
PHYSICAL REVIEW B 15 FEBRUARY 1998-IIVOLUME 57, NUMBER 8
Alloy decomposition and surface instabilities in thin films
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Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

~Received 14 July 1997; revised manuscript received 16 October 1997!

We show that in the presence of substrate misfit and compositional stresses, static or growing films that
undergo surface spinodal decomposition are always unstable to perturbations around the planar surface. For
sufficiently rapid deposition processes, the planar surface can be stabilized due to a suppression of the alloy
decomposition. Films grown outside of the miscibility gap can become unstable due to the mismatch with the
substrate and compositionally generated stresses. We also demonstrate that the instability is independent of the
sign of the misfit when the elastic moduli of the alloy constituents are equal, and the existence of a maximum
misfit above which the film is always unstable, even at high growth rates. The symmetry under sign reversal of
the misfit can be broken by composition-dependent elastic constants.@S0163-1829~98!05508-8#
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I. INTRODUCTION

Growing good-quality thin solid layers is an importa
technological process. Constraints on operating conditi
and performance of electronic and optical devices have le
an increase in the complexity of thin films that are bei
grown. For example, the tailoring of the electronic band g
of semiconductor films can be accomplished by growingal-
loy layers. Although the alloy composition can be tuned
obtain a desirable band gap, the resulting device is us
only if the alloy composition remains homogeneous. R
cently, however, there have been experimental reports
composition modulations that appear while the film
growing.1 Theoretical investigations2–4 have shown that a
possible explanation for these experiments is the presenc
phase separation of the alloy constituents at the surface.
composition gradients generated at the surface are then
ied in the bulk of the thin film because of the constant de
sition of material. Since bulk diffusion is negligible, there
a characteristic length scale for the composition modulati
originating from the competition between the phase sep
tion and the deposition of material, and a topview of the fi
shows lamellar composition patterns for equal volume fr
tions of the two species. In the absence of elastic effect2,3

modulations of the surface profile occur because at the
face, atoms of different species prefer to increase the sur
roughness rather than being next to each other. In the
sence of a substrate/film misfit but with elastic fields ori
nating from a dependence of the elastic moduli
composition,4 the lamellar phase can become unstable to
formation of a droplet phase, consisting of hard domains
soft matrix. Hence, stress and strain effects are crucia
determining the composition profile of the alloy layer.

The effects of a substrate misfit on the surface of a sin
component film lead to an instability of the planar surfa
This instability is responsible for the formation of mounds
islands where elastic relaxation occurs at the peaks, in c
petition with the extra surface energy. Such instabilities h
been observed experimentally5–7 and predicted
theoretically8–10 by several authors. For alloy layers, the la
tice constant and the elastic moduli of the two compone
can be different, and an interesting coupling arises betw
570163-1829/98/57~8!/4805~11!/$15.00
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the misfit stress and the stress generated by compositio
homogeneities, as shown by Guyer and Voorhees.11 These
authors, however, considered the surface composition to
in equilibrium with a vapor, a strong approximation that n
glects the dynamics of phase segregation. Another appro
has been proposed by Tersoff12 based on a step-flow growt
model. Experiments correlating the compositional and s
face profiles have been recently presented.13,14

In this paper, we consider the case where the alloy in
mogeneities are initially induced by thermodynamics alo
the alloy is immiscible at the growth temperature and co
position. We also consider the case where the alloy is gro
outside of the miscibility gap. Furthermore, the full noneq
librium nature of the dynamics of phase separation and
face diffusion are taken into account, leading to results t
are very different from those in Ref. 11. In particular, we fin
that the stability is independent of the sign of the misfit wh
the elastic moduli of the alloy components are equal, and
alloy decomposition is always accompanied by a surface
stability. In Sec. II, we introduce the continuum model f
the alloy thin film, and in Sec. III, we describe the line
stability analysis. Equations~38! and ~39! form one of the
central parts of this work. Results are presented for a st
film in Sec. IV and for a growing film in Sec. V. The effect
of a composition-dependent Young’s modulus are discus
in Sec. VI and our conclusion is presented in Sec. VII.

II. MODEL

The substrate is a semi-infinite isotropic solid occupyi
the space z,0, and the film is in the region 0,z
<h(x,y,t). The film is composed of two species, corr
sponding to a binary or pseudobinary alloy, with both sp
cies simultaneously deposited by a directed beam. The
stantaneous average composition of the alloy film is the sa
as the composition in the beam, which remains constan
time. The surfacez50 separating the substrate from the fil
is assumed to remain flat and coherent. Furthermore, the
teractions of the film with the substrate are symmetric for
components of the film, and are assumed not to affect
surface energy. A neutral substrate has been shown to
duce droplets of both phases of the film in contact with
4805 © 1998 The American Physical Society
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4806 57FRANÇOIS LÉONARD AND RASHMI C. DESAI
substrate.3 An essential ingredient in our model is that diffu
sion of material proceeds along the surface only, since b
diffusion coefficients are typically much smaller than surfa
diffusion coefficients. The neglect of bulk diffusion mea
that the composition profile in thez direction can be obtained
from the history of the composition at the surface. In th
section, the elastic constants~Young’s modulusE, shear
modulusm, and Poisson ration) of the substrate and of th
film are assumed to be equal and independent of the com
sition.

