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Alloy decomposition and surface instabilities in thin films
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We show that in the presence of substrate misfit and compositional stresses, static or growing films that
undergo surface spinodal decomposition are always unstable to perturbations around the planar surface. For
sufficiently rapid deposition processes, the planar surface can be stabilized due to a suppression of the alloy
decomposition. Films grown outside of the miscibility gap can become unstable due to the mismatch with the
substrate and compositionally generated stresses. We also demonstrate that the instability is independent of the
sign of the misfit when the elastic moduli of the alloy constituents are equal, and the existence of a maximum
misfit above which the film is always unstable, even at high growth rates. The symmetry under sign reversal of
the misfit can be broken by composition-dependent elastic consf80:63-182608)05508-9

[. INTRODUCTION the misfit stress and the stress generated by composition in-
. . . . . . homogeneities, as shown by Guyer and VoorHééghese
Growmg good-quality thin S(.)“d layers is an |mport§nt authors, however, considered the surface composition to be
technological process. Con;tralnts on opergtlng condmonﬁ1 equilibrium with a vapor, a strong approximation that ne-
andl performapce of electronlp and optlca_ll devices have Igd tBIects the dynamics of phase segregation. Another approach
an increase in the comple_xny of thin films that. are beingpas peen proposed by Terddfbased on a step-flow growth
grown. For example, the tailoring of the electronic band gapnodel. Experiments correlating the compositional and sur-
of semiconductor films can be accomplished by grovahg  f5ce profiles have been recently preserted.
loy layers. Although the alloy composition can be tuned to |n this paper, we consider the case where the alloy inho-
obtain a desirable band gap, the resulting device is usefyhogeneities are initially induced by thermodynamics alone:
only if the alloy composition remains homogeneous. Re-the alloy is immiscible at the growth temperature and com-
cently, however, there have been experimental reports gfosition. We also consider the case where the alloy is grown
composition modulations that appear while the film isoutside of the miscibility gap. Furthermore, the full nonequi-
growing! Theoretical investigatiods* have shown that a librium nature of the dynamics of phase separation and sur-
possible explanation for these experiments is the presence tsfce diffusion are taken into account, leading to results that
phase separation of the alloy constituents at the surface. Tie very different from those in Ref. 11. In particular, we find
composition gradients generated at the surface are then bufat the stability is independent of the sign of the misfit when
ied in the bulk of the thin film because of the constant depothe elastic moduli of the alloy components are equal, and that
sition of material. Since bulk diffusion is negligible, there is alloy decomposition is always accompanied by a surface in-
a characteristic length scale for the composition modulationstability. In Sec. Il, we introduce the continuum model for
originating from the competition between the phase separdhe alloy thin film, and in Sec. I, we describe the linear
tion and the deposition of material, and a topview of the filmstability analysis. Equationg38) and (39) form one of the
shows lamellar composition patterns for equal volume fraccentral parts of this work. Results are presented for a static
tions of the two species. In the absence of elastic effetts, film in Sec. IV and for a growing film in Sec. V. The effects
modulations of the surface profile occur because at the suff @ composition-dependent Young's modulus are discussed
face, atoms of different species prefer to increase the surfadg Sec. VI and our conclusion is presented in Sec. VII.
roughness rather than being next to each other. In the ab-
sence of a substrate/film misfit but with elastic fields origi- Il. MODEL
nating from a dependence of the elastic moduli on
compositiort: the lamellar phase can become unstable to the The substrate is a semi-infinite isotropic solid occupying
formation of a droplet phase, consisting of hard domains in dhe spacez<0, and the film is in the region 0z
soft matrix. Hence, stress and strain effects are crucial irch(x,y,t). The film is composed of two species, corre-
determining the composition profile of the alloy layer. sponding to a binary or pseudobinary alloy, with both spe-
The effects of a substrate misfit on the surface of a singleies simultaneously deposited by a directed beam. The in-
component film lead to an instability of the planar surface.stantaneous average composition of the alloy film is the same
This instability is responsible for the formation of mounds oras the composition in the beam, which remains constant in
islands where elastic relaxation occurs at the peaks, in contime. The surface=0 separating the substrate from the film
petition with the extra surface energy. Such instabilities havés assumed to remain flat and coherent. Furthermore, the in-
been observed experimentally and predicted teractions of the film with the substrate are symmetric for the
theoreticallj ~'° by several authors. For alloy layers, the lat- components of the film, and are assumed not to affect the
tice constant and the elastic moduli of the two componentsurface energy. A neutral substrate has been shown to pro-
can be different, and an interesting coupling arises betweeduce droplets of both phases of the film in contact with the
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substraté. An essential ingredient in our model is that diffu- gradients ing, and its coefficient is proportional to the
sion of material proceeds along the surface only, since bulkquare of the characteristic interfacial length scale. In this
diffusion coefficients are typically much smaller than surfacepaper, we assume that the substrate is held at a constant
diffusion coefficients. The neglect of bulk diffusion meanstemperature below or above the critical temperature of the
that the composition profile in thedirection can be obtained alloy layer, and that thermal equilibrium is immediately
from the history of the composition at the surface. In thisreached upon contact with the substrate. The last contribu-
section, the elastic constan¥oung’s modulusg, shear tion in the total free-energy functional is the surface energy,
modulusu, and Poisson ratie) of the substrate and of the

g:trir:)ﬁl.re assumed to be equal and independent of the compo FJh]= yf dzr\/ﬁ, @)

