|2
oscillations. This lack of universality also arises in more re- Tdn]=Twn]+Ty[n]=% | ———dr

cent models by Wang and TetérPerrot*® and Foley and n(r)

Madden!* developed only for extended systems where a

mean density can be defined. On the other hand, nonlocal +f n(r){&tn(r)]—tLn(r)]}dr, (U]

functionals, like the weighted-density approximati®DA)

by Alonso and Girifalcd® and the averaged-density approxi- ) ) _

mation (ADA) by Chacm, Alvarellos, and Tarazond,al-  (&tomic units are used throughout this papsherets(no)
though in principle can be used in any system, cannot be 3(3m°ng)*%/10 is the kinetic energy per particle of an ho-
applied successfully to extended systems due to technicilogeneous electron gas of density and Ty[n] is the
reasongthe weight functions have a very long rangéAs a  Weizsaker term?? Nn(r) is an averaged density calculated
consequence, the development of a universal explicit kineticusing a universal weight function(p) through the expres-
energy functional remains as an open question. sion

0163-1829/98/5(8)/48576)/$15.00 57 4857 © 1998 The American Physical Society



4858 GARCIA-GONZALEZ, ALVARELLOS, AND CHACON 57
TABLE I. Total energies and, between brackets, chemical po- 60 T
tentials for several closed-shell atorfia atomic unit$ obtained
through the Kohn-Sham method and the sADA kinetic-energy func- N
tionals using8= — 3 and 1 in the scaling function of Eq(3). ~ a0 AN\
3 i / 1
©
Atom Kohn-Sham  sADA (B=-3) SADA (B8=3) =
=
He -2.834 (-0.570 -2.848 (-0.155 -2.679 (-0.150 °§ 20} |
Ne  -128.23(-0.497 -128.70(-0.087 -126.57(-0.127 ¥
Ar -525.93(-0.382 -521.62(-0.072 -516.64(-0.130
Kr  -2750.1(-0.309 -2742.7(-0.153 -2721.1(-0.130 0 .
0 1 2
Be  -14.446(-0.411) -14.786(-0.034 -14.139(-0.126 ' (au)
Mg ~ -199.13(-0.350 -198.43(-0.027  -195.71(-0.129 FIG. 1. Radial density #r?n(r) for the Kr atom. Thick solid
Ca  -675.73-0.282 -671.15(-0.103 -665.11(-0.129 line: Kohn-Sham; solid line: SADA functionald= + 3); dashed
Sr -3129.4(-0.263 -3120.8(-0.148 -3096.8(-0.129

line: SADA functional (3= — 3).

tive value of 8 implies that the weight function has an un-
physical behavior. Specifically, Fig.(& shows that the
weight function centered inside the bulk has a peak in the

which includes a symmetric functiaf(r,r’) of the densities vacuum region: as a consequence, the averaged der(gity
atr andr’. The weight functiorw(p) is obtained by requir- well inside the metal receives a spurious contribution from
ing that the functional correctly describes the energy andhe density far outside the bulk. On the other hand, in Fig.
Lindhard’s linear responég of the homogeneous electron 2(b) we can observe that the weight function centered’ at

gas. In the nonsymmetrized ADA functioh@l{(r,r') >0 has a very long range inside the bulk, an@) does not
=kg(r), with the local Fermi momentumkg(r)  go to zero wherz— + [see Fig. 2)]. These unphysical
=[37*n(r)]*%; that means that averad@) is spherically  pehaviors disappear fg8>02* Since our aim is to use the
symmetric about the point As commented upon in Sec. Il, same kinetic-energy density functional for any electron sys-
the long-ranged weight function of this model yields numeri-tem, we conclude that thg value in the scaling factof3)
cal problems in extended systems. Within the nonsymmemyst be positive. We tak@= 1, an intermediate value be-
trized scheme, this limitation can be avoided averaging nofyeen the geometric 4=0) and the arithmetic £=1)
the density, but the Fermi momentuiFMA functional),*’ means. The scaling factd(r,r’) will simply be
obtaining a nonlocal functional which gives good results for ’
the jellium surface problem. However, both the ADA and . . . . . .
AFMA functionals give no shell structure for atoms. 010l @] [ ®) Jo10
As shown in the original papéf, the sADA functional ' '
solves the long-range problem of the weight function, and 5
gives a clear shell structure in atomic systems when the sym-&
metric scaling factor