The composition of the film is described by a continuo
variable f(r ) proportional to the local composition differ
ence of the two constituents: for example, for an alloy
type AxB12x , f51 corresponds tox50, f521 to x51
andf50 to x51/2. The important effects in heteroepitax
arise because the lattice constants of the film component
different: the lattice constant of the filmaf depends onf
through the relation lnaf5hf, defining the solute expansio
coefficient h5(]af /]f)/af . The misfit between the sub
strate and the film is«5(af2as)/as , (as is the lattice con-
stant of the substrate!; «.0 implies that the film is compres
sively strained.

The free energy of the system consists of three part
contribution from the elastic energy, a contribution due
the thermodynamics of the binary alloy, and a term that r
resents the surface energy. The total free-energy function
written as

F@f,u,h#5Fel@f,u,h#1FGL@f,h#1Fs@h#, ~1!

whereFel is the elastic free-energy functional,FGL is the
Ginzburg-Landau free-energy functional that represents
thermodynamics, andFs is the surface free-energy func
tional. Here,u(r ) is the displacement vector representi
displacements from the local equilibrium position and is
lated to the strain tensor throughm i j 5(¹ iuj1¹ jui)/2, with
the indicesi and j equal tox,y or z. Because the elasti
fields will cause deformations to extend into the substra
the elastic term has to be calculated over the whole syst

Fel@f,u,h#5
1

2E2`

h

d3rSi jkl s i j skl , ~2!

with Si jkl the elastic compliance tensor ands i j the stress
tensor. For isotropic bodies, Si jkl 5d ikd j l (11n)/E
2d i j dkln/E (d i j is the Kronecker delta!. The essential prop
erties of the binary compound phase behavior is captured
the Ginzburg-Landau energy,

FGL@f,h#5E
0

h

d3r F2
r 8

2
f21

u

4
f41

c

2
u¹fu2G . ~3!

This coarse-grained free-energy functional comprises co
butions from the internal energy and from the entropy. T
constantr 8 is proportional toTc2T, whereTc is the critical
temperature of the binary alloy. WhenT.Tc , minimization
of the free energy shows that there exists only one solu
for f, i.e., f50, corresponding to a homogeneously mix
system. WhenT,Tc , the first two terms have a double-we
structure, with minima atf656Ar 8/u, and the range off
betweenf1 andf2 represents the coexistence region of t
phase diagram. The term proportional tou¹fu2 penalizes
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gradients inf, and its coefficientc is proportional to the
square of the characteristic interfacial length scale. In t
paper, we assume that the substrate is held at a con
temperature below or above the critical temperature of
alloy layer, and that thermal equilibrium is immediate
reached upon contact with the substrate. The last contr
tion in the total free-energy functional is the surface ener

Fs@h#5gE d2rAg, ~4!

with g the surface tension andg511u¹hu2 the determinant
of the surface metric. Here, we consider simplified ca
where the surface tension is isotropic and independent of
composition or the displacement vector.

The boundary conditions for the system are as follow
For molecular-beam-epitaxy~MBE! growth, the pressure
above the film is negligible; hence the total force on a m
element on the surface is zero. This implies that

s i j
f nj50 at z5h, ~5!

with the unit vectorn5(2¹h,1)/Ag oriented towards the
half-space of the positivez direction. Because the planez
50 remains flat and coherent, the displacement vector
the stress tensor must be continuous there, implying tha

szi
f 5szi

s and uf5us at z50. ~6!

Also, we require the displacement vector within the substr
to vanish far from the film/substrate interface:us→0 as
z→2`. Since forz<0, f50, the boundary condition on
the composition isf50 at z50.

To describe the time evolution of the film, dynamic
equations for the fieldsu, h andf must be provided. These
equations must represent the deposition process under
sideration. For MBE, evaporation of particles from the fil
surface is neglected, and a constant amount of materia
deposited per unit time. Hence, in a reference frame mov
with the average surface position, the surface diffusion p
cess must conserve the total amount of material. The m
rial current at the surface is proportional to the gradient
the chemical potential

jh52Gh¹
dF
dh

, ~7!

whereGh is a kinetic coefficient. Because material is co
served, the time derivative ofh is related to the divergenc
of the current, andh evolves as

] th5GhAg¹s
2 dF

dh
1v, ~8!

where¹s
2 is the Laplace-Beltrami operator that ensures d

fusion parallel to the surface, andv is the growth velocity.
The concentration field at the surface f(x,y,t)

5f„x,y,h(x,y),t… evolves in a similar manner,

] tf5Gf¹s
2 dF
df

2Lf. ~9!

The very important last term in this equation represents
constant deposition of material of average composition eq
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57 4807ALLOY DECOMPOSITION AND SURFACE . . .
to 0, with L proportional tov. Since diffusion is neglected
in the bulk,fb(x,y,z,t)5f(x,y,t5z/v). In principle, ther-
mal and beam noises have to be included in Eqs.~8! and~9!.
Such effects, and a more detailed derivation of these eq
tions, were described in a previous paper3 and are not in-
cluded here.