'!'he composition O.f the film is described by a continuous, i, y the surface tension argk=1+|Vh|? the determinant
variable ¢(r) proportional to the local composition differ-

t th ; Sk e f I fof the surface metric. Here, we consider simplified cases
ence of the two constituents: for example, for an alloy of\yhere the surface tension is isotropic and independent of the
type A,B;_,, #=1 corresponds tx=0, ¢=—1 tox=1

X e , i ; composition or the displacement vector.
and ¢=0 to x=1/2. The important effects in heteroepitaxy  The poundary conditions for the system are as follows.

arise because the lattice constants of the film components aFey, molecular-beam-epitaxyMBE) growth, the pressure

different: the lattice constant of the film; depends onp  4p5ve the film is negligible; hence the total force on a mass
throu.gh the relation lay= ¢, deflnln_g 'Fhe solute expansion sjement on the surface is zero. This implies that
coefficient = (das/dp)/a;. The misfit between the sub-

strate and the film is = (a;—ag)/as, (as is the lattice con- oifj n;=0 at z=h, (5)
stant of the substrates >0 implies that the film is compres- | ) )
sively strained. with the unit vectorn=(—Vh,1)/\/g oriented towards the

The free energy of the system consists of three parts: §al-space of the positive direction. Because the plare
contribution from the elastic energy, a contribution due to=0 remains flat and coherent, the displacement vector and
the thermodynamics of the binary alloy, and a term that repth® Stress tensor must be continuous there, implying that
resents the surface energy. The total free-energy functional is
written as 9y 9y oli=05 and uf=u® at z=0. (6)

Also, we require the displacement vector within the substrate
FL¢,uh]=Fel ,uh]+ Fal¢,h]+ FLh], (1) to vanish far from the film/substrate interface®*—0 as

where 7, is the elastic free-energy functionakg, is the z— —. Since forz<0, ¢=0, the boundary condition on
Ginzburg-Landau free-energy functional that represents théhe composition isp=0 atz=0.

thermodynamics, andt's is the surface free-energy func- To describe the time evolution of the film, dynamical
tional. Here,u(r) is the displacement vector representing€edquations for the fields, h and ¢ must be provided. These
displacements from the local equilibrium position and is re-equations must represent the deposition process under con-
lated to the strain tensor through; = (V;u;+ V;u;)/2, with S|derat|o_n. For MBE, evaporation of particles from the f_|Im_
the indicesi andj equal tox,y or z. Because the elastic surface is neglected, and a constant amount of material is
fields will cause deformations to extend into the substratedeposited per unit time. Hence, in a reference frame moving

the elastic term has to be calculated over the whole systent¥ith the average surface position, the surface diffusion pro-
cess must conserve the total amount of material. The mate-

1 . rial current at the surface is proportional to the gradient in
Fel ¢,u,h]= EJ_wd rSijioij ok (2} the chemical potential
with S;j the elastic compliance tensor awg; the stress T Vﬂ: o
tensor. For isotropic  bodies, S = 8y (1+ v)/E In h*'sh’

— §jj 0 vIE (& is the Kronecker delta The essential prop-
erties of the binary compound phase behavior is captured b
the Ginzburg-Landau energy,

hereT’y, is a kinetic coefficient. Because material is con-
erved, the time derivative df is related to the divergence
of the current, andh evolves as

h r’ u c
_ 3| g2, 2 4, 2 2 OF
Forl¢.h] fod | =5 &>+ 7 6%+ 5|V 4| } &) ah=ThgVi—-+v, ®

VvhereVﬁ is the Laplace-Beltrami operator that ensures dif-
Susion parallel to the surface, amdis the growth velocity.

This coarse-grained free-energy functional comprises contr
butions from the internal energy and from the entropy. Th
constant’ is proportllonal tor.—T, whereT, |s.the .cr|t|.cal The concentration fieldat the surface G(x.yt)
temperature of the binary alloy. Whén>T_, minimization — $(x.y,h(x,y),1) evolves in a similar manner

of the free energy shows that there exists only one solution Y.YD, '
for ¢, i.e., =0, corresponding to a homogeneously mixed ,O0F
system. WheT <T_, the first two terms have a double-well &t¢=F¢VS£—A¢. 9
structure, with minima atp..= = Jr'/u, and the range of

betweeng . and¢_ represents the coexistence region of theThe very important last term in this equation represents the
phase diagram. The term proportional [f8¢|?> penalizes constant deposition of material of average composition equal
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to 0, with A proportional tov. Since diffusion is neglected o_—r~ Ao

in the bulk, ¢y(X,y,z,t)= ¢(X,y,t=2/v). In principle, ther- E= 0ot ftyy=2n®). (13

mal and beam noises have to be included in E8jsand(9).  For the dynamical equation fap, the free-energy density
Such effects, and a more detailed derivation of these equanust be computed to second order in the perturbations. Be-
tions, were described in a previous papend are not in-  cause of the mechanical equilibrium condition, the displace-
cluded here. ment vector can be obtained as a functiorhadnd ¢. The