'ﬁ(f)=fn(f')[2§(r,f’)]3w(2§(r,f')|f—f'|)dr’, )

0,051 1t 10,05

== /“\\\ 0,00

Q(z,2")

1 4
g(rrr,):ﬁ[kF(r)B"_kF(r’)ﬁ]llﬁ (3) 0,00 py \\

is used. We found that the free parameBemust lie in the

interval [ —1,1], and its values do not drastically affect the

main results obtained with functiongél). In that paper we 1,0
choseB= — 3 for empirical reasons: this value gives the best
fitting of the Kohn-Sham ground-state energies of light at-
oms. Nevertheless, as shown in Table I, the total energies >,¢05
become worse by only about 2%, and the chemical potentials ;=
(and the first ionization energigare, in general, closer to the
Kohn-Sham values, when a vale= + 3 is used in Eq(3)

i =-1 in Fi i 0,0
instead ofg8 5. Further, as can be seen in Fig. 1, density O3 15 0 15 30

profiles preserve the clear shell structure of the atoms. More- z(a.u.)
over, another achievement of the sADA functional, the spin
polarization of atoms such N and P, is maintained. We can FIG. 2.  Projected weight functions Q(zz')=

conclude that, at least for localized systems, the generd{(z.z')w(2{(z.z')|z—2'|) [panel(a): z'=—15 a.u.; panelb):
trends of the results obtained with the functional do not dez'=10 a.u] and averaged densities(z)/n, [panel (c)] for a jel-
pend too much on the specific value @f lium surface ¢(,=4 a.u). Thick solid line: 3=+ 3; dashed line:

This independence is not the case for extended systemg=—3. Note that the averaged densityz) is given by n(z)
For a metallic surface, with the jellium edgezat0, a nega- =/n(z’')Q(z,z')dz.
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TABLE II. Surface energiegin erg cm 2) and, between brack- 1.15
ets, work functiongin eV) for jellium surfaces, obtained with the
Kohn-Sham method and the kinetic-energy functionals quoted in
the text.

re (ag) KS SADA AFMA  TF(1/4)W  SGA4 %,05 ]

2 1087 -1033  -1271 -640 -1090 =
(3.89 (3.83 (3.70 (3.78 (3.59

3 189 164 154 270 153
(350 (347 (34D (326  (3.29 095 , , _

4 155 143 143 172 132 -30 -20 -10 0
3.09 (305 (3.03 286  (2.89 z(a.u)

5 97 o1 90 98 81 FIG. 3. Electronic density profile for a jellium surface(
270 (7D (269 (2.52 (2.60 =5a,) using several kinetic-energy density functionals. Thick solid

6 59 58 56 58 50 line: Kohn-Sham; solid line: sADA; dotted line: AFMA; dashed
(2.42 (2.43 (2.41 (2.26 (2.35 line: TF(A:%)W; dot-dashed line: SGA4.

SGAA4 functional for low ones. As can be seen in Table I,
Z(r,ry=3[Vke(r)+ Vke(r')12. (4) and was commented upon in Sec. |, energy values are gen-
] ] _erally good when using kinetic-energy functionals that de-
This choice guarantees accurate results not only for Iocallzegend explicitly on the density.
systemgsee Table)lbut also, as we will see in Sec. lll, for ~ The quality of the SADA functional is manifested more
extended ones. So, in this paper, we will study the influencg|early when comparing the density profiles. In Fig. 3 we can

symmetrization procedure given by ). Friedel oscillations(but a little shifted respect to the KS
profile); moreover, there is no difference between the two
. RESULTS profiles in the surface and vacuum regions. When the AFMA

functional is used, the Friedel oscillations are quickly
~ damped, and the density close to the surface is described
slightly worse. The semilocal functionals, T&E $)W and
SGA4, give densities with no Friedel oscillations at all and
there is no agreement with the KS profiles in the vacuum
region. Finally, as is well known, the density profile which
minimizes the energy including the SGA4 functional, has a
power-law decay rather than an exponential the.
The work function® is directly related to the density

$ehavior in the vacuum region through the equéfity

In this section, our aim is to compare our sADA func
tional with the exact Kohn-SharKS) results, and with the
non-symmetrized AFMA functional. We will also compare
with the TF(\=3%)W functional proposed by Chizmeshya
and Zaremb# (the\ value was fitted empirically to give the
best energies for the jellium surface probjeamd with the
square gradient approximation of fourth-ord8GA4).%° We
must remark the empirical character of the XE1/4)W
approximation and the fact that the SGA4 functional doe
not give good ground energies in localized systéffs.