In the absence of elastic effects,3 Eq. ~8! becomes slaved
to Eq. ~9!, and modulations of the surface arise due to
concentration gradients at the surface. This effect is non
ear, however, and does not contribute to the linear stabi

The last evolution equation that has to be specified is
the field u. Since diffusion is a much slower process th
local lattice rearrangements, the displacement vector ca
taken to instantaneously satisfy mechanical equilibrium,

¹ js i j 50. ~10!

These equations can be recast in terms ofu once the stress
tensor is specified. This will be described in the next sect

III. LINEAR STABILITY ANALYSIS

The linear stability analysis aims at calculating the grow
rate of perturbations in the surface profile and in the conc
tration field. The procedure we describe here is similar
other calculations.15,16The reference state around which pe
turbations occur must be specified. The basic state for
surface consists of a planar growth front moving at a veloc

v for the growing film, and of fixed thicknessh̄ for the static
film. The substrate is unstrained and of lattice constantas ,
ūs50, while the film is stressed in thex and y directions,
such that the lattice constant in these directions isas . Since
this is the reference state,ū x5 ū y50. Of course, the stress i
the lateral directions will cause Poisson relaxation in thz
direction, such that the compression¹• ū5m̄zz is uniform,
ū z5m̄zzz, with the constantm̄zz5@(11n)/(12n)#«. The
stress in the lateral directions is thens̄522mm̄zz. We take
the compositionf̄ of the initial state to be uniform and equ
to zero. The general stress tensor, in the presence of mis«
and compositional stresses, then reads11,16

s i j 52mF n

122n
m l l d i j 1m i j 2

11n

122n
~«1hf!d i j G .

~11!

Substitution of this expression for the stress tensor in
~10! leads to the mechanical equilibrium equations

¹ i¹–u1~122n!¹2ui22~11n!h¹ if50. ~12!

The stability is studied by considering small perturbatio
around the basic state: a general variablej is expanded
in a two-dimensional Fourier series asj5 j̄

1(qĵ(q,z,t)ei (qxx1qyy) ~the Fourier coefficients for the
height variable are independent ofz). The functional deriva-
tive in Eq. ~8!, when computed, becomes the free-ene
density evaluated at the surface. Hence, for the purpos
calculating] tĥ, the free-energy density has to be compu
to O( ĵ). To this order, the Ginzburg-Landau free ener
does not contribute, and we have the orderĵ elastic energyÊ
as
a-
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Ê5 s̄ ~ m̂xx1m̂yy22hf̂!. ~13!

For the dynamical equation forf, the free-energy density
must be computed to second order in the perturbations.
cause of the mechanical equilibrium condition, the displa
ment vector can be obtained as a function ofh andf. The
second-order correction to the elastic energy,Ẽ;O( ĵ2), is

Ẽ5Si jkl ŝ i j ŝkl . ~14!

A. Solutions of the mechanical equilibrium equations

The mechanical equilibrium equations are already lin
and are, in the film,

~122n!~]z
22q2!ûx1 iqx„iqxûx1 iqyûy

1]zûz22~11n!hf̂…50, ~15!

~122n!~]z
22q2!ûy1 iqy„iqxûx1 iqyûy

1]zûz22~11n!hf̂…50, ~16!

~122n!~]z
22q2!ûz1]z„iqxûx1 iqyûy1]zûz

22~11n!hf̂…50, ~17!

to first order. This is a set of coupled inhomogeneo
second-order differential equations, with the inhomogene
due to the concentration field. The homogeneous equat
were derived by Spencer, Voorhees, and Davies,15 while
Guyer and Voorhees16 obtained the full inhomogeneous s
of equations. In the substrate, the displacements satisfy
homogeneous equations. The general solution to the inho
geneous set is a linear combination of the solutions to
homogeneous problem added to the particular solution.
particular solution can easily be derived by taking an ex
divergence in Eq.~12!, leading to

ui5S 11n

12n Dh¹ iW, ~18!

whereW is defined through the relation

¹2W5f. ~19!

In the substrate, the displacements are

F ûx
s

ûy
s

ûz
s
G5F ux

0

uy
0

uz
0
G eqz2F iqx /q

iqy /q

1
GBzeqz, ~20!

whereB5@1/(324n)#( iqxux
01 iqyuy

01quz
0), and where we

have used the condition thatus vanishes far from the film/
substrate boundary. In the film, we have
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F ûx
f

ûy
f

ûz
f
G5F ax

ay

az

G cosh~qz!1F bx

by

bz

G sinh~qz!

2F Ciqx /q

Ciqy /q

D
G zsinh~qz!2F Diqx /q

Diqy /q

C
G zcosh~qz!

1S 11n

12n DhF iqxŴ

iqyŴ

]zŴ

G . ~21!

In this last equation,C and D are defined asC5@1/(3
24n)#( iqxax1 iqyay1qbz) and D5@1/(324n)#( iqxbx
1 iqyby1qaz). The above relations for the displacements
the film and in the substrate contain nine coefficients t
have to be fixed using the boundary conditions. ToO( ĵ), the
boundary conditions are, atz5h,

ŝxz5 iqxs̄ ĥ, ŝyz5 iqys̄ ĥ and ŝzz50. ~22!