In the absence of elastic effeétEq. (8) becomes slaved second-order correction to the elastic enef@y,O(Ez), is
to Eg. (9), and modulations of the surface arise due to the
concentration gradients at the surface. This effect is nonlin-
ear, however, and does not contribute to the linear stability. =S 5ij oy - (14)

The last evolution equation that has to be specified is for
the field u. Since diffusion is a much slower process than
local lattice rearrangements, the displacement vector can be
taken to instantaneously satisfy mechanical equilibrium, The mechanical equilibrium equations are already linear

and are, in the film,

A. Solutions of the mechanical equilibrium equations

VJ O'ij =0. (10)
These equations can be recast in terms @ince the stress (1_2V)((9§_q2)ax+ 0 (0,0 +ia,0,
tensor is specified. This will be described in the next section. A
+‘9202_2(1+V) 7]¢):0a (15
I1l. LINEAR STABILITY ANALYSIS
The linear stability analysis aims at calculating the growth (1- 2v)(a§— q2)0y+ iqy(igx0,+iqy 0y
rate of perturbations in the surface profile and in the concen- A .
tration field. The procedure we describe here is similar to +3d,0,~2(1+v)n¢)=0, (16)

other calculation$>® The reference state around which per-
turbations occur must be specified. The basic state for the
surface consists of a planar growth front moving at a velocity

v for the growing film, and of_ﬁxed thickneds for the static —2(1+v)¢)=0, (17)

film. The substrate is unstrained and of lattice conségnt

us=0, while the film is stressed in the andy directions, to first order. This is a set of coupled inhomogeneous
such that the lattice constant in these directionasisSince  second-order differential equations, with the inhomogeneity
this is the reference state, = u,=0. Of course, the stress in due to the concentration field. The homogeneous equations
the lateral directions will cause Poisson relaxation in zhe were derived by Spencer, Voorhees, and Da¥ieshile
direction, such that the compressi® u=u,, is uniform,  Guyer and Voorheé8 obtained the full inhomogeneous set
U,=u,Z, with the constanfu,,=[(1+v)/(1—v)]e. The of equations. In the substrate, the displacements satisfy the
stress in the lateral directions is ther= —2uu,,. We take  homogeneous equations. The general solution to the inhomo-
the compositionp of the initial state to be uniform and equal geneous set is a linear combination of the solutions to the

to zero. The general stress tensor, in the presence of misfit homogeneous problem added to the particular solution. The
and compositional stresses, then ré&dfs particular solution can easily be derived by taking an extra

divergence in Eq(12), leading to

(1_ZV)(ﬁg_qz)az—i_5z(iqx0x+iqy0y+&zaz

v 1+v
gij=2p EMH@;‘ + i — E(8+ n) i |-

1+v
(11) u=| 1= | 7ViW. (18)
Substitution of this expression for the stress tensor in Eq. _ _ _
(10) leads to the mechanical equilibrium equations whereW is defined through the relation
. . — 2 . —_ . =
ViV-u+(1-2v)Veu;—2(1+v) »V;¢p=0. (12 v2W= 4. (19

The stability is studied by considering small perturbations
around the basic state: a general variablés expandid

in a two-dimensional Fourier series asé= ¢

In the substrate, the displacements are

N o : . as uy idy/

+3,£(0,2,1) €@ W) (the Fourier coefficients for the x x ax/d

height variable are independentz)f The functional deriva- a2 wlesz—]| iq.s z

tive in Eq. (8), when computed, becomes the free-energy y v|© ayla|Bzer, 20
density evaluated at the surface. Hence, for the purpose of a3 U(z) 1

calculatings;h, the free-energy density has to be computed

to O(E). To this order, the Ginzburg-l:andau free enAEVQYWhereB:[1/(3—4v)](iqxu2+iqyu3+qu§’), and where we
does not contribute, and we have the ordedastic energyy  have used the condition thaf vanishes far from the film/
as substrate boundary. In the film, we have
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0y ay Bx
0y | =| @y |costiqz)+| By |sinhq2)
0; a, ﬁz
Cigy/q Digy/q
—| Ciay/q | zsinh(qz)—| Digy/q | zcoskqz)
D C
ig,W
1+v oA
+ 1-5)7 iqyW @)

3, W

In this last equationC and D are defined asC=[1/(3

_4V)](iqxax+iqyay+q,32) and D=[1/(3—4v)](iq.px
+iqyBy+da,). The above relations for the displacements in
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P (12 2A2(1+V)
= A=2nao)| 27T 1T,
1+v\ . N
+2¢ 1 gqh(1-2v)(1+v)nod

) 1+v\2. “ 2%
+2(1-20) 72| T | BLagW— W]

z=h

z=h

2
+2(1—2v><1—v>n2(g) [qa,W— a5 W]?

1+v
+8(1-2v)(1+wv)e 1 q

)

In this equation fol€, we have dropped terms of the foim

h

X 7 qd,W—g2W] 27)

the film and in the substrate contain nine coefficients thabecause they do not contribute to the chemical potential for

have to be fixed using the boundary conditions.Oi@), the
boundary conditions are, at=h,

6x=i050h, &y,=igyoh and &,,=0. (22

At z=0 to this order,
(23

The linearized boundary condition of is <}'>=0 at z=0,
since we consider the alloy to be in the regionO.