To obtain the ground-state properties of a jellium surface, n(z)<exd — (8®)Y2z]. (6)
we minimized the total energy function&[ n], solving the
Euler-Lagrange equation As we show in Table Il, the coincidence in the vacuum be-
tween the KS profiles and those obtained with the nonlocal
oE[n] B functionals sADA and AFMA translates into an excellent
én(z) M (5) agreement of the work functions given by these functionals

(except in the limit of high metallic densities for the AFMA

In every calculation in this section we will use the local- nonlocal model This concordance is lost when using the
density approximatioiLDA) of Dirac and Wignet’ for the  semilocal functionals. Moreover, although the decay of the
exchange-correlation functional. To solve Ef), we trans-  density profiles obtained with the semilocal functionals are
form the equation into a Schidinger-like one by means of not well behaved, the corresponding work functions are
the substitutioff ¥ (z) =n(z)“?and, in order to speed up the rather good because E@) is not verified by these function-
convergence of the iteration procedure, we treat the classicals.
electrostatic term of the functional derivative Bfn] using
the integral scheme proposed by Manniretral 2°

In Table Il we compare the exact KS surface energies in
the range of metallic densities {=2a,~6a,) with those In their seminal article&’ Lang and Kohn emphasized a
obtained with the sADA functional, the nonlocal AFMA clear limitation of the jellium model: the surface energies for
functional, and the TR(=3)W and SGA4 functionals. We high-density metals are negative and, therefore, the bulk
minimized the last functional using a conjugate gradientmetal is mechanically unstable. Preserving the simplicity of
method®° Using the nonlocal functionals we obtain an over- the jellium model, this defect can be solved by means of the
all agreement respect to the KS energies. However, this istabilized jellium modef! 2 where a constar(structureless
lost by the TF§ =)W model for high densities, and by the pseudopotentiais added to the external potential in the bulk

IV. STABILIZED JELLIUM MODEL
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TABLE lIl. Surface energiesr; (in erg cm 2) and work func- 4 T v T T T 1.75
tions @ (in eV) for alkaline metals, using the stabilized jellium
model, obtained with the Kohn-Sha(lS) method and the sADA
and SGA4 functionals.

oT ()
Metal r.(a) KS SADA SGA4 KS SADA SGA4

(ne)'z

n(z) (arb. u.)

Li 3.28 302 262 252 3.36 3.33 2.99
Na 399 171 155 143 293 291 2.69
K 4.96 89 83 74 248 248 2.36
Rb 5.23 74 71 63 238 237 2.25

r,(a.u.)
region, in order to simulate the effect arising from the crys- ) ) .

L . FIG. 4. Left panel: induced density,(z) for a jellium surface
talline ionic array in the metal. B - o N

As an additional test for the sADA functional, in Table IlI (rs_— 23,) ' ”g.ht Panel' image .plan.e p(.)s't_'oz'l n t.erms Ofrs'.

. Thick solid line: Kohn-Sham; solid line: sADA; dashed line,

we present the surface energy and the work function for thq_FO\: Lw
alkali metals. We compare these results with the exact Kohn- 4
Sham one$® and with those obtained by us after a complete

: ; N hat thi Iculation is a fir heck th li
minimzato ofthe ol encrgy using he SGAA functoal  NOE [Pt calcutin s o fst est o check e ualty
The Exc[n] functional used in the calculations is the LDA . h P loct tg Wy i S "
proposal by Perdew and Zung¥rwhich was used in the I @ NONROMOGENEoUS €lectron system. We saw in Sec.
above quoted works that the density profiles obtained are extremely accurate. On