At z50 to this order,

ŝzi
f 5ŝzi

s andûf5ûs. ~23!

The linearized boundary condition onf is f̂50 at z50,
since we consider the alloy to be in the regionz.0.

With these boundary conditions, we find thatui
05 a i

5b i , which implies thatC5D5B . For the energy calcu
lation it is sufficient to specifyC, as well as the relations
betweenaz andC:

C5AF2
qĥs̄

2m
1hS 11n

12n D ~q]zŴ2]z
2Ŵ1f̂ !Uz5 h̄G ,

~24!

qaz5C~222n1q h̄!1AFqĥs̄

m
22hS 11n

12n Dq]zŴUz5 h̄G ,

~25!

whereA5@cosh(qh̄)1sinh(qh̄)#21.

B. Calculation of the energy

The energy can now be calculated to second order in
perturbations from Eqs.~13! and ~14!,

Ê5
E«

12n
@22«~11n!qĥ22h„~11n!q]zŴ2~11n!]z

2Ŵ

1nf̂…uz5 h̄# ~26!

and
t

e

Ẽ5
E

~122n!~11n!F ~122n!h2f̂2S 11n

12n D
12«S 11n

12n Dqĥ~122n!~11n!hf̂

12~122n!h2S 11n

12n D 2

f̂@q]zŴ2]z
2Ŵ#Uz5 h̄

12~122n!~12n!h2S 11n

12n D 2

@q]zŴ2]z
2Ŵ#2Uz5 h̄

18~122n!~11n!«S 11n

12n Dqĥ

3h@q]zŴ2]z
2Ŵ#U

z5 h̄
G . ~27!

In this equation forẼ, we have dropped terms of the formĥ2

because they do not contribute to the chemical potential
f.

To obtain the functionŴ, we proceed as follows. We ar
interested in the early time regime where the fields gr
exponentially in time, i.e.,f̂5f̂0eVt and ĥ5ĥ0eVt. This
means that in the bulk of the film,f̂b5f̂0eVz/v, which
gives, by Eq.~19!,

Ŵ5
v2f̂0

V22~qv !2
eVz/v. ~28!

In particular, at the surface,z5vt, and Ŵ5v2f̂/@V2

2(qv)2#, which implies thatÊ and Ẽ can be calculated in
terms of ĥ and f̂ only. For completeness, we write thes
expressions here:

Ê5
E«

12nF22«~11n!qĥ22hf̂S nqv2V

qv1V D G ~29!

and

Ẽ5
E

12nH h2f̂2F122S 11n

12n DVS nV1qv

~V1qv !2D G
22~11n!«hqĥf̂S 3V2qv

V1qv D J . ~30!

C. Linearized dynamical equations

The dynamical equations forĥ and f̂ are obtained from
Eqs.~8! and ~9!. In Fourier space, they read

] tĥ52Ghq2S 22E«2
11n

12n
qĥ2

2E

12n
«hS nqv2V

qv1V D f̂

1gq2ĥD ~31!

and
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57 4809ALLOY DECOMPOSITION AND SURFACE . . .
] tf̂52Gfq2S 2r 81cq21
2E

12n
h2D f̂2Gfq2

4E

12n

3F2
11n

12nS V

V1qv D1~11n!S V

V1qv D 2Gh2f̂

1Gfq32E
11n

12nS 3V2qv
V1qv D «hĥ2Lf̂. ~32!

It can be seen from these equations that the two variables
coupled due to the elastic effects. In Eq.~32!, the term

@2E/(12n)#h2f̂ simply renormalizes the coefficientr 8 and
was first calculated by Cahn17 in the case of a bulk binary
mixture. Experimentally, only the renormalized value forr 8
is accessible, and we therefore introduce a new coeffic
r 5r 82 2Eh2/(12n), which is proportional toTc

eff2T, and
we consider the cases whereT is above and belowTc

eff .
The dynamical equations can be rescaled using typ

length and time scales. We take the typical width of int
faces between domains as the length scale, and make
transformationx5(ur u/c)1/2r and k5(c/ur u)1/2q. Note that
when the constantsGh and v are rescaled by this lengt
scale, they become equivalent toGf andL @see discussions
around Eqs.~7!–~9!#. The time scale is then related to th
surface diffusion constantGf , leading to the rescalingt
5(Gfr 2/c)t. We also introduce new parameters«* , h* ,
andg* defined as

«* 5F2E

ur u S 11n

12n D G1/2

«, ~33!

h* 5F2E

ur u S 11n

12n D G1/2

h , ~34!

and

g* 5~cur u!21/2g. ~35!

Furthermore, the growth parameter is also rescaled,

V5S Gf

r 2

c D 21

L, ~36!

while the dimensionless dispersion is

s5S Gf

r 2

c D 21

V. ~37!

For most semiconductor materials, the Poisson ratio v
ies around a value of 1/4. For this value ofn, the dimension-
less dynamical equations are (ĥ has also been rescaled!

]tĥ52k2F2«* 2kĥ2
1

5
«* h* S kV24s

kV1s D f̂1g* k2ĥG
~38!

and
re

nt

al
-
the

r-

]tf̂52k2S 611k21
V

k2
2

2

3
h* 2s

s14kV

~s1kV!2D f̂

1k3«* h* S 3s2kV

s1kV D ĥ. ~39!