With these boundary conditions, we find thaﬁ= a;
= B;, which implies thatC=D =B . For the energy calcu-
lation it is sufficient to specifyC, as well as the relations
betweena, andC:

qho 1+v A pal A
C=A _2_+77 1—» (qI,W—=3;W+ )| ,-1],
(24)
— gho 1+v -
qa,=C(2—2v+qgh)+A 7—27] 11— qa,W|,=n1,
(25)

whereA=[cosh@h)+sinh@h)] "~

B. Calculation of the energy

®.
To obtain the functiolV, we proceed as follows. We are
interested in the early time regime where the fields grow

exponentially in time, i.e.d= ¢oe® and h=hye®. This
means that in the bulk of the filmg,= de???, which
gives, by Eq.(19),

2n
v oo

O%—(qu)?

eﬂz/v. (28)

In particular, at the surfacez=vt, and W=v23/[Q?
—(qv)?], which implies that and € can be calculated in

terms ofh and ¢ only. For completeness, we write these
expressions here:

Il RPN PO s Uil 29

=1, ~2e(1+v)ah—27¢ w0 (29
and

~ E - 1+v vQ+qu

E= 2¢? 1—2(
1—,,[” i R i PR l

2(1 hop| 22— v 30

~2(1+ e nahd| o | (30

C. Linearized dynamical equations

The dynamical equations fdr and ¢ are obtained from

The energy can now be calculated to second order in tths_(S) and(9). In Fourier space, they read

perturbations from Eqg13) and(14),

. E . . )
&= _1_8V[—2s(1+ v)gh—27((1+ 1), W— (1+ ) 32W

+ V(’Z\S)|z=h4] (26)

and

ety o 2E
19T

~

vqu—Q
qu+Q

8"

|

+v9%h (31)

and
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- 2E A 4E 2 o+4kV
dip=—T 40 —r'+cq’+ —772) ¢—T49° g.p=—K| £14+K2+ —— = 20 ———— | ¢
1-v 1-v ¢ k2 377 (O’+kV)2
1+v) Q Q \? .. 30—kV
_ 2 3 g A~
X[ 1—» Q+QU)+(1+V) Ot qu n°d +k 8*77*( +kV)h' (39
1+v/3Q—qu N - In E
3 _ g. (39 [and Eqs(40), (42), (44), (45), and(46) below],
+14a72E 1-v\ Q+qu enh=Ad. (32) the top sign is taken if the alloy is above the critical tempera-

ture and the bottom sign applies if the alloy is below the

It can be seen from these equations that the two variables aggjtical temperature. Immediate important conclusions can be

coupled due to the elastic effects. In E®2), the term
[2E/(1—-v)] 772& simply renormalizes the coefficient and
was first calculated by Cahhin the case of a bulk binary
mixture. Experimentally, only the renormalized value for

drawn from these equations. In a general case where none of
the parameters vanish, the morphological and compositional
degrees of freedom are always coupled. Thus, if one of the
variables is unstable, then the other will also be unstable.

is accessible, and we therefore introduce a new coefficiertherefore, decomposition of the alloy will always be accom-

r=r'— 2E7?/(1-v), which is proportional ta*"— T, and
we consider the cases wheFeis above and belows" .

panied by a surface instability, and the only way a planar
surface can be stabilized is if spinodal decomposition is sup-

The dynamical equations can be rescaled using typicatressed. In the same way, if a misfit drives a surface insta-

length and time scales. We take the typical width of inter-

bility, it will induce phase separation at the surface. In gen-

faces between domains as the length scale, and make tg&al, forT<T., both the instability due to the misfit and the

transformationx=(|r|/c)¥% and k=(c/|r|)*%q. Note that
when the constant$’, and v are rescaled by this length
scale, they become equivalentlfg, and A [see discussions
around Eqs(7)—(9)]. The time scale is then related to the
surface diffusion constank',, leading to the rescaling
=(F¢r2/c)t. We also introduce new parametets, 7n*,
and y* defined as

. 2E(1+v
e*= m 1 €, (33
. _[2E[1+w| ]2
7= T (34)
and
y*=(clr|)~¥2y. (39

Furthermore, the growth parameter is also rescaled,

r2 -1
V=(F¢€) A, (36
while the dimensionless dispersion is
r2 -1

For most semiconductor materials, the Poisson ratio val
ies around a value of 1/4. For this valuegfthe dimension-

less dynamical equations ark has also been rescajed

thermodynamic instability of the alloy are present, and the
system evolves with a single dispersion relation that is a
combination of the two instabilities. The second important
conclusion is concerned with the signs of the misfitand

of the solute expansion coefficient . It can be seen in Egs.
(38) and (39) thate*, and »* appear only in the combina-
tionse*?, 5*2, ande* 5*, implying that the only possible
dependence on the signs of and »* would be from the

e* »* terms, i.e., thecouplingterms in the equations. Con-
sider, for instance, the term proportional&bdn Eq.(38). To
replace the fluctuation ig by a function offi, one has to
first (simultaneously solve Eq.(39), giving ¢~&* 7*h,
which is then substituted back in E@®8), yielding an effec-
tive contribution which is proportional tos¢ *)2. Hence,
the stability isindependenbf the sign of the misfit or the
expansion coefficient.