We see that the .good results obtained with the SAD the other hand, any ADA functional exactly reproduces the
functional are maintained in this more realistic description ofi"e&/-résponse function of the noninteracting homogeneous
the metallic surface. However we must comment that th _Iectrqn gas. For b.Oth reasons we expect to ob_tam a good
good results for the SGA4 functional quoted in Ref. 31 ar _|n”e_ar mdu;:ed density when the SADA functional is used for
accidental. These authors use a parametrized form for tHE EII'JFT slufrtaces.l f Fig. 4 texact Kohn-Sh
density profile and, as consequence, the minimization of the q ed% pg{le 0 tlr?. preslﬁn'ts g ‘f’;ﬁt XDIX e:jn'lh
total energy is not complete. This partial minimization over-nduced densityy(2), the one obtained with s and the

estimates both the surface energy and the work funéfigh. ©n€ corresponding to the Tk #)W functional. The result
of the last functional has the maximum displaced with re-

spect to the exact peak, and has no Friedel oscillations. The
n,(z) density given by our nonlocal functional reproduces
We would like to finish our tests on the quality of the @lmost exactly that main peak and the behavior in the
SADA kinetic-energy functional with a very hard one: the vacuum region£>0). Inside the metal, the induced density
calculation of the density induced by a weak static externaphows well-defined Friedel oscillations but, as in the ground-
electric fieldSE acting normally to the jellium surface. Writ- State density, shifted when compared to the Kohn-Sham
ing this external field a8E= — 27 oe,, whereo is the net  Ones. The latter shift has no influence on the value of the
surface charge density induced by the external field, the linimage plane position because the dynamical sum rule im-

V. LINEAR INDUCED DENSITY

ear induced density can be expressed as poses that® .zn,(z)dz be zero for any functional. In the

right panel of Fig. 4 we can clearly see this: there is an
on(z)=ony(z)+o(ao?). (7) excellent agreement between the exact centroids and those

given by the sADA functional, because the-0 values of

Further, the centroid of this induced charge n,(z) are almost the same in both calculations. On the other
hand, for the TR =)W functional, even if the density pro-

N e file seems quite good indeed, the small differences,i(z)
zl_ﬁw zm(z)dz ®) for z>0 give only a qualitative description of the depen-

dence ofz; on the bulk density, as already shown by
defines the image plane positiéhThe dynamical sum ruf€  Chizmeshya and Zaremba.
allows us to writez; only in terms of the values of the

induced density outside the metal, VI CONCLUSIONS

In this paper we discussed some properties of the SADA
kinetic-energy functional. In the first place, we can conclude
that the sSADA kinetic-energy functional, wit= 3, is a uni-
Since this sum rule is classical, it must be satisfied by anyersal functional, i.e., that gives good results, when com-
explicit kinetic-energy functional, and we have checked, apared to the Kohn-Sham method, for localizedoms and
an additional test for the convergence of our calculationsinhomogeneous extended systeitjsllium surfaces We
that the centroids obtained using both equations coincide ihave confirmed that the nonspherical averaging procedure
all the calculations we have made. given by Eqgs.(2) and(3) is essential in the improvement of

Z,= fo wznl(z)dz. 9
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the kinetic-energy functional, specifically when discussingsolved by the symmetrization of the WDA exchange-
the structure of the density profiles. We must remark that theorrelation functionat>4%4! This symmetrization is in
sADA functional is acontinuousdensity functional, i.e., it progress, in order to clarify if it is the way to obtain the
has no derivative discontinuiti€s the sense of Perdew and correct asymptotic behavior of the image potential.
Levy®)). Thus it cannot describe, for instance, the steplike Finally, in Sec. | we commented that one of the motiva-
evolution of the ionization energy with the number of elec-tions for the development of &4 n] functional is the sim-
trons for a fixed nuclear charge. This does not prevent aplification of orbital-free DFT calculations in complex sys-
accurate kinetic functional, such as the one presented hereems. Although our sADA model is easier to apply than the
which describes almost exactly the density both in the inneKohn-Sham method in molecular-dynamics simulations, its
(K shell) and in the outer region of an atom, from giving own complexity makes it more difficult to apply than other
structured atomic profile¥. kinetic functionals. For instance, the functionals developed
When the sADA kinetic-energy functional is applied to specifically for solids by Wang and Tetémand Perrdt are
jellium surfaces, we obtained excellent results for themuch simpler than the sADA. Nevertheless, the sADA func-
ground-state properties: surface energies, work functiongjonal, with some simplifications suggested by the structure
and density profiles. Moreover, the results for the linear in-of the problem at hand, could be easier to apply, and could
duced density, directly related to the linear response of thachieve similar results to the ones obtained with those func-
functional, are very good. This is in agreement with the actionals.
curate linear-response matrix obtained with the sADA func-

tional in one-dimensional electron systeffis.
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