In Eq. ~39! @and Eqs.~40!, ~42!, ~44!, ~45!, and~46! below#,
the top sign is taken if the alloy is above the critical tempe
ture and the bottom sign applies if the alloy is below t
critical temperature. Immediate important conclusions can
drawn from these equations. In a general case where non
the parameters vanish, the morphological and compositio
degrees of freedom are always coupled. Thus, if one of
variables is unstable, then the other will also be unsta
Therefore, decomposition of the alloy will always be acco
panied by a surface instability, and the only way a plan
surface can be stabilized is if spinodal decomposition is s
pressed. In the same way, if a misfit drives a surface in
bility, it will induce phase separation at the surface. In ge
eral, forT,Tc , both the instability due to the misfit and th
thermodynamic instability of the alloy are present, and
system evolves with a single dispersion relation that is
combination of the two instabilities. The second importa
conclusion is concerned with the signs of the misfit«* and
of the solute expansion coefficienth* . It can be seen in Eqs
~38! and ~39! that «* , andh* appear only in the combina
tions «* 2, h* 2, and«* h* , implying that the only possible
dependence on the signs of«* and h* would be from the
«* h* terms, i.e., thecoupling terms in the equations. Con
sider, for instance, the term proportional tof̂ in Eq. ~38!. To
replace the fluctuation inf̂ by a function ofĥ, one has to
first ~simultaneously! solve Eq. ~39!, giving f̂;«* h* ĥ,
which is then substituted back in Eq.~38!, yielding an effec-
tive contribution which is proportional to («* h* )2. Hence,
the stability is independentof the sign of the misfit or the
expansion coefficient.

To solve for the dispersion relation, we letĥ5ĥ0est, f̂

5f̂0est and require that the determinant of the mat
formed by the equations forĥ0 andf̂0 be equal to zero. We
find thats satisfies the quartic equation,

05$@s1k2~k261!1V#~s1kV!2

2 2
3 h* 2k2s~s14kV!%@s1g* k42«* 2k3#

1 1
5 k5~«* h* !2~3s2kV!~4s2kV!. ~40!

It can now easily be seen thats does not depend on the sig
of «* or h* . In general, there exist four complex solutions
Eq. ~40!. The real part ofs determines the stability of the
system, while the presence of a nonzero imaginary part fos
is responsible for oscillations. Here, we are only interested
the stability of the system, and concentrate on the real pa
s. When the analytical solutions fors are complicated we
proceed numerically, and for a given value ofk, we calculate
the real part of each of the four solutions, and denote
largest of these four values ass. Hence, below, when we
indicates.0, it means that the real part of at least one of t
four roots is positive, leading to an instability, ands repre-
sents the most unstable dispersion.
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4810 57FRANÇOIS LÉONARD AND RASHMI C. DESAI
IV. RESULTS FOR STATIC FILMS

In the case of a static film of fixed average height, t
expression forŴ in Eq. ~28! is no longer valid. In principle,
Eq. ~19! has to be solved for a composition given by ad
function inz2h. However, a simpler argument is as follow
if we assume thatf̂b5f̂se

2l(z2h) wheref̂s is the value of
the order parameter at the surface, thenŴ is easily calcu-
lated. Substitution of the expression forŴ in the elastic en-
ergy Eq. ~27! and taking the limitl@q yields the same
result as settingthe growth velocity V to zero. The expres-
sion for f̂b above is similar in spirit to the calculations o
Glas for an equilibrium static film.18 Various scenarios are
possible depending on the values of«* andh* . When both
«* and h* are zero~i.e., a film perfectly matched to th
substrate and with the lattice constant independent of c
position!, the dynamical equations decouple and there
two nontrivial solutions fors. For the height variable,

sh52g* k4, ~41!

which is always negative, leading to a stable planar surfa
For the compositional degree of freedom, we have

sf52k47k2, ~42!

which is positive in the band of wave vectors 0,k,1 for
T,Tc , and is always negative forT.Tc . WhenT,Tc , sf
is the usual expression for spinodal decomposition of a s
metric binary alloy, and in the absence of nonlinear ela
effects, complete phase separation of the two compon
results. The most unstable wave vector iskm

f51/A2, and
sf(km

f)51/4. We plotsh andsf in Fig. 1~a! for T,Tc .
When only the substrate misfit is present («* Þ0,h*

50), the equations are still decoupled, and we recover
result of Asaro and Tiller for the surface dispersion,

sh5«* 2k32g* k4. ~43!

The misfit induces a surface instability, sincesh is positive
in the region 0,k,«* 2/g* , with the maximum in
the dispersion at km

h 5(3/4)«* 2/g* , and sh(km
h )

5(27/256)«* 8/g* 3. The dispersion forf is the same as Eq
~42! @see Fig. 1~b!# .

In the absence of a misfit but in the presence of a nonz
solute expansion coefficient~«*50, h*Þ0!, the two vari-
ables are decoupled and the surface is always stable, sin
dispersion is given by Eq.~41!. For the composition, the
dispersion is given by

sf52k41k2~711 2
3 h* 2! . ~44!