To solve for the dispersion relation, we let=hqe””, &
=¢oe’” and require that the determinant of the matrix

formed by the equations fdfro and ff;o be equal to zero. We
find that o satisfies the quartic equation,

0={[o+k*(K*=1)+V](o+kV)?
—$7* oo+ akV) H o+ vy Kk —e* 2]

+1k3(e* *)%(30—kV)(4o—kV). (40

It can now easily be seen thatdoes not depend on the sign
of e* or »*. In general, there exist four complex solutions to
Eq. (40). The real part ofo determines the stability of the
System, while the presence of a nonzero imaginary pa for

is responsible for oscillations. Here, we are only interested in
the stability of the system, and concentrate on the real part of
o. When the analytical solutions fer are complicated we
proceed numerically, and for a given valuekofwe calculate

the real part of each of the four solutions, and denote the
largest of these four values as Hence, below, when we
indicatedc>0, it means that the real part of at least one of the
four roots is positive, leading to an instability, andrepre-
sents the most unstable dispersion.
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IV. RESULTS FOR STATIC FILMS 0.5 . .
In the case of a static film of fixed average height, the @
expression folV in Eq. (28) is no longer valid. In principle, 0.0 —_
Eqg. (19) has to be solved for a composition given bysa
function inz—h. HAoweyer, a simpler arglzlment is as follows: o
if we assume thath,= ¢ **~ " where ¢, is the value of 05l
the order parameter at the surface, tWnis easily calcu-
lated. Substitution of the expression 8t in the elastic en-
ergy Eq.(27).and taking the Iimit)\>q yields the same -1_%0 G 1“«0 5 20
result as settinghe growth velocity V to zerdrhe expres- : |
sion for <}5b above is similar in spirit to the calculations of 1.0 : k :
Glas for an equilibrium static fill¥® Various scenarios are (b)
possible depending on the valuesedf and *. When both

e* and »* are zero(i.e., a film perfectly matched to the 08¢ LT |

substrate and with the lattice constant independent of com-
position, the dynamical equations decouple and there are
two nontrivial solutions foro. For the height variable,

on=—y* k4, (41

which is always negative, leading to a stable planar surface.
For the compositional degree of freedom, we have

T4=— KT, (42

which is positive in the band of wave vectors<@<1 for
T<T., and is always negative far>T.. WhenT<T, o4
is the usual expression for spinodal decomposition of a sym-
metric binary alloy, and in the absence of nonlinear elastic 0.0 =" -
effects, complete phase separation of the two components ©
results. The most unstable wave vectorkfé=1/\/2, and
o 4(k)=1/4. We plotoy, and o, in Fig. L(a) for T<T,.

When only the substrate misfit is present* ¢ 0,7*
=0), the equations are still decoupled, and we recover the 195 05 1.0 15 20
result of Asaro and Tiller for the surface dispersion, k

op=8*2k3— y*k*. (43 FIG. 1. Dispersion relations when the morphological and com-
The misfit induces a surface instability, sineg is positive positional degrees of freedom decouple. The solid lines represent
in the region G<k<e* 2 y*, with the maximum in the dispersion fokp whenT<T_., while the dotted lines are fdr.

* _ * — ok — * —
the dispersion at k21=(3/4)s*2/7*, and O'h(kﬁq) The parametey* =1. In (a), ¢* =7%*=0. In (b), »* =0, and the

. . . dotted curves from bottom to top are fet =1, 1.25, and 1.5. In
— *8/ . %3 ’ ,
=(27/256)¢* "/ y*>. The dispersion fot is the same as Eq. (c), e*=0, and the solid lines from bottom to top correspond to

(42) [see Fig. )] . o ' 7*=0, 0.5, and 1.
In the absence of a misfit but in the presence of a nonzero

solute expansion coefficiere* =0, #*#0), the two vari-

ables are decoupled and the surface is always stable, since

dispersion is given by Eq41). For the composition, the

the boundary condition on the stress tensor at the surface,
Rd corresponds to the third and fourth terms proportional to

*x2
) s 7*<in Eq. (27).
dispersion is given by The most interesting case for a static film corresponds to a
oy=—KHKY(F1+E9*2). (44) ~ compositionally stressed film on a mismatched substrate, be-

cause the dynamical equations are coupled due to the terms
Below T., the dispersion is now positive in <Ok  proportional tos* %*. Because the variables are coupled, the
<V1+(2/3)7*2, with a maximum at k%=(1/y2)(1 dispersion relation describes the stability of both variables
+(2/3)7*?)Y2. The value of the dispersion relation at the simultaneously. We first describe the results Tor T... In
maximum is increased tmr¢(k;’f,):(1/4)(1+(2/3)77*2)2, Fig. 2, we plot the maximum of the real part of the disper-
implying that the contribution due tg*?2 increases the in- sion relations for a fixed value ef* but for different values
stability to phase separation as well as the value of the mosif »*. As can be seen in this figure, is always positive in
unstable wave vectdFig. 1(c)]. AboveT,, the elastic fields a band of wave vectors and has two peaks: the first peak at
can induce a decomposition of the alloy sineg can be- lower k is due ton*, while the second peak is due to the
come positive ify*?>3/2. The extra term (2/3)*2 in Eq.  misfite*. As »* is increased, the value of at the first peak
(44) originates from the elastic fields generated by composiincreases and the peak location moves to a lakgealue.
tion inhomogeneities at the surface that are constrained biventually, for very largep* (not shown in the figune the
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' ' ' ' ' ' ' ' TABLE I. Summary of the stability results for the static film.
18 - -
r Temperature  &* 7* Surface Alloy
15 -
L T<T, 0 0 stable unstable
12 - . 0 #0 stable unstable
#0 0 unstable unstable
b 9 B #0 #0 jointinstability joint instability
r 1 T>T, 0 0 stable stable
6 7 0 #0 stable stable ifp< 7,
I | #0 0 unstable stable
8 i b #0 #0 see Fig. 3 see Fig. 3
0 | | | |
0 1 2 3 4