Below Tc , the dispersion is now positive in 0,k
,A11(2/3)h* 2, with a maximum at km

f5(1/A2)(1
1(2/3)h* 2)1/2. The value of the dispersion relation at th
maximum is increased tosf(km

f)5(1/4)(11(2/3)h* 2)2,
implying that the contribution due toh* 2 increases the in-
stability to phase separation as well as the value of the m
unstable wave vector@Fig. 1~c!#. AboveTc , the elastic fields
can induce a decomposition of the alloy sincesf can be-
come positive ifh* 2.3/2. The extra term (2/3)h* 2 in Eq.
~44! originates from the elastic fields generated by compo
tion inhomogeneities at the surface that are constrained
e

-
re

e.

-
ic
ts

e

ro

its

st

i-
by

the boundary condition on the stress tensor at the surf
and corresponds to the third and fourth terms proportiona
h* 2 in Eq. ~27!.

The most interesting case for a static film corresponds
compositionally stressed film on a mismatched substrate,
cause the dynamical equations are coupled due to the te
proportional to«* h* . Because the variables are coupled, t
dispersion relation describes the stability of both variab
simultaneously. We first describe the results forT,Tc . In
Fig. 2, we plot the maximum of the real part of the dispe
sion relations for a fixed value of«* but for different values
of h* . As can be seen in this figure,s is always positive in
a band of wave vectors and has two peaks: the first pea
lower k is due toh* , while the second peak is due to th
misfit «* . As h* is increased, the value ofs at the first peak
increases and the peak location moves to a largerk value.
Eventually, for very largeh* ~not shown in the figure!, the

FIG. 1. Dispersion relations when the morphological and co
positional degrees of freedom decouple. The solid lines repre
the dispersion forf whenT,Tc , while the dotted lines are forh.
The parameterg* 51. In ~a!, «* 5h* 50. In ~b!, h* 50, and the
dotted curves from bottom to top are for«* 51, 1.25, and 1.5. In
~c!, «* 50, and the solid lines from bottom to top correspond
h* 50, 0.5, and 1.
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first peak is so strong that only one peak is apparent. Ex
for a special case, one of the peaks will be larger than
other, and the most unstable wave vector will come from t
peak. In the special case where the two peaks have the s
height, the surface becomes most unstable at two wave
tors simultaneously.

When the temperature is above the critical temperat
there is a region of stability that appears in the«* 2h*
diagram, as shown in Fig. 3. It can be seen that ifh* or «*
are too large the coupled system is always unstable.
shape of the stability diagram implies that if the misfit
moderate, the system can be stabilized due to the ela
fields generated by the composition; if the value ofh* is not
large enough, the amplitude of the compositional stres
will not be sufficient to control the instability due to th
misfit. The results of the stability analysis for the static fi
are summarized in Table I.

In their study, Guyer and Voorhees16 find that for the
static film, compositional strain plays no role in the instab
ity. This is because, in their model, composition decoup

FIG. 2. Dispersion relation for the static film whenh andf are
coupled forT,Tc . The misfit«* 50.75 andh* 53.2, 3.5, 4, and
4.5 from bottom to top.

FIG. 3. Stability diagram for the static film grown above th
critical temperature. A joint instability occurs in the unstable reg
and a joint stability occurs in the stable region. The surface cons
g* 51.
pt
e
t
me
c-

e,

he

tic

es

-
s

from the elastic field and implies] tf50. We believe that by
appropriately including the nonequilibrium evolution off
we have captured the missing ingredient to make the un
standing of the problem more consistent. Glas18 has recently
calculated the equilibrium stability~in the sense of thermo
dynamics! of an alloy in a planar half-space the surface
which is allowed to deviate from planarity. There, it is foun
that the state that minimizes the energy consists of a j
modulation of the composition and of the free surface, ev
if the alloy is stable against decomposition in bulk form. T
dynamical analysis presented in the present paper sugg
that the equilibrium state may not always be kinetically a
cessible since there exist combinations of the misfit, the
ute expansion coefficient, and the temperature for which
bilization occurs.

V. RESULTS FOR GROWING FILMS

When the film is growing, the growth parameterV be-
comes important in determining the stability. Again, wh
«* 50 or h* 50, the dynamical equations forh and f de-
couple and each variable has its own dispersion relation
the general case where both«* and h* are nonzero, the
variables are coupled and their time evolution is governed
the same dispersion relation.

To establish basic results, we start by describing a p
fectly matched film where its constituents are of the sa
size («* 5h* 50). Here, the surface is always stable, sin
there are no compositionally generated stresses and no m
The dispersion relation forh is given by Eq.~41!. Because
there is a competition between the constant deposition
material of fixed average composition and the formation
phase separated domains at the surface, the growth raV
can be used to stabilize the homogeneous mixture. This
be seen in the dispersion relation forf, which reads

sf52k47k22V. ~45!

For the positive sign, the dispersion relation is positive in
band 12A124V,2k2,11A124V, provided that the
growth rateV,1/4. Hence, ifV.1/4, the constant deposi
tion is too strong for the phase separation, and the allo
stabilized against decomposition. This implies that there
ists a critical growth rateVc above which the film will be
homogeneous in composition. When the growth paramete
below 1/4,4 a top view of the system shows lamellar or dro
let concentration patterns in the steady state. The appear
of droplets is due to nonlinear elastic effects that favor

nt

TABLE I. Summary of the stability results for the static film.

Temperature «* h* Surface Alloy

T,Tc 0 0 stable unstable
0 Þ0 stable unstable

Þ0 0 unstable unstable
Þ0 Þ0 joint instability joint instability

T.Tc 0 0 stable stable
0 Þ0 stable stable ifh,hc

Þ0 0 unstable stable
Þ0 Þ0 see Fig. 3 see Fig. 3
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formation of hard droplets in a soft matrix. We plotsf in
Fig. 4~a!. For the negative sign, the alloy is always stab
against decomposition.

If the film is mismatched buth* 50, the surface is un-
stable due to the Asaro and Tiller instability and its disp
sion is given by Eq.~43!, while the composition is unaf
fected by the misfit and Eq.~45! is still valid. The most
unstable wave vectors are in general different for the in
bilities in h andf, which means that at early times, the si
of concentration domains will be uncorrelated to the size
surface perturbations.

The surface of a matched film («* 50) in the presence o
both the deposition process and the compositional stress
always stable, sincesh52g* k4. The stability around the
average composition is described by the solutions to a c
equation insf ,

@sf1k2~k261!1V#~sf1kV!2

2 2
3 k2h* 2sf~sf14kV!50. ~46!

In Fig. 4~b!, we plot sf as a function ofk for different
values ofV andh* for temperatures inside of the miscibilit
gap. As can be seen in this figure, the band of wave vec
wheresf is positive decreases in size asV is increased. For
V large enough,sf is always negative, implying that th
homogeneous alloy is stable. The critical growth rate int
duced earlier now depends onh* as shown in Fig. 5. As an
indication, we find that fotT,Tc , Vc increases roughly a
h* 2 over the range plotted@Fig. 5~a!#. For temperatures out

FIG. 4. Dispersion relation forf in the case of the uncouple
growing film whenT,Tc . In ~a!, we plot the dispersion relation
whenh* 5«* 50 for ~bottom to top! V50.5, 0.25, and 0.1. In~b!,
h* 51, «* 50, and the curves from bottom to top correspond
V51, 0.5, and 0.1.
-

-

f

is

ic

rs

-

side of the miscibility gap, there is a range ofh* , 0,h*,1
where the alloy is stable at any growth rate@Fig. 5~b!#. Note
that when «* 50 and h* 50 the alloy is always stable
against decomposition@see Eq.~45!#. If h* .1 andT.Tc ,
spinodal decomposition occurs at low growth rates and
suppressed at high growth rates, as shown in Fig. 5~b!.

For most situations, none of the parameters vanish,
the two variables are always coupled. In Fig. 6, we plots as
a function of the wave-vector amplitude for various com
nations of the parameters«* ,h* and V for T,Tc . In Fig.
6~a!, we plots for fixed values of«* andh* but for differ-
ent growth velocities, showing that asV is increased,s be-
comes negative for allk when V.Vc . Note however, that
the location of the maximum does not change much withV.
If V and«* are fixed whileh* is increased@Fig. 6~b!#, the
coupled system goes from stable to unstable, and the loca
of the maximum increases withh* as discussed in previou
cases. The effects of the misfit«* on the stability are shown
in Fig. 6~c!. There is a maximum value for«* ,«max* above
which the system is unstable. Below this maximum mis
the deposition is strong enough to control the compositio
gradients generated by the intrinsic phase separation an
the surface instability, but as the misfit is increased the
stability driven by«* becomes stronger than the depositio
The value of«max* depends only on the surface tensiong* :
«max* ;g*1/2. In Fig. 7, we plot a stability diagram for the
coupled system, showing the stable and unstable regi

FIG. 5. Critical growth rate as a function of the solute expans
coefficient for~a! T,Tc and ~b! T.Tc . For V.Vc the system is
stable.
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The shape of the stability diagram is generic for the al
grown either above or below the critical temperature sin
we find that the maximum misfit is independent of whetheT
is above or belowTc and the critical velocity boundary i
horizontal in both cases. The stability diagram can be in
preted for any value of the temperature if the the value of
threshold velocity is taken from Fig. 5. A summary of o
results is presented in Table II. From a step-flow grow
model, Tersoff12 concluded that alloy decomposition ca
never stabilize a growing mismatched surface, independe
of the sign of the misfit. Our work indicates that stabilizati
is possible by appropriately choosing the growth rate, si
the constant deposition of material competes with the a
decomposition. Furthermore, the results for the static fi
presented in this paper follow naturally from our gene
model for the growing alloy by taking the limit of zer
growth rate, in contrast to the step-flow model12 which is
inapplicable asV→0.