from the elastic field and implied ¢=0. We believe that by
appropriately including the nonequilibrium evolution ¢f
FIG. 2. Dispersion relation for the static film wherand¢ are ~ We have captured the missing ingredient to make the under-
coupled forT<T,. The misfite* =0.75 andy* =3.2, 3.5, 4, and  standing of the problem more consistent. Gldms recently
4.5 from bottom to top. calculated the equilibrium stabilitgin the sense of thermo-
dynamicg of an alloy in a planar half-space the surface of
first peak is so strong that only one peak is apparent. Exce hich is allowed to d‘?"_'at.e from planarity. Therg, Itis fou.n(.j
at the state that minimizes the energy consists of a joint

for a special case, one of the peaks will be larger than th qulati f th it d of the f ’
other, and the most unstable wave vector will come from thafodu'ation of theé composition and of the free surlace, even

peak. In the special case where the two peaks have the sa éhe a!loy is stabl_e against dec_omposition in bulk form. The
height, the surface becomes most unstable at two wave ve ynamical analysis presented in the present paper suggests

tors simultaneously that the equilibrium state may not always be kinetically ac-
When the température is above the critical temperatureceSSible since there exist combinations of the misfit, the sol-

there is a region of stability that appears in th&— 7* ute expansion coefficient, and the temperature for which sta-

diagram, as shown in Fig. 3. It can be seen thaj*ifor ¢* bilization occurs.

are too large the coupled system is always unstable. The

shape of the stability diagram implies that if the misfit is V. RESULTS FOR GROWING FILMS

moderate, the system can be stabilized due to the elastic \\\ . the film is growing, the growth parametérbe-

Efrldes geir;irart]eiht;y ;hn? ﬁgﬂ%oi':'?ﬂé'fctgg Vgg,{?g?}gf Qt?;ssecomes important in determining the stability. Again, when
9 an, P P S+ =0 or n* =0, the dynamical equations fér and ¢ de-

Vn\:'iléﬁr:of”?: rZ:Lf:fsle;t t:% Z?;g:ﬁtl tgﬁalln;tsa?glrt){hgusetz;?c tf?l’ran couple and each variable has its own dispersion relation; in
’ y y the general case where bo#f and »* are nonzero, the

are summarized in Table I. . - o
. , variables are coupled and their time evolution is governed by
In their study, Guyer and Voorhe@sfind that for the the same dispersion relation.

static film, compositional strain plays no role in the instabil- To establish basic results, we start by describing a per-

ity. This is because, in their model, composition deCOUpIe?ectly matched film where its constituents are of the same

size (* = »* =0). Here, the surface is always stable, since
there are no compositionally generated stresses and no misfit.
- The dispersion relation fan is given by Eq.(41). Because

1 there is a competition between the constant deposition of
7 material of fixed average composition and the formation of

] phase separated domains at the surface, the growthvrate

1.2

1.0
Stable

08 - 7 can be used to stabilize the homogeneous mixture. This can
‘= 06 i i be seen in the dispersion relation f¢r which reads
04l i o4=—k*FK* - V. (45)
02 I Unstable ] For the positive sign, the dispersion relation is positive in the
“ ] band 1-\1-4V<2k?<1+1—4V, provided that the

0oL A growth rateV<1/4. Hence, ifV>1/4, the constant deposi-

00 02 04 06 08 1.0 12 14 16 tion is too strong for the phase separation, and the alloy is
e stabilized against decomposition. This implies that there ex-

ists a critical growth raté/, above which the film will be

FIG. 3. Stability diagram for the static film grown above the homogeneous in composition. When the growth parameter is
critical temperature. A joint instability occurs in the unstable regionbelow 1/47 a top view of the system shows lamellar or drop-
and a joint stability occurs in the stable region. The surface constarlet concentration patterns in the steady state. The appearance
v =1 of droplets is due to nonlinear elastic effects that favor the
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0.4 . 20 : . .
@ @ £=0
T<Tc
0.0 15¢ g
Stable growth
b° 1.0} 1
-0.4 >
0.5 Unstable growth -
080 05 1.0
] k 0'00 0 04 08 12
b) n'
(b) .
0 10f £=0 |
T>T
c
be
-1t - Stable growth
S 05 .
2 .
0 1 2 Unstable growth
k 0.0 _
FIG. 4. Dispersion relation fog in the case of the uncoupled . s . . | ‘ |
growing film whenT<T,. In (a), we plot the dispersion relation 0.0 04 08 12 16
when »* =&* =0 for (bottom to top V=0.5, 0.25, and 0.1. Ib), n'
n*=1, ¢*=0, and the curves from bottom to top correspond to
V=1, 0.5, and 0.1. FIG. 5. Critical growth rate as a function of the solute expansion

coefficient for(a) T<T. and(b) T>T.. For V>V, the system is

formation of hard droplets in a soft matrix. We plat, in stable.
Fig. 4(a). For the negative sign, the alloy is always stable
against decomposition. side of the miscibility gap, there is a range #f, 0<#*<1

If the film is mismatched buty* =0, the surface is un- where the alloy is stable at any growth rkég. 5b)]. Note
stable due to the Asaro and Tiller instability and its disper-that whene*=0 and »*=0 the alloy is always stable
sion is given by Eq.43), while the composition is unaf- against decompositiofsee Eq.(45)]. If »*>1 andT>T,,
fected by the misfit and Eq45) is still valid. The most spinodal decomposition occurs at low growth rates and is
unstable wave vectors are in general different for the instasuppressed at high growth rates, as shown in Fig\. 5
bilities in h and ¢, which means that at early times, the size  For most situations, none of the parameters vanish, and
of concentration domains will be uncorrelated to the size othe two variables are always coupled. In Fig. 6, we pias
surface perturbations. a function of the wave-vector amplitude for various combi-

The surface of a matched filnet =0) in the presence of nations of the parametees’, »* andV for T<T,. In Fig.
both the deposition process and the compositional stresses&), we ploto for fixed values ofe* and »* but for differ-
always stable, since,=— y*k*. The stability around the ent growth velocities, showing that &sis increasedg be-
average composition is described by the solutions to a cubicomes negative for ak whenV>V_. Note however, that

equation ino , the location of the maximum does not change much With
s ) If V ande* are fixed whilen* is increasedFig. 6(b)], the
[ostk(k“£1)+V](o,+kV) coupled system goes from stable to unstable, and the location
; 4 o ; : .
B %kzn*20¢(a¢+4kV)=0. (46) of the maximum increases with* as discussed in previous

cases. The effects of the miséit on the stability are shown

In Fig. 4b), we plot o4 as a function ofk for different in Fig. 6(c). There is a maximum value far*, 7, above
values ofV and »* for temperatures inside of the miscibility Which the system is unstable. Below this maximum misfit,
gap. As can be seen in this figure, the band of wave vector§ie deposition is strong enough to control the compositional
whereo, is positive decreases in size Wss increased. For gradients generated by the intrinsic phase separation and by
V large enoughg, is always negative, implying that the the surface instability, but as the misfit is increased the in-
homogeneous alloy is stable. The critical growth rate intro-Stability driven bye* becomes stronger than the deposition.
duced earlier now depends af as shown in Fig. 5. As an The value ofef,, depends only on the surface tensigh:
indication, we find that foff <T., V. increases roughly as &5 .~7*Y2 In Fig. 7, we plot a stability diagram for the
»* 2 over the range plottefFig. 5a)]. For temperatures out- coupled system, showing the stable and unstable regions.
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@ 1
0
)
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00 05 10 15
> Stable
030 05 10 15 20 05 - | ]
< 1
0. . : ;
To I Unstable
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FIG. 7. Stability diagram for the growing film wheyt* =1 and
for composition-independent elastic moduli whad<T.. The
0% . . dashed(solid) lines are forn* =0.5 (*=1). The vertical solid
0 05 1.0 15 20 and dashed lines overlap fof>1.06. The inset shows the disper-
0.5 : k . sion relation for different values of the misfit and the growth rate
O for 7* =0.5. Bottom to top: £*,V)=(0.1, 0.5, (0.1, 0.2, and(0.3,
0.5. The stability diagram can be interpreted foeT,. if the
threshold growth rate is taken from Fig. 5.
0.0 .
o parameter. We writ€=E+ E, ¢ and assume that the shear
modulus is constantu= . Taking E and p as the two
independent elastic moduli, the Poisson ratio us v
. . . +V1¢ W|th VO:(EO_Z/'LO)/(Z/*LO) a.nd V1:(E1/E0)(1
030 0.5 1.0 15 2.0 +vg). The first-order stress tensor is
k
. . . . . R Vo " . 1+ Vo -
FIG. 6. Dispersion relation for the growing film whénand ¢ Tij =2uq 1 omm M 5ij + @i — 12, 0¢5ij ,
are coupled whed <T,.. (8 £*=0.1, »*=0.5. From bottom to 0 0
top: V=0.6, 0.34, and 0.25b) ¢*=0.1,V=0.34. From bottom to (47)

top: »* =0.25, 0.5, and 0.75c) »* =0.5,V=0.4. From bottom to

top £*=0.1, 0.5, and 1. with = n+2(E,/Eg)e/(1—vy) a new effective solute ex-

pansion coefficient. The elastic energy is now

The shape of the stability diagram is generic for the alloy - . . -

grown either above or below the critical temperature since E= ot Byy=2[ 1= (E1/Eg)e/(1=2v0) 1)  (48)
we find that the maximum misfit is independent of wheftfier and

is above or belowT, and the critical velocity boundary is

horizontal in both cases. The stability diagram can be inter- - — "

preted for any value of the temperature if the the value of the €= Sijki 0ij Tt Sijki 01 0k - (49
threshold velocity is taken from Fig. 5. A summary of our
results is presented in Table Il. From a step-flow growth
model, Tersoff? concluded that alloy decomposition can
never stabilize a growing mismatched surface, independently . :
of the sign of the misfit. Our work indicates that stabilizationﬁlmTABLE Il Summary of the stability resuilts for the growing
is possible by appropriately choosing the growth rate, since” "