VI. COMPOSITION-DEPENDENT YOUNG’S MODULUS

In this section, we extend the calculations above to
clude a linear dependence of Young’s modulus on the o

FIG. 6. Dispersion relation for the growing film whenh andf
are coupled whenT,Tc . ~a! «* 50.1, h* 50.5. From bottom to
top: V50.6, 0.34, and 0.25.~b! «* 50.1, V50.34. From bottom to
top: h* 50.25, 0.5, and 0.75.~c! h* 50.5,V50.4. From bottom to
top: «* 50.1, 0.5, and 1.
y
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parameter. We writeE5E01E1f and assume that the she
modulus is constant,m5m0 . Taking E and m as the two
independent elastic moduli, the Poisson ratio isn5n0
1n1f with n05(E022m0)/(2m0) and n15(E1 /E0)(1
1n0). The first-order stress tensor is

ŝ i j 52m0F S n0

122n0
D m̂ l l d i j 1m̂ i j 2

11n0

122n0
uf̂d i j G ,

~47!

with u5h12(E1 /E0)«/(12n0) a new effective solute ex
pansion coefficient. The elastic energy is now

Ê5 s̄„m̂xx1m̂yy22@h2~E1 /E0!«/~12n0!#f̂… ~48!

and

Ẽ5 S̄i jkl ŝ i j ŝkl1Ŝi jkl s̄ i j ŝkl . ~49!

Elimination of the displacement vector through the mecha
cal equilibrium equations leads to~to first order inE1)

FIG. 7. Stability diagram for the growing film wheng* 51 and
for composition-independent elastic moduli whenT,Tc . The
dashed~solid! lines are forh* 50.5 (h* 51). The vertical solid
and dashed lines overlap forV.1.06. The inset shows the dispe
sion relation for different values of the misfit and the growth ra
for h* 50.5. Bottom to top: («* ,V)5(0.1, 0.5!, ~0.1, 0.2!, and~0.3,
0.5!. The stability diagram can be interpreted forT.Tc if the
threshold growth rate is taken from Fig. 5.

TABLE II. Summary of the stability results for the growin
film.

Temperature «* h* Surface Alloy

T,Tc 0 0 stable stable ifV.Vc

0 Þ0 stable stable ifV.Vc(h)
Þ0 0 unstable stable ifV.Vc

Þ0 Þ0 see Fig. 7 see Fig. 7
T.Tc 0 0 stable stable

0 Þ0 stable stable ifV.Vc(h)
Þ0 0 unstable stable
Þ0 Þ0 see Fig. 7 see Fig. 7
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Ê5
E0«

12n0
H 22«~11n0!qĥ22FuS n0qv2V

qv1V D
2

E1

E0

«

12n0
G f̂J ~50!

and

Ẽ5
E0

12n0
H S h214«h

E1

E0
D

3F122S 11n0

12n0
DVS nV1qv

~V1qv !2D G f̂2

1
4«h

12n0

E1

E0
S n0qv2V

qv1V D f̂21qĥf̂F S 22«h~11n0!

24«2
E1

E0

11n0

12n0
D S 3V2qv

V1qv D14«2
E1

E0

11n0

12n0
G J . ~51!

For n051/4, the rescaled dynamical equations are (E1*
5E1 /E0andT,Tc)

]tĥ52k2H 2«* 2kĥ2F1

5
«* h* S kV24s

kV1s D
1

2

5
E1* «* 2S 3kV22s

kV1s D G f̂1g* k2ĥJ ~52!

and

]tf̂52k2F211k21
V

k2

2
2

3
~h* 214«* h* E1* !s

s14kV

~s1kV!2

1
32

15
«* h* E1* S kV2s

kV1s D G f̂1k3F S «* h* 1
8

3
E1* «* 2D

3S 3s2kV

s1kV D2
8

3
E1* «* 2G ĥ. ~53!

It can be seen in these equations that the composition de
dence ofE introduces nontrivial dynamical terms and a d
pendence on the sign of the misfit«* . The dependence o
the sign of«* can be understood as follows: for example
film under compression withh* .0 would be less unstabl
for E1* ,0 since the larger atoms are easier to compres
can also be noted that even in the absence ofh* the vari-
ables are coupled due to the terms inE1* . The new stability
diagram for the growing film is presented in Fig. 8, showi
that the maximum misfit is still present and the asymme
when the sign of the misfit is reversed.
en-
-

It

y

VII. CONCLUSION

In this paper, we have shown that a proper description
static or growing solid films requires considerations of t
nonequilibrium nature of the surface diffusion. We obtain
coupled dynamical equations for the local composition of
alloy and for the surface profile. The most important conc
sion in our work is that, in general, the composition a
surface height variables are coupled, implying that a fi
with a stable~unstable! planar surface is also stable~un-
stable! against decomposition of the alloy. Another impo
tant conclusion is the fact that the stability is independen
the sign of the mismatch between the film and the subst
when the elastic moduli are independent of compositi
This symmetry can be broken if the Young’s modulus of t
alloy constituents depends on composition. A planar fi
with the appearance of modulations perpendicular to
growth direction can be obtained if the film is perfect
matched to the substrate. For the unstable surfaces, our
culations suggest that the mode with the most unstable w
number will grow faster. However, this does not necessa
mean that a film of arbitrary thickness will show modulatio
of wave numberqm . In fact, nonlinear effects become im
portant on a thickness scaleVsm

21 , where a possible cross
over from qm to a steady-state wave number can occur.
course, the large stress concentrations at this point may
lead to the formation of dislocations.
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