Elimination of the displacement vector through the mechani-
cal equilibrium equations leads fto first order inE;)

the constant deposition of material competes with th_e alloyremperature o* - Surface Alloy
decomposition. Furthermore, the results for the static films
presented in this paper follow naturally from our generalT<T, 0 0 stable stable i¥/>V,
model for the growing alloy by taking the limit of zero 0 #0 stable stable i¥/>V(7)
growth rate, in contrast to the step-flow mddelvhich is #0 0 unstable stable ¥/>V,
inapplicable as/—0. #0 #0 seeFig. 7 see Fig. 7
T>T, 0 0 stable stable
VI. COMPOSITION-DEPENDENT YOUNG'S MODULUS 0 #0  stable  stable V>V (z)
#0 0 unstable stable
In this section, we extend the calculations above to in- #0 #0 see Fig. 7 see Fig. 7

clude a linear dependence of Young’s modulus on the ordet
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FIG. 8. Stability diagram for the growing film wheyt =1 with
a composition-dependent Young's moduli&; &1, »*=0.5 and
T<T,).

VIl. CONCLUSION

In this paper, we have shown that a proper description of
static or growing solid films requires considerations of the
nonequilibrium nature of the surface diffusion. We obtained
coupled dynamical equations for the local composition of the
alloy and for the surface profile. The most important conclu-
sion in our work is that, in general, the composition and
surface height variables are coupled, implying that a film
with a stable(unstablg planar surface is also stablen-
stablg against decomposition of the alloy. Another impor-
tant conclusion is the fact that the stability is independent of
the sign of the mismatch between the film and the substrate
when the elastic moduli are independent of composition.
This symmetry can be broken if the Young’'s modulus of the
alloy constituents depends on composition. A planar film
with the appearance of modulations perpendicular to the
growth direction can be obtained if the film is perfectly
matched to the substrate. For the unstable surfaces, our cal-
culations suggest that the mode with the most unstable wave
number will grow faster. However, this does not necessarily
mean that a film of arbitrary thickness will show modulations

It can be seen in these equations that the composition depeof wave number,,. In fact, nonlinear effects become im-
dence ofE introduces nontrivial dynamical terms and a de'portant on a thickness sca\{gf&ly where a possible cross-
pendence on the sign of the misfit. The dependence on qyer fromg,, to a steady-state wave number can occur. Of

the sign ofe* can be understood as follows: for example, acqyrse, the large stress concentrations at this point may also
film under compression witly* >0 would be less unstable |oa4 to the formation of dislocations.

for E <O since the larger atoms are easier to compress. It

can also be noted that even in the absenceyofthe vari-
ables are coupled due to the termsEfi. The new stability

diagram for the growing film is presented in Fig. 8, showing

ACKNOWLEDGMENTS

that the maximum misfit is still present and the asymmetry This work was supported by the NSERC of Canada. F.L.

when the sign of the misfit is reversed.

also acknowledges support from the Walter C. Sumner Fund.




57 ALLOY DECOMPOSITION AND SURFACE ... 4815

1A, Zunger and S. Mahajardlandbook on Semiconductor@nd 108 7, Spencer, P. W. Voorhees, and S. H. Davies, Phys. Rev. Lett.

ed. (Elsevier, Amsterdam, 1993Vol. 3. 26, 3696(1991).
2F. Leonard, M. Laradji, and R. C. Desai, Phys. Rev58 1887  1'J. E. Guyer and P. W. Voorhees, Phys. Rev. L&f, 4031
(1999. (1995.
3F. Leonard and R. C. Desai, Phys. Rev5B, 9990(1997. 123 Tersoff, Phys. Rev. Let?7, 2017(1996.
4F. Leonard and R. C. Desai, Phys. Rev5B, 4955(1997). 137, Walther, C. J. Humphreys, and A. G. Cullis, Appl. Phys. Lett.
5D. E. Jesson, S. J. Pennycook, J.-M. Baribeau, and D. C. Hough- 71, 809 (1997.
ton, Phys. Rev. Lett71, 1744(1993. 14T, Okada, G. C. Weatherly, and D. W. McComb, J. Appl. Phys.
6C. W. Snyder, B. G. Orr, D. Kessler, and L. M. Sander, Phys. 81, 2185(1997.
Rev. Lett.66, 3032(1992). 158, J. Spencer, P. W. Voorhees, and S. H. Davies, J. Appl. Phys.
“E. K. Legoues, M. Copel, and R. M. Tromp, Phys. RevyB 11 73, 4955(1993.
690 (1990. 163, E. Guyer and P. W. Voorhees, Phys. Rewa4311 710(1996.
8R. J. Asaro and W. A. Tiller, Metall. Trans. B, 1789(1972. 173, W. Cahn, Acta Metall9, 795 (1961).

°D. J. Srolovitz, Acta Metall37, 621 (1989. 18F Glas, Phys. Rev. B5, 11 277(1997